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Abstract. Malware targeting mobile phones is being studied with increasing in-
terest by the research community. While such attention has previously focused
on viruses and worms, many of which use near-field communications in order to
propagate, none have investigated whether more complex malware such as bot-
nets can effectively operate in this environment. In this paper, we investigate the
challenges of constructing and maintaining mobile phone-based botnets commu-
nicating nearly exclusively via Bluetooth. Through extensive large-scale simu-
lation based on publicly available Bluetooth traces, we demonstrate that such a
malicious infrastructure is possible in many areas due to the largely repetitive
nature of human daily routines. In particular, we demonstrate that command and
control messages can propagate to approximately 2/3 of infected nodes within
24 hours of being issued by the botmaster. We then explore how traditional de-
fense mechanisms can be modified to take advantage of the same information to
more effectively mitigate such systems. In so doing, we demonstrate that mobile
phone-based botnets are a realistic threat and that defensive strategies should be
modified to consider them.

1 Introduction

Mobile phones are being increasingly tasked with sophisticated duties. From trading on
financial markets and mobile banking to carrying medical records [29], these devices
are beginning to be trusted with some of our most sensitive information. Unfortunately,
because the majority of mobile phones lack even basic security mechanisms (e.g., mem-
ory protection), they are becoming increasingly attractive targets for malware writers.
The widespread usage of such devices and the sensitivity of cellular networks to even
small amounts of malicious traffic make this actuality a significant threat.

A wide range of malware targeting mobile phones has already been documented.
Whether arriving via MMS [22], a downloaded executable [35] or over a Bluetooth
link [14], both viruses and worms are being extensively explored in this environment.
Botnets, however, have not yet been studied in depth in this setting. Representing one
of the most significant threats to the Internet, mobile botnets could use compromised
phones to execute regularly updated mission requests (e.g., Denial of Service, premium
number dialing, password/credential theft, etc). Like their Internet-based counterparts,
mobile botnets can only achieve such flexibility given the presence of a robust command
and control (C&C) infrastructure. Unlike traditional botnets however, we argue that



such an infrastructure can be successfully maintained outside of the purview of cellular
providers, making detection and mitigation challenging given current strategies.

In this paper, we evaluate the potential for mobile phone-based botnets to commu-
nicate and coordinate predominantly via Bluetooth. Unlike previous work that inves-
tigates whether malware can spread over such links, we instead investigate whether a
command and control infrastructure can be maintained in an environment with almost
entirely transient links. We develop an understanding of the long term interaction of
infected devices through the use of two large-scale datasets and, through simulation,
demonstrate that the repetitive nature of the daily routines of human beings allows mes-
sages to be propagated to over 66% of infected nodes within a day. We then compare
the impact of varying parameters including device popularity and polling interval to
allow a botmaster to tradeoff the speed of propagation with their ability to remain hid-
den from a network provider. Finally, we conduct large-scale simulations to attempt to
better model the dynamics of such botnets in a realistic setting - public transit.

In so doing, we make the following contributions:

– Develop the first characterization of Bluetooth-based C&C for mobile devices:
Using publicly available data on mobile device interaction, we develop the first
characterization of command and control operations in this setting. In particular,
we show that mobile botnets are possible, but that instruction propagation latency
can be significant. In exchange for such latency, botmasters are able to notably
reduce the amount of traffic observable by the provider.

– Create a new C&C architecture based on node popularity: We develop a frame-
work in which bots selectively communicate with the botmaster based on their pop-
ularity. In particular, only a small subset of bots with the highest degree ever speak
directly to the botmaster. This mechanism helps to improve the speed of propaga-
tion without exposing all infected nodes to a network provider.

– Develop countermeasures leveraging communication patterns: From the infor-
mation learned above, we develop patching and mitigation strategies that signifi-
cantly reduce a mobile botnet’s ability to defend against our countermeasures and
remain hidden.

Note that traditional botnet C&C infrastructures are likely to be easily detected in
these networks as providers are more likely to have a more complete global view.1 This
means that bots are unlikely to be successful in these networks unless they adopt a
strategy similar to the one presented in this work.

The remainder of this paper is organized as follows: Section 2 provides an overview
related work in the area of mobile malware; Section 3 discusses how mobile phones
can and are likely to be infected and explores a number of possible mechanisms for
command and control; Section 4 explains our data and simulator that we use to model
Bluetooth-based botnets; Section 5 simulates such networks using well-known public
data sets; Section 6 models a large-scale botnet in a public-transportation setting; Sec-
tion 7 discusses how the above observations can be leveraged to combat such botnets;
Section 8 offers concluding remarks.

1 This is also true because associating messages with their origin given that each device authen-
ticates to the network.



2 Related Work

Botnets [10, 26] represent the major source of malicious activity on the Internet – they
send spam [27], perform DDoS attacks [16] and host phishing web sites [7]. Significant
attempts have been made by the research community to both categorize [6,10] and mit-
igate [17–19, 27] such threats. Unfortunately, understanding such threats in the context
of cellular networks is still very limited [33, 34].

The transformation of mobile devices from simple voice terminals into highly-
capable, general purpose computing platforms makes the possibility of attacks originat-
ing from within the network a reality. The tremendous increase of cell phone adoption
and the lack of widely implemented security mechanisms makes such platforms attrac-
tive targets to botmasters. Research has previously shown cellular infrastructure as a
potential target of botnet attacks [33]; however, such botnets are composed entirely of
compromised machines across the Internet. Previous work has not considered whether
or not such a malicious overlay can be created and maintained exclusively on mobile
phones.

Bluetooth-based malware has been extensively explored. Su et. al highlighted the
presence of a diverse set of known security vulnerabilities in the Bluetooth protocol’s
implementation [31]. They argued that the presence of such vulnerabilities coupled
with the complexity of the Bluetooth specification and its large codebase will likely
lead to more complex attacks using the Bluetooth channel. Worms including Cabir [8],
Mabir [9] and CommWarrior [21] have already successfully exploited this channel.
Previous efforts to model the propagation behavior of Bluetooth-based malware have
focused entirely on the analysis of Bluetooth worms. Yan et. al studied the effect of
mobility on worm propagation by restricting the devices in an area with sides of length
150 meters [37,39]. The same authors later provided a comprehensive analytical model
for such Bluetooth worm propagation [38]. Other studies have investigated the effect of
population characteristics and device behavior on the outbreak dynamics of Bluetooth
worms [23, 28]. Such characteristics have been previously exploited for peer-to-peer
(P2P) content distribution [20] and for studying human social behavior [12].

Mobile phone-based botnets using Bluetooth to propagate control messages bear
a striking resemblance to Internet-based P2P botnets [5, 13]. In particular, even if de-
fenders identify a subset of the bots in a botnet, communication among the remaining
bots will not be disrupted. Second, in contrast to other centralized approaches (such
as IRC [6]), there is no fixed endpoint from which the botmaster must transmit com-
mands. For Bluetooth botnets, the botmaster can send messages from any Bluetooth-
enabled device, and he can frequently change these source devices to evade detection.
Bluetooth communication has other additional, attractive properties that benefits botnet
creators. Unlike the Internet-based P2P channels, Bluetooth by principle is proximity
based: this gives the defenders limited scope to observe the communication between two
bot devices. Additionally, P2P botnets suffer from the problem of losing bots whenever
those bots change their dynamic IP addresses. Bluetooth channels are resilient to such
changes.



3 Bluetooth-based Botnets

Our goal is to evaluate the suitability of Bluetooth as a command and control chan-
nel. In particular, we focus on the challenges facing a botmaster trying to coordinate
a large number of infected devices over a transient, near-field communication channel
that cannot be easily identified or blocked by cellular providers. In this section, we dis-
cuss how mobile phones can be compromised, detail our threat model and assumptions,
and discuss the C&C architecture of mobile phone-based botnets.

3.1 Infecting Devices

Mobile devices have rapidly transformed from limited embedded systems to highly
capable general purpose computing platforms. While such devices have long enjoyed
significant diversity in hardware and operating systems, the rising popularity of smart-
phones and the ability to sell applications to users is leading to the establishment of
standardized mobile software platforms and operating systems, such as Microsoft’s
Windows Mobile, Google’s Android and Apple’s Mobile OS X. Unfortunately, many
devices are only now beginning to implement basic security mechanisms including
memory protection and separation of privilege. Accordingly, such systems are expected
to be increasingly targeted by malware. Malware targeting mobile devices may come
from any of a number of sources. Given that 10% of cellular users downloaded games
to their mobile devices at least once a month in 2007 [24] and the wide availability of
free ringtones, downloadable content and executables are one of the more likely ori-
gins. Like their desktop counterparts, mobile devices are also likely to be susceptible to
a range of browser exploits including drive-by downloads [25]. Finally, the presence of
multiple communications interfaces makes mobile devices susceptible to malware that
propagates not only through the cellular network itself [15], but also potentially through
WiFi and Bluetooth [8,9,21]. Accordingly, the breadth of infection vectors exceeds that
of many traditional networked systems.

3.2 Threat Model and Reasoning

Given the above, we assume that bots have already been installed on a subset of mobile
phones within a network but that the C&C infrastructure remains unestablished.

We expect that powerful defenses exist to detect and disrupt botnets. In our threat
model, we assume that defenders have access to malicious binaries and are able to learn
the bot’s entire execution behavior through forensic analysis techniques. This allows
defenders to identify the command list and the algorithms used by the bot to extract
commands from Bluetooth messages. Simply stated: the threat model allows defenders
to know everything that is known to the bot.

Botmasters logically aim to sustain their networks for as long as possible. Stealth is
therefore one of the most critical characteristics of such a botnet. The short range and
ad-hoc nature of communications via Bluetooth potentially provides such an opportu-
nity: defenders need to be within range of the communicating infected devices at the
time of communication, which might not be practical considering the changing network
topology of the ad-hoc network. Given that providers are not able to observe the vast
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Fig. 1. Only nodes with the highest exposure to other bots (shown here by the darkness of the
circle) contact the botmaster directly. All other nodes receive commands and updates when they
are within Bluetooth range of an updated node.

majority of messages between infected devices, this means of communication appears
attractive.

Reliance upon near-field communications also makes commanding bots more chal-
lenging. Specifically, a botmaster must rely on infected nodes being within range of
each other on a regular basis in order to successfully propagate commands. We lever-
age the fact that a large portion of the population follows regular patterns of behavior.
For instance, person A gets up every day at 7 am and goes to his office using the sub-
way. In the process, he will encounter a large subset of the same people every day (who
also take the train at roughly the same time everyday). He will also interact with a
large subset of the same people everyday in the office. The highly regular nature of this
routine provides structure in an unstructured environment. Specifically, while the bot-
master may not know the exact topology of the network at any particular moment, he
or she will know with some assurance the subset of devices with which a user is likely
to interact with during a period of time.

3.3 Botnet Construction and Message Passing

We now explore the construction and operation of mobile phone-based botnets based
on our threat model. While traditional strategies such as having all nodes use cellular
data connections to reach Internet-based centralized or P2P designs are possible, large
volumes of such communication are easily detectable by a provider. Accordingly, we
aim to develop a mechanism that avoids such detection while overcoming a number of
challenges. For instance, the botmaster must be able to learn the identities of all of the
phones under his control so as to be able to accurately portray the size of the botnet
when renting it. This task must be accomplished without these devices contacting the
botmaster directly. Additionally, the botmaster needs to ensure that he can contact the
largest possible number of infected phones within a short period of time. Unfortunately,
a Bluetooth-only solution is unlikely to be sufficient in this context. In particular, an
adversary would need to physically place himself near as many nodes as possible, which
is more likely to be a burdensome task.



We instead propose a hybrid approach designed to maximize the speed of distri-
bution while only minimally reducing stealth. In particular, we allow a botmaster to
communicate with a very small number of infected nodes through cellular channels
(e.g., SMS, cellular data). These nodes are selected via their relative frequency of con-
tact with other infected devices. Specifically, as infected devices pass within range of
each other, they record the identity of the other device. After reaching some threshold
set by the botmaster, those nodes with a high degree of connectivity over time contact
the botmaster and provide their contact log. In so doing, these devices not only provide
the botmaster with knowledge of the devices under his control, but also inform him of
which nodes are most likely to be able to help rapidly disseminate commands.

Figure 1 represents one such typical scenario, where the darkness of the circle
around the phone reflects the popularity of that device. As we can determine from the
figure, phone 0 is the most popular and therefore act the seed for communication with
the botmaster. If phone 0 is disinfected, phone 3 would likely report back to the bot-
master (potentially after the expiration of some long-term timeout value).

The botmaster also disseminates commands through this hierarchical structure. When
a new task arises, the botmaster simply contacts the seed nodes in a particular area and
provides an updated mission/payload to be distributed to other infected nodes. These
nodes are most likely to be able to deliver such a payload to the largest possible number
of infected nodes without requiring them to directly interact with the botmaster because
of their high degree of connectivity over time.

Seed nodes logically present attractive targets to defenders. Those nodes reporting
back to some centralized point are more likely to be singled out by the provider. Naı̈vely
constructed, such a strategy would allow a provider to cripple the communications of
these systems. If the very low volume of traffic is not sufficient for avoiding detection,
such bots can further obfuscate their activities through a number of anonymizing tech-
niques ranging from Tor [11] and Publius [36] to the use of a free temporary email
address. Such communication could be further obscured through the use of the WiFi
connection available to many smart phones. Communications from the botmaster can
avoid detection by spoofing the source address of a communication from the Internet,
including text messages claiming to be from within a target node’s community of inter-
est [33].

4 Experimental Setup

Given a proposed communications architecture and our threat model, we now seek to
determine whether or not mobile phone-based botnets can effectively communicate us-
ing Bluetooth. In this section, we discuss a number of details related to our experimental
design and testing. This infrastructure is used throughout the remainder of the paper.

4.1 Prototype Bot

Rather than running a simulation with nodes simply exchanging meaningless messages,
we implemented a proof of concept mobile phone-based bot. Our prototype bot is coded
in Java and deployed on the Sun Wireless Toolkit that emulates infected mobile devices.



Each bot instance acts as a peer in the bot network, listening for new commands and si-
multaneously sending commands to other discovered bots. At the initial infection stage,
the bot registers itself with a Universally Unique Identifier (UUID) in the service regis-
ter present in the mobile device, thus allowing it to be discovered by other bots. It then
waits for new incoming connections. A two-way Bluetooth connection is established
with other bots when they come within range. As part of our protocol for information
exchange among bots, the bot is updated with the latest version of the command, which
also includes the updated parameters of the command.

As a proof-of-concept, we implemented a botnet command that directs bots to send
an SMS to a specified mobile number without being noticed by the sender. Such a
command can launch a denial-of-service attack on a targeted area [33] should enough
devices participate. Because most service providers also charge for incoming messages,
such attacks can also incur substantial costs for the targeted victim. These initial exper-
iments demonstrate that Bluetooth can successfully be used to pass commands between
infected nodes with relative ease.

4.2 Experimental Goals

We use our proof-of-concept bot to evaluate various parameters that directly or indi-
rectly impact command propagation in a mobile phone-based botnet. While some of
these parameters, such as the device polling interval, can be controlled by the botmas-
ter, other parameters are influenced by the inherent characteristics of near-field com-
munications and the human movement patterns. We enumerate these parameters and
evaluate their impact using a range of simulations that model a range of settings and
scenarios.

Our simulations are categorized into two experimental sets. The first set of simula-
tions are performed based on two trace logs, one each from MIT [12] and NUS [30],
that are collected using real devices carried by individuals for their day-to-day activi-
ties. By means of these experiments, we evaluate various operational parameters of the
proposed botnet C&C mechanism, which are useful in determining the correctness of
our hypothesis.

In our second set of experiments, we use publicly-available information to create a
large scale simulation model of New York City’s subway system and thereafter, use this
model to demonstrate command propagation in a typical scenario of public transporta-
tion. The goal of these simulations is to expand our evaluation beyond the boundaries
imposed by the limited traces, and demonstrate the viability of a large-scale mobile
phone-based botnet.

In order to run the simulation, one initial node is selected and subsequently all the
nodes encountered by the selected node are enumerated in time stamp order. If the pe-
riod of contact shown by the traces is equal to or more than 5 minutes (this is the least
time granularity for the MIT data set), we assume that the other node successfully re-
ceived the command. This is a conservative assumption given that botnet commands
are generally negligible in size (on the order of tens of bytes) and Bluetooth can trans-
fer data at a rate of approximately 1Mbps. In our experiments, we examine various
factors and environmental variables that have an effect on the latency of the command
propagation in the proposed Bluetooth-based botnet.
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Fig. 2. Command Propagation Rate.
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Fig. 3. Recurrent bot connections over differ-
ent days.

We do not consider device heterogeneity in our experiments because we view in-
fection and command propagation as two separate tasks. In particular, because devices
can be infected through any number of different vectors (e.g., drive-by downloads, ma-
licious executables, browser bugs, etc), phones of all varieties can be forced to run
bot software. Our evaluation focuses not on how infection happens but how messages
spread after infection has occurred.

5 Trace Based Simulations

We use the architecture and assumptions detailed in the previous two sections to develop
simulations of mobile phone-based botnets. In this section, we use publicly available
Bluetooth traces to perform a number of simulations. These experiments characterize
the impact of various factors on effective botnet communication.

5.1 Description of Datasets

Reality Mining Dataset (MIT): The Reality Mining project is a collection of envi-
ronmental data gathered by one hundred mobile phones over a course of six months.
Polling by each of these phones was used to determine the presence and identity of
other Bluetooth-capable devices in their proximity. This data was initially used to pro-
vide insight into the dynamics of the social behavior of both individuals and groups [12].
While one of the more extensive available datasets, the major limitation of this study is
that the time between subsequent polling for devices is five minutes and as a result, our
evaluations miss interaction of devices that were in contact for less time. The proposed
message dissemination techniques are therefore likely to perform even better than the
results we present. We attempt to overcome this limitation with a large-scale simulation
in Section 6.

Bluetooth Dataset (NUS). We use a second collection of logs known as the the
National University of Singapore (NUS) Bluetooth [30] dataset that contains traces



of Bluetooth sightings by 12 devices over a period of 7 months. Each device polled
for other devices every 30 seconds and recorded device identifiers of all the Bluetooth
enabled devices in its range, providing significantly finer granularity of interaction than
the MIT dataset. Out of the 12 experimental devices, 3 were static devices placed near
lecture halls on the NUS campus and the rest were given to the faculty and students.
This dataset makes it possible for us to evaluate the effect of varying polling interval on
the characteristics of the Bluetooth-based botnet, and also demonstrate how mobility of
the commanding device can influence the command propagation rate in the botnet.

5.2 Simulation Results

Command Propagation Rate Figure 2 provides a single but representative view of
command dissemination by the most popular node. Note that the command is rapidly
dispersed during the morning hours, plateaus in the evening and the increases again
slightly the next morning. Note that because of the regularity of regularity of human
behavior, the increase on the second day is relatively low given that few different nodes
are observed between any two given days. Our experiments demonstrate that messages
are consistently delivered to greater than 2/3 of all infected nodes within 24 hours of
the botmaster contacting the seed node.

We define Probability of Delivery (PoD) as the percentage of bots responding within
a predefined time period. The desired time represents the maximum acceptable latency
for a botmaster to successfully distribute a command to some portion of the nodes under
his control. Given Figure 2, a realistic value for such a response time is approximately
24 hours; however, the nature of the command may offer the botmaster additional flexi-
bility. For instance, the botmaster may not require that a spam campaign be coordinated,
allowing nodes to being their job immediately after receiving the command. Alterna-
tively, denial of service attacks are likely to require greater coordination, meaning that
such attacks may need to be planned further in advance in order to be successful. When
sent at optimal times (i.e, the morning), PoD values rise relatively quickly, with 40% of
nodes having received commands within five hours (Figure 2). Mission and command
launch time must therefore be carefully considered by the botmaster.

Note that our experiments assume the use of only a single seed node. A botmaster
could potentially seed multiple nodes with commands in order to compensate for known
geographic barriers or increase the speed of command dissemination. However, such a
strategy must be carefully balanced against the botnet’s need for stealth.

Long-Term Communications The results thus far demonstrate that Bluetooth-based
mobile botnets are capable of passing commands on a single day. However, the ability
to re-establish connections across long periods of time is necessary for such a network
to be worth the effort to construct. For this analysis, we take the traces from November
1, 2004 as the initial list of infected bots. We then evaluate how many of these infected
nodes come in contact with a command-carrying node over subsequent days. The same
node is chosen as the initial node for iterations repeated over different days. Note that
the experiments were conducted over the closed set of 100 nodes in the MIT data set;
other datasets show similar behavior (Section 6).
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30 50 70

High Popularity Node 5hrs 8hrs 13hrs

Medium Popularity Node 5.5hrs 25hrs 31hrs

Low Popularity Node 80hrs 86hrs 102hrs

Fig. 5. Propagation Times for various nodes.

Figure 3 shows the percentage of infected nodes that repeatedly come in contact
with a command-carrying node over different days. In other words, it represents the
number of bot nodes that would successfully receive a botnet command. Our results
show that bots tend to come in contact with a large subset of the same nodes repeatedly
over different days. This number is on an average about 50% within the first 8 hours of
a day’s schedule and goes up to more than 80% after a day.

As seen in Figure 3, the pattern does not vary significantly across different days,
which shows that a command issued at a particular node will follow a generally pre-
dictable spread for that node on any given day. While we observed a maximum variance
of about 18% at any particular time, eventually this variance becomes negligible with
more than 80% of the same infected nodes are consistently seen on any given day.

Device Popularity Figure 4 shows the command propagation rate for seed nodes of
high, medium and low popularity. In order to determine the popularity of the nodes, we
sort all nodes based on the number of contacts they have with other nodes. High and
low popular nodes have the maximum and minimum contacts respectively; node with
medium popularity is chosen as the median of the sorted data set. The patterns in this
figure are representative of all days.

The popularity of a seed node intuitively has an effect on the time it takes for
the command to propagate. However, this difference is negligible for some cases for
nodes of medium and high popularity. Nodes with very low popularity take significantly
longer to reach a desired PoD but eventually exhibit the same saturation. A likely ex-
planation for this behavior is that such nodes eventually encounter more popular nodes,
thereby increasing the rate of message dissemination. Accordingly, regardless of which
node is selected, commands are eventually propagated. This results may not always
hold true for larger datasets, which may have much more significant outliers than the
MIT and NUS datasets; however, most nodes will encounter a large enough number of
other nodes that message delivery can occur within a reasonable timeframe.

Figure 5 provides numerical results corresponding to the range of popular nodes.
Note that while reaching 70% requires a significant amount of time in all but the most
popular case, such widespread distribution may not be required. In particular, given a
large number of nodes, a botmaster may only want to dedicate a subset of their bot-
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Fig. 6. Effect of varying polling intervals on
static seed nodes.
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Fig. 7. Effect of varying polling intervals on
mobile seed nodes.

net to a specific task. Accordingly, a botmaster may wish to select nodes of differing
popularity to best meet their mission.

Polling Interval We define polling interval as the time between two consecutive polls
conducted by a Bluetooth device looking for other devices in its proximity. Figures 6
and 7 show the effect of the variation in polling interval on the PoD. The experiment
is performed on the NUS data set, which has a base polling interval of 30 seconds,
as the polling granularity of the MIT dataset is too coarse to offer interesting results.
The results are presented with polling interval of 30 seconds as the base reference; all
other results are shown relative to this case. The botmaster is able to control the polling
interval at each bot. A low polling interval would diminish stealthiness as the bot may
become visible to the user of the victim devices: more frequently probing by the device
has an adverse effect on the battery life of the device. This observable behavior might
alert the user about the presence of a malicious bot on the device, thus exposing the
botnet. On the other hand, increasing the polling interval improves the stealth of the
botnet, but reduces the number of devices the botmaster can spread his command to in
the desired time.

We repeated the experiment both for the static nodes placed at strategic points on
the NUS campus and for the mobile nodes that were free to roam around. As shown
by the graphs in Figure 6 and 7, there is a clear decrease in the PoD with increasing
polling interval. This result is expected because with longer polling interval, there is
greater possibility of missing devices that come in the proximity of the polling device
at a time between two subsequent polls when the device is not polling. Moreover, the
percentage drop in the PoD is less for static nodes as compared to the mobile nodes: both
static and mobile nodes show the highest PoD for the base case with polling interval
of 30 seconds; for polling interval of 1 minute, this goes down to 85% for static nodes
and much lower 65% for mobile nodes. One possible reasoning behind a much lower
drop for the case of static nodes is that people traverse popular spots multiple times
and spend relatively longer time at such locations, hence there is a stronger possibility
of a successful command transfer to the corresponding devices carried by these people.
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Fig. 8. Weekday Effect: Static nodes
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Fig. 9. Weekday Effect: Dynamic nodes

However, for mobile nodes, since even the polling device is in motion, this phenomenon
of repeatedly coming in contact may not occur.

The graphs also show that even with a higher polling interval, a considerable per-
centage of the devices can still receive the botnet command. For example, even for a
polling interval as high as 60 minutes, the PoD values are still significant – 26% for
static nodes and 9% for dynamic nodes.

In essence, by choosing the polling interval for his bot victims and carefully placing
Bluetooth devices at strategic locations, the botmaster can achieve a balance between
the PoD and stealthiness for his desired use of the botnet. Additionally, the botmaster
can direct his bots to use adaptive polling to attain such a balance: a bot would ag-
gressively search for other devices by lower its polling interval when the bot device is
in motion (possibly during morning and evening hours) and would switch to a higher
polling interval at other times of the day when the device is static.

Weekday Patterns Humans follow daily and weekly patterns that also greatly influ-
ence the command propagation rate. Figure 8 presents the number of daily encounters
broken down by the day of the week when they occur. This graph confirms the intuition
that more encounters occur on week days than on weekend days. We observed similar



behavior for both MIT and NUS data sets, and also for both static and mobile seed
nodes (Figure 8 and 9). Additionally, such behavior is independent of the popularity of
the node (Figure 9).

These observations support our argument that repetitive nature of human routines
can be leveraged by mobile phone-based botnets. With a better understanding of such
weekday patterns of the targeted devices, the botmaster can be more effective in propa-
gating the commands faster. For example, it would be beneficial to issue a command on
a weekday rather than a weekend. Special considerations should also be made for days
such as Thanksgiving and the end of an academic term (Figure 9) 2.

Each set of contacted nodes generated for different weeks for one particular node
has 70% of the nodes as common in all result sets. That means around 50 nodes were
contacted every time the command was issued to a particular node, out of the 70 nodes
contacted each time. Out of the remaining 30%, most of the nodes were present in more
than one result set but not in all. This shows that there is low weekly fluctuations and
that a botmaster can control most of the botnet effectively over any given week.

6 Modeling the Public Transport System

In this section, we perform a large-scale simulation to demonstrate the viability of a
mobile phone-based botnet in a larger real-world setting. Our tests demonstrate that
communication in such a botnet maintaining the previously discussed characteristics
even in a large-scale environment and provides the botmaster with reasonable tradeoffs
between botnet response time and stealthiness.

We simulate the rush hour period on a typical weekday at New York City’s Grand
Central Terminal [1]. Grand Central is one of the busiest stations in the city – it not only
serves the second busiest subway station in the city, but also serves the Metro North
trains from upstate New York. Consequently, the subway station receives passenger
traffic both from people coming to NYC using the Metro North trains and from local
commuters. We use this setting to simulate bots that reside on the cellular phones of
individuals traversing the station as per their daily routines.

We use publicly available data sources for our simulations to model the station and
to estimate the mobility patterns of the commuters. We also use probabilistic distribu-
tions for various parameters to allow variation in the individual behavior of bots. We
acknowledge that accurately predicting patterns in human movement is difficult, how-
ever, approximations can be made by carefully analyzing different sources of publicly
available data and statistics. When certain statistics are not available, we make conser-
vative estimates.

A person arriving at Grand Central Terminal will typically have the following move-
ment pattern: he or she arrives at Grand Central either by taking a Metro North train
or by entering the station through one of the entrances. He or she traverses the station
to reach the desired subway platform and then waits for a random time at the platform
before the train arrives. He or she boards one of the train cars and therein remains in a
static position till the train reaches his desired destination.

2 verified against MIT’s 2004 academic calendar.



6.1 Simulation Setup

Train Station: Grand Central Terminal is modeled as a square, with entrances and train
tracks placed along its edges. The size of the station and the number of entrances used
in our model are the same as those existing in the real structure [1]. We uniformly place
entrances along two sides of the square. Metro North tracks (44 in total) are placed
along the third side, and the fourth side has the 3 subway tracks. This design is a close
approximation of the architecture of the actual terminal [1].

Train Cars: We again used publicly available information about the size of New
York City’s transit trains to model the trains in our simulation [3]. The number of cars
are fixed and identical for all trains arriving at the subway station. While boarding a
train, a person chooses one car at random. For simplicity, we assume that the commands
propagate from one device to another only within one car. The train arrival times are
simulated according to the known subway time schedule.

Commuter Traffic Estimates: The Metro North trains at Grand Central serve ap-
proximately 125K commuters per day [1]; approximately 150K for the subway sta-
tion [2]. We assume that Metro North passengers constitute about 50% of the subway
commuters. We also assume that 50% of the daily commuters take the subway during
rush hours. The arrival of commuters at Grand Central is distributed over the complete
rush time interval (6:30AM–9:30AM) based on a gaussian distribution with mean at
8:00AM and variance of 33%.

Phone Infections: We only consider devices that have been previously infected and
a currently carried by the commuters in the terminal during these simulations. In order
to estimate the number of bot victims, we consider some known statistics on cellular
phones usage: about 80% of commuters in New York City carry phones according to a
MNRR survey [4]. We assume that approximately 30% of these phones can be (and are)
infected. We believe that this is a safe assumption based on our earlier premise that mo-
bile software platforms and operating systems are being standardized without adequate
focus on security, leaving such mobile devices vulnerable to malware infections.

Command Transfer: The time required to transfer a command from one bot-
infected device to another via the Bluetooth channel is the total time taken for the four
stages of the protocol, namely inquiry, connection establishment, probing and command
transfer. The corresponding timeouts for the four stages are set to 10.24 (from Bluetooth
specification), 5.12 (from Bluetooth specification), 0.1 and 1 seconds, respectively. We
model the time for all four stages as a gaussian distribution with mean set to half of the
corresponding timeout value.

Simulating Human Movement: We use a modified form of Random Landmark
Model [39] to simulate the movement pattern of humans. In our simulation, the initial
starting position is either one of the entrances of the train station or any track of the
Metro North, and the destination is set to one of the subway tracks. These starting and
ending points are randomly chosen for each individual. The speed of movement is fixed
at typical walking speeds of 1, 2 and 3 meters/s. After arriving at a particular train
station, a person waits at a fixed point before boarding the next arriving train. Once the
entry time of an individual is determined during the initial cycle of our simulation (a
cycle represents a rush hour period on any given day), we use gaussian distribution to
calculate the entry time for all subsequent cycles. We limit the distribution to within
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Fig. 10. Simulation results for the transport model: (a) Effect of the initial number of seeds on the
number of bots receiving the command, (b) number of bot encountered repeatedly over multiple
runs simulating different days, and (c) effect of varying polling interval on command propaga-
tion rate. During the rush hour commute, 30% of the total population or around 17K nodes are
vulnerable. In (a), the initial seeds are chosen using the same Gaussian distribution used for the
station entry time of nodes. These initial seeds are not counted in the results.

10 minutes of the entry time of the initial cycle. It effectively represents a regular daily
commute for an individual, who boards a train almost at the same time every day.

6.2 Simulation Results

Our results show that public transportation can act as an ideal environment for a bot-
master to effectively pass commands to a large bot population. With a relatively small
initial seed of command-carrying nodes, the botnet commands can reach a considerable
number of bots (Figure 10a). Such seeds can be created by the botmaster using other
alternate mechanisms, for example, by planting static nodes at popular spots near the
station or by dropping commands at the nodes traveling to Grand Central in the Metro
North trains. We observe that more seeds allow commands to propagate faster, although
the propagation rate speedup is modest beyond a threshold. This suggests that the bot-
master can achieve considerable coverage even when the number of seeding bots is low:
for a initial seed of 200, the command can be transferred to about 6500 nodes within
the rush hour, which forms more than 35% of the population that can be infected. Note
that these numbers correspond to only nodes that receive commands at Grand Central



Terminal; these nodes will further propagate the commands to other nodes when they
visit their work, school, homes, etc. Such results are out of scope for this simulation.

Our transport simulation model reinforces our premise that humans follow routines
in their day-to-day movements, which can be exploited for botnet C&C. Figure 10b
shows that a command propagation cycle typically encounters more than 70% of the
same nodes every day at rush hour. These numbers would be much higher in a more
closed setting like offices where the movement of employees is typical more restricted
and as a result, the Bluetooth devices come in constant contact with each other for
longer periods of time.

Our results also demonstrate that by carefully specifying the polling interval for the
bots, a botmaster can balance the latency experienced by the botnet and stealthiness of
the bots (Figure 10c). Keeping the interval to a lower value results in higher propagation
rates: for a polling interval of 10 seconds, the command propagates to about 6500 bots,
which constitutes about 36% of the total vulnerable machines. With an increased polling
interval, the propagation rate drops substantially with only 14% of the bots receiving
command for a polling interval of 1 minute; this value drops drastically to about 1%
for 5 minutes. One reasoning behind such a drastic drop is the dynamic nature of the
transportation system: individuals come in contact with each other for much shorter
intervals of time (as compared to the academic environment represented by the MIT
dataset). Therefore, for larger polling interval, higher number of victims are missed
between subsequent polls.

The transport model and simulation results reiterate and reinforce the trace-based
analysis discussed in the previous section. These results show that public networks ful-
fill the requirements and the premises underlying the creation of a mobile phone-based
botnet using Bluetooth as its communication channel. They also demonstrate that com-
mand propagation numbers would be much higher if botmasters target such large-scale
public networks.

Note that our observations are necessarily conservative. A more in depth approach
could model the movement of people throughout a city throughout an entire day. Such
a model would demonstrate that there would be other opportunities for messages to
be passed. However, realistically modelling the movements of every person in a city
is extremely difficult. By focusing on transportation hubs, we are able to demonstrate
that these kinds of botnets are possible and simply note that improvements to the prop-
agation of command and control messages can be expected given other repetitive daily
interactions.

7 Defensive Strategies

The modeling and simulation in the previous sections have shown that mobile phone-
based botnets can plausibly use Bluetooth as a communications channel. While increas-
ing the latency of C&C messages, this approach significantly reduces the probability
that defenders can observe or disrupt these networks. The use of traditional intervention
techniques is unlikely to help protect cellular providers against such activity. Careful
modifications that consider the patterns of interaction discussed in this paper, however,
are likely to prove highly effective.



Like the move towards heterogeneity in platform architectures and operating sys-
tems, we argue that software patching mechanisms in this space will begin to mirror the
desktop world. In particular, providers will likely be able to help push critical patches to
devices. Such a mechanism would provide a number of benefits. For instance, whereas
the majority of phone users have never installed software updates, the provider could
help them do so with minimal interaction. Such improvements could not only reduce
vulnerability to infection, but also improve the services available to users.

Our propagation analysis of mobile phone-based botnet behavior provides some key
insights into developing effective remediation strategies. Our results show that botnet
command propagation is at its peak when infected devices have a high probability of
being in proximity of each other – weekday mornings. Bots are logically less likely to
encounter each other later at night and during weekends. Achieving the widest prop-
agation of commands, even if for a time delayed event (one launched later using the
loosely synchronized clock provided by the network), therefore requires the botmaster
to send messages at specific times of the day. If this brief time window is missed, bots
will be forced to communicate with each other over the network.

Remediation can therefore be most successful if launched when bots are least able
to coordinate and defend against such efforts. In particular, evenings and weekends pro-
vide the most significant periods in which bots are unlikely to communicate via Blue-
tooth. Such periods also represent the ideal time periods for providers to push updates.
In particular, a high density of mobile users in a single location significantly limits the
rate with which such updates can be disseminated – previous work has shown the lim-
itations of cellular resources and how attempts to communicate with a large number of
users in a single cell can accidentally [32] or intentionally [33] deny service. Accord-
ingly, by pushing patches when customers are least likely to be using their phones and
bots are least likely to be able to warn each other without using the provider’s network,
the provider can more effectively combat such botnets.

Detection mechanisms in this space also hold interesting possibilities. Whereas
desktop systems generally rely on installed scanning tools (e.g., antivirus) or network-
based IDSs to identify infection, mobile phones have the potential to leverage exciting
new mechanisms. In particular, devices plugged into desktops to synchronize informa-
tion can also be put through a more rigorous set of tests to determine whether or not mal-
ware is present. This process can include up-to-the-minute updates from the provider,
which can help the more powerful desktop-based software tailor its investigation.

Knowledge of the limitations of a mobile phone-based botnet using Bluetooth helps
to mitigate the advantages near-field communications affords in these systems. When
used in conjunction with the proposed mitigation infrastructure, such systems are more
combatable than initially supposed.

8 Conclusion

Mobile phones are becoming increasingly able to perform critical tasks. However, such
devices are also becoming increasing susceptible to infection. Whereas a number of
other researchers have investigated the characteristics of such infection, this paper in-
stead attempts to determine whether such devices can be used to support a botnet. In



particular, this work tests whether or not such a botnet can effectively communicate
using near-field communications to avoid traditional detection mechanisms. In this pa-
per, we demonstrate that such a botnet is possible due to the largely repetitive mobility
patterns found in human behavior. Over the course of a day, we show that commands
can be consistently disseminated to over 66% of infected nodes. We then leverage such
observations to develop more effective patching and mitigation strategies used to either
isolate infected devices or force those whose infection is unknown to reveal themselves.
While such botnets have not been observed yet in the wild, this work demonstrates that
their eventual existence should be anticipated.
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