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Abstract

Background: Linkage of electronic healthcare records is becoming increasingly important for research purposes.

However, linkage error due to mis-recorded or missing identifiers can lead to biased results. We evaluated the

impact of linkage error on estimated infection rates using two different methods for classifying links: highest-weight

(HW) classification using probabilistic match weights and prior-informed imputation (PII) using match probabilities.

Methods: A gold-standard dataset was created through deterministic linkage of unique identifiers in admission

data from two hospitals and infection data recorded at the hospital laboratories (original data). Unique identifiers

were then removed and data were re-linked by date of birth, sex and Soundex using two classification methods:

i) HW classification - accepting the candidate record with the highest weight exceeding a threshold and

ii) PII–imputing values from a match probability distribution. To evaluate methods for linking data with different

error rates, non-random error and different match rates, we generated simulation data. Each set of simulated files

was linked using both classification methods. Infection rates in the linked data were compared with those in the

gold-standard data.

Results: In the original gold-standard data, 1496/20924 admissions linked to an infection. In the linked original data,

PII provided least biased results: 1481 and 1457 infections (upper/lower thresholds) compared with 1316 and 1287

(HW upper/lower thresholds). In the simulated data, substantial bias (up to 112%) was introduced when linkage

error varied by hospital. Bias was also greater when the match rate was low or the identifier error rate was high

and in these cases, PII performed better than HW classification at reducing bias due to false-matches.

Conclusions: This study highlights the importance of evaluating the potential impact of linkage error on results.

PII can help incorporate linkage uncertainty into analysis and reduce bias due to linkage error, without requiring

identifiers.
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Background
Linkage of records between electronic health databases

is becoming increasingly important for research pur-

poses as individual-level electronic information can be

combined relatively quickly and inexpensively [1,2]. The

success of such data linkage depends on data quality,

linkage methods, and the ultimate purpose of the linked

data [3]. Errors that occur during the linkage process

(false-matches and missed-matches) can lead to biased

results, although the extent of this bias in research based

on linked data is difficult to measure, as reported

measures of linkage error (e.g. sensitivity, specificity,

match rate) do not necessarily allow us to understand

the impact of these linkage errors on results [4-8]. The

separation of linkage and analysis (to protect data confi-

dentiality) means that researchers analysing linked data-

sets often lack the information required to properly

assess the impact of error on results [9,10].

When data do not include well completed or accurate

unique identifiers, probabilistic match weights are often

used to measure the similarity between records in differ-

ent files [11,12]. Match weights represent the likelihood

of records being a match given the agreement of a set of

identifiers. Typically, records are then classified as links

or non-links by retaining the candidate with the highest
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weight, given the weight exceeds a specified cut-off

threshold (highest-weight classification). The choice of

thresholds directly affects the number of false-matches

and missed-matches in linked data.

Several alternatives to highest-weight classification that

aim to adjust for linkage bias have been proposed, but

these are generally limited to the context of regression

analysis [13-16]. A more flexible method for dealing with

linkage uncertainty when analysing linked data is prior-

informed imputation (PII) [17]. PII aims to select the

correct value for variables of interest, and rather than

accepting a single complete record as a link, allows more

than one candidate linking record to be considered in

analysis. Information from match probabilities in candi-

date linking records (the prior) is combined with infor-

mation in unequivocally linked records. This process

avoids errors associated with accepting the wrong record

as a link, or failing to accept any record as a link. PII has

been shown to work well in a simulation study involving

linear regression but has not yet been evaluated using

real data or explored in different linkage and analysis

situations.

Determining the potential effect of linkage error on

relevant outcome measures is vital if linked data are to

be used in health research. We evaluate the impact of

linkage error on analysis of infection rates in paediatric

intensive care, based on a national audit dataset (PICA-

Net, the Paediatric Intensive Care Audit Network) and

infection surveillance data linked using highest-weight

(HW) classification and prior-informed imputation (PII)

[18]. Simulated data are used to investigate how the im-

pact of linkage error varies according to the characteris-

tics of the data to be linked.

Methods
Ethics

For PICANet, collection of personally identifiable data has

been approved by the Patient Information Advisory Group

(now the NHS Health Research Authority Confidentiality

Advisory Group) http://www.hra.nhs.uk/documents/2013/

11/piag-register-2.xls and ethical approval granted by the

Trent Medical Research Ethics Committee, ref. 05/

MRE04/17 +5. PICANet also has specific permission from

the National Research Ethics Service for linkage with the

PHE laboratory data on bloodstream infections using per-

sonal identifiers and to share PICANet data with PHE. An

exemption under Section 251 of the NHS Act 2006 (previ-

ously Section 60 of the Health and Social Care Act 2001)

allows PHE to receive patient-identifiable data from other

organisations without patient consent in order to monitor

infectious disease. Specific permission for the PICANet-

PHE linkage has been granted by NIGB. Consent for the

use of the data identifying individual PICUs in this study

was obtained from the PICU leads.

Statistical analysis

The primary outcome was PICU-acquired blood-stream

infection (BSI), defined as any positive blood culture

occurring between 2 days after PICU admission and up

to 2 days following PICU discharge inclusive. The crude

rate of PICU-acquired BSI was calculated as the num-

ber of events per 1000 bed-days (only one event counted

per admission). Poisson regression models were fitted

to the data to estimate the absolute difference in ad-

justed rates between hospitals. Variables known to be

associated with PICU-acquired BSI in these datasets

were included in models. Statistical analysis was per-

formed using Stata 11 [19].

Original data

Admission data for children admitted to Birmingham

Children’s hospital (BCH) or Great Ormond Street hos-

pital (GOSH) paediatric intensive care units (PICUs) be-

tween March 2003 and December 2010 were extracted

from the PICANet database [18]. Microbiology records

for all positive bacterial isolates from blood were ob-

tained from BCH and GOSH laboratories for March

2003 to December 2010. Deterministic linkage of PICA-

Net and microbiology records based on unique identi-

fiers (National Health Service (NHS) number, hospital

number, name, date of birth and sex) provided the true

match status of each record pair. The original “gold-

standard” dataset consisted of every PICANet record

and linked microbiology records where a link existed.

Linkage was manually verified to ensure there were no

false-matches or missed-matches and additional data

from the hospital IT systems (e.g. examination of previ-

ous names) were used to clarify any uncertainties.

Simulated data

To evaluate methods for linking data with different

characteristics, we generated a second “admissions” file

of 10,000 records by randomly sampling 10,000 values

for each of the identifiers in the original PICANet data

(Figure 1). Several sets of twenty-five simulated “micro-

biology” files were then created by sampling 10,000 re-

cords from PICANet, and selecting a set number of

these records to have a link in the admissions file – i.e.

representing positive blood cultures occurring within a

PICU admission. Each set of simulated microbiology

files was given different attributes to reflect the range

of linkage situations and data quality that might be ex-

pected of linkage between routine data sources (Table 1).

The match rate was set to either 10%, 50% or 70% by select-

ing 1000, 5000 or 7000 records in the microbiology file to

link to an admission record. Identifier values were ran-

domly changed (completely different values entered) and

missing values randomly introduced into either 5% or 10%

of records. Finally, the distribution of error was set to be
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either random or non-random. Non-random error was in-

troduced by hospital (microbiology records from hospital 1

were 5 times more likely to include error than records from

hospital 2) or non-random by outcome (microbiology re-

cords linking to a PICU admission were 5 times more likely

to have error than those not linking to a PICU admission).

Linkage

Although BCH and GOSH laboratories were able to

provide data with well-completed and discriminatory

identifiers, national infection surveillance data includes

more limited information, as NHS number, hospital

number, name and postcode are often not recorded. To

simulate the linkage approach required for the national

surveillance data, we removed unique identifiers from

all files. Linkage was then based on sex, Soundex (an

anonymised phonetic code for surname [20]) and day,

month and year of birth only.

In each case, the admissions file consisted of a cohort

of children admitted to PICU. The linking microbiology

Figure 1 Creation of simulated data.

Table 1 Description of original and simulated datasets

Dataset Error distribution Match rate Error rate

Original data (PICANet-LabBase2) Error varied by hospital Matches: 1496/20924 (7%) 0-5% error,

Non-matches: 19431/20924 (93%) <1% missing values

Simulated datasets

1 Random identifier error

2 Non-random error (associated with hospital) Matches: 1000/10000 (10%) 5% error,

Non-random error (associated with outcome) Non-matches: 9000/10000 (90%) 5% missing values3

4 Random identifier error

5 Non-random error (associated with hospital) Matches: 5000/10000 (50%) 5% error,

Non-random error (associated with outcome) Non-matches: 5000/10000 (50%) 5% missing values6

7 Random identifier error

8 Non-random error (associated with hospital) Matches: 7000/10000 (70%) 5% error,

9 Non-random error (associated with outcome) Non-matches: 3000/10000 (30%) 5% missing values

10 Random identifier error

11 Non-random error (associated with hospital) Matches: 1000/10000 (10%) 10% error,

12 Non-random error (associated with outcome) Non-matches: 9000/10000 (90%) 10% missing values

All data were linked using both highest-weight classification and PII.
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file held records for children who had one or more posi-

tive blood cultures at one of the two hospitals, some of

whom had spent time in PICU. Admission records could

therefore link to none, one or more records in the

microbiology file. The variable of interest (VOI) was

‘BSI’, coded in the gold-standard data as 1 for admissions

having a link in the microbiology file, and 0 for admis-

sions not having a link in the microbiology file.

Classification method 1: highest-weighted

Probabilistic match weights were assigned to each record

pair, according to agreement on the set of identifiers

(Fellegi-Sunter approach) [21]. Match weights were cal-

culated using the conditional probability that a record

pair agree on a particular identifier, given the true match

status of the pair e.g. P(agree on sex|match) and P(agree

on sex|non-match). Since in our gold-standard data the

true-match status of each record pair was known, condi-

tional probabilities were calculated directly. Match weights

were calculated using code written in Stata 11 [19].

Record pairs were ordered by descending weight and

the highest-weighted pair for each admission and micro-

biology record was accepted as a link, provided the

weight exceeded a specified cut-off threshold. Where an

admission record linked to more than one microbiology

record with equal weight, the earliest microbiology rec-

ord was retained (only one event per admission was

counted). Where a microbiology record genuinely linked

to more than one admission record (e.g. for consecutive

admissions), the earliest admission was retained. Record

pairs with weights below the threshold were classified as

non-links.

Thresholds are typically chosen by ordering record

pairs by weight and manually inspecting to determine

the weight at which pairs were thought to be more likely

than not a match. Two thresholds are chosen, and rec-

ord pairs with weights between the two thresholds are

subjected to manual review. However in national infec-

tion surveillance data, manual review is not feasible–

firstly due to the large numbers of records, and secondly

due to the scarcity of identifying information on records

(decisions would need to be based on few identifiers, e.g.

only Soundex and date of birth).

If linkage error rates are known, a single threshold can

be chosen to minimise linkage error. An optimal thresh-

old would either minimise the sum of errors (false-

matches +missed-matches) or minimise the net effect of

errors (|false-matches–missed matches|). Unfortunately,

it is not always possible to obtain estimates of linkage

error rates with which to derive optimal thresholds.

However, if error rates are available in a subset of data

(e.g. from a gold-standard dataset), these can be used to

select a threshold.

For each linkage, a 10% subset of records where the

true match status was known was used to estimate the

number of false-matches and missed-matches at each

possible weight threshold. Optimal thresholds based on

this subset were then applied to the entire dataset. In

the simulated data, the threshold that minimised the

sum of errors (threshold 1) and the threshold that mini-

mised the net effect of errors (threshold 2) coincided,

and results are presented from one threshold only.

Classification method 2: prior-informed imputation

PII was performed as proposed by Goldstein et al., using

Stat-JR software developed by the University of Bristol

[22]. A detailed description of the method has been pub-

lished elsewhere and further details relating to this study

are provided as an Additional file 1 [17]. PII works by

transferring values of variable(s) of interest (VOI) from

the linking file to a primary analysis file, rather than

linking to a complete record. In this analysis, the VOI

was a binary variable corresponding to infection, re-

corded at either GOSH or BCH. If an admission record

linked to a microbiology record there was assumed to be

an infection and the VOI was coded as 1. If there was no

link, there was no infection and the VOI was coded as 0.

Match probabilities were derived from the probability

that records were a match given the joint agreement of a

set of identifiers e.g. P(M|agree on sex and Soundex and

date of birth), based on the true match status of record

pairs. This joint estimation avoids the assumption of in-

dependence between identifiers that can result in mis-

classification of record pairs [23].

For admission records that had an unequivocal link in

the microbiology file (match probability > 0.9), the VOI

value associated with the linking record was accepted. In

this analysis, the VOI was set to 1 as any record with a link

in the microbiology file represented an admission with an

infection. For admission records that were unequivocally

non-links (match probability < 0.2), the VOI was set to 0,

as there was no infection. These cut-off probabilities were

based on previous PII simulation work.

For admission records that had more than one candi-

date linking record (equivocal links), a prior distribution

for the VOI was derived from the match probabilities as-

sociated with each candidate record. In this ‘incomplete

linkage’, any record that had a match in the microbiology

file had a BSI. Therefore the value of the VOI was the

same for all candidate records (i.e. the VOI = 1). The

maximum candidate probability reflects the maximum

probability of BSI for an individual record, and so the

prior was derived as:

VOI ¼
1; with P max candidate probabilities½ �ð Þ
0; with 1‐P max candidate probabilities½ �ð Þ

n
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A likelihood for the VOI was derived from the distri-

bution of the VOI in unequivocally linked records, con-

ditional on predictor variables in the admissions file.

Predictor variables included were those known to be as-

sociated with PICU-acquired BSI in these data (renal

status, quarter-year at admission, age, admission type

and admission source) [24].

A modified probability distribution (MPD) was then

created, proportional to the prior distribution multiplied

by the likelihood (Figure 2). For each equivocal admis-

sion record, the VOI associated with the highest value of

the MPD was chosen. If no VOI value exceeded a pre-

specified MPD threshold, the VOI was treated as missing

and standard multiple imputation was used to impute a

value based on the likelihood (unequivocal links) only.

The MPD threshold takes a standardised value from

0 to 1 and if no value exceeds the threshold, standard

imputation is used to impute a value. If a low threshold

is chosen (e.g. 0.1) the value of the VOI is almost al-

ways accepted from the MPD. If a high threshold is

chosen (e.g. 0.9) the value of the VOI is almost always se-

lected through standard multiple imputation (imputed

from the likelihood). The choice of MPD threshold there-

fore determines how much precedence is given to infor-

mation from the prior or the likelihood. Results from two

MPD thresholds (0.1 and 0.9) are presented, to demon-

strate this point. For each linkage, five imputed datasets

were produced and analysed separately. Results were com-

bined using Rubin’s rules [25].

Results
Original data

Of the 20924 admission records from March 2003 to

December 2010 extracted from PICANet, 1496 (7.1%)

linked to at least one microbiology record of PICU-

acquired BSI (gold-standard data; Figure 3). Given a total

of 116,113 bed-days, the rate of PICU-acquired BSI was

12.88 (95% CI 12.23-13.53) per 1000 bed-days; 11.18

(11.93-10.41) and 15.73 (16.87-14.55) at respective PICUs.

After removal of unique identifiers, the number of

PICU-acquired BSI was identified as 1316 (6.3%; HW

threshold 1), 1287 (6.2%; HW threshold 2), 1481 (7.1%;

PII 0.1) and 1457 (7.0%; PII 0.9). The crude rate of PICU-

acquired BSI was identified as 11.33 (95% CI 10.72-11.95),

11.08 (10.48-11.69), 12.75 (11.61-13.89) and 12.55 (11.42-

13.68) for HW threshold 1, HW threshold 2, PII 0.1 and

PII 0.9 respectively. Incidence rates were underestimated

when using HW (Figure 4).

The difference in adjusted rates between PICUs was 4.53

(95% CI 3.12-5.93) BSI per 1000 bed-days (gold-standard

data). The difference in rates using HW threshold 1, HW

threshold 2, PII (0.1) and PII (0.9) was 3.14 (1.84-4.45),

3.25 (1.95-4.55), 4.31 (2.62-6.00) and 4.18 (2.53-5.83) re-

spectively. PII (0.1) provided the least biased results for

these data.

Simulated data

Overall, results were most severely affected by linkage error

when these errors were distributed non-randomly. Esti-

mates of BSI rate were most biased when error was associ-

ated with the outcome of infection and HW classification

was used (Figure 5). Estimates of the difference in adjusted

rates were not significantly affected by random error, as er-

rors were introduced to data from both PICUs equally

(Figure 6). However substantial bias was introduced when

error was associated with a particular hospital, as errors in

data from one hospital led to an apparent lower rate and

therefore falsely inflated the difference between units.

Predictor

variables

PICANet

record a

LabBase2

record y
BSI=1 1

PICANet

record b

LabBase2

record z
BSI=1 1

PICANet

record c

No

LabBase2

records

BSI=0 1

Predictor

variables

PICANet

record x

Candidate

record i
BSI=1 0.8 max

[candidate

probability] =

0.8Candidate

record j
BSI=1 0.4

Pseudo

record
BSI=0

1 – max

[candidate

probability] =

0.2

Likelihood

distribution

Prior

distribution

Modified

probability

distribution

(MPD)

Primary file

records

Linking file

records

Variable of

interest

Match

probability

Unequivocal

Equivocal

Figure 2 Prior-informed imputation for linkage of PICU and infection records.
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The size of the bias introduced to results also

depended on the match rate. Estimates of BSI rate were

biased by up to 8% for a match rate of 70%, rising to

38% for a match rate of 10% (Figure 5). Similarly, esti-

mates of difference in rates were biased by up to 38% for

a match rate of 70%, rising to 53% for a match rate of

10% (Figure 6). This difference was due to the fact that

for 10% match rate, there were a greater number of non-

matches and therefore more potential for false-matches.

For 10% match rate, PII (0.9) performed best, except

for when error was associated with the outcome, where

PII (0.1) provided least biased results. For 50% and 70%

match rate respectively, PII (0.9) provided the least

biased results in all cases but one, where HW performed

marginally better.

Using PII rather than HW classification had most

benefit when the proportion of true matches was lower,

as in the original data. PII also performed well when the

identifier error rate was increased to 10% (Table 2). In

this case, the set of unequivocal links was less reliable

and so the MPD threshold of 0.1 performed best as

more weight was given to values in the candidate re-

cords. Standard errors for PII were generally larger than

those for HW. This was due to the process of combining

results from five multiply imputed datasets, and better

reflects the uncertainty associated with linkage.

Discussion
This study demonstrates that when linkage error due to

missing or wrongly recorded identifiers is associated

with a particular group of records, estimates based on

linked data can be substantially biased. Considerable bias

was also introduced when the match rate was low or

when the identifier error rates were high. We show that

in these cases, PII using match probabilities was able to

produce less biased results compared with the traditional

highest-weighted classification using probabilistic match

weights.

In this study we assumed that both match weights and

match probabilities were calculated accurately (i.e. based

on the true match status of record pairs). In a real link-

age situation this would not be the case, and the com-

parisons presented here therefore represent a best-case

scenario. Further work needs to be done to understand

how sensitive PII is to inaccuracies in match probabilities.

Appropriate methods for estimating match probabilities

Figure 3 Linkage between PICANet and gold-standard

microbiology data.

Figure 4 Comparison of crude PICU-acquired BSI rate obtained through highest-weighted classification and prior-informed imputation:

original data.
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and avoiding the assumption of independence between

identifiers are currently being developed.

The benefit of using PII was most obvious in the results

of linkage between the original data used in this study

(PICANet and LabBase2). In the simulated data, PII with

the high MPD threshold (0.9) generally provided the least

biased results. Using a high MPD threshold means that

VOI values are most often imputed from the likelihood,

indicating that in some situations, standard multiple im-

putation would be sufficient for linkage. We recommend

that the most effective classification method is chosen on

a study-to-study basis, according to the characteristics of

Figure 5 Comparison of HW classification and PII for estimating BSI rate. Data from simulated datasets 1-9; Symbols = point estimate;

Lines = 95% confidence intervals. One extreme value for HW relaxed excluded (=49.08).

Figure 6 Comparison of HW classification and PII for estimating the difference in adjusted rates between PICUs. Data from simulated

datasets 1-9; Symbols = point estimate; Lines = 95% confidence intervals.
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the data. This choice could also be informed by comparing

results from each method with results from a subset of

gold-standard data where the true match status of records

is known, or by assessing in synthetic data with similar

characteristics.

In many linkage situations, an individual may be re-

corded in each dataset to be linked, regardless of the

outcome being studied (e.g. when GP records are linked

to hospital records). PII has previously been shown to be

effective at avoiding bias due to linkage error in such a

situation [17]. In this study, records were only linked

when the outcome was observed i.e. when a child admit-

ted to PICU had BSI. Consequently, linkage error had a

direct effect on the results calculated. In particular, bias

was greatest when identifier error rates differed between

hospitals, supporting other studies that have shown dif-

ferential linkage error by ethnic group, exclusion of vul-

nerable populations due to poorly-recorded identifiers

and erroneous rankings of relative hospital performance

due to differing data quality between units [26-32].

These potential sources of bias need to be acknowledged

to ensure transparent research based on linked elec-

tronic health data.

For linkage to be successful, communication between

data linkers and users of linked data is vital. The separ-

ation principle, which means that data custodians are not

allowed to release identifiable data to researchers and that

linkage is performed by a third party, is advocated as good

practice for confidentiality but means that researchers

often lack the information needed to assess the impact of

linkage error on results [9,33]. Data linkers need to be ex-

plicit about linkage methods, criteria, and any uncertainty

in linkage. Linked data users need to consider what infor-

mation is required to properly assess linkage bias.

Our evaluation of PII demonstrates that it is possible

to handle linkage error without requiring access to any

identifiable data, by retaining all candidate linking re-

cords and their associated match weights or probabil-

ities [34]. Retaining match weights and candidate

records would also allow sensitivity analyses using a

range of linkage criteria (e.g. different thresholds in

probabilistic linkage) to determine the effect of these

criteria on results. Gold-standard datasets where true

match status is known can be used to identify the most

appropriate method for a linkage study, and to esti-

mate measures of bias resulting from linkage error.

Finally, access to both linked and unlinked records

would allow the comparison of record characteristics

to allow identification of potential sources of bias aris-

ing from associations between data quality and vari-

ables of interest [35].

Conclusions
Linkage of routine data is a valuable resource for health

research, but our study highlights the importance of

evaluating the potential impact of linkage error on re-

sults. We show that PII can be used to help incorporate

linkage uncertainty into analysis and to reduce bias due

to linkage error, without requiring the release of individ-

ual identifiers. Improved methods for linkage and guide-

lines for evaluating and handling linkage error will help

improve the reliability and validity of results based on

linked data [36,37].

Additional file

Additional file 1: Prior-informed imputation.

Table 2 Comparison of classification methods for estimating BSI rate and difference in adjusted rates with 10%

identifier error (simulated datasets 10-12)

Classification N Infections Crude rate (95% CI)
N�1000

54;826 bed days

Standard error % bias Difference in adjusted rates (95% CI) Standard error % bias

Gold standard 1000 18.24 0.577 5.514 1.214

10: Random error

HW 869 15.84 (14.79, 16.90) 0.646 −13.1 4.55 (2.33, 6.76) 1.129 −17.5

PII MPD = 0.1 1038 18.94 (17.67, 20.21) 0.646 3.8 5.32 (2.75, 7.89) 1.313 −3.5

PII MPD = 0.9 860 15.69 (14.61, 16.77) 0.551 −14.0 4.45 (2.18, 6.72) 1.160 −19.3

11: Non-random error; by covariate

HW 886 16.15 (15.09, 17.21) 0.543 −11.4 10.93 (8.61, 13.24) 1.183 98.2

PII MPD = 0.1 1010 18.41 (17.21, 19.62) 0.614 1.0 11.69 (9.12, 14.26) 1.311 111.9

PII MPD = 0.9 858 15.65 (14.57, 16.72) 0.548 −14.2 11.454 (9.09, 13.82) 1.208 107.7

12: Non-random error; by outcome

HW 364 6.65 (5.98, 7.32) 0.343 −63.6 1.94 (0.53, 3.35) 0.720 −64.9

PII MPD = 0.1 684 12.48 (10.87, 14.09) 0.822 −31.6 3.36 (0.51, 6.20) 1.453 −39.1

PII MPD = 0.9 217 3.95 (3.39, 4.51) 0.287 −78.3 1.20 (0.00, 2.39) 0.610 −78.3
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