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Abstract

Interpretability of machine learning models is critical to scientific understanding,
AI safety, and debugging. Attribution is one approach to interpretability, which
highlights input dimensions that are influential to a neural network’s prediction.
Evaluation of these methods is largely qualitative for image and text models,
because acquiring ground truth attributions requires expensive and unreliable
human judgment. Attribution has been comparatively understudied for graph neural
networks (GNNs), a model class of growing importance that makes predictions on
arbitrarily-sized graphs. Graph-valued data offer an opportunity to quantitatively
benchmark attribution methods, because challenging synthetic graph problems
have computable ground-truth attributions. In this work we adapt commonly-used
attribution methods for GNNs and quantitatively evaluate them using the axes of
attribution accuracy, stability, faithfulness and consistency. We make concrete
recommendations for which attribution methods to use, and provide the data and
code for our benchmarking suite. Rigorous and open source benchmarking of
attribution methods in graphs could enable new methods development and broader
use of attribution in real-world ML tasks.

1 Introduction

With the increasing use of automated decision making aided by machine learning models, the
credibility of the models we produce takes on a heightened importance, particularly for fields such
as drug discovery. Credibility describes the extent to which a user trusts a model’s output, and this
concept can be difficult to formalize [17]. In the absence of a concrete definition of credibility, we
may provide a window into the model’s “decision making process”, or provide interpretability. In
fact, a new wide-reaching European regulatory framework for the application of ML (GDPR; [1]),
explicitly requires interpretability of some kind for deployed models. There are many ways to provide
interpretations of a model (which we review below), but in this work we focus on perhaps the simplest
— attribution.

An attribution is a credit assignment on each individual input feature xi of a data input x (e.g. for
images, each pixel; for text, each character or word) that measures how important the feature is to
the model’s prediction of a target property y, often presented to users as a heatmap overlaid on the
original data. The attribution heatmap visually indicates what aspects of a particular data example
has the greatest influence on the model’s prediction of property y.

Attributions can expose the statistical regularities that the model leverages to make a prediction [47].
If these patterns match our intuition, they can bolster our confidence in the model’s predictions. If
attributions instead reveal that the model is exploiting spurious correlations, or plainly violates a
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practitioner’s common sense, we may use attributions as a debugging tool — we can highlight, and
then subsequently correct, spurious correlations in a dataset [29], or apply regularization to encourage
desired behavior in the model [33, 38].

Attribution methods have been most studied in the domains of image modeling [16] and text [6],
areas where humans have strong intuition. A “ground truth” credit assignment in these domains
ultimately rests with subjective human judgment. Unfortunately, obtaining ground truth for realistic
image and text tasks is subjective, expensive, and time-consuming.

The introduction and refinement of graph-based neural network models [11, 39] has opened up
new and powerful capabilities for modeling structured data. For instance, social networks [52],
protein-protein interaction networks [54], and molecules [18, 20] are naturally represented as graphs.
Graph-valued data offer an opportunity to inexpensively and quantitatively benchmark attribution
methods, due to the fact that challenging synthetic graph problems have computable ground-truth
attributions. This allows us to quantitatively measure the performance of popular attribution methods
on several GNN model types, built for a variety of tasks.

Figure 1: Schematic of attribution task setup and attribution metrics. A. We create classification and regression tasks for which we have
a computable ground-truth. We train GNN models on these labels, and calculate attributions using the graph inputs and attribution methods we
adapt to graphs. B. We quantify attribution performance with four metrics. Accuracy measures how well an attribution matches ground-truth.
Consistency measures how accuracy varies across different hyperparameters of a model. Faithfulness measures how well the performance of
an attribution method matches model performance. Stability measures how attributions change when the input is perturbed.

Measuring Performance of Attribution Methods We use tasks with graph-valued data and com-
putable ground truths (Figure 1, left) to examine qualities of an attribution method that are necessary
for credibility: accuracy, faithfulness, consistency and stability [37] (Figure 1, right). We consider
an attribution method to have high attribution performance if it scores well on all four properties.
We focus on these qualities from [37] because they are quantitative, do not require soliciting human
judgment, and are specific to attribution, as opposed to interpretability more broadly.

Accuracy. We assess attribution accuracy by quantifying how well attributions match ground-truth
credit assignments. If the model is “right for the right reasons” [17], we expect the attribution method
to highlight the correct, ground truth nodes in the input graph (Figure 1B, upper left).

Consistency. The accuracy of an attribution technique should be consistent across high-performing
model architectures. To test attribution consistency, we quantify the variability in attribution accuracy
using the top 10% of models through a hyperparameter scan over model architectures (Figure 1B,
lower left).

Faithfulness. The performance of a faithful attribution method should reflect the performance of the
model. To quantify faithfulness, we run two experiments where we intentionally damage the training
dataset to degrade a model’s predictive performance, and systematically measure how each attribution
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method responds (Figure 1B, upper right). What we term faithfulness in this work is the concept of
fidelity from Robnik-Šikonja and Bohanec [37].

Stability. An attribution method should be invariant to small changes in input features that do not
affect an example’s class label or the model’s prediction. To assess stability, we make small graph
perturbations on test set examples that leave the ground-truth attribution and predicted class label
unchanged, and assess the degree of change in attribution accuracy (Figure 1B, lower right).

We perform these experiments across four popular GNN architectures (GCN, MPNN, GAT, Graph
Nets), and six common attribution methods (GradInput, SmoothGrad, two variants of GradCAM,
Integrated Gradients, CAM and Attention weights) which are further explained in section 3.2.

Contributions

We offer three main contributions:

• We build a comprehensive and open-source benchmarking suite for attribution methods on GNNs
and graph-valued data1.

• We evaluate the performance of commonly-used attribution methods in GNNs using the axes of
accuracy, faithfulness, stability and consistency using targeted experiments.

• We find that, when applicable, CAM applied to GCNs is the best performing attribution method for
GNNs. CAM is generally the best attribution method across all architectures, and all attribution
methods tend to perform best when applied to GCNs. If CAM cannot be used, IG is a good
substitute. For graph datasets containing only adjacency information, GradCAM is the best
performance attribution method.

2 Related Work

This paper draws from two main areas of prior work: 1) analysis of attribution methods in inter-
pretability and explainability, and 2) graph neural networks and interpretability for graphs.

There are several approaches to model interpretability that rely on simplifications or local approxima-
tions of models, feature subselection or attention [36, 13, 38, 26] , although recent analysis shows
the use of attention for interpretability can be problematic [23, 12]. We focus on attribution, which
has received significant research attention [40, 41, 42, 44, 24, 30, 41, 53]. Efforts to quantify the
utility of attribution methods or apply sanity checks have been undertaken in input domains where
human intuition is usually used to evaluate attribution quality [4, 50, 7, 32, 21, 5], like images and
text. We are inspired by these approaches, and use them to quantify attribution performance against
computable ground truths in the domain of graphs.

Attribution for GNNs have been studied and evaluated before, in specific cases. Duvenaud et al.
[18] examined the activations of each message-passing layer in a GCN and identified relevant
subgraphs. Other models used attention mechanisms in order to highlight important subgraphs
[25, 28]. GNNExplainer [51] developed graph explanations by identifying single subgraphs that are
relevant to a prediction. The works of [29, 34, 35] use saliency-based methods to identify important
nodes and subgraphs in graph-level predictions. Several other works have applied or tested individual
attribution methods for GNNs on a narrow set of tasks or applications [34, 10, 8]. Other relevant
work that develops methods for GNN interpreability are [49] and GraphLIME [22].

3 Methodology

3.1 Graph neural networks

We define a graph and GNN following Battaglia et al. [11]. A graph G is a 3-tuple G = (V,E, u)
containing vertices V and edges E and possibly global context information u. We are primarily
interested in graph labeling problems of the form f : G(V,E, u) → R. Briefly, a GNN is a neural
network that takes a graph as input and outputs a graph with the same topology, but with updated
node, edge and/or graph-level information. A readout layer is applied to the output graph to produce
a real-valued prediction. One key feature of the GNNs we study is the message passing function,
which allows nodes to update their states by aggregating feature information from neighboring nodes
and edges. Depending on the message passing strategy, the message can contain information about
the node, edge, or the global context.

1Code and data for this paper will be available at github.com/google-research/graph-attribution
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Our experiments use four existing GNN architectures distinguished by their message-passing strate-
gies. The first is a graph convolutional neural network (GCN) [18] in which the messages are
calculated using only node states. The second model is the MPNN [20] in which the message function
is based on a learned representation of the edge states and is used to update the node states. The third
model is Graph Nets [11] in which the message function uses a global state vector in addition to
node and edge states. The fourth is the Graph Attention Network (GAT) [46] which aggregates node
information via an attention mechanism. Details about the implementations of these models may be
found in Section 5.1.

3.2 Attribution methods

An attribution method A takes a model M and a graph G to generate an attribution map, GA =
(vA, eA); vA, eA ∈ R, where vA, eA are node and edge weightings relevant for predicting y. These
weightings can be visualized as a heatmap superimposed on a graph. Our ground-truths for attributions
are node-level, so we redistribute edge attributions equally onto their endpoint nodes’ attributions.
Global features, which can be interpreted as a bias term for the entire graph, have been studied
elsewhere [27] and are not considered for attribution in this paper. We utilize the following methods
for graphs:

Class Activation Map (CAM) [53]. CAM uses a global average pooling (GAP) layer prior to class
outputs to obtain attributions. For CNNs, CAM attributions are derived by multiplying the final
convolutional layer’s feature map activations (act) with the output weights of the GAP layer, w.
CAM can be adapted to graphs using graph model architectures that allow the addition of a GAP-like
layer. For example, CAM on GCNs expresses the GAP layer as a summation over node and edge
features at the last message passing layer.

GA = (vj = wTactvj
, ek = wTactek)

Grad
⊙

Input [41]. GradInput attributions correspond to the element-wise product of the input
graph with the gradient of ŷ with respect to the input node and edge features, with an optional
reduction step over the feature dimension to arrive at a node- or edge-level attribution.

GA = wTG,w =
dŷ

dG

GradCAM [40] extends GradInput by using intermediate activations. It corresponds to the element-
wise product of the activation of an intermediate message-passing layer with the gradient of ŷ with
respect to the node and edge features of that intermediate layer. We analyze the attributions of two
GradCAM variants. GradCAM(last) is the GradCAM attribution of the last message-passing layer
(the nth layer Gn), and GradCAM(all) averages across all message-passing layers.

GA(last) = wT
nGn(G), GA(all) =

∑n

i w
T
i Gi(G)

n
, with wn =

dŷ

dGn(G)

SmoothGrad [42] averages attributions evaluated on noise-perturbed versions of an input. This was
initially used to sharpen saliency maps in images, but we extend this technique to graphs by adding
Gaussian noise to node and edge features. The variance of the noise (σ=0.15), and number of samples
(n=100) is optimized for attribution AUROC on the Benzene task. We apply SmoothGrad to the
GradInput attribution method detailed above.

GA(m) =

n∑
i

m(G+ noisei),m = GradInput

Integrated Gradients (IG) [44] integrates the element-wise product of an interpolated input, Ginterp,
with the gradient of ŷ with respect to Ginterp, between the actual input G and a counterfactual input
G′. We follow [29] and build counterfactual G′ using a null graph, a graph with the same topology
but all nodes and edges use an “unspecified” categorical feature.

Since null graphs function as a baseline, models should produce equal output probabilities to null
graph inputs. Therefore, the input dataset is augmented with the null graphs of 20% of positively-
labeled examples, which have a 50% probability of associating with a positive or negative label.

GA = (G−G′)

∫ 1

α=0

dy(G′ + α(G−G′))

dG
dα
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Attention This method is specific to the GAT model. For a given node, the attention mechanism
will produce attention scores on edges to adjacent nodes. We can use these attention scores as a
measure of importance for propagating information relevant to the predictive task, and therefore as
an attribution weighting. A GAT GNN might have several blocks and attention heads, so for each
component we take their average to combine them into a scalar value assigned to each edge. We
assign node importance by adding half of each edge score to each attached node. In our experiments
we use a single attention head and a softmax as a normalization function.

Random. As a control, we also included an attribution method which produces random attributions
drawn from a uniform distribution: GA = (vj = U , ek = U).

3.3 Attribution tasks

Each classification or regression task involves identifying a particular subgraph, or the conjunction of
two or more subgraphs. The graph datasets use molecular graphs (Figure 2). Each node and edge
represents a one-hot encoded categorical variable indicating atom or bond type.

Figure 2: Example ground truth attributions for each task. The first four graph-classification tasks require a model to identify all nodes
(green) in one or more subgraphs (colored lasso) in molecular graphs. Each graph may have multiple positive ground-truths, shown in the
Benzene task. Ground truth attributions for the CrippenLogP regression task take on continuous values. Lower row has node-classification
tasks. Relevant subgraphs are circled. Only one neighborhood of the graph is shown.

Graph classification. We consider classification tasks with computable ground-truth attributions.
These tasks are analogs of real-world problems, such as identifying biologically active chemical
groups in a molecule. The goal of the task is to identify if a graph contains particular subgraphs
of interest, expressed as a combination using the AND logical operator (such as Fluoride AND
Carbonyl groups, Figure 2), following from [29]. The goal of the attribution task is to identify the
ground-truth nodes in the Boolean query. We test the following subgraph logics: Benzene; Fluoride
AND Carbonyl; Unbranched Alkane AND Carbonyl; Amine AND Ether AND Benzene. There may
exist multiple valid attributions for a single input, since a subgraph may be present multiple times. If
a graph has two subgraphs of type P , we allow the space of possible attribution solutions to be the
first instance, the second, or both.

We use the dataset constructed by McCloskey et al. [29]. In order to reduce possible biases, the
authors constructed each logic dataset to be balanced across the set of all binary combinations. For
example, given a logic P&Q, the dataset contains an equal number of examples for every logic
combination: P&Q, P&¬Q, ¬P&Q and ¬P&¬Q. Graphs are sampled from a database of drug-like
molecule graphs [43]. 1,200 graphs are selected for each logic combination, and 10% of these graphs
are reserved for the test set.

To study faithfulness in Section 4.2, we create datasets on five new two-subgraph logic tasks with
molecules taken from Sterling and Irwin [43] using a diverse subsampling approach. These tasks are
also balanced for every logic combination. Further information about the dataset construction and
statistics can be found in section 5.5.

Graph regression. The Crippen LogP model [48] is an empirical chemistry model that predicts the
water-octanol partition coefficient (a specific measure of solubility) of a molecule by assigning a
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weight to each node type. For this task, a correct attribution should assign weights to nodes in the
graph that corresponds to the weights assigned to each node type by the Crippen model. We utilize
the Delaney solubility dataset [15] which has 1127 graphs, with a randomized 80%/20% train/test
split. It is possible that models consistently learn to predict CLogP using an approach which does not
align with the Crippen subgraph-based rules, but the achieved accuracy on this task (see Section 3)
suggests otherwise.

Node classification. We utilize three synthetic tasks introduced in Ying et al. [51]: BA-shapes, BA-
community, and Tree-grid. All graphs are generated by either the Barabasi-Albert (BA) algorithm or
as a balanced binary tree (Tree), and augmented with several graph motifs that are randomly attached
to the graph. Nodes are assigned labels based on their role in each motif. The predictive task is to
identify each node’s role in the motif, and the attribution task is then to highlight if a node participates
in a motif. BA-shapes uses a 5-node motif, with four possible node labels and only graph structure
information. Tree-grid uses a 9-node motif constructed from a 3 by 3 node grid with two possible
labels only graph structure information. BA-community is the fusion of two BA-shape graphs, with
eight possible node labels, four for each component graph. Nodes have randomly generated features
that are correlated to each component.

4 Experiments

4.1 Attribution Accuracy and Consistency

To measure attribution accuracy we ran a hyperparameter scan over 195 model configurations (see
Supplemental Section 5.4) per combination of model architecture, attribution method, and task. The
models include GCN, MPNN and Graph Nets architectures. The attribution methods, when applicable,
include SmoothGrad, GradCAM (all), GradCAM (last), GradInput, IG, and CAM, Attention.

We measure attribution accuracy by comparing predicted attribution to the ground truth attribution
in both classification and regression tasks. We use AUROC [29] to evaluate attribution accuracy on
classification tasks, and use Kendall’s tau to evaluate attribution performance on regression tasks. If
multiple attributions are valid (e.g., a subgraph is present twice in a graph), we take the maximum
attribution value of all possible solutions.

We compute the mean and variance of attribution accuracy for the top 10% of trained models (as
measured by average held-out test prediction accuracy, across four random seeds) per combination of
model, attribution method, and task. The top 10% of models all achieve >95% predictive performance.
Attribution accuracy is summarized for all task, model, and attribution method combinations in Figure
3, and visually in Figure S1. As a negative control, we found that random attributions yield poor
attribution accuracy (dotted line in Figure S1), and that randomly initialized models show random
mean attribution (Figure S4).

We observe that attribution accuracy was highest for CAM and IG across tasks and model architectures
(p<0.05 for 90% of all pairwise comparisons with Holm-Bonferroni step-down correction2). CAM and
IG were also the least variable across multiple hyperparameter scans of model architectures (p<0.05
for 37.5% of pairwise comparisons, excluding Graph Nets due to its high variability), suggesting that
they are also the most consistent attribution methods (Figure S1). Of the three models, GCN achieves
the highest mean attribution accuracy (p<0.05 for 31.7% of pairwise comparisons). The attribution
accuracy of Graph Nets was highly variable for all attribution methods and tasks (Figure 3, Figure
S1)(p<0.05 for 20% of pairwise comparisons). This is not entirely surprising, given that it is a highly
parameterized architecture, and deep nets are known to encode substantively different prediction
functions across random initializations [19]. Furthermore, Graph Nets have a global context vector
that may entangle information needed for proper node-level attribution between the global context
vector and the node-level vectors. Care should be taken when choosing an attribution method with
Graph Nets, and perhaps for more complicated GNN architectures in general.

Other factors can influence the accuracy of an attribution method. While we do not investigate this in
detail here, we offer a few anecdotes which might aid practitioners in tuning or developing attribution
methods. We observe that attribution accuracy declines in later training epochs (Figure S2), with a
time course that is independent of generalization performance. This occurs even when there is no
overfitting during prolonged training. We also observe that regularization affects attribution accuracy
on some tasks independent of predictive performance (Figure S3).

2See 5.3 in Appendix for details on the tests for statistical significance.
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Figure 3: Attribution method accuracy across tasks and model architectures. Colors are used to distinguish two metric types — attribution
AUROC for attribution on classification tasks, and attribution Kendall’s tau on the regression task. CAM and IG perform consistently well
across tasks and models. For error bars, please see Figure S1.

4.2 Attribution Faithfulness

Ideally, the accuracy of a faithful attribution method will be monotonically sensitive to the enforced
degradation in the model’s predictive accuracy. This property is important because we want to
be able to use attribution to inspect and better understand functioning models, and also to debug
malfunctioning ones. We perform two experiments in which we intentionally degrade model perfor-
mance by damaging the training dataset and measuring how each attribution method responds. We
quantify faithfulness with the performance-attribution relative correlation (PARC) score, calculated
as Kendall’s tau metric between the intentionally controlled predictive test set performance of the
model and attribution accuracy (Figure 4A; we introduce the term PARC to distinguish this use of
Kendall’s tau, from its use in measuring regression attribution accuracy). A high PARC score in each
of these experiments is indicative of faithfulness, whereas a low PARC score indicates the attribution
method is unfaithful, as its accuracy is insensitive to model performance. The PARC measure is
related to reliability plots and expected calibration error from the uncertainty quantification literature
[14, 31, 45], but here, each observation is comprised of a single model fit at a particular strength of
handicap, as opposed to a bin of predictive performance.

First, we train models with progressively noised training labels by selecting a subset of the training
set, from 0% to 100%, and shuffling labels within this subset. We find that across all tasks in this
experiment, CAM has the highest PARC score overall (p<0.05 for 94% of the comparisons, excluding
Graph Nets due to its high variability), and scores were highest overall for MPNNs and GCNs
(Figure 4B) (p<0.05 for 23.3% of the comparisons). In contrast, Graph Nets show a highly variable
relationship between predictive performance and attribution accuracy across tasks (p<0.05 for 33.3%
of the comparisons).

Second, in a more targeted experiment, we introduce spurious correlations of increasing strength
into the training dataset. Specifically, we coerced models away from predicting an original target
subgraph (P ) to predicting the presence of two subgraphs (P&Q) by introducing progressively
stronger correlations between P&Q in the training data. As the co-occurrence of P&Q in training
graphs strengthened, the model’s performance inadvertently increased from random to highly accurate
on a task it was never trained to perform — predicting the presence of P&Q. All labels come from
identifying P , while the test sets only contain examples of P&Q or P&¬Q (Figure 5A, B). Thus,
any change in model performance is only attributable to the introduction of a spurious correlation.

We expect a faithful attribution method to reveal why the model was “right for the wrong reasons”
in predicting P when training examples contain increasing proportion of of P&Q. For a range
of training datasets containing varying proportions of P&Q and P&¬Q, we assessed whether
an attribution method will faithfully highlight both subgraphs P&Q as the frequency of spurious
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Figure 4: Noising labels to control model performance and measure attribution faithfulness. A. Attribution vs task performance for
CAM (filled dots) and GradInput (unfilled dots) in the GCN / benzene task pair. The correlation between these two quantities is measured
with PARC. A value of 1 indicates perfect faithfulness. Attribution and task performance is highly correlated for CAM (filled dots) but not for
GradInput (unfilled dots). B. Box plots for the PARC score, measuring attribution faithfulness with noising labels, over 8 repeated runs.With
GCN, MPNN and GAT, CAM has the highest faithfulness in all tasks. The best performing method for a Graph Nets is task-dependent. Dashed
lines represent PARC from uniformly random attribution.

Figure 5: Evaluating faithfulness by handicapping a model with spurious correlations. A. Schematic of the make-up of the train and
test datasets. The train set contains 50% examples that satisfy ¬P&¬Q, a shrinking proportion of P&¬Q, and a growing proportion of the
distractor subgraph P&Q. The two test sets include ¬P&¬Q, together with (i) P&¬Q, or (ii) P&Q. B. Models were trained to predict
the presence of subgraph P in the presence of an increasing proportion of P&Q examples in the training set. As an example, we show the
performance of CAM applied to a GCN. Performance on the original target task of identifying subgraph P degraded, while performance on the
originally unspecified task of predicting the presence of P&Q increased (left). Concomitantly, attribution performance increased for P&Q
(right). C. Box plots for the PARC score P&Q dataset show the PARC score over 10 repeated runs on each (model, attribution, task) triplet.
CAM and IG have the best faithfulness here using the GCN and MPNN model, and the best performance under Graph Nets is task dependent.
Dashed lines indicate PARC for a random attribution control.

correlations increased. We measured the relationship between the model’s AUROC on the task of
predicting P&Q against its attribution AUROC on P&Q, and summarized this with the PARC score.
Using this metric, we found that CAM and IG consistently had high faithfulness across different
identities of subgraphs P and Q, and also across model architectures (Figure 5) (p<0.05 for 48.8% of
the comparisons, excluding Graph Nets due to its high variability).

4.3 Attribution Stability

Finally, we wished to evaluate the stability of attribution methods under input perturbations generated
following [29]. Inputs are perturbed with 2-degree alterations which maintain positive ground-truth
node attributions. Per task, we selected 40 original test examples and generated 10 perturbations per
example, across 4 classification tasks, yielding 1600 perturbations. We measured the change in attri-
bution performance, as ∆Attribution AUROC. A stable attribution method should have ∆Attribution
AUROC values close to or equalling zero. (Figure 6, left).
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We observed that while all attribution methods are on average unaffected by our graph perturbations,
CAM exhibits the the smallest variance in ∆Attribution AUROC (p<0.05 for 71.7% of the compar-
isons). All attribution methods show high variance for Graph Nets, among which CAM has the lowest
variance. We also include a negative control of random attributions (Figure 6, right).

Figure 6: Attribution stability as measured by change in attribution accuracy on perturbed input graphs. Left. Illustrative example of a
2-degree perturbation of a molecule, along with the subgraphs defining the ground-truth, and resulting attributions. Right. Aggregate changes
in attribution accuracy on target subgraphs for perturbations that leave the predicted label unchanged and true label unchanged, reported as
∆ Attribution AUROC. Aggregating across test examples, perturbations and tasks, the ∆ Attribution AUROC for all attribution methods and
models center around zero, but CAM demonstrates the lowest variability, indicative of high stability.

5 Conclusion and Discussion

In this work we have created a framework to quantitatively evaluate attribution methods in GNNs,
which we expect will aid in developing better methodology for interpretability in graphs, and perhaps
in other data modalities as well. Overall, if attribution performance is critical to a machine learning
task, we recommend the use of CAM paired with a GCN. However, CAM is not compatible with all
GNN architectures, since it requires the last layer to be a global pooling operation. In these cases, IG
is an appropriate second choice, and failing that, GradCAM. Care should be taken in choosing an
attribution method for the more complicated Graph Nets architecture, because attribution performance
is highly task dependent. Surprisingly, most attribution methods have lower performance with GAT
models. Further, using attention as an attribution technique performed poorly. However, we only
explored one approach for attribution using attention, and it is possible that further elaborations of
GAT models or new techniques to translate attention into attribution would improve performance.

As a final caveat, we examined two types of graph data (molecular, synthetic) and three types of
graph tasks (node classification, graph classification, graph regression). This portfolio of attribution
challenges is not exhaustive, and we imagine that expanding our testing suite could yield new insights.

Overall, we find that simpler models give better attribution performance, across many attribution
techniques. Attribution techniques that are directly related to predicted labels like CAM and IG also
tend to have better attribution performance, across many models.

There remains much room for improvement in attribution performance for GNNs. We hope that
the field finds our rubric for attribution performance (accuracy, fidelity, consistency, stability) and
our quantitative benchmarking suite of attribution in GNNs useful for developing new attribution
methods. With improved attributions, interpretability and credibility in ML on graphs, we hope to see
applications of these techniques expand in social science, chemistry, biology and beyond.
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Broader Impact

Better attribution methods for graph neural networks will help improve ML interpretability, and
therefore ML credibility, in the domain of machine learning on graph-valued data. Specifically, we
wish for machine learning models to not just to learn and exploit correlations in training data, but
to help practitioners understand the correlations the model has learned and create new scientific
knowledge. Applications of high-performing attribution methods on GNNs include pharmaceutical
development, material design, social network analysis, and more. Improving the ability to inspect
these models will hopefully improve their rate of adoption. GNNs have also been applied to social
networks, and improving the field’s capability to inspect and interrogate trained models will hopefully
also improve the public discourse around the topic. However, our work reveals that no attribution
method is perfect, and risk remains in placing perfect confidence in the output of existing attribution
methods applied to graph neural networks.
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