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1. Introduction

Observations and acceleration. There is overwhelming observational evidence against

homogeneous and isotropic models of the universe based on standard general relativity

(i.e. the Einstein-Hilbert action in four dimensions) with ordinary matter (i.e. baryons,

dark matter, neutrinos and photons). Observations are usually interpreted keeping to

the linearly perturbed homogeneous and isotropic Friedmann-Robertson-Walker (FRW)

models, in which case it is necessary to modify gravity or introduce matter with negative

pressure. The ΛCDM model, which involves the simplest modification of gravity, the

cosmological constant, or the equivalent form of matter, vacuum energy, is in agreement

with various observations of cosmological distances. In FRW models, distance has a

simple correspondence with the expansion rate (and spatial curvature).

However, linearly perturbed FRW models do not describe the non-linear structures

present in the real universe. It is also important to recognise that the only evidence for

modified gravity or exotic matter comes from observations of cosmological distances,

interpreted in terms of the expansion rate. For example, deviations from general

relativity have not been observed in the solar system [1]. (The Pioneer anomaly is

a possible exception. However, it does not agree with the predictions of the modified

gravity models which have been developed to explain the cosmological observations.)



Evaluating backreaction with the peak model of structure formation 2

The situation is quite different from that of dark matter, for which there are

several independent lines of evidence, such as the motions of stars in galaxies, the

motions of clusters, the peak structure of the cosmic microwave background (CMB),

the early formation of structures, gravitational lensing, as well as direct measures of the

matter density combined with the baryon density given by Big Bang Nucleosynthesis.

For this reason, constructing alternatives to dark matter requires resort to baroque

models [2], if it is possible at all. In contrast, in order to explain the observations

without modified gravity or exotic matter, it is only necessary to change the distance

scale (or the expansion rate) as a function of redshift.

The measured quantities from which the expansion rate is inferred can be divided

into background quantities and perturbations, though measurements of background

quantities also involve perturbations, apart from the luminosities of Type Ia supernovae

(SNe Ia). (In realistic models with non-linear structures, there is no simple division

into background and perturbations.) Most of the information on the expansion rate

comes from measures of the background geometry. While the expansion rate has been

measured from different physical systems, such as the CMB [3], large scale structure [4]

and SNe Ia [5], they all probe essentially the same distance measure at different redshifts.

(The luminosity distance and the angular diameter distance are directly related to each

other. In FRW models, they can be expressed in terms of the proper distance and

redshift. For the different distance measures in the context of FRW models, see [6, 7].)

The details of the expansion rate (or the distance scale) are not well known except in

specific models. Model independent constraints are relatively weak. The CMB is mostly

sensitive to the angular diameter distance to the last scattering surface, which is related

to the position of the peaks in the angular power spectrum [8, 9]. Type Ia supernovae

provide a more direct measure of the expansion rate, but present data is not sufficiently

accurate to give detailed information. Quoted constraints on, for example, the equation

of state are often driven by the assumed parametrisation, which can be responsible for

misleading apparent precision and artificially small confidence level contours. For the

importance of parametrisation, see [7, 10–14]; an analysis of the current situation in

terms of a piecewise constant equation of state is given in [15]. Additional systematic

effects, such as metallicity [16], changes in the treatment of dust [17] or the light-

curve fitting method [18] can further degrade the reliability of the SN Ia measurements.

It is noteworthy that the quality of fit of the ΛCDM model has decreased with the

introduction of each new SN Ia dataset up to and including the ’gold’ sample and the

ESSENCE data [19]. This may hint at inadequacy of the ΛCDM description, or it can

be indicative of underestimated systematic errors.

Observational constraints from perturbations are much weaker than those from

background quantities. The Integrated Sachs-Wolfe (ISW) effect has been detected

via cross-correlation of the CMB and matter tracers at different redshifts [20]. This

is interpreted as time evolution of the gravitational potential, which may be due to

accelerating expansion or spatial curvature. The amplitude is slightly larger than

expected in the ΛCDM model, though not significantly so (around 2σ). Other



Evaluating backreaction with the peak model of structure formation 3

constraints from the evolution of perturbations are rather weak [21]. A measure which

combines background evolution and the evolution of perturbations is the number count

of clusters as a function of redshift: in an accelerating model the number density should

rise sharply with increasing redshift. It has been earlier argued that this is not seen in

the data, and that the observations instead prefer deceleration [22]. However, it seems

that limited understanding of gas physics prevents drawing reliable conclusions from

cluster counts at present [23].

In the context of homogeneous and isotropic models, we can with confidence

say that the expansion has accelerated within the last few billion years (though it is

not necessarily accelerating at present), and determine the overall magnitude of the

acceleration [11–13, 18]. In order for a model to agree with the observations, it is not

necessary to reproduce the expansion history of the ΛCDM model in detail, only to

produce a roughly similar amount of acceleration in the same era.

Structure formation and the coincidence problem. While there is no evidence apart

from the expansion rate for modified gravity or negative pressure matter, we know that

the assumption of linearly perturbed homogeneity and isotropy breaks down in the

universe at late times. One has to evaluate the effect of non-linear structure formation

on the expansion rate (or the distance scale) before concluding that it is necessary to

change either gravity or the matter content.

It was suggested in [24,25] that inhomogeneities related to structure formation could

be responsible for accelerated expansion (the possibility had been earlier touched upon

in [26,27]). This was discussed more concretely in [28,29] where it was demonstrated with

a toy model how the formation of non-linear structures can lead to average acceleration,

even when the expansion locally decelerates (see also [30]). The physical reason is simply

that the fraction of volume in faster expanding regions rises, so the average expansion

rate can rise. The bigger is the difference between the slower and faster expanding

regions, the more rapid is the change as the faster regions take over. It was pointed out

in [28, 29] that the growth of non-linear structures involves a growing variance in the

expansion rate, and that structure formation has a preferred time around 10–100 billion

years, near the observed acceleration era. The timescale emerges from the CDM power

spectrum, essentially from the time of matter-radiation equality encoded in the change

of slope of the CDM transfer function. This could solve the coincidence problem of

why the acceleration has started recently in cosmic history, something that the ΛCDM

model does not explain.

The link between the preferred time in structure formation and the change of the

expansion rate was only conjectured in [28,29]. The toy model with acceleration involved

only two regions instead of a realistic ensemble of structures, and had no link to the

preferred time. In the present work, we remedy both shortcomings. We first discuss

the effect of structures on the propagation of light and the expansion rate in section 2,

and set up the Buchert backreaction formalism in section 3. In section 4 we present

our model for a statistically homogeneous and isotropic universe containing an evolving
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ensemble of non-linear structures. We calculate the average expansion rate and find that

it grows relative to the FRW value around 10–100 billion years, though the change is not

rapid enough to correspond to acceleration. We explain the reason and consider how

improve our treatment. In section 5 we discuss some observational and theoretical issues

related to backreaction, and summarise our results. This work is a follow-up to [29], and

more discussion of these topics can be found there. However, we have repeated some

material to make the presentation self-contained.

2. Clumpy spacetimes

2.1. Light propagation in a clumpy spacetime

The overall geometry. Though the evidence for negative pressure matter or modified

gravity is often phrased in terms of the expansion rate, observations of light just

provide constraints on the distance scale at different redshifts. The conclusion that

the observations imply accelerated expansion has been established only in the context

of linearly perturbed FRW models, where the distance scale is directly related to the

expansion rate (and spatial curvature). The real universe is not locally perturbatively

near homogeneity and isotropy at late times, but contains non-linear structures (we

refer to such a universe as clumpy), so the FRW results for light propagation cannot be

straightforwardly applied.

Since non-linear structures affect the propagation of light, it might be possible

to explain the observations without recourse to accelerated expansion. We will be

interested in the possibility that non-linear structures lead to actual acceleration. But

even in this case, one needs to study light propagation in a clumpy space to be able to

compare the model to observations.

In FRW models, in order to convert between measures of distance and the expansion

rate, one needs to know the spatial curvature. From the volume and spatial curvature

of each hypersurface of proper time, the distances can be reconstructed. In a general

spacetime, this is not true, and the distance scale does not necessarily correspond to the

expansion rate (see e.g. [31]). We can divide the effect of structures on the passage of

light into an overall part, which can be expressed in terms of the average geometry given

by the scale factor (which measures the volume of the spatial hypersurface) and the trace

of the spatial Ricci tensor (which is a measure of the curvature of the hypersurface),

and a part which cannot be expressed in terms of the average geometry.

For example, in perturbed FRW models, the ISW and Rees-Sciama effects are not

expressible in terms of the scale factor and spatial curvature. These effects are small

both because the perturbations are small and because there are cancellations present. In

particular, in the linearly perturbed Einstein-de Sitter universe (the spatially flat FRW

dust model), the ISW effect is zero independent of the magnitude of the gravitational

potential (as long as the second order contribution can be neglected). In models which

include realistic, non-perturbative structures, there is no obvious reason for such effects
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to be small. Nevertheless, it is possible that this is the case in a universe which is

statistically homogeneous and isotropic, and that the passage of light can (up to small

corrections) be described in terms of the overall geometry.

Studies of light propagation. There is currently no derivation of light propagation for

the case of a clumpy universe that contains realistic evolving structures like those that

are actually present. However, several models with realistic elements have been studied.

The effect of inhomogeneities on the passage of light was first discussed by Zel’dovich

in 1964 [32] (early literature on the topic also refers to an unpublished colloquium by

Feynman in the same year). This and the work which followed [33–35] studied the

passage of light in the case when the deviation from the FRW models is in some sense

small (see [36–42] for later studies of perturbed FRW universes).

The effect of non-linear perturbations on the redshift and the luminosity distance

was studied in 1969 in the context of the Swiss cheese model [43], where sections of

FRW universe are cut out and replaced with the Schwarzschild solution of equivalent

density. It was found that corrections to the FRW results could be sizeable.

The approach introduced by Zel’dovich in [32], where light rays encounter only

a fixed fraction of the mass of the universe because of clumping, was used by Dyer

and Roeder in 1972 to calculate corrections to the luminosity distance [44] (and is

now known as the Dyer-Roeder formalism). They too concluded that large effects are

possible. The formalism was generalised to include a mass fraction of clumps which

varies with redshift in [45]. For applications of the Dyer-Roeder formalism and Swiss

cheese models to observations of SNe Ia, see [46, 47].

It was argued by Weinberg in 1976 that the effects of clumpiness on the luminosity

distance cancel, and the FRW formula can be used to describe light propagation [48].

The main argument is that the number of photons is conserved and gravitational

deflection conserves photon energy, so the luminosity distance can be determined simply

in terms of the area of a sphere drawn around the emission point. However, it was

pointed out in [49] that this argument assumes that the area is the same as in the FRW

model, which is, in fact, the issue under study. An exact counter-example was provided

in [50], and further arguments that the FRW result may not apply were given in [51].

In addition to purely analytical work [52–55], light propagation has been studied

using ray-tracing methods [38,56–60]. Ray-tracing studies disagree on the magnitude of

the effect on the passage of light, presumably due to different modelling assumptions.

Among the most realistic studies are modified Swiss cheese models where the non-linear

density concentrations reside in the walls around the holes, instead of the center. Studies

of realistically sized structures have found the corrections to be small, at the percent

level [58, 59]. In [58] the integrated effect of an ensemble of voids was found to be

proportional to void size divided by the horizon size. A sizeable correction was found

in [60], but this is consistent with the previous results, since the structures studied in [60]

are unrealistically large. However, the amplitude of the effect has not been conclusively

settled, since none of the models have been completely realistic, in particular with regard
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to the time evolution of structures and spatial curvature.

In analytical work, there is also no agreement as to the whether the effect can

be large. It was found in [54] that for an ensemble of uncorrelated, static clumps of

matter in a FRW universe, the corrections are small (see [53, 55] for discussion of the

small effects which could be observable). According to [49,51], large effects are possible

due to the formation of caustics; see also [52]. (For studies along related lines, see the

program of observational cosmology [61].)

As summarised in [62] (see also [63]), one important issue is that light propagation

is in general affected both by the Ricci tensor given by the local matter distribution and

the non-locally determined Weyl tensor. In FRW models, the Weyl tensor is zero and the

geometry of spacetime is entirely determined in terms of the local matter distribution.

In contrast, in the real universe, light mostly travels in vacuum where the Ricci tensor

is zero, and the geometry is determined by the Weyl tensor. This difference is related

to the role of shear of the null geodesics, generated by nearby matter. In this sense, the

propagation of light in the real universe is the reverse of the FRW situation. (See [34,64]

for early discussion.)

In contrast to the studies of an ensemble of structures which we know to exist in

the universe, there has recently been revived interest in the idea that we would live near

the centre of a single untypically large spherical void (’Hubble bubble’). Studies of the

passage of light in the spherically symmetric Lemâıtre–Tolman–Bondi (LTB) model [65]

(see [66] for a review) show that if the local bubble is sufficiently large, its effect on the

passage of light could explain the observations of SNe Ia (and possibly be consistent

with the location of the CMB peaks). For references on the ’Hubble bubble’ and the

passage of light in the LTB model, see [29]; for a review on explaining the observations

with the LTB model, see [67].

The results for the passage of light are not conclusive, and no models have properly

dealt with the kind of nested, evolving structures that are a central feature of hierarchical

structure formation. The effects which have been found for realistic models of randomly

distributed small structures are small. Large effects have been demonstrated only when

the observer occupies a special location, such as near the center of a large spherical

region. It therefore seems plausible that those effects of clumpiness on the passage

of light which have been studied are small if the matter distribution is statistically

homogeneous and isotropic to a sufficient level and the observer does not occupy a special

location. (The small size of structures relative to the observed volume can be considered

part of homogeneity and isotropy.) However, most studies of light propagation have

neglected the influence of structures on the average expansion rate and the spatial

curvature, assuming that they evolve according to the FRW equations. So the results

should not be interpreted as evidence that the effect of structures is small, only that it

is plausible that their effect can be considered in terms of the overall geometry.

Even if that is true, one still needs to derive the proper distance as a function of

redshift in terms of the expansion rate and spatial curvature, which describe the overall

geometry. In general, the average spatial curvature does not evolve like a−2, where a is
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the scale factor, and simply inserting spatial curvature with arbitrary time-dependence

into the FRW relations does not make sense [68]. (Light propagation in terms of a

scale factor which takes into account the influence of structures, but with the spatial

curvature evolving like in the FRW case, was discussed in [69].) We will only study the

evolution of the overall geometry as described by the scale factor and average spatial

curvature, and will not consider the propagation of light.

From the practical point of view, treatment of the passage of light in terms of a

scale factor (even without any spatial curvature) has been very successful in accounting

for the observations. If the observed deviation from the Einstein-de Sitter model was

due to effects which cannot be expressed in terms of the average geometry, one would

not expect different observations to agree so well with the simple scale factor treatment.

For example, in the ’Hubble bubble’ models, the density gradient which accounts for the

luminosity distances to SNe Ia typically does not explain the angular diameter distance

to the last scattering surface, or the scale of the baryon acoustic oscillations [47, 67].

2.2. The expansion rate in a clumpy spacetime

Inadequacy of the FRW description. Assuming that the influence of clumpiness on the

passage of light can be encapsulated in the scale factor and the spatial curvature scalar,

we are left with the question of how non-linear structures affect the expansion rate and

the spatial curvature.

The linearly perturbed FRW equations do not describe the local evolution of the real

universe. Considering the linearly perturbed Einstein-de Sitter metric (and neglecting

the decaying mode), the local expansion rate measured by a comoving observer is

θ = 3H−δH , where H is the background Hubble parameter in terms of the proper time

and δ ∝ a is the density contrast [25]. When δ becomes of order unity, these relations fail

to describe the real behaviour. In the case of underdensities, this is obvious, since the

density contrast cannot decrease below −1. For typical spherical overdense regions, the

difference between the linear and non-linear evolution is well-known from the spherical

collapse model [70] (see [71–73] for reviews).

It has been argued that even if there are large deviations locally, the statistical

homogeneity and isotropy of the universe implies that the average evolution follows

the FRW equations. However, a space which is statistically homogeneous and isotropic

does not in general evolve on average like a space which is exactly homogeneous and

isotropic. Exact homogeneity and isotropy leads to the FRW equations. Statistical

homogeneity and isotropy simply supports the assumption that one can make sense of

the observations in terms of the overall geometry. This does not imply that the scale

factor follows the FRW equations, essentially because the spatial curvature in a clumpy

spacetime in general evolves differently from the FRW case. (A test of whether the

metric has the FRW form was proposed in [74], based on the specific FRW evolution of

spatial curvature.)

The influence of inhomogeneity and/or anisotropy on the expansion rate is known
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as backreaction, and has been discussed in a number of papers [24, 25, 28, 29, 75–81];

see [29,62,82] for reviews and more references. (See [83–87] for discussion of backreaction

during inflation.)

Statistical homogeneity and isotropy. The early universe was highly homogeneous and

isotropic, so the FRW equations provide a good approximation of the average evolution,

and inhomogeneities and anisotropies are described by linear perturbations around the

FRW model. Each hypersurface of constant proper time practically corresponds to a

single expansion rate (with tiny variations). As perturbations grow and structures form,

a given moment of time no longer corresponds to a single expansion rate. Instead, the

hypersurface of constant proper time contains regions in different stages of expansion,

some of them collapsing or static. On sufficiently large scales, the spatial distribution

of expansion rates at each moment is statistically homogeneous and isotropic, and we

can meaningfully call the local expansion rate averaged over all regions the expansion

rate at that time.

In order for the average expansion rate at a given time to be a useful quantity for

describing the passage of light through structures, it is important that the expansion

rate changes slowly compared to the time it takes for light to cross typical structures.

Light has to have time to pass through different regions and sample the distribution of

expansion rates before it changes appreciably. Otherwise, it does not make sense to use

an expansion rate averaged over many regions: one would have to describe the passage

of light through the individual regions.

This condition is well satisfied in the real universe. For typical supersymmetric

weakly interacting dark matter, the first structures which form around a redshift of

z ∼ 40 − 60 have sizes of the order 10−8H−1 [88], and typical largest structures today

have sizes around 10 h−1Mpc ≈ 3 × 10−3H−1 (where h parametrises the present-day

Hubble rate, H0 = 100h km/s/Mpc). A more important quantity is the homogeneity

scale, by which we mean the scale where averages converge to their asymptotic value.

The fractal dimension of the set of galaxies around us indicates a homogeneity scale

of 70–100 h−1Mpc [89, 90], while studies of morphology suggest that it is at least 200

h−1Mpc [91]‡. In either case, the homogeneity scale is ≈ 10−2H−1, so light rays pass

through several representative regions of the universe in one Hubble time, which is the

timescale for significant change in the expansion rate.

A related concern about the applicability of the averaged expansion rate is the

question of over which scale the averaging is done. To get a representative sample,

the averaging scale should be at least as large as the homogeneity scale. Because of

statistical homogeneity and isotropy, it should not matter if the averaging scale is larger

than this. In practical terms, most cosmological observations of the expansion rate

probe distances larger than the homogeneity scale, apart from SNe Ia at small redshifts.

‡ The fact that there seems to be a significant contribution to our motion due to the Shapley

Supercluster at a distance of 130–180 h−1Mpc [92] suggests that the homogeneity scale is on the

larger side. Alternatively, our location in the universe may be rather untypical.
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For a statistically homogeneous and isotropic distribution of structures, varying the

averaging scale as discussed in [93] should be relevant only for local observations, where

the average scale factor treatment may be anyway problematic. (The observed large

angle anomalies in the CMB might be related to local departures from the scale factor

description; see [29] for discussion.)

The issue of statistical homogeneity and isotropy is related to the choice of the

hypersurface of averaging. The scale factor describes the volume of the hypersurface

of proper time, but why take that hypersurface? Observations are organised on

hypersurfaces of constant redshift, not proper time. However, if we can identify the

redshift with a scale factor in the usual way, 1 + z = a(t)−1, then we have a one-to-

one correspondence between the redshift z and proper time t, and the hypersurfaces of

constant proper time and constant redshift agree.

The question of the choice of hypersurface is also present in FRW models, and

the hypersurface of constant proper time is selected because it is the hypersurface of

homogeneity and isotropy. In realistic models, there is no such exact symmetry, but one

still expects the hypersurface of constant proper time to agree with the hypersurface of

statistical homogeneity and isotropy, and the argument for choosing this hypersurface is

the same as in the FRW case. The evolution of structures proceeds according to proper

time, so were one to tilt the hypersurface, different parts would contain structures

which have evolved for different amounts of time, breaking statistical homogeneity and

isotropy.

The notion of statistical homogeneity and isotropy with a given homogeneity scale

is easy to grasp intuitively: the universe consists of statistically identical boxes of a

size given by the homogeneity scale. When evaluating any average physical quantities

inside one box, the result should be independent of the location and orientation of the

box, up to statistical fluctuations. This does not imply that the average quantities must

be those of a model with exact homogeneity and isotropy. In terms of the Buchert

equations discussed below, the backreaction variable Q saturates at the homogeneity

scale, but not necessarily to zero. This view neglects long-range correlations, and in

practice the degree of statistical homogeneity and isotropy increases as the size of the

boxes grows, up to the level 10−5 given by the primordial perturbations. The concept

of statistical homogeneity and isotropy in a spacetime with non-linear structures should

be made more rigorous. Studies of the choice of hypersurface in backreaction [86,87,94]

have not touched on this issue.

3. The Buchert formalism

3.1. The local equations

The dust assumption. We assume that the matter content of the universe can be

described as dust, i.e. an ideal fluid with zero pressure. This is not true on small scales

(for example, the matter in the solar system cannot be treated as a pressureless ideal
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fluid), so there is an implicit averaging involved, distinct from the large-scale averaging

we are going to discuss. Essentially, the assumption is that on sufficiently large scales

we can model a complex system of discrete small-scale structures as a continuum of

infinitely fine particles. The validity of this approximation has been studied in the work

on discreteness and the fluid approximation in N-body simulations [95]; indirect support

can be found in the ’renormalisability’ of Newtonian gravity in [96] (see also [97]).

The Einstein equation. For dust, the Einstein equation reads (taking the cosmological

constant to be zero)

Gαβ = 8πGNTαβ

= 8πGNρ uαuβ , (1)

where Gαβ is the Einstein tensor, GN is Newton’s constant, Tαβ is the energy–momentum

tensor, ρ is the energy density and uα is the velocity of observers comoving with the

dust.

Following the covariant coordinate-independent approach, the Einstein equation (1)

can be decomposed into scalar, vector and tensor parts. This is a local decomposition

with respect to general coordinate transformations, not a global decomposition in terms

of the symmetry of a background, as in perturbed FRW spacetimes. (We are not

assuming any symmetries, or making a division into background and perturbations.)

For reviews of the covariant approach, see [98–101].

We want to discuss averages. Since vector and tensor quantities cannot be

straightforwardly averaged§, we will consider the scalar part of the Einstein equation.

The Einstein equation (1) has two scalar components, and the covariant conservation

law yields a third equation [98,99,104,105] (see e.g. [77] for the full system of equations):

θ̇ +
1

3
θ2 = − 4πGNρ − 2σ2 + 2ω2 (2)

1

3
θ2 = 8πGNρ − 1

2
(3)R + σ2 − ω2 (3)

ρ̇ + θρ = 0 , (4)

where a dot stands for derivative with respect to proper time t measured by observers

comoving with the dust, θ is the expansion rate of the local volume element, σ2 =
1
2
σαβσαβ ≥ 0 is the scalar built from the shear tensor σαβ , ω2 = 1

2
ωαβωαβ ≥ 0 is the

scalar built from the vorticity tensor ωαβ, and (3)R is the Ricci scalar on the tangent space

orthogonal to the fluid flow. The acceleration equation (2) is known as the Raychaudhuri

equation, and (3) is the Hamiltonian constraint. The equations are exact, and valid for

arbitrary large variations in density, expansion rate and other physical quantities.

Vorticity. When the vorticity is zero, the tangent spaces orthogonal to the fluid flow

form spatial hypersurfaces which provide a foliation that fills the spacetime exactly once.

§ Though see the work on the Ricci flow [79] and the ’macroscopic gravity’ formalism [102]. On the

relation of the latter to the averaging scheme used here, see [103].
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These flow-orthogonal hypersurfaces are also hypersurfaces of constant proper time of

comoving observers. If the vorticity is non-zero, no such hypersurfaces exist. (See [105]

for discussion of the Ricci scalar of the tangent spaces in the case of non-zero vorticity.)

The covariant approach deals directly with physical quantities, and there is no need

to introduce coordinates. Nevertheless, it can be shown by explicit construction that if

we wish to choose coordinates, it is always possible to take g00 = −1, and simultaneously

obtaining g0i = 0 is possible if and only if the vorticity is zero (here 0 stands for time

and i for the spatial directions) [106]. For irrotational dust, the synchronous metric can

be adopted locally without any loss of generality. In the covariant formulation, there

are no artifacts related to the choice of coordinates, since there are no coordinates,

and all variables are physical observables. However, there would be no problem (when

the vorticity is zero) in using the synchronous comoving coordinates. The results for

physical quantities of course do not depend on the coordinate system. (For example, in

perturbative backreaction calculations one obtains the same results in the longitudinal

and comoving synchronous gauges [81].)

We take the vorticity to be zero. For dust, if vorticity is initially zero, it will remain

zero. Furthermore, vorticity in linearly perturbed FRW models corresponds to vector

perturbations, and it decays with expansion (unlike shear). However, the description

of matter as a pressureless ideal fluid will break down on small scales when non-linear

structures form, due to shell-crossing. After any vorticity is generated in gravitational

collapse [107], it will be amplified by the collapse, and will formally diverge at the same

time as the density [108]. A static dust structure, with θ = 0, is possible only if large

amounts of vorticity are present, as (2) shows: vorticity has to balance the contribution

of both the energy density and the shear on the right-hand side. For stabilised dust

structures, vorticity is the dominant contribution. (As the approximation of treating

matter as dust breaks down, effects such as velocity dispersion and pressure can be also

important in the stabilisation [109].)

Nevertheless, just as we assume that the small-scale breakdown of the description of

matter as dust is not important, we assume that the vorticity inevitably present at small

scales can be neglected in discussing the overall large-scale evolution. (This assumption

is also involved in the usual perturbed FRW treatment, with rotationless ideal fluids and

a well-defined cosmic time.) Vorticity is probably only relevant in stabilising structures.

Since we do not need to consider the details of stabilisation in our calculation, we do

not expect the assumption of zero vorticity to be important.

3.2. The average equations

Defining the average. We follow the formalism introduced by Buchert in [76, 77, 80].

The spatial average of a quantity is its integral over the hypersurface of constant proper

time t, divided by the volume of the hypersurface

〈f〉(t) ≡
∫

t
ǫf
∫

t
ǫ

, (5)



Evaluating backreaction with the peak model of structure formation 12

where ǫαβγ = ηαβγδu
δ is the volume element on the hypersurface of proper time, ηαβγδ

being the spacetime volume element.

The scale factor is defined simply as the volume of the hypersurface of constant

proper time to power 1/3

a(t) ≡
(

∫

t
ǫ

∫

t0
ǫ

)
1
3

, (6)

where a has been normalised to unity at time t0, which we take to be today. As θ is the

volume expansion rate, this definition of a is equivalent to 3ȧ/a ≡ 〈θ〉. We will also use

the notation H ≡ ȧ/a.

The Buchert equations. Let us take the average of the equations (2)–(4). The resulting

Buchert equations are [77]:

3
ä

a
= − 4πGN〈ρ〉 + Q (7)

3
ȧ2

a2
= 8πGN〈ρ〉 −

1

2
〈(3)R〉 − 1

2
Q (8)

∂t〈ρ〉 + 3
ȧ

a
〈ρ〉 = 0 , (9)

where the backreaction variable Q contains the effect of inhomogeneity and anisotropy:

Q ≡ 2

3

(

〈θ2〉 − 〈θ〉2
)

− 2〈σ2〉 . (10)

The integrability condition for the average Raychaudhuri equation (7) and the average

Hamiltonian constraint (8) is

∂t〈(3)R〉 + 2
ȧ

a
〈(3)R〉 = −∂tQ− 6

ȧ

a
Q , (11)

The Buchert equations (7)–(9) are exact for the averages when matter consists of

irrotational dust. (The corresponding equations in the Newtonian case were derived

in [76], and the case with non-zero pressure was considered in [80].) The variance

of the expansion rate in Q is a new term compared to the local equations. It has

no counterpart in the local dynamics, and may be called emergent in the sense that

it is purely a property of the averaged system. If the variance is large enough, the

average expansion rate can accelerate, even though the local expansion rate decelerates

everywhere. (In physical terms, the average expansion rate can grow because the volume

occupied by faster expanding regions rises.)

The density parameters. As in the case of FRW models, we can parametrise the

different contributions to the expansion rate with relative densities. Dividing (7) and

(8) by 3H2, we have [77, 110]

q ≡ − 1

H2

ä

a
=

1

2
Ωm + 2ΩQ (12)

1 = Ωm + ΩR + ΩQ , (13)
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where Ωm ≡ 8πGN〈ρ〉/(3H2), ΩR ≡ −〈(3)R〉/(6H2) and ΩQ ≡ −Q/(6H2) are

the density parameters of matter, spatial curvature and the backreaction variable,

respectively. As seen from the definition of Q in (10), the backreaction density parameter

is just minus the relative variance of the expansion rate, plus the contribution of shear:

ΩQ = −(〈θ2〉 − 〈θ〉2)/〈θ〉2 + 3〈σ2〉/〈θ〉2.
The backreaction density ΩQ can have either sign, and can become arbitrarily

negative. Correspondingly, q can cross the value −1, and the contribution ΩR +ΩQ can

change sign. These features are not captured in the parametrisation of backreaction in

terms of a scalar field, the ’morphon’ [111].

3.3. First integrals of the Buchert equations

First integral in terms of Q. The scalar parts of the Einstein equation (2) and (3)

together with the conservation law (4) do not form a closed system on their own. (In

particular, the propagation equations for the shear and vorticity tensors cannot be

reduced to scalars.) There are four unknowns (θ, ρ, σ2 − ω2, (3)R) and three equations.

The Buchert equations (7)–(9) are similarly underdetermined, with four unknowns

(a, 〈ρ〉,Q, 〈(3)R〉) and three equations.

If we give as extra input the evolution of one of the variables (or a relation between

the variables), the average system is completely determined. In particular, we can find

the average expansion rate from the average spatial curvature 〈(3)R〉 or the combination

of variance and shear given in Q. We can make this explicit with the first integral of

the Buchert equations (7)–(9).

Taking into account that the conservation of mass (9) implies 〈ρ〉 ∝ a−3, we can

integrate (7) to obtain

3H2 = 8πGN
〈ρ0〉
a3

− 3
K

a2
+

2

a2

∫ a da′

a′
a′2Q , (14)

where K is an integration constant related to the spatial curvature and 〈ρ0〉 is the

average energy density at time t0. When backreaction vanishes, we recover the FRW

Hubble relation, and the spatial curvature is 6Ka−2, as usual. When the spacetime

is clumpy and backreaction is present, Q 6= 0, the average spatial curvature evolves

non-trivially:

1

2
〈(3)R〉 = 3

K

a2
− 1

2
Q− 2

a2

∫ a da′

a′
a′2Q . (15)

First integral in terms of 〈(3)R〉. It is also instructive to write the first integral in terms

of the spatial curvature. Expressing things in terms of 〈(3)R〉, we have from (7)–(9),

3H2 = 8πGN
〈ρ0〉
a3

+
C

a6
− 2

a6

∫ a da′

a′
a′6〈(3)R〉 , (16)

where C is an integration constant. The backreaction variable is

Q = −2
C

a6
− 〈(3)R〉 +

4

a6

∫ a da′

a′
a′6〈(3)R〉 . (17)
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When the average spatial curvature evolves like a−2, the C term gives the

backreaction variable Q, which in accordance with the integrability constraint (11) then

evolves like a−6. We can make this more explicit by decomposing the average spatial

curvature as 〈(3)R〉 = 6Ka−2 + ∆〈(3)R〉. The backreaction variable is‖

Q = −2
C

a6
+

4

a6

∫ a da′

a′
a′6∆〈(3)R〉 , (18)

and the Hubble equation (16) reads

3H2 = 8πGN
〈ρ0〉
a3

− 3
K

a2
+

C

a6
− 2

a6

∫ a da′

a′
a′6∆〈(3)R〉 . (19)

In general, underdense regions are negatively curved and expand faster than

the average, while overdense regions are positively curved and expand slower. The

evolving distribution of these regions determines the average spatial curvature. At

late times, one would expect the faster expanding regions to dominate the volume,

and the spatial curvature to be negative. The intertwining of the expansion rate and

the spatial curvature is quantified in (19). While Q is non-local, 〈(3)R〉 is simply the

average of a local quantity; they are interchangeable via the integrability condition

(11). Understanding backreaction in terms of an average over the local spatial curvature

will be useful when we discuss the importance of non-Newtonian aspects of gravity in

backreaction in section 5.2.

We need only know the evolution of the variance of the expansion rate minus the

shear in order to reconstruct the complete expansion rate (up to a constant related to

the spatial curvature). There is no need to specify the full metric, only some statistics.

Indeed, it is unfeasible to write down a metric that would be a realistic description of

the structures in the universe. Exact solutions such as the spherically symmetric LTB

model are useful for illuminating specific aspects of backreaction such as the choice of

hypersurface [94] and demonstrating acceleration unambiguously [30,113,114]. However,

exact solutions, even ones with no symmetry such as the Szekeres model [115], are

limited in scope. While more complicated than the LTB model, they are not much

closer to a realistic picture of the universe with its hierarchical layers of individually

complex but statistically homogeneous and isotropic structures. In order to evaluate

the importance of backreaction in the real universe, we need statistical knowledge about

complex configurations of dust, not exact information about simplified models.

‖ In [112] it was argued on the basis of a 2+1-dimensional study that the effect of backreaction is small.

However, since the Ricci scalar in two dimensions is a topological invariant, the average two-dimensional

spatial curvature is necessarily proportional to a−2, and the evolution of Q is trivial. Therefore the

situation in 2+1 dimensions is not representative of the 3+1-dimensional case, where spatial curvature

is dynamical. There were also two other arguments presented in [112], one based on second order

perturbation theory and the other on a solution with parallel walls. The first calculation is incorrect,

because it assumes that the background energy density is the same as the average energy density, which

is not true beyond the linear level. In the second case, variations in the local expansion rate are small,

so it is irrelevant for the real universe.
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4. Backreaction with the peak model

4.1. Setting up the model

The universe divided into regions. We want to have a model of the universe that

does not violate large-scale statistical homogeneity and isotropy, and includes a realistic

ensemble of evolving structures. We will treat each structure as an isolated region, and

take the nested nature of hierarchical structure formation into account in the evolution

of the number density of the regions.

We divide the hypersurface of constant proper time into non-overlapping regions

labelled by δ. The fraction of proper volume occupied by each region is vδ(t) ≡
∫

t,δ
ǫ/
∫

t
ǫ,

where
∫

t,δ
is the integral over region δ at time t. This division is completely general. We

now take the regions to be isolated and spherically symmetric. This is an extension of

the two-region toy model studied in [28,29] to cover a realistic distribution of structures.

An ensemble of only spherically symmetric regions cannot fully cover the hypersurface of

proper time (and does not form a connected space), and the model has to be understood

in a statistical sense. (We come back to this point in section 5.2.)

We treat the spherical regions with Newtonian gravity. Their average evolution is

then given by the spherical collapse model (and its underdense equivalent), according

to which they evolve like the corresponding FRW universe [70] (see [71–73] for reviews).

In terms of the Buchert equations, this follows from the result that in Newtonian

gravity, Q vanishes for spherical symmetry, so the Buchert equations reduce to the

FRW equations [26,78]. Expansion of a region with positive density contrast slows down

more as the perturbation grows, until it turns around and collapses, finally stabilising

at a finite size and density. Inside a region with negative density contrast, expansion

decelerates less as the region becomes emptier.

We take the individual regions of the ensemble to represent structures at a definite

state of expansion or collapse. In other words, the label δ corresponds to a value of

the average expansion rate in a region. In the spherical collapse model, the expansion

rate is in one-to-one correspondence with the linear density contrast (hence the letter

δ), which is the density contrast that the region would have relative to an Einstein-de

Sitter universe if its evolution had continued as in the linear regime.

The average expansion rate is

1

3
〈θ〉 = H(t) =

∫ ∞

−∞

dδ vδ(t)Hδ(t)

=

∫∞

−∞
dδ sδf(δ, t)Hδ(t)
∫∞

−∞
dδ sδf(δ, t)

, (20)

The fraction of proper volume in structures with linear density contrast δ at time t

has been decomposed into two parts, vδ(t) = sδf(δ, t)/(
∫∞

−∞
dδ sδf(δ, t)). (Note that

the linear density contrast can be arbitrarily negative, unlike the real density contrast,

which is bounded from below by −1.)

The first term sδ ≡ aδ(t)
3/aEdS(t)

3 is the volume of a region with linear density
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contrast δ relative to the volume of the Einstein-de Sitter universe, where aEdS ∝ t2/3 (we

will also use the notation HEdS = 2/(3t)). It is due to the difference in the expansion

rate between the different regions: more underdense regions expand faster and have

therefore grown larger. (The scale factor aEdS has been introduced out of convenience.

It appears both in the numerator and the denominator and does not depend on δ, so it

does not affect the average.)

The second term f(δ, t) is the fraction of the initial volume in regions with linear

density contrast δ. This is updated to the present volume by the first term. If we

completely ignored interactions between regions, f(δ, t) would be directly given by the

linear spectrum of perturbations. However, we want to take into account the nested

nature of cosmological perturbations, and the merger of structures into larger entities.

As overdense regions collapse and stabilise, they form larger structures which in turn

slow down and collapse, and underdense regions have similar hierarchical evolution. We

will include this feature using the peak model of structure formation.

The premise of the peak model of structure formation is that structures are

identified with maxima of the linear, Gaussian density field, smoothed on some scale

R [116]. In the original application, all peaks above a fixed density threshold were

considered to be stabilised non-linear structures. We will use the peak number density as

a function of density contrast as the number density of isolated regions having that linear

density contrast. (Since the density field is Gaussian, the distribution of underdense

troughs is the same as the distribution of overdense peaks.) The number density can be

converted into the fraction of mass. Since the early universe was very smooth, this is

also the fraction of the initial volume which has ended up in structures of a given linear

density contrast, in other words our f(δ, t).

The backreaction variable. Our treatment will give us the average expansion rate

directly, without needing to go via the backreaction variable Q. However, interpreting

the expansion rate in terms of the Buchert equations (7)–(9) and the density parameters

(12) will help to understand its evolution. The backreaction variable for the model is

Q =
2

3

(

〈θ2〉 − 〈θ〉2
)

− 2〈σ2〉

=
2

3

(

∫ ∞

−∞

dδ vδ〈θ2〉δ −
(
∫ ∞

−∞

dδ vδ〈θ〉δ
)2
)

− 2

∫ ∞

−∞

dδ vδ〈σ2〉δ

=
2

3

(

∫ ∞

−∞

dδ vδ〈θ〉2δ −
(
∫ ∞

−∞

dδ vδ〈θ〉δ
)2
)

+
2

3

(
∫ ∞

−∞

dδ vδ〈θ2〉δ −
∫ ∞

−∞

dδ vδ〈θ〉2δ
)

− 2

∫ ∞

−∞

dδ vδ〈σ2〉δ

= 6

(

∫ ∞

−∞

dδ vδH
2
δ −

(
∫ ∞

−∞

dδ vδHδ

)2
)

+

∫ ∞

−∞

dδ vδQδ , (21)

where 〈〉δ is the average over region δ. The total backreaction variable Q is not the
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sum of the regional backreaction variables, due to the non-local variance term. Since

we consider spherical regions using Newtonian gravity, we have Qδ = 0 [26, 78], and

the overall backreaction variable can be calculated from the regional average expansion

rates.

The spherical collapse/expansion model. The expansion rates of the regions follow the

spherical collapse model (and its underdense equivalent), which we summarise here

(see [73] for another useful summary).

For overdense regions we have

Hδ+t =
sin φ(φ − sin φ)

(1 − cos φ)2

sδ+ ≡ a3
δ+

a3
EdS

=
2(1 − cos φ)3

9(φ − sin φ)2

〈(3)R〉δ+t2 = 6
(φ − sin φ)2

(1 − cos φ)2

δ+ =
3

20
62/3(φ − sin φ)2/3 , (22)

where φ is the development angle which runs from 0 to 2π and δ+ is the linear density

contrast. The structure collapses to a singularity at 2π, so we take the expansion rate

to stabilise discontinuously to zero at φ = 2π. We set the volume, expansion rate and

spatial curvature of regions with a linear density contrast larger than δ+(2π) ≈ 1.7 to

zero. It would be more realistic to set the volume to a finite constant and the spatial

curvature to some constant proportional to the stabilised energy density, but this makes

little difference for our purposes. In our calculation, each region is weighted by its

relative volume, so the contribution of collapsing regions goes to zero at the collapse, and

the details of stabilisation do not matter. (For example, the results would be unchanged

if we stopped the evolution at θ = 3π/2 instead of 2π, as is sometimes done.) While

the expansion rate is discontinuous at the stabilisation, the volume-weighted expansion

rate sδ+Hδ+t is continuous. The combinations Hδ+t, sδ+ and 〈(3)R〉δ+t2 do not depend

explicitly on t, they are functions of δ+ alone.

Correspondingly, for underdense regions we have

Hδ−t =
sinh φ̃(sinh φ̃ − φ̃)

(cosh φ̃ − 1)2

sδ− ≡ a3
δ−

a3
EdS

=
2(cosh φ̃ − 1)3

9(sinh φ̃ − φ̃)2

〈(3)R〉δ−t2 = −6
(sinh φ̃ − φ̃)2

(cosh φ̃ − 1)2

δ− = − 3

20
62/3(sinh φ̃ − φ̃)2/3 , (23)

where the development angle φ̃ runs from 0 to ∞, corresponding to increasing time and

decreasing density contrast.
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Regions with zero density contrast have HEdSt = 2/3, sδ0 = 1 and zero spatial

curvature.

Peak statistics. For a linear density field with Gaussian, statistically homogeneous and

isotropic perturbations smoothed on scale R, the number density of peaks (troughs) of

height (depth) ν ≡ δ/σ0(t, R) is [116]

n(ν, R) = e−
1
2
ν2 1

(2π)2R∗(R)3
G(ν, γ(R)) , (24)

where the function G(ν, γ(R)) is

G(ν, γ) =

∫ ∞

0

dxF (x)
1

√

2π(1 − γ2)
e

−(x−γ|ν|)2

2(1−γ2) , (25)

with

F (x) =
x3 − 3x

2

{

erf

[

(

5

2

)
1
2

x

]

+ erf

[

(

5

2

)
1
2 x

2

]}

+

(

2

5π

)
1
2
[(

31x2

4
+

8

5

)

e−
5x

2

8 +

(

x2

2
− 8

5

)

e−
5x

2

2

]

. (26)

The functions γ(R) and R∗(R) are defined as (note that the explicit time-dependence

in σ2
j (t, R) cancels out)

γ(R) ≡ σ2
1(t, R)

√

σ2
0(t, R)σ2

2(t, R)

R∗(R) ≡
√

3
σ2

1(t, R)

σ2
2(t, R)

, (27)

where the spectral moments σ2
j (t, R) are

σ2
j (t, R) ≡

∫ ∞

0

dk

k
kj∆2

δ(k, t)T (k)2W (kR)2

=
4

9

1

(aEdSHEdS)4

∫ ∞

0

dk

k
kj+4∆2

φ(k)T (k)2W (kR)2

=
4

9

A2

(aEdSHEdS)4

∫ ∞

0

dk

k
kj+4T (k)2W (kR)2 , (28)

where ∆2
δ is the primordial power spectrum of density perturbations, ∆2

φ is the primordial

power spectrum of metric perturbations, taken to be scale-invariant with amplitude

A2 = (3×10−5)2, T (k) is the transfer function and W (kR) is the window function, taken

to be Gaussian, W (kR) = e−
1
2
k2R2

. (When going from metric perturbations to density

perturbations, we have neglected the long-wavelength modes, as we are interested in

sub-horizon perturbations.) The linear density field is taken to evolve in an Einstein-de

Sitter universe. We are neglecting the ’backreaction of backreaction’, the effect of the

change of the average evolution on the perturbations. One would need to take this into
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account to see if there are, for example, oscillations in the expansion rate as suggested

in [28,29]. For work on perturbations in a backreaction context, see [27,29,78,117–119].

To go from the peak number density to the fraction of mass (or initial volume), we

need to specify the mass associated with each peak. We multiply the number density

(24) by the volume under the Gaussian window function, (2π)3/2R3, and introduce a

constant N to account for the fact that the total mass is not correctly normalised. The

fraction of mass in peaks of height ν = δ/σ0(t, R) is then

f(ν, R) = Ne−
1
2
ν2 1√

2π(R∗/R)3
G(ν, γ) . (29)

The total mass defined this way is not constant with R. We fix the normalisation

constant N by demanding that asymptotically all mass resides in peaks or troughs,
∫∞

−∞
dνf(ν, R) → 1 as R → ∞. This gives N ≈ 1.97. In this treatment, all peaks

(and troughs) contain the same amount of mass, regardless of their height (or depth).

A normalisation factor which depends on ν would probably be more appropriate, but

we want to keep the treatment simple. The fraction of volume which is not in peaks

or troughs is taken to expand like the Einstein-de Sitter universe, HEdSt = 2/3. For

discussion of mass assignment for peaks and troughs, see [73, 120, 121].

One factor which we have not taken into account is the peak-in-a-peak problem.

The distribution function of peaks (29) does not take into account that lower peaks may

be submerged in higher ones. There is an equivalent trough-in-a-trough problem, and

perhaps most importantly, the trough-in-a-peak problem, as some underdense regions

are extinguished by larger overdense regions. There is no corresponding peak-in-a-trough

problem, and this asymmetry transfers mass from the underdense to the overdense

regions [73]. Our treatment does not include this effect, and we have equal mass in the

underdense and overdense regions, since the density field is Gaussian.

Smoothing and time evolution. We determine the smoothing length R by fixing σ2
0(t, R)

to a given value at all times. We take this value to be unity, σ2
0(t, R) = 1, so we have

ν = δ. Since the linear density contrast evolves in time, σ2
0(t, R) ∝ a2

EdS, the smoothing

length R(t) will also evolve, growing with time. This in turn translates into evolution of

the distribution function f(δ, R(t)). The smoothing scale R(t) can be regarded as the

typical size of structures which are forming at time t.

All time evolution is taken into account in this statistical manner in the distribution

function f(δ, t), since the individual regions are by definition fixed at a given state

of expansion or collapse. This averaging of regional values of the expansion rate is

somewhat different from the Buchert formalism, where the basic quantity is the local

volume element. While the density parameters defined in (12) can be used to understand

the state of the universe at each moment, the evolution of the expansion rate is not

completely captured by the Buchert equations, since the indirect treatment of the local

evolution of mergers by smoothing goes outside the dust approximation.

In physical terms, smoothing with a window function involves the assumption that

we need not consider the details of structures at the smoothing scale. It is a simplification
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Figure 1. The BBKS (blue, solid) and BD (red, dashed) transfer functions as a

function of k/keq.

for the merger of structures, both overdense and underdense, into larger entities. In the

present setting, this is part of our assumption of replacing continuous evolving structures

by disjoint spherical regions. In a full description of structures, there would be a well-

defined density contrast and expansion rate at each point. When we model the universe

with regions which are each associated with a regional average density contrast and

expansion rate, smoothing is introduced.

The transfer function. The statistics of structures in the peak model are determined

by the functions γ and R∗ defined in (27). With a fixed primordial power spectrum, the

behaviour of these functions is given by the transfer function.

We will consider two approximations for the CDM transfer function. The BBKS

transfer function [116] is

T (k) =
ln(1 + 2.34q)

2.34q [1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]1/4
, (30)

with q = kefb/(13.7keq) (assuming three massless neutrino species), where fb ≡
Ωb/Ωm is the baryon fraction [122] and k−1

eq ≈ 13.7ω−1
m Mpc is the wavelength of

the perturbations that enter the horizon during the matter-radiation equality. Here

ωm ≡ Ωm0h
2. The BBKS transfer function is a fitting formula to numerical results, and

the large k limit has been also analytically derived [122]. We fix the baryon fraction

at fb = 0.2. The results do not significantly depend on fb directly, but the BBKS

approximation of the numerical transfer function calculated with CAMB becomes worse

with increasing fb; for fb = 0.2, the error at large k is 20–30%.

For comparison, we will use the simple transfer function introduced in [41] by

Bonvin and Durrer, which we will call the BD transfer function,

T (k)2 =
1

1 + β(k/keq)4
, (31)

where β = 3 × 10−4.

The BD transfer function is a simple approximation to the behaviour of the

evolution of CDM perturbations captured in more detail by (30). It is not quantitatively
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accurate, but it will help to estimate the dependence of the results on the transfer

function.

Qualitatively, the BD transfer function has the same behaviour as the BBKS

transfer function. Perturbations with wavenumber much larger than keq enter the

horizon deep in the radiation dominated era, so they are damped by k−2, while

perturbations with much smaller wavenumber enter in the matter-dominated era, so

their amplitude is unsuppressed. The evolution in the slope of the BBKS transfer

function is shown in figure 1. Both the BBKS and the BD transfer function are missing

the cut-off at small scales due to free-streaming [88,123]. However, we will see that the

small-scale behaviour is not important for our results.

4.2. Preferred time in structure formation

The size of structures. Before evaluating the average expansion rate using the peak

model, we will briefly discuss the preferred time that is involved in the formation of

CDM structures from a scale-invariant spectrum of primordial perturbations. We would

expect to see this timescale reflected in the evolution of the expansion rate, regardless

of the statistical model used to describe structures.

Because of the change of the slope of the CDM transfer function, the size of

structures relative to the Hubble size saturates around 10–100 billion years [28, 29].

This can be seen as follows. Typical structures forming at time t have size R(t) defined

by σ2
0(t, R) = 1. Inverting (28) to solve for R and dividing by the Hubble radius, we get

the relative size R/(aH)−1 as a function of time.

The timescale is determined by the time of matter-radiation equality teq ≈ 1000ω−2
m

years. This value assumes three massless neutrino species with abundances determined

by thermal equilibrium, but it is independent of late-time cosmology, as long as the

energy density of matter evolves like a−3 and the energy density of radiation evolves like

a−4. In a clumpy space, the first follows from the conservation of mass (9). There is no

such conserved quantity for radiation, so in general the energy density of radiation does

not necessarily evolve like a−4 [80]. However, if the number density of radiation quanta

is conserved and their change in energy (i.e. redshift) is, at least on average, related to

the scale factor by 1 + z = a−1, the radiation energy density will be proportional a−4.

This relates the studies of the passage of light to the study of the Buchert equations in

the case of non-zero pressure [80].

We adopt the value ωm = 0.1 for all plots, giving teq ≈ 105 years. This value of ωm

could be reasonably moved up or down by a factor of 2, so the timescale in the plots

could be shifted by a factor of 4 in either direction. Model-independent estimates of

Ωm0 can be summarised as 0.15 & Ωm0 & 0.35 [124]. Regarding the Hubble parameter,

the value from SNe Ia observed with the Hubble Space Telescope has been quoted as

h = 0.72 ± 0.08 [125] or h = 0.62 ± 0.05 [126], depending on the treatment of Cepheids

(see section 5.1). For comparison, the model-dependent value determined from fitting

the ΛCDM model to the WMAP3 data is ωm = 0.127+0.007
−0.009 [3].



Evaluating backreaction with the peak model of structure formation 22

50 100 150 200 250 300 350
t�Gyr

0.1

0.2

0.3

0.4

0.5

size�maximum

(a)

0 10 20 30 40 50 60
t�Gyr0.0

0.2

0.4

0.6

0.8

1.0
size�maximum

(b)

Figure 2. The size of structures R/(aH)−1 relative to the asymptotic size as a function

of time, in billions of years, for (a) the BBKS transfer function and (b) the BD transfer

function.

At early times, the k−2 damping due to radiation domination cancels the

k2 enhancement of the density perturbations relative to the scale-invariant metric

perturbations. Therefore the spectrum of density perturbations depends only weakly on

the scale, so structures on different scales collapse nearly at the same time. The initial

structures are small and grow rapidly. Beyond keq, the amplitude is not suppressed, so

after the wavenumber of collapsing perturbations reaches keq, there is no scale in the

system anymore, and the relative size of the structures is constant. The asymptotic size

is roughly
√

A ≈ 5 × 10−3.

We show the value of R/(aH)−1 relative to its asymptotic value in figure 2 for the

BBKS and BD transfer functions. The timescale of the evolution of the size is sensitive

to the behaviour of the transfer function at small wavenumbers. For the BBKS transfer

function, the relative size enters the saturation regime at some tens of billions of years.

For the BD transfer function, this happens at a few billion years or so. In both cases, the

evolution in the size practically saturates well before the perturbations with wavenumber

keq become non-linear, which happens around 3500 billion years for the BBKS transfer

function and 2000 billion years for the BD transfer function.

The rough agreement of the era when structures reach their maximum size with

the time when acceleration has been observed (about 10 billion years) is encouraging

from the point of view of the coincidence problem. A rough way to understand the

preferred time in terms of the time of matter-radiation equality and the amplitude of the

primordial perturbations is as follows. The era when the structures with wavenumber

keq form is determined by the condition σ2
0(t, k

−1
eq ) = 1. Approximating the window

function W (kR) with the step function, the transfer function with unity for k ≤ keq

and recalling that keq ≡ (aH)−1
eq , we get from (28) the time t = (3/A)3/2teq ≈ 3000

billion years. The approach to the asymptotic value of the transfer function is slow,

and the saturation regime starts a couple of order of magnitude earlier than this. (It

is apparent in the BD transfer function (31) that the turnover scale is ≈ 10keq rather

than keq. Naively using 10keq in the previous argument would bring down the time to

3 billion years, since t ∝ (aEdSHEdS)
−3.) Exactly because the size changes slowly, it is



Evaluating backreaction with the peak model of structure formation 23

10-6 10-4 0.01 1
r

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ht

(a)

10-6 10-4 0.01 1
r

0.70

0.75

0.80

0.85

Ht

(b)

Figure 3. The expansion rate Ht as a function of r = keqR for (a) the BBKS transfer

function and (b) the BD transfer function.

somewhat arbitrary what one calls the preferred time. Around 10–100 billion years the

relative size of structures changes from growing rapidly to being almost constant, but

one cannot be more precise than that.

We will now get back to our model with the peak statistics, where the expansion

rate is determined as a function of time without ambiguity, and see how it indeed changes

around the saturation era.

4.3. The expansion rate

Increasing Ht. The expansion rate is given by

Ht =

∫ ∞

−∞

dδ vδ(t)Hδt

=

∫ 0

−∞
dδ− sδ−f(δ−, R)Hδ−t +

∫∞

0
dδ+ sδ+f(δ+, R)Hδ+t + 2

3
(1 −

∫∞

−∞
dδ f(δ, R))

∫ 0

−∞
dδ− sδ−f(δ−, R) +

∫∞

0
dδ+ sδ+f(δ+, R) + (1 −

∫∞

−∞
dδ f(δ, R))

, (32)

where sδ± and Hδ±t are given in (22) and (23), and f is given in (29). The expansion rate

is completely determined, there are no free parameters to adjust (unless one counts the

baryon fraction in the BBKS transfer function). The average spatial curvature 〈(3)R〉
and the backreaction variable Q given in (21) are calculated the same way.

We first show Ht as a function of the size of structures relative to the equality scale,

r ≡ keqR, in figure 3. Today σ2
0(t, R) is unity on the scale of 8 h−1Mpc or slightly below,

so given k−1
eq ≈ 13.7ω−1

m Mpc, we have r ≈ ωm ≈ 0.05–0.2, placing the present time in

the transition region. The transition era in the expansion rate is clear and the change

looks rapid, particularly for the BD transfer function. However, because the growth

of r as a function of time slows down as time goes on, the evolution is less steep as a

function of t.

In figure 4 we show Ht as a function of time. The behaviour is qualitatively similar

for the BBKS and BD transfer functions. At early times, Ht is close to the FRW value
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Figure 4. The expansion rate Ht as a function of time for (a) the BBKS transfer

function and (b) the BD transfer function.

2/3, slightly higher because there are structures present. With the onset of saturation

(i.e. the turnover in the transfer function), Ht rises to a value somewhat less than unity.

The physical reason for this evolution is that at early times the volume occupied by

the structures is small, so their impact is small. As the volume occupied by structures

grows (along with the density contrast of typical structures), the expansion rate becomes

dominated by voids, since their volume is large. This picture is in qualitative agreement

with excursion set studies of voids [73, 127]. If all volume was in voids that were

completely empty, we would have Ht = 1. Because the voids are not completely

empty, and because there are overdense regions, the expansion rate asymptotes to a

somewhat smaller value. This evolution could be expected on general grounds, as

discussed in [29], but it is not trivial that the timescale comes out correctly, in agreement

with the argument related to the size of structures presented in the previous section.

As the Buchert equations (7)–(9) show, the effect of perturbations on the average

expansion rate does not necessarily become large when they first become non-linear.

The criteria for the breakdown of the perturbed FRW equations as a description of the

local evolution and as a description of the average evolution are different. The latter

breaks down only when non-linear density perturbations occupy a sizeable fraction of

space¶.

No acceleration. In figure 5 we show the deceleration parameter q = −ä/(aH2) as a

function of time. Even though Ht rises, there is no acceleration. The reason is that

only the underdense regions are important, the overdense regions play almost no role.

As a result, Ht does not slow down before rising. It is likely that in order to have

acceleration, the overdense regions should first slow down the expansion rate, so that

the relative difference is larger, as in the toy model discussed in [28,29]. In FRW models,

¶ The time when backreaction becomes important was argued in [128] to be around today, by estimating

when the perturbative corrections to the average expansion rate become of order one. However, the

analysis does not take into account that the average decomposes into a product of two-point functions,

and that spatial derivatives have to occur in pairs. The correct order of magnitude for the general term

after eq. (8) in [128] is 10−5(a/a0)〈δ2〉(n−2)/2. This does not select out the present day.
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Figure 5. The deceleration parameter q as a function of time for (a) the BBKS

transfer function and (b) the BD transfer function.
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Figure 6. The density parameters Ωm (red, solid), ΩR (blue, dotted) and ΩQ (green,

dashed) as a function of time for (a) the BBKS transfer function and (b) the BD

transfer function.

there is a clear qualitative difference between acceleration and deceleration, related to

the dominant energy condition. Here the situation is different: acceleration is just

a quantitative question of the steepness of the Ht curve and the size of the density

parameter ΩQ, and there is no principle involved.

In figure 6 we plot the density parameters Ωm, ΩR and ΩQ defined in (12). For

both transfer functions, the backreaction density parameter ΩQ is small, below 0.04 in

absolute value. (The backreaction contribution peaks in the transition era when Ht rises

rapidly, but the change is too small to appreciate in the plots.) As noted in [78,129], the

system can evolve far from the initial near-FRW behaviour, even though ΩQ is small at

each moment. The backreaction density parameter ΩQ is a measure of the distance of

the model from the FRW case. The smallness of ΩQ means that at each moment, the

system is near some FRW model and evolves slowly between different near-FRW models.

(Note that the asymptotic value of ΩQ is non-zero, so unlike an open FRW universe,

the model does not become emptier without limit: structures are present, even when

the volume is dominated by voids.) In order for the behaviour at some instant to be

very different from a dust FRW model, |ΩQ| has to be large. A backreaction variable

|ΩQ| & 0.2 is needed to obtain acceleration of the observed magnitude [29].

While the timescale of the change in the expansion rate comes out roughly in
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agreement with observations, the effect of clumpiness is too small to give acceleration.

Let us now discuss the assumptions involved in the model, and how to improve the

treatment.

4.4. Improving the model

The spherical collapse/expansion model. Our model involves two parts: structures are

treated as an ensemble of regions whose distribution is given by the peak model, and the

evolution of the individual regions is taken to follow the spherical collapse/expansion

model.

Let us discuss the collapse/expansion model first. While the spherical collapse

model works surprisingly well for the statistics of structures, it does not give an

accurate description of the collapsing phase. In particular, there is no treatment

of the stabilisation which ends the collapse. An effective treatment of the terms

responsible for stabilisation was given in [130], and a improved model which covers the

whole evolution from the linear regime to the stabilised phase was presented in [131].

One can also generalise into ellipsoidal collapse, and take shear and tidal effects into

account [107,121,132]. The spherical collapse model in a backreaction context has been

discussed in [119, 133].

In general, a given value of the linear density contrast does not correspond to a

fixed value of the expansion rate, unlike in the spherical collapse model. In terms of the

Buchert equations (7)–(9), the backreaction variable Q is non-zero, and the equations

do not have a unique solution. However, one could generalise the present treatment to

cover more realistic structures by adding one layer of ensemble. One could integrate

over a distribution of initial conditions to obtain the mean expansion rate corresponding

to structures of a given density contrast, using the Buchert equations, as presented

in [78, 133]. While the approximation that the expansion rate depends only on the

density contrast (used in [130,131]) is probably not valid for a single structure, it is true

by construction for the expansion rate averaged over different structures.

There is no stabilisation problem with the underdense equivalent of the spherical

collapse model, and the evolution smoothly approaches the empty case Hδ−t = 1.

However, the model breaks down if shells from inner regions of the void (which have a

smaller density and therefore expand faster) catch up with outer shells, even though this

is not apparent in the average description. When this happens depends on the initial

density profile. For a top-hat density profile, shell-crossing occurs at linear density

contrast δ− ≈ −2.8, corresponding to Hδ−t = 8/9 [73]. In real structures, the shell-

crossing singularity corresponds to the formation of a dense wall surrounding the void.

After wall formation, it might be more realistic to take the expansion rate to be that of

an outward-moving shell, Hδ−t ≈ 0.8 [134, 135]. Like in the case of overdense regions,

the assumption of spherical symmetry may be questionable. While isolated voids grow

more spherical [135,136], the shapes of real voids are affected by surrounding structures.

Voids in simulations have complicated shapes [137, 138], though the overall structure
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resembles a foam of spherical voids [73]. The shapes of underdense structures could

be taken statistically into account with an ensemble of initial conditions, as with the

overdense regions.

However, refinements to the collapse/expansion model are secondary to the issue

of distribution of the overdense and underdense regions. For example, redoing the

calculation above with the improved collapse model presented in [131] makes practically

no difference to the results. The reason is that the volume in the overdense regions

is so small that their impact is negligible. In order to have slowdown, and after that

acceleration, the fraction of the initial mass (or, equivalently, initial volume) which goes

into the overdense structures should be larger.

The peak model of structures. We have already mentioned that the distribution

function (29) does not take into account the peak-in-a-peak problem, trough-in-a-trough

problem or trough-in-a-peak problem. In particular, the last mentioned involves the

extinction of voids by collapsing structures, which leads to the transfer of mass from

underdense to overdense regions, increasing the volume fraction of the latter. In the

excursion set formalism, the extinction of voids by overdense structures is crucial for

getting a single void size to dominate at each epoch [73, 127], as observed [139].

The peak model is based on an isolated view of structure formation, in which

matter concentrations remain stationary, with mass accreting onto (or flowing away

from) the fixed extremal points of the initial density field. Shear and tides are neglected.

However, such effects can be important, and the sites of structure formation do not

necessarily coincide with the initial density peaks (even underdense regions can collapse)

[121, 132,133,138].

The mass assignment of the peaks and troughs is likely to be important, and one

should consider a realistic mass function instead of having all peaks and troughs contain

the same amount of mass. Certainly, the treatment of merging and assignment of mass

with the simple Gaussian smoothing is somewhat arbitrary, and the mass assignment

should reflect the dynamics of structure formation. A realistic treatment would be

expected to break the symmetry in mass between peaks and troughs.

We have said that our model does not have new free parameters, and this is true

in the sense that we have not adjusted anything to get a certain result. However, the

smoothing threshold, which we set at σ0(t, R) = 1, could have been chosen to have some

other value. The peak distribution (29) depends on δ/σ0(t, R), and increasing σ0(t, R)

enhances the effect of structure. However, changing σ0(t, R) around unity does not make

much difference. Setting σ0(t, R) = 2 increases Ht by less than 10%, and the choice

σ0(t, R) = 0.5 brings Ht down by around 10%. The rate of change, i.e. the steepness of

the Ht curve, increases with σ0(t, R), and the deceleration parameter q changes by tens

of percent when setting σ0(t, R) to 2 or 0.5. The time when the expansion rate changes

significantly remains about the same, and the qualitative behaviour is unchanged.

Finally, the results depend strongly on the transfer function, and the BBKS

approximation may not be sufficient near the important bend in the spectrum; this
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is easy to correct in a numerical treatment. The results are not sensitive to the transfer

function and power spectrum at small scales, where they are poorly known. The reason

is that at early times when small structures form, their effect on the expansion rate is

small. On the other hand, rapid changes in the power spectrum at large scales could

have a large impact. Changing the primordial spectrum from scale-invariant to a power-

law with a spectral index of n = 0.8 or n = 1.2 (with a pivot scale of 0.002 Mpc−1)

changes Ht by only a few percent. More drastic changes in the power spectrum, such

as a sudden transition, would be needed for a significant effect.

A more realistic treatment of the effects discussed above will make it possible

to say with more confidence whether overdense regions are prominent enough to give

acceleration. If structures indeed lead to to accelerated expansion, the Buchert equations

(7)–(9) dictate certain overall features that the universe must have, independent of the

details of the structures. It is worth considering the compatibility of these general

features with observations, as they might in principle rule out backreaction as an

explanation for the observations. (See [29] for further comparison to observations.)

5. Discussion

5.1. Observational issues

The age of the universe. Observationally, the age of the universe is not known with

precision in a model-independent manner. There is an important constraint from the

ages of globular clusters, which give the lower limit t0 ≥ 11.2 Gyr at 95% C.L. and

a best-fit age of t0 = 13.4 Gyr [140]. These results do not depend on the details of

late-time cosmology, and should be valid as long as the expansion at redshifts z > 6 is

close to the Einstein-de Sitter case. For the Hubble parameter, the most accurate

model-independent determination is from SNe Ia observed with the Hubble Space

Telescope [141]. The usually quoted value is h = 0.72 ± 0.08 [125] (in close agreement

with h = 0.73 ± 0.06 found in [142]), while recent work with a different treatment of

Cepheid metallicity gives h = 0.62 ± 0.05 [126] (all 1σ limits). These estimates give a

mean value of H0t0 ≈ 0.99 or H0t0 ≈ 0.85, respectively, using t0 = 13.4 Gyr. Using the

lower limit for t0 and the mean value for h gives H0t0 & 0.83 or H0t0 & 0.71, respectively.

The treatment of Cepheids does not appear to be settled [141,143], but in any case, H0t0
values in the lower range are not ruled out. In principle, H0t0 can provide an important

constraint on backreaction models. In particular, a definitive measurement of Ht > 1

would imply that exotic matter is needed, because in a dust universe Ht ≤ 1, regardless

of the structures present (assuming that vorticity can be neglected) [129].

The values of Ht today in figure 4 are rather low for the BBKS transfer function,

while the BD transfer function gives results more in agreement with the observations.

The difference is mainly due to the fact that the change in the fraction of mass which is

in structures is slower in the BBKS case. For the BBKS transfer function, only 30% of

the mass is in structures at 15 Gyr, compared with 54% for the BD transfer function.
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In both cases, initially (i.e. in the limit t → 0) the fraction is 10%.

The CMB peaks. As the exact expression (15) shows and figure 6 demonstrates,

the average spatial curvature is generically large in a dust universe with significant

clumpiness. This raises the question of compatibility of the backreaction explanation

for the acceleration with CMB observations. However, the fact that the CMB data is in

good agreement with FRW models that have no spatial curvature does not imply that

the CMB rules out models with spatial curvature. Conclusions drawn about spatial

curvature from the CMB are model- and prior-dependent.

In physical terms, the CMB peak structure is mostly determined by the primordial

spectrum of perturbations, by Ωmh2 and Ωbh
2, and by the shift parameter, which is a

measure of the distance to the last scattering surface [8, 9]. The CMB anisotropies will

be the mostly the same in models with identical values of these parameters, apart from

the low multipoles (though see [144, 145]).

Even in the ΛCDM model with primordial perturbations given by a power law, the

CMB alone does not constrain spatial curvature to be small [3], though combining the

CMB with a measurement of Hubble parameter does provide a strong constraint. In a

FRW model with a time-varying equation of state, at least ΩK ≈ 0.2 is compatible with

the correct CMB shift parameter (and fitting the SN Ia data and the A-parameter from

baryon acoustic oscillations) [146].

In a backreaction model, there is no simple argument for obtaining the position of

the CMB peaks. Both positively and negatively curved regions are present, and there

may be more cancellation in the effect on the passage of light than would be expected

based on a FRW model with the equivalent amount of spatial curvature. One has to redo

the CMB analysis, considering the passage of light in a universe with realistic structures,

as discussed in section 2.1. It might even be that the change in the passage of light

together with the increase in Ht could explain the observations without acceleration, as

discussed in [47].

In any case, the contribution of spatial curvature is regionally not negligible in the

real universe. (The following discussion neglects effects due to breakdown of the dust

approximation.) For example, consider an overdense dust structure. For a shell that is

turning around from expansion to collapse, the left-hand side of (3) is zero. Neglecting

vorticity (in the spherically symmetric case, it would be zero), the spatial curvature

must be positive, and equal to the sum of the contributions of the energy density and

shear, (3)R = 16πGNρ + 2σ2. For a stabilised structure, we have θ = θ̇ = 0, so solving

from (2) and (3) we obtain (3)R = 12πGNρ and ω2 = 2πGNρ + σ2. Just as vorticity is

needed to balance against the energy density and shear to have zero acceleration, zero

expansion requires the spatial hypersurfaces to be positively curved. The energy density

of stabilised structures can be much larger than the average energy density, so the same is

true of their spatial curvature. (The growth in the relative spatial curvature is balanced

by the fact that the volume occupied by stabilised regions shrinks by the same factor

that their energy density increases, so the contribution to the average Hubble rate (8)
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remains constant.)

Inside voids, the energy density is much smaller than the background value, while

the expansion rate is larger, so the contribution of the spatial curvature is again larger

than that of energy density. For example, consider a void on an Einstein-de Sitter

background. Neglecting shear and vorticity, we have |(3)Rvoid| > 16πGN|δ|〈ρ〉, where

δ is the real (not linear) density contrast of the void (typically δ ≈ −0.9 for observed

voids [139]).

In principle, observations of structures correlated with the CMB at different

redshifts could lead to useful constraints on the evolution of the spatial curvature with

redshift, as with the ISW effect [20], once the effect of non-linear structures on the

passage of light is properly understood.

Variance. A variance |ΩQ| & 0.2 is required to explain the observed acceleration [29].

The directional variation of the expansion rate was studied in [147] using SNe Ia

(following the treatment of [125] rather than [126]). Typical variation was found at

the 10–20% level, the maximum difference in the expansion rates being over 50%. Of

course, angular variation is different from volume variance, and the systematics of SNe

Ia are perhaps not completely understood, as discussed in section 1. For directional

analysis of SNe Ia, see also [148, 149].

In [150], the directional variation of the expansion rate inferred from SNe Ia in [125]

was interpreted as evidence for backreaction. However, the estimate of the variance

in [150] is unreliable (even apart from the applicability of linear perturbation theory).

The magnitude of the the relevant term B = 〈∂i(∂iϕ∇2ϕ)〉 − 〈∂i(∂jϕ∂i∂jϕ)〉 − 2
3
〈∇2ϕ〉2

was estimated by replacing spatial derivatives with the inverse of the averaging scale,

and replacing the two powers of ϕ by the primordial amplitude of the power spectrum.

However, spatial gradients are determined by the scale over which the perturbations

vary significantly (as determined by the power spectrum and the transfer function), not

by the averaging scale. For example, 〈δ2〉 ∝ 〈∇2ϕ∇2ϕ〉 is divergent for a scale-invariant

spectrum (with no free-streaming cut-off), regardless of how large the averaging scale

is, because there are perturbations on arbitrarily small scales. Conversely, with a free-

streaming cut-off, the quantity is finite no matter how small the averaging scale is.

Note that the variance in the expansion rate evaluated from Newtonian simulations

[151] is large enough to provide acceleration, were it not balanced by shear, as noted

in [29]. As we discuss in section 5.2 below, such a cancellation is not in present in general

relativity. If the variance in simulations were negligible, it would be less plausible that

it is large in the real relativistic case. However, the Newtonian variance is large, so in

order to have acceleration, the shear simply has to be smaller than in the Newtonian

case.

It is sometimes argued that the dust shear would be of the order σ2 . 10−10H2

from the isotropy of the CMB [152] (see also [153]). Any real non-linear dust structure

violates this bound, so it is clear that the bound does not apply to the real universe.

(The calculation also gives a limit of |∇ρ/ρ| . 10−5H for the spatial scale of density
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variation, which is even more obviously violated.) However, if the shear really was

negligible, then this would indicate that backreaction is important, as observations and

simulations suggest a significant variance of the expansion rate [29].

Coldness of the Hubble flow. We have noted that there is no evidence for a

matter component with negative pressure apart from the cosmological observations of

accelerated expansion. In contrast to this, it has been claimed that the influence of

vacuum energy can be seen in the local dynamics within the local 10 Mpc or so from

the ’coldness’ of the local Hubble flow.

The coldness refers to two distinct phenomena+. First, the velocity dispersion in the

local volume has been claimed to be anomalously low. Some authors find the dispersion

within the nearest few Mpc to be ≈ 40 km/s [154], while others find a value of 88 km/s

± 20 km/s [155], or over 100 km/s [156]. The second aspect is that the expansion rate

measured within the nearest 10 Mpc is said to agree quite well with the global Hubble

rate. Given that the matter distribution is locally quite clumpy, and does not become

homogeneous until around 100 h−1Mpc, this seems somewhat surprising. It has been

suggested that both observations are explained by vacuum energy. It can ’cool’ the local

expansion rate, and if vacuum energy dominates also the global dynamics, it is natural

that the local and global expansion rates agree.

The velocity dispersion argument was presented as evidence against a high density

matter-dominated FRW model before the SN Ia observations supported accelerating

expansion [157]. It has been argued that the observed low value of the velocity dispersion

could be due to the known peculiarity of the local structures instead [158], or even that

such a small dispersion is typical [159]. However, it seems that the typical velocity

dispersion in simulations of the EdS model is indeed considerably higher, 300–700

km/s [160], while ΛCDM simulations can reproduce the small velocity dispersion [161].

In simulations constrained to reproduce the large scale structure of the local universe,

the velocity dispersion around regions similar to the Local Group of galaxies has been

found to be as cold in the open CDM model as in the ΛCDM model, given the same

matter density [162]. This still leaves the question of how common such regions are.

However, the lower range of the values 150–300 km/s found in unconstrained simulations

of the open CDM model [160] is not very dissonant with an observational value of over

100 km/s. It does not seem unreasonable that the effect of spatial curvature would be

even stronger in a clumpy model, where the density parameter of spatial curvature can

be larger.

Unlike for the velocity dispersion, the probability of being located in a region where

the local expansion rate agrees with the global value has not been studied quantitatively.

At any rate, as long as the measurement of the global and local Hubble parameters is

uncertain, it seems difficult to draw strong conclusions. The notably different values

h = 0.62 and h = 0.72 have both been used as evidence for the vacuum energy origin of

+ The linearity of the nearby mean flow with distance is sometimes mentioned as a third aspect.
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the local expansion rate [126, 163,164].

It has also been argued that the influence of vacuum energy has been directly

measured in the motions of nearby galaxies [163,164]. The idea is that for a spherically

symmetric system with a large central mass, the repulsive gravity of vacuum energy

dominates beyond a certain radius, estimated as 1–2 Mpc for the Local Group. However,

the assumption of a spherically symmetric field generated by a point mass used in

the analysis does not hold very well, and the observations are also consistent with

domination by negative curvature [162].

5.2. Non-Newtonian effects

Spatial curvature and Newtonian gravity. It is not clear how much the overdense regions

slow down the expansion rate, but from the model we have discussed, it seems difficult

to avoid the conclusion that underdense regions cause Ht to increase significantly. The

physical interpretation seems straightforward: the fraction of space in faster expanding

regions grows. However, there is a subtlety involved. The evolution we took for the

individual regions is purely Newtonian, and the peak statistics do not involve general

relativity. Had we formulated the problem in Newtonian gravity instead of general

relativity, the answer would have been the same. However, in Newtonian gravity, the

backreaction variable Q is a boundary term [76], so backreaction vanishes for periodic

boundary conditions. (In particular, this is true for Newtonian simulations.)

While the universe presumably does not have periodic boundary conditions at the

visual horizon, the result implies that backreaction in Newtonian gravity also vanishes

for a statistically homogeneous and isotropic system. This can be seen in two ways.

First, consider a volume which has periodic boundary conditions on a scale much larger

than the homogeneity scale. By statistical homogeneity and isotropy, the value of Q
evaluated within each homogeneity scale sized box in the volume is the same as the

overall value, which is zero due to the boundary conditions. Because the local physics

is independent of the boundary conditions on very large scales, this result should hold

even if the boundary conditions are not periodic∗. A perhaps more physical argument,

explained in [128], is that a boundary term can be viewed as a flux going from one

region to another, and in a statistically homogeneous and isotropic region, there should

be an equal flux in and out.

In Newtonian gravity, the average evolution of a statistically homogeneous and

isotropic dust space does always follow the FRW equations (i.e. the Buchert equations

with Q = 0). However, this is not true in general relativity. The Newtonian theory

constraint that variance and shear in Q in (10) cancel up to a boundary term is not

present in general relativity [77]. Viewed equivalently in terms of the spatial curvature

via the integrability condition (11), this difference is a reflection of the absence of spatial

curvature in Newtonian gravity.

In Newtonian space and time, the geometry of the spatial hypersurfaces is fixed,

∗ I am grateful to Christof Wetterich for this argument.
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so the spatial curvature tensor and its trace, the spatial curvature scalar (3)R, do not

exist [99]. Therefore the Newtonian equations of motion do not include an equation

for the expansion rate such as the Hamiltonian constraint (3) independent of the

Raychaudhuri equation. The analogue of the relativistic Hubble equation (3) emerges

only as the first integral of the Raychaudhuri equation.

In Newtonian gravity, the backreaction variable Q is given by a boundary term

which is in general non-zero. However, for an isolated system or one that is statistically

homogeneous and isotropic, we have Q = 0. Then the the first integral of the Newtonian

equivalent of the average Raychaudhuri equation (7) gives an equation like the average

Hamiltonian constraint (8), but with a term proportional to a−2 in place of 〈(3)R〉, as

(14) shows. The a−2 term multiplied by a2 can be interpreted as the conserved energy

of the Newtonian system.

There is no such conserved quantity in the relativistic case. The average spatial

curvature can evolve non-trivially, unlike the total energy of an isolated Newtonian

system. The average spatial curvature is constrained by the integrability condition

(11) for the average Hamiltonian constraint and the average Raychaudhuri equation,

instead of being proportional to a−2. (In the FRW case, the relativistic spatial curvature

term and the Newtonian energy term are mathematically identical, only the physical

interpretation is different.)

In our model, the evolution of overdense and underdense regions is uncorrelated. We

do not have a Newtonian constraint on their behaviour, and the overall average spatial

curvature can evolve non-trivially, as in the general relativistic case. A Newtonian

calculation for a statistically homogeneous and isotropic system would have to include

the global constraint that the underdense and overdense regions add up in such a manner

that the energy term (corresponding to the spatial curvature) is proportional to a−2.

(In a consistent treatment with a continuous distribution of matter, instead of isolated

regions, this would follow automatically.)

There is a similar situation in the case of spherical symmetry. As noted in

section 4.1, the backreaction variable Q vanishes for spherical symmetry in Newtonian

gravity [26,78], resulting in the spherical collapse/expansion model. In general relativity,

spherical symmetry does not imply perfect cancellation between variance and shear,

and the average expansion of a spherically symmetric dust solution can even accelerate

[30, 113, 114].

The Newtonian limit of general relativity. In order for backreaction to be able to

account for the observed acceleration, non-Newtonian aspects of gravity should be

important already at the homogeneity scale of around 100 h−1Mpc. It is sometimes

argued that general relativistic effects in the present-day universe can only be important

on super-Hubble scales or near neutron stars and black holes. However, this conclusion is

based on linearly perturbed FRW or Minkowski universes or the Schwarzschild solution,

and the general situation is not that simple. (The subtleties of the Newtonian limit of

near-FRW cosmological models have been discussed in [165,166]; see also [167] regarding
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the magnetic part of the Weyl tensor.)

The Einstein equation has ten components, with four constraints, whereas in

Newtonian gravity there is only one equation, the Poisson equation. There are two

aspects to the additional equations. Some of them correspond to degrees of freedom

which do not exist in Newtonian gravity (such as gravity waves and spatial curvature),

while others provide new constraints on the existing degrees of freedom. The low-

velocity, weak-field limit of general relativity is not Newtonian gravity, but Newtonian

gravity with extra degrees of freedom and additional constraints.

General relativity reduces to Newtonian gravity in the limit of infinite speed of

light. However, this limit is not smooth. Taking the speed of light to infinity removes

some equations completely and makes Newtonian gravity qualitatively different from

general relativity, where the speed of light is finite. Relativistic effects do not require

velocities near the speed of light, only a finite speed of light.

For example, there exist solutions of Newtonian gravity which are not the limit

of any general relativity solution, due to additional constraints in the relativistic case.

There are Newtonian expanding dust solutions which have zero shear but non-zero

vorticity. However, in general relativity, non-zero vorticity implies non-zero shear for

expanding dust [99, 106]. This does not require large velocities or strong gravitational

fields; see [168] for a clear comparison of the general relativistic and Newtonian cases.

In the case of backreaction, it is the presence of new degrees of freedom, namely

spatial curvature, rather than extra constraints which is important. In perturbation

theory around FRW universes, the leading terms in the backreaction variable Q are

Newtonian, so they are total derivatives and do not contribute in a statistically

homogeneous and isotropic system [25,81,128]. The non-Newtonian terms do not appear

earlier than fourth order in perturbation theory. Their numerical coefficients have not

been evaluated (it may be possible to do so using third order perturbation theory, instead

of having to calculate to fourth order [169]), but their form is known, and velocities near

the speed of light are not required for them to be important.

Simulations and backreaction. If non-Newtonian aspects are important already at the

homogeneity scale, one would expect them to show up also in quantities other than

the expansion rate. We can ask whether there is any room for such effects, given the

comparison of simulations of structure formation (which are completely Newtonian)

with observations. In fact, while simulations reproduce many features of observations,

there are some notable differences.

In [170] it was found that the homogeneity scale evaluated from simulations was

only of the order 10 h−1Mpc, an order of magnitude smaller than the observed 70–100

h−1Mpc [89, 90]. (The box size of the simulations studied in [170] was 141 h−1Mpc,

so the correct homogeneity scale could not have been reliably recovered. However, the

homogeneity scale that was found is much smaller than the box size, so it is not likely

to be a finite size artifact.)

According to [171], the number of largest structures in the Millennium Simulation
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is underproduced compared to observations, by a factor of 10 for the most luminous

superclusters. As for large underdense structures, the voids produced in simulations are

not as empty as those observed. This ‘void phenomenon’ has even been called a crisis

of the ΛCDM model [172]. (It has recently been argued that simulations coupled with

semianalytical galaxy formation in fact agree with the void observations [173].)

These discrepancies may have resolutions which have nothing to do with non-

Newtonian physics or backreaction. The statistics for the largest structures are probing

the tail of the distribution, which may be affected by non-linear corrections to the

evolution of the power spectrum [97] or transients from initial conditions [174]. The

magnitude of such effects has been found at the 10–30% level, and the discrepancy is an

order of magnitude, but one should not be confident that there are no unaccounted for

effects in simulations, for example related to discretisation [95]. The apparent emptiness

of voids, in turn, might be due to bias or subtleties in galaxy formation and the definition

of voids, rather than spatial curvature [175, 176].

Nevertheless, the point is that we do not have confirmation that Newtonian gravity

works well near the homogeneity scale, since the Newtonian results differ in some

important respects from the observations.

5.3. Conclusion

Summary. We have studied the effect of structure formation on the expansion rate

in a statistically homogeneous and isotropic space. We first reviewed studies of the

propagation of light in a space with non-linear structures, and discussed some qualitative

issues related to the average expansion rate. We then calculated the average expansion

rate in a model where the number density of structures is given by the peak model of

structure formation with cold dark matter, and the individual structures are described

with the spherical collapse model and its underdense equivalent. In the calculation, there

are no adjustable free parameters in addition to those related to structure formation in

a spatially flat matter-dominated FRW universe.

We find that the expansion rate increases relative to the FRW value at a time of

tens of billions years, about the observed acceleration era, possibly offering a solution

to the coincidence problem. The timescale has its origin in the change of slope of the

CDM transfer function around the matter-radiation equality scale keq. This leads to a

preferred time around 105teq ≈ 1010 years, when the volume occupied by structures and

their size relative to the visual horizon saturate, and the impact of structures on the

expansion rate becomes large.

However, while Ht increases in the model, it does not rise sufficiently rapidly to

correspond to acceleration. The expansion rate increases because the relative volume

of the faster expanding regions rises, as quantified by the Buchert equations. In order

to have acceleration, it is likely that the average expansion rate would first have to be

damped by slower expanding overdense regions before it is increased by shedding their

contribution when voids become dominant. In the present model, this does not happen,
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because the volume occupied by the overdense regions is rather small. This is partly due

to the fact that we have equal amounts of mass in overdense and underdense regions.

Taking into account mass flow to the overdense regions would increase their impact.

Improving the treatment of the statistics of the peaks and the model used for

individual structures would lead to a more realistic estimate of the expansion rate. The

propagation of light in a universe with realistic, evolving structures also has to be further

studied to see how the average expansion rate is related to observations.

If a realistic backreaction model does turn out to provide acceleration in agreement

with the observations, one could say that it unifies three historically popular FRW

models. There is only matter present and the initial value of the spatial curvature at

the background level is zero as in the standard CDM model, the universe has negative

curvature as in the open CDM model, and the expansion accelerates as in the ΛCDM

model. Acceleration due to structure formation would probably be a transient phase on

the way to negative curvature voids dominating the expansion of the universe, though the

behaviour at very late times depends on how the universe is structured on scales which

are currently far beyond the horizon, of which we have no theoretical or observational

understanding.
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Lemâıtre-Robertson-Walker Cosmology, 2003 Phys. Rev. D68 123516 [astro-ph/0308419]

Holz D E and Linder E V, Safety in numbers: Gravitational Lensing Degradation of the Luminosity

Distance-Redshift Relation, 2005 Astrophys. J. 631 678 [astro-ph/0412173]

Biswas T and Notari A, Swiss-Cheese Inhomogeneous Cosmology and the Dark Energy Problem

[astro-ph/0702555]

Santos R C, Cunha J V and Lima J A S, Constraining the dark energy and smoothness-parameter

with supernovae [0709.3679 [astro-ph]]

[47] Mattsson T, Dark energy as a mirage [0711.4264 [astro-ph]]

[48] Weinberg S, Apparent Luminosities In A Locally Inhomogeneous Universe, 1976 Astrophys. J.

208 L1

[49] Ellis G F R, Bassett B A and Dunsby P K S, Lensing and caustic effects on cosmological distances,

1998 Class. Quant. Grav. 15 2345 [gr-qc/9801092]

[50] Mustapha N, Bassett B A, Hellaby C and Ellis G F R, Shrinking II – The Distortion of the Area

Distance-Redshift Relation in Inhomogeneous Isotropic Universes, 1998 Class. Quant. Grav. 15

2363 [gr-qc/9708043]



Evaluating backreaction with the peak model of structure formation 40

[51] Ellis G F R and Solomons D M, Caustics of compensated spherical lens models, 1998 Class.

Quant. Grav. 15 2381 [gr-qc/9802005]

[52] Linder E V, Averaging Inhomogeneous Universes: Volume, Angle, Line of Sight [astro-

ph/9801122]

[53] Lieu R and Mittaz J P D, Are the WMAP angular magnification measurements consistent with

an inhomogeneous critical density Universe?, 2005 Astrophys. J. 623 L1 [astro-ph/0409048]

[54] Kibble T W B and Lieu R, Average magnification effect of clumping of matter, 2005 Astrophys.

J. 632 718 [astro-ph/0412275]

[55] Lieu R and Mittaz J P D, On the absence of gravitational lensing of the cosmic microwave

background, 2005 Astrophys. J. 628 583 [astro-ph/0412276]

[56] Watanabe K and Tomita K, Cosmological observations in an inhomogeneous universe: distance

redshift relation, 1990 Astrophys. J. 355 1

[57] Holz D E and Wald R M, A New method for determining cumulative gravitational lensing effects

in inhomogeneous universes, 1998 Phys. Rev. D58 063501 [astro-ph/9708036]

[58] Sugiura N, Nakao K-i, Ida D, Sakai N and Ishihara H, How do nonlinear voids affect light

propagation?, 2000 Prog. Theor. Phys. 103 73 [astro-ph/9912414]

[59] Brouzakis N, Tetradis N and Tzavara E, The Effect of Large-Scale Inhomogeneities on the

Luminosity Distance JCAP02(2007)013 [astro-ph/0612179]

Brouzakis N, Tetradis N and Tzavara E, Light Propagation and Large-Scale Inhomogeneities

[astro-ph/0703586]

[60] Marra V, Kolb E W, Matarrese S and Riotto A, On cosmological observables in a swiss-cheese

universe, 2007 Phys. Rev. D76 123004 [0708.3622 [astro-ph]]

[61] Ellis G F R, Nel S D, Maartens R, Stoeger W R and Whitman A P, Ideal observational cosmology,

1985 Phys. Rept. 124 315

Stoeger W R, Ellis G F R and Nel S D, Observational cosmology. III. Exact spherically symmetric

dust solutions, 1992 Class. Quant. Grav. 9 509

Stoeger W R, Stanley S J, Nel D and Ellis G F R, Observational cosmology. IV. Perturbed

spherically symmetric dust solutions, 1992 Class. Quant. Grav. 9 1711

Stoeger W R, Stanley S J, Nel D and Ellis G F R, Observational cosmology. V. Solution of the

first-order general perturbation equations, 1992 Class. Quant. Grav. 9 1725

Stoeger W R, Ellis G F R and Xu C, Observational cosmology. VI. The microwave background

and the Sachs-Wolfe effect, 1994 Phys. Rev. D49 1845

Maartens R and Matravers D R, Isotropic and semi-isotropic observations in cosmology, 1994

Class. Quant. Grav. 11 2693

Maartens R, Humphreys N P, Matravers D R and Stoeger W R, Inhomogeneous universes in

observational coordinates, 1996 Class. Quant. Grav. 13 253 (Erratum 1996 Class. Quant.

Grav. 13 1689) [gr-qc/9511045]

[62] Ellis G F R and Buchert T, The universe seen at different scales, 2005 Phys. Lett. A347 38

[gr-qc/0506106]

[63] Ellis G F R, 83 years of general relativity and cosmology: progress and problems, 1999 Class.

Quant. Grav. 16 A37

[64] Dyer C C and Roeder R C, On the Transition from Weyl to Ricci Focusing, 1981 Gen. Rel. Grav.

13 1157
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