
Evaluating cell reprogramming, differentiation and conversion 
technologies in neuroscience

Jerome Mertens#, Maria C. Marchetto#, Cedric Bardy, and Fred H. Gage
Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA.

# These authors contributed equally to this work.

Abstract

The scarcity of live human brain cells for experimental access has for a long time limited our 

ability to study complex human neurological disorders and elucidate basic neuroscientific 

mechanisms. A decade ago, the development of methods to reprogramme somatic human cells into 

induced pluripotent stem cells enabled the in vitro generation of a wide range of neural cells from 

virtually any human individual. The growth of methods to generate more robust and defined neural 

cell types through reprogramming and direct conversion into induced neurons has led to the 

establishment of various human reprogramming-based neural disease models.

Progress in the study of human CNS development and function has been hindered by the 

inaccessibility of the relevant tissues and cell types. Likewise, the polygenic and 

multifactorial nature of many neurological diseases has prevented the generation of model 

organisms that effectively represent relevant aspects of these diseases1,2. The recent advent 

of technologies that enable adult human somatic cells to be reprogrammed into induced 

pluripotent stem cells (iPSCs) for the generation of neural cells3–5 as well as direct 

conversion into neural cells6–8 have therefore provided a unique opportunity to investigate 

important aspects of CNS function, development and disease at a cellular level (FIG. 1).

Cell-reprogramming technologies provide potentially unrestricted access to CNS cells in 

which an individual’s unique genetic landscape is represented. These in vitro-generated 

neural cells provide a valuable and unique resource to investigate otherwise inaccessible 

mechanisms of human neurodevelopment (FIG. 1). Indeed, reprogrammed cells have been 

used to study the transcriptional, epigenetic and functional signatures of neural cells from 

different species, revealing several human-specific cellular adaptations9,10. Cell 

reprogramming can also enable the investigation of patient-specific models of genetic and 

sporadic diseases and allow researchers to monitor the progression of neuropsychiatric and 

neurodegenerative diseases in these models11,12. It is hoped that further refinements to the 

technology to allow the development of specific subtypes of neural cells, in combination 

with approaches for single cell molecular characterization, will provide a platform for the 
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identification and validation of drug targets and also for scalable drug screening and new 

diagnostics.

To successfully apply reprogramming technologies to disease modelling, the study of human 

development and other aims, it is necessary to produce defined cultures of specific subtypes 

of human neurons and glial cells in vitro. Differentiation of human pluripotent stem cells 

(hPSCs), which comprise iPSCs and human embryonic stem cells (hESCs), involves the use 

of timed combinations of mitogens and morphogens that gradually specify temporal and 

positional identity by mimicking developmental cues13,14. By contrast, direct conversion 

utilizes the overexpression of cell type-specific transcription factors to jumpstart lineage 

changes and direct cellular identity towards the desired cell type, thereby bypassing most 

developmental stages15 (FIG. 1). In this Review, we describe recent advances in hPSC 

neural differentiation and direct conversion, discuss the differences between the two 

technologies and consider their relative advantages and disadvantages, which depend on the 

desired application of the generated cells.

Directed hPSC differentiation

During neuronal development, molecular programs progress in a concerted manner to 

generate distinct neuronal types in specific regions of the nervous system. Neuronal subtypes 

are defined by several characteristics, including their localization in the nervous system, 

connectivity, morphology, marker and neuro transmitter expression profiles and electrical 

firing profile. Researchers aiming to use reprogrammed cells to investigate stem cell 

neurobiology and neural disease must, therefore, provide the right cues to generate specific 

neural cell progenitors, functional neurons or glia.

There are several methods currently available to generate stem and progenitor cells that are 

committed to neural differentiation from hPSCs. These all result in the production of cells 

with the capacity for limited self-renewal and multipotency, which we here refer to 

collectively as neural progenitor cells (NPCs). Once neural commitment and regionalization 

are completed, further specification of different neuronal subtypes from hPSC-derived NPCs 

can be achieved through additional maturation time and neurotrophic support.

Cues for neural commitment and early regionalization.

Methods for generating NPCs from hPSCs (see REF. 16 for example) are derived from 

groundbreaking work on animal models of neurodevelopment, which identified the key 

events in early mammalian neural commitment and regionalization. These studies have 

shown that the intense proliferation of early neuroectodermal NPCs generates the first wave 

of neurons as well as other types of NPCs, including the neural rosette NPCs that populate 

the early neural tube. Later during development, radial glial cells (another type of NPC) 

produce most neurons17 (FIG. 2). Morphogens and mitogens confer different positional 

identities to responsive NPCs in the neural tube18–20. For example, sonic hedgehog (SHH), 

is secreted from ventral regions — namely, the notochord and floor plate — of the neural 

tube, whereas WNT proteins and bone morphogenetic protein (BMP) are secreted from 

dorsal regions21–23. This results in morphogen gradients that specify the different subtypes 

of NPCs along the dorsal–ventral axis. Along the anterior–posterior axis, a sequence of 
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timed developmental events and signaling cues, including those downstream of fibroblast 

growth factors (FGFs) and retinoic acid (RA), specify neural progenitor fates24,25. 

Importantly, these patterning factors typically fulfil both morphogenic and mitogenic duties 

at the same time, although their effects depend on localization, developmental stage, 

concentration and the target NPC.

In hPSC studies, NPCs with a more posterior identity, such as those that generate neurons 

with the features of spinal cord motor neurons or midbrain neurons, have been produced by 

adding SHH, RA and FGF2 or FGF8 to the media during the neural rosette stage in 
vitro13,26–29 (FIG. 2). By contrast, NPCs similar to those found in the hippocampal dentate 

gyrus (DG) have been generated by treating embryoid bodies (aggregates obtained from 

hPSC cultures) with antagonists of the SHH pathway30 and a cocktail of anti-posteriorizing 

factors: these include Dickkopf-related protein 1 (DKK1), Noggin and small molecules, 

such as SB431542, which block WNT, BMP and transforming growth factor-β (TGFβ) 

pathways, respectively. Inhibition of the WNT pathway coupled with inhibition of SMAD 

signalling promoted forebrain identity in hPSC-derived NPCs13,31, and subsequent 

activation of SHH signalling converted these NPCs to those with characteristics of medial 

ganglionic eminence (MGE)-derived interneuron progenitors32,33. NPCs committed to 

generating both deep- and upper-layer cortical excitatory neurons have been derived from 

hPSCs by inhibiting the SMAD signalling pathway18,27,34–38. Finally, by coupling 

traditional neural regionalization methods with immuno-isolation of a CD133-positive 

population, it was possible to generate a long-term self-renewing population of hindbrain or 

spinal cord radial glia-like NPCs from hPSCs; these cells maintained the ability to 

differentiate into neurons, astrocytes and oligodendrocytes39.

Specification of excitatory cortical neurons.

In vivo, excitatory cortical neurons are born in the dorsal forebrain, arising from actively 

dividing radial glia40. Deeper-layer neurons are generated first, followed by upper-layer 

neurons41. The FEZF2 (FEZ-family zinc finger 2)–CTIP2 (COUP-TF-interacting protein 2; 

also known as BCL11B) genetic pathway directs the fate choice of cortical projection 

neurons in the developing cerebral cortex: FEZF2 is necessary for specification of all 

populations of subcortical projection neurons, whereas CTIP2 is required for axon 

fasciculation and guidance in these neurons42,43. An example of a well-defined cortical 

layer-specific transcription factor is SATB2 (special AT-rich sequence-binding protein 2). 

SATB2-expressing cells project through the corpus callosum to the contralateral 

hemisphere42.

In hPSC-based studies, an adherent culture system can be used to generate functional 

cortical excitatory neurons34. Recently, a comprehensive characterization of the gene 

expression, morphology and electrophysiology of cortical excitatory neurons derived from 

hPSCs demonstrated that the in vitro derivation of cortical neurons follows a layer-specific 

sequential order and that the derived pyramidal cells can integrate into the cortical circuitry 

of neonatal mice35. In other studies, live antibody staining for the forebrain NPC surface 

marker forebrain surface embryonic antigen 1 (FORSE1), followed by flow cytometry was 

used to enrich hPSC-derived NPC cultures with progenitors that preferentially give rise to 
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neurons with an upper cortical layer identity18,28. Functional glutamatergic neurons of the 

hippocampus were produced using an hPSC-based protocol30 in which timed exposure of 

early NPCs to WNT signalling generated hippocampal dentate gyrus-like cells that 

expressed the marker transcription factor prospero homeobox protein 1 (PROX1). PROX1 

labelling in live cells using an engineered PROX1 promoter-driven enhanced green 

fluorescent protein (EGFP) reporter construct, enabled these cells to be further enriched by 

flow cytometry.

Specification of dopaminergic neurons.

Dopamine neurons that reside in the substantia nigra pars compacta (SNc) of the midbrain 

have been extensively studied because their progressive loss is directly involved in Parkinson 

disease pathology44,45. Human neurons that express tyrosine hydroxylase (an indicator of 

dopaminergic identity) have been generated by passaging hESC-derived NPCs in the 

presence of FGF2 or FGF8, to allow posteriorization, and SHH, which acts as a ventralizing 

agent46–48. The generation of dopaminergicneurons with actual ventral midbrain identity 

from hPSCs requires floor plate patterning and activation of WNT signalling to activate the 

transcription factors forkhead box protein A2 (FOXA2; also known as HNF3β) and LIM 

homeobox transcription factor 1α (LMX1α). This protocol produces tyrosine hydroxylase-

positive cells that express pituitary homeobox 3 (PITX3) and NR4A2 (also known as 

NURR1), which are markers of the SNc20. Such dopaminergic populations can be enriched 

by using specific genetic markers such as NR4A2 or PITX3 promoter-driven fluorescent 

proteins49. Protocols that promote enrichment of dopaminergic neurons have not only the 

potential to impact Parkinson disease research, but they potentially allow for a better 

understanding of the dopaminergic reward circuit that is affected in mood disorders such as 

depression.

Specification of motor neurons.

Motor neurons are of great interest because there are many neurodegenerative diseases that 

exclusively affect this population. Numerous genes required for the specification of 

corticospinal motor neurons (CSMNs) and other cortical projection neurons have been 

identified, and the molecular mechanisms controlling CSMN development have been 

characterized50–52. However, the refinement of methods to generate specific CSMNs 

populations from hPSCs is still in progress. For example, multistep differentiation protocols 

using chemically defined media have allowed researchers to monitor the generation of 

human hPSC-derived subtypes of cortical neurons such as CSMNs34,38. The use of FEZF2 

reporters to enrich CSMNs from differentiated hPSCs has been described53; however, 

FEZF2 expression in vivo is not restricted to CSMNs, as all cortical projection neurons 

express FEZF2 at different levels48,49. This highlights the importance of using multiple 

markers to accurately define cell identity (BOX 1). Optimizing the generation of CSMN-

specific cells will be a crucial next step in developing specific models of human CSMNs 

from iPSCs.

Protocols for generating α-motor neurons (AMNs) from hPSCs have been developed and 

expanded for several years and are often used for disease modelling54,55. Such protocols 

usually use a combination of posteriorizing factors (such as SHH and RA) and selection 
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markers such as Hb9 promoter-driven reporters to distinguish spinal AMNs53,56–58. AMN 

protocols have been widely used to model neurodegenerative disorders, and drug-screening 

platforms have also been developed using AMN survival as readout59,60.

Specification of interneurons.

In vivo, interneurons are born in the ventricular and subventricular zones of the MGE and 

caudal ganglionic eminence (CGE)61. Using a combination of small-molecule approaches to 

induce ventral telencephalic fate, coupled with inhibition of WNT and SMAD signalling, 

two groups were able to induce MGE-like progenitors from hPSCs32,33. Cortical 

interneurons take a remarkably long time to reach functional maturation in the embryonic 

brain and in culture33. Further optimization of in vitro maturation protocols will therefore be 

important when designing experiments to dissect the different subtypes of inhibitory neurons 

that have been directly implicated in neuropsychiatric disorders such as autism and 

schizophrenia62,63.

Generating glial cells from hPSCs.

Glial cells provide metabolic and trophic support to neurons and have important roles in 

many aspects of neurodevelopment and in neurodegenerative diseases64–67. Glial 

differentiation from hPSCs requires neural regionalization, coupled with an extended time in 

culture and the addition of morphogens involved in glial fate.

Astrocyte progenitor enrichment can be achieved through initial treatment of hPSCs with 

FGFs and RA (for posterior patterning) followed by the addition of ciliary neurotrophic 

factor (CNTF) and further functional maturation that can last up to 6 months68,69. 

Generation of hPSC lines expressing reporter genes under the control of astrocyte-specific 

promoters allows for enrichment of desired populations and could potentially reduce the 

time required for differentiation in culture70.

In vivo, oligodendrocytes develop from radial glia, then form long branches and undergo 

sub-branch ramification and extension of myelin membranes71–73. The markers A2B5 and 

platelet-derived growth factor receptor-α (PDGFRα) identify oligodendrocyte progenitors, 

and O4 sulfatide-specific antibody labels ramified, but immature, oligodendrocytes74. These 

cells acquire galacto-cerebrosides (GalC) and later express the oligodendrocyte marker O1 

as they finally reach the postmitotic mature oligodendrocyte stage in which myelin 

components such as proteolipid protein (PLP) and myelin basic protein (MBP) are 

synthesized. Existing protocols for generating myelinating oligodendrocytes in vitro from 

hPSCs are extremely inefficient. Current protocols use a combination of factors to drive 

initial neuralization, followed by the addition of oligoglia-inducing factors (such as, 

PDGFα, neurotrophin 3 (NT3) and insulin-like growth factors (IGFs)) to generate 

oligodendrocyte progenitor cells (OPCs)39,75,76. Sufficient myelination is typically only 

achieved following in vivo transplantation77. Thus, improvement of in vitro myelination 

protocols will have a marked impact on the field of disease modelling.

Microglia are CNS-resident macrophages that perform important tasks during inflammatory 

processes in ageing and disease78–81. The signalling steps involved in microglial 
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development are not well understood, and further characterization of this process will 

therefore be essential to enable production of patient-specific microglia cells from hPSCs82.

Direct conversion to neural cells

The demand for live, functional human neural cells has triggered the development of 

alternative technologies to generate specific human cell types83. The first demonstrations 

that transgenic expression of certain transcription factors can shift the identity of a cell 

directly into another identity took place in the 1980s84,85, and transcription factors that 

mediate conversion of glial cells into neurons were also explored86,87. More recently, the 

first conversion of mouse fibroblasts into induced neurons (iNs) sparked a new wave of 

enthusiasm about direct conversion (FIG. 1). A combination of only three transcription 

factors — BRN2 (also known as POU3F2), achaete-scute homologue 1 (ASCL1) and 

myelin transcription factor 1-like protein (MYT1L), collectively known as BAM — was 

sufficient to convert embryonic or adult mouse fibroblasts into iNs that were capable of 

synapse formation and action potential firing6 (FIG. 1). Only 1 year later, several 

laboratories reported the generation of iNs from human fibroblasts7,88,89. Since then, work 

in this field has shed light on the mechanisms involved in direct conversion and the most 

efficient set of factors and media compounds for conversion. It has become possible to 

generate specific neural and neuronal subpopulations and to compare properties of the 

converted cells to their in vivo counterparts or to neurons generated by established methods, 

such as iPSC-based differentiation protocols90,91.

Transcription factors driving direct conversion.

Any change in cell identity requires a transition between epigenetic states, mediated by 

transcription factors and epigenetic modulators. During in vivo differentiation, the 

combination of a genetically programmed cascade of transcription factor-mediated protein 

expression patterns with the modulation of exogenous signalling factors controls stepwise 

changes in cell fate (FIG. 3a). Thus, a pluripotent blastocyst cell becomes a somatic cell by 

activating a previously repressed epigenetic state. During reprogramming, so-called pioneer 

transcription factors access nucleosomes directly, bind to closed chromatin structures and 

coordinate the binding of secondary transcription factors to initiate a new cell fate92. In iPSC 

reprogramming, the ‘Yamanaka-factors’ OCT4 (also known as POU5F1), SOX2 and 

Krueppel-like factor 4 (KLF4) act as pioneer transcription factors, whereas MYC only binds 

to already opened chromatin and acts as a secondary enhancer3,93,94. During BAM-mediated 

conversion of mouse fibroblasts to iNs, ASCL1 or ZFP238 can act as a pioneer transcription 

factor that later recruits BRN2 to the sites of ASCL1 binding, whereas MYT1L is only 

required at later stages for maturation95 (FIG. 3b). Thus, iN conversion follows a 

hierarchical mechanism in which a sequential series of epigenetic events occurs96. Notably, 

several laboratories have shown that transcription factor expression can be temporal and is 

not continuously required for iN conversion, thus overcoming the potential risk that 

permanent overexpression of neurodevelopmental transcription factors might interfere with 

mature neuronal phenotypes, functionality or other relevant phenotypes of the generated 

iNs97–100 (FIG. 3b,c).
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Interestingly, there seems to be species-specific differences in the optimal set of transcription 

factors required for direct conversion. ASCL1-based strategies have been shown to be less 

efficient in the human system than in rodents: four factors (BAM plus neurodifferentiation 

D1 (NEUROD1)) are required to convert human fibroblasts into functional iNs7. By 

contrast, neurogenin 2 (NGN2), a well-studied pro-neuronal transcription factor101, 

efficiently converts human fibroblasts into iNs98. In the search for the smallest and most 

efficient set of factors sufficient for reprogramming90, it is not surprising that a combination 

of the two pioneer transcription factors, ASCL1 and NGN2, yields high conversion 

efficiencies, even in fibroblasts derived from adult and ageing humans102,103. To purify iNs 

from the fibroblasts that remain after conversion, flow cytometry sorting following live 

antibody staining for polysialylated neuronal cell adhesion molecule (PSA-NCAM) has been 

shown to be practical because fibroblasts, unlike NPCs, show very little background staining 

of neuronal markers102.

Although it has not yet been decisively demonstrated whether fibroblast-based iNs pass 

through an intermediate progenitor-like epigenetic state (as studies based on glia as starting 

cells suggest104,105), it is well established that iN conversion requires no proliferation98,106. 

Cell division is deemed essential during in vivo and hPSC differentiation because it 

stimulates the chromatin remodelling required to provide transcription factor access to 

previously closed regions92. However, the iN pioneer transcription factors seem to overcome 

the need for cell division-based chromatin remodelling. However, it has been shown that 

replication-induced cellular senescence as well as p53 overexpression inhibit direct 

conversion, whereas depletion of the p53 stabilizers p16 and p19 enhances conversion107. 

Thus, a non-senescent quality of fibroblasts is crucial for iN conversion.

Transcription factor-free approaches.

Alternative strategies for direct conversion, including targeted gene repression, have been 

explored (FIG. 3b–d). The pro-neuronal microRNAs (miRNAs) miR-124 and miR-9* can 

convert human fibroblasts into immature iNs through activation of NEUROD2, although 

ASCL1 and MYT1L are required for functional maturation of these cells108. In further 

work, miR-124, in combination with BRN2 and MYT1L, was shown to convert adult human 

fibroblasts into functional iNs without the need for transcription factor pioneers109. 

Although miRNAs are likely to act by mildly repressing a very large number of target genes, 

it is important to determine whether short interfering RNA (siRNA)-mediated knockdown of 

only one target could mediate or initiate direct conversion. Indeed, siRNA-mediated 

polypyrimidine tract-binding protein 1 (PTBP1) knockdown is sufficient for the direct 

conversion of mouse fibroblasts into iNs110. PTBP1 suppression leads to the de-repression 

of miRNAs that target components of the RE1-silencing transcription factor (REST) 

complex, thus allowing for the expression of epigenetically silenced pro-neural genes111,112. 

Likewise, direct siRNA-mediated REST knockdown can convert embryonic mouse 

fibroblasts into iN-like cells110. Another strategy based on the principle of epigenetic de-

repression involves the use of small molecular signalling pathway inhibitors (FIG. 3d). 

Inhibition of TGFβ or SMAD signalling using Noggin or inhibition of ALK — in 

combination with glycogen synthase kinase 3β (GSK3β) inhibition, forskolin-mediated 

activation of adenylyl cyclase and direct application of cell-permeable cyclic AMP — 
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dramatically enhances iN conversion efficiencies98,102. Interestingly, two recent studies 

identified cocktails of small molecules that can convert fibroblasts into functional neurons 

without the need for exogenous genetic factors113,114. Both studies used slightly varying 

cocktails of inhibitors of GSK3β and ALK as well as cAMP enhancers and achieved iN 

conversion of mouse fibroblasts by adding only two additional compound classes: the pro-

neurogenic small molecule isoxazole 9 (ISX9)115 and I-BET151, a putative inhibitor of 

fibroblast-specific gene expression113. For the conversion of human fibroblasts, addition of 

the histone deacetylase inhibitor valproic acid, the JUN amino-terminal kinase (JNK) 

inhibitor SP600125, the protein kinase C (PKC) inhibitor GO6983 and the widely used 

RHO-associated protein kinase (ROCK) inhibitor Y-27632 was required to generate human 

iNs with expression profiles similar to ASCL1- or NGN2-based iNs114 (FIG. 3d). Although 

both procedures have yet to be reproduced in other laboratories, they set a milestone for 

transgene-free direct lineage reprogramming efforts.

Direct conversion into specific neuronal subtypes.

A major aim is the generation of human donor-specific, region-specific and neurotransmitter 

subtype-specific iNs. The majority of iNs produced by most human iN protocols have 

glutamatergic properties (although some human protocols generate a minor fraction of 

GABAergic cells)7,102,108,109. As outlined above, during human hPSC differentiation, 

specialized NPCs are responsive to exogenous morphogens that activate lineage-specific 

transcription factors28,116. As there is no morphogen-responsive NPC intermediate in direct 

conversion, the co-overexpression of general pro-neuronal transcription factors with lineage-

specific transcription factors has been explored (FIG. 3c). Combinations of transcription 

factors known to be key during midbrain development (FOXA2)117 and SNc development 

(LMX1α, NR4A2 and PITX3)118 have been shown to induce a dopaminergic phenotype in 

human iNs89,119,120. Similarly, the combination of LMX1β and FEV (known as PET1 in 

mice) either with FOXA2, or with NKX2.2 and GATA2 (which are instructive factors during 

the development of midbrain raphe populations121), produced iNs with a serotonergic 

neurotransmitter identity122. Further studies showed that cholinergic iNs98 and spinal motor 

neuron-like iNs can be generated88. Another study showed that a combination of CTIP2 and 

DLX1 and/or DLX2, which orchestrate striatal development in vivo, could direct iN 

conversion towards a GABAergic fate that seems to closely resemble striatal medium spiny 

neurons123. In addition to different CNS phenotypes, peripheral neuronal cell types, such as 

different classes of sensory neurons, could be directly generated from human fibroblasts 

using NGN1 and/or NGN2 and BRN3A (also known as POU4F1)124. The many successful 

approaches to directly convert fibroblasts into different defined subtypes of neurons indicate 

a surprisingly high plasticity of the iN process that seems to be amenable to directional 

control through developmental transcription factors.

Direct conversion into glial cells and NPCs.

Direct conversion of fibroblasts into other neural cell types has also been explored (FIG. 1). 

Nuclear factor 1A (NFIA), NFIB and SOX9 can convert mouse fibroblasts into induced 

astrocyte-like cells125. To generate oligodendroglial cells, expandable induced OPCs 

(iOPCs) have been generated through overexpression of SOX10 and oligoden-drocyte 

transcription factor 2 (OLIG2), in combination with either zinc-finger protein 536 (ZFP536) 

Mertens et al. Page 8

Nat Rev Neurosci. Author manuscript; available in PMC 2018 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or NKX6.2 (REFS 126,127). Given the strong interest in functional human glial cells for 

disease modelling and regenerative approaches, it will be important to translate these 

findings to the human system.

Overexpression of the four Yamanaka factors in fibroblasts was shown to generate a source 

of proliferating neutrally committed cells through direct conversion by destabilizing the 

somatic cells into a pre-iPSC stage128,129. This paradigm has been utilized in both mouse 

and human fibroblasts. In these studies, transient expression of a subset of the Yamanaka 

factors and subsequent transfer of the destabilized intermediate cells into a pro-neurogenic 

medium containing mitogens produced a population of induced NPCs (iNPCs) (FIG. 1). 

Other protocols further combined Yamanaka factor expression with early neural 

transcription factors such as FOXG1 or BRN4 (also known as POU3F4), which then helped 

to push the unstable intermediates into the iNPC lineage128,130–134. To generate cells of the 

peripheral nervous system, SOX10 expression combined with WNT signalling was shown to 

convert fibroblasts into induced neural crest cells135. In the absence of reprogramming 

factors, suppression of let-7 and activation of HMGA2 (high mobility group protein AT-

hook 2; also known as HMGI-C) were shown to convert human fibroblast and blood cells 

into iNPCs136. It will be important to clarify the regional identity and developmental 

potential of the iNPCs generated by these protocols.

iPSCs versus iNs

As described above, cellular neuroscientists benefit from the expansion of a large number of 

novel differentiation and conversion protocols. At the same time, they also face a difficult 

decision: which protocol to choose? There are more protocols available for hPSC 

differentiation than for direct conversion; however, the number of published iN protocols is 

rapidly increasing, and the relatively simple idea of combining pro-neuronal factors with 

factors to specify the desired lineage in one step opens new possibilities for non-specialized 

laboratories. If the cell type of interest can be generated by both methods, we can choose 

either one of them or combine them to mitigate model system bias in our experiments. 

However, there are technical as well as conceptual differences between iPSC differentiation 

and direct iN conversion that may influence the choice of system for particular in vitro 
projects (TABLE 1; FIG. 4). Recent views on the merits of each strategy for in vivo 
transplantation and regenerative approaches have been discussed elsewhere15,137.

Donor cells.

Fibroblasts are the cell type of choice for both iPSC and direct conversion strategies for 

several reasons. Skin biopsy samples are easy to obtain from donors and can be expanded in 

culture. Indeed, several existing cell repositories have already banked hundreds of fibroblast 

lines from diseased and healthy donors. Several other somatic cell types have been 

successfully reprogrammed into iPSCs and used for disease modelling with varying 

efficiency, including keratinocytes138, dental pulp cells139,140, several blood cell 

types141–143 and exfoliated renal epithelial cells present in urine144 (TABLE 1). Each has 

advantages and disadvantages; for example, blood is easy to obtain, but the efficiency of 

reprogramming is rather low. In the direct conversion field, it has been shown that 
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hepatocytes, B cells, astrocytes, pericytes and adipocytes are amenable to iN 

conversion97,145–148.

Interestingly, one attractive source for direct conversion is hPSCs — particularly iPSCs. 

Unlike somatic cell types, iPSCs are completely de-differentiated cells that intrinsically 

possess the potential for neural differentiation. Several studies have shown that generation of 

iPSC–iNs is comparatively easy because only one pro-neurogenic factor (either ASCL1 or 

NGN2) is needed149–151 (FIG. 1). Furthermore, a few studies have used forced expression of 

neuronal subtype-specific transcription factors in iPSCs or early differentiating cells to 

generate subtype-specific iPSC–iNs. For example, the overexpression of the lineage 

determinants LHX8 and GBX1 in human iPSCs enriched for basal forebrain cholinergic 

neurons152. Dopaminergic153, noradrenergic and cholinergic154 iPSC–iNs have also been 

reported. It will be interesting to explore combinatorial approaches in which lineage-specific 

transcription factors and small molecules or morphogens are applied in a timed, concerted 

manner. However, it is possible that extended maturation times might be required to generate 

truly mature neurons, and accelerated maturation might lead to cells stuck in a functionally 

premature state33,35,155.

Duration.

The time and money spent to generate a cell type of interest can be a decisive argument for 

or against a particular protocol (FIG. 4a; TABLE 1). The differentiation of fibroblasts into 

neural cells via iPSCs typically requires 4–6 months before the first functional neurons are 

generated. Of this period, around 2 months are needed for the generation and validation of 

iPSC clones. Once this is accomplished, however, iPSCs represent a stable hPSC 

intermediate that researchers can use for each new round of experiments. From hPSCs, 

functional neurons can be repeatedly generated within 2–6 weeks, although high proportions 

of truly functional cells may require extended culture periods33. As an alternative, a class of 

well-characterized, patternable rosette-type NPCs can be generated from hPSCs within 2–3 

weeks and can serve as expandable tri-potential intermediates156,157. Such rosette-type 

NPCs exhibit stem cell properties such as long-term self-renewal, tri-potential differentiation 

and responsiveness to regionalization cues, and they can be differentiated into cultures of 

functional neurons in 1–6 weeks11.

Compared with hPSC differentiation, direct iN conversion is markedly faster. Functional 

human iNs can be generated from fibroblasts within 1–3 weeks plus maturation time7,98. 

Although direct conversion is a one-step process, many iN protocols make use of inducible 

expression vectors that first generate an ‘iN-ready’ transgenic fibroblast as an intermediate. 

This extends the production time but substantially reduces the effort spent on viral 

transductions and probably reduces variability between iN batches102.

Expandability and cell numbers.

Although most neuroscience techniques such as electrophysiology, fluorescence staining, 

imaging, enzymatic and colorimetric assays, microarrays and most DNA and RNA ‘omics’ 

technologies do not demand large cell numbers, others, such as mass spectroscopy and other 

proteomic assays, may require larger amounts of biological material. Whereas iPSCs are a 
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virtually inexhaustible source of neural cells, direct iN conversion of fibroblasts yields 

postmitotic cells that cannot be expanded in culture, which is a major disadvantage (FIG. 

4a). iN cell numbers largely depend on the expandability of the donor cell culture as well as 

conversion efficiency. As typical fibroblast cultures reach around 50 population doublings 

with around 2–3 doublings per week158, and conversion efficiencies range between 30% and 

80%, repeatedly performed iN conversions from ‘iN -ready’ fibroblasts can yield a few 

hundred thousand to a million iNs per week until the fibroblasts are exhausted and 

senescence sets in. Although these limitations may be overcome by immortalizing the 

fibroblasts before iN, projects that require large cell numbers that go beyond the 

expandability of fibroblasts may favour iPSC-based strategies or alternatives such as iOPC 

and iNPC technologies (FIG. 1).

Genomic and epigenetic identity.

The possibility of generating donor-specific brain cells from patients is one of the most 

important contributions of the stem cell field. However, many aspects of an individual’s 

identity can be recapitulated in culture, and the preservation of these unique features may 

differ between the different methods (TABLE 1). This is particularly important for attempts 

to model and understand complex multigenic, sporadic and epigenetic diseases. iPSC 

reprogramming has made it possible to study familial and sporadic forms of diseases such as 

schizophrenia12, bipolar disorder159, amyotrophic lateral sclerosis160 or Alzheimer 

disease161 in the relevant human cell type side by side.

Environmental and epigenetic risk factors have emerged as important determinants of 

disease. In this context, chromatin remodelling during iPSC reprogramming is known to 

cause the epigenetic state of the cell to ‘reset’ into an embryonic-like state162–166. 

Furthermore, competitive clonal growth of iPSC colonies as well as numerous rounds of cell 

division probably select for, repair and dilute out macromolecular damage167,168, leaving 

researchers with a completely rejuvenated cell169–171. Because human age is the most 

significant risk factor for several neurodegenerative diseases, this rejuvenation represents a 

major challenge for modelling these late-on-set diseases using iPSC-based models172. By 

contrast, direct iN conversion does not erase putative cellular ageing markers in fibroblasts 

derived from old mice173, and fibroblast-derived iNs obtained from a cohort of ageing 

human donors show important transcriptomic and functional signatures of ageing174. This 

conceptual difference might turn out to be very important for future comparative models of 

sporadic late-onset diseases. It should be noted that some disease variants are currently 

regarded as sporadic forms might turn out to be due to (partially) inherited multigenic causes 

that are likewise accessible through both iPSC and direct conversion strategies.

Recapitulation of neurodevelopmental phenotypes.

Differentiation of hPSCs including iPSCs into neural tissues follows developmental 

pathways and thus recapitulates several cellular stages of human neural development175 

(FIG. 4b; TABLE 1). This is particularly interesting for neurodevelopmental diseases such as 

familial dysautonomia176, Rett syndrome177 and ring chromosome-associated disorders167, 

and may prove to be relevant to other neurodevelopmental diseases such as microencephaly 

and lissencephaly. Furthermore, the pathology of neuropsychiatric diseases such as autism 
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spectrum disorders178, schizophrenia179 or bipolar disorder180 may have an important 

neurodevelopmental component that can be recapitulated through iPSC differentiation 

models such as neural organoids181 (BOX 2).

As opposed to the possibility of recapitulating neural development with iPSC-based models, 

direct conversion skips all developmental precursor cell stages and generates neurons that 

have never been in an NPC-like cell stage (FIG. 1; TABLE 1). Neuronal phenotypes that are 

caused by differences in a precursor cell stage are thus circumvented by iN. Thus, if the 

disease phenotype of interest is thought to originate during the NPC stage of 

neurodevelopment, it may be better not to use iNs or perhaps to use iNs together with iPSCs 

(which might provide the perfect control to prove that this theory of origin is valid) (FIG. 

4b).

Diversity and mosaicism.

Existing genetic mosaicism is an emerging concern when reprogramming new patient lines. 

Somatic copy number variation (CNV) in human primary fibroblasts before reprogramming 

has been demonstrated182,183. It has been estimated that approximately 30% of fibroblast 

cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the 

human body (FIG. 4c). It is important to consider this when interpreting results from iPSC 

line derivatives: owing to their clonal origin, one iPSC clone only represents one donor 

fibroblast cell. To minimize possible misinterpretations, several iPSC clones from a given 

donor should be derived and analysed for similar phenotypes. Variation, which is a big issue 

in human disease modelling, may in turn originate from the donor’s genetic mosaicism, 

which should not be regarded as a mere artefact but rather illustrates the complexity of the 

human ‘cellome’ that might determine an individuals’ health and disease. By contrast, a 

population of 100 iNs resembles 100 different fibroblasts and is thus likely to capture the 

donor’s mosaicism. Furthermore, single-cell analyses and in-depth genomic DNA 

sequencing can be used to identify potential mosaic CNVs in fibroblasts, iNs and iPSC 

clones (FIG. 4c). In the future, iNs could be used to identify and quantify a patient’s CNVs, 

whereas high-throughput genome editing technology in iPSCs could be used to test the 

impact of the identified variants. However, especially when looking at small genomic 

alterations in cultured cells, it is important to keep in mind that in vitro culture of not only 

iPSCs and their derivatives but also of fibroblasts and iNs can lead to culture-induced 

genomic artefacts that may contaminate the results184,185. Controlling the results with cells 

from the primary biopsy sample or other tissues such as blood samples is thus essential 

when performing such studies.

Summary

Recent advances in the generation of vital human neural cells in vitro have enabled the study 

of human neurodevelopment, cellular neurophysiology and neural diseases at the cellular 

level in a donor-specific manner. Since the invention of iPSCs one decade ago, our 

understanding of the cues required to differentiate pluripotent cells into specific neural 

precursor cells and functional neural subtypes has grown tremendously. The past 5 years 

have also seen substantial progress in the development of alternative strategies to generate 
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human neural cells, such as the direct conversion of fibroblasts into iNs or iNPCs. The 

expanding pool of various protocols warrants the consideration of practical differences such 

as time and cost efficiency and the difficulty of the method. Furthermore, a keen awareness 

is demanded with regard to the respective conceptual advantages and disadvantages 

associated with each method, such as clonogenicity, preservation of genetic and epigenetic 

identity or neurodevelopmental aspects. However, attention to these differences will open 

avenues to tackle complex scientific questions regarding human development or disease by 

combining different human cell reprogramming technologies. Adequate comparison of in 
vitro-generated neural cells to their putative counterparts in vivo still represents an important 

challenge for the human stem cell field. Furthermore, the vast diversity of human individuals 

in comparison to inbred mice, as well as the virtually unlimited complexity of neurological 

diseases, remains a difficult problem. Although not all reported cell reprogramming 

technologies will prove useful to neuroscientists, a significant number will and, with time, 

are likely to contribute to new discoveries to unravel important cellular mechanisms of the 

complex human nervous system in health and disease.
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Box 1 | Defining cell types in vitro.

The accurate characterization of specific subsets of in vitro-generated neurons is 

important for the accurate interpretation of data derived from these cells, irrespective of 

whether they are used for modelling disease states, developmental studies or circuitry. 

Cell type validation of human neurons in vitro represents a challenge in the field given 

that direct comparison with their endogenous counterparts is often difficult or impossible. 

Most studies rely on the isolated expression of one or two ‘markers’ as a criterion to 

suggest cell identity (usually measured using antibodies transposed from mouse studies). 

However, as various cell types may (transiently) express these markers during 

development, a solid interpretation of induced pluripotent stem cell-based results based 

on one or two markers is somewhat limited. In direct conversion paradigms, it is 

conceivable that some markers are directly downstream of the genes that are 

overexpressed, which may also cast doubt on the validity of the suggested identity. It is 

thus of crucial importance for future studies to build neuronal profiles based on 

multimodal analyses, including broad molecular signatures and deep electrophysiological 

properties. For example, bulk and single-cell transcriptomic technologies provide an in-

depth molecular signature that can be directly compared to the human brain 

transcriptome database99. For functional evaluation, patch clamping remains the gold 

standard but only permits us to assess a handful of selected neurons within several 

thousands of cells. The development of standardized electrophysiological maturity 

markers to classify functionality levels of neurons would help to allow the interpretation 

of electrophysiological data even between laboratories. Furthermore, because patch 

clamping is of low-throughput design, alternative techniques such as calcium imaging or 

multi-electrode arrays provide more efficient ways to examine larger networks of 

neurons. As more rigorous ways to define cell subtype identity and functional maturity 

become available, controlling the identity and quality of generated cultures will allow 

increasingly accurate experiments to address phenotypic differences between cell types 

and diseases that may be specific for certain brain regions.
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Box 2 | Cellular environment and neural organoids.

In vitro-generated neural cells are typically grown in standard base media supplemented 

with hormones, antioxidants and growth factors that promote neuronal differentiation and 

survival but that are quite distant from the natural microenvironment in the brain. One 

promising trend is to optimize the culture conditions for maturing human neurons and 

other cell types to expose human cells to more physiological environments in vitro to 

better support neuronal functions186,187. Further, in vitro neural cells are typically 

cultured as 2D monolayers that lack the juxtacrine environment of the brain, including 

dense synaptic and glial contacts. This limitation has to be taken into account when 

interpreting results from monolayer cultures. The generation of 3D cerebral organoids 

from human pluripotent stem cells has been recently proposed as a means to overcome 

these limitations and to also recapitulate aspects of early human brain cortical 

development that still appear inaccessible through direct induced neuron conversion 

paradigms36. Although early results seem promising for the study of neural progenitor 

migration and cortical expansion, current hurdles include a broad variety of floating 

aggregates that contain notable degree of heterogeneity of cell types as well as a lack of 

nutritious support for cells located in the centre of these aggregates188,189. Reduction of 

variation through a higher degree of structural control, together with live imaging of 

specific migrating progenitors, will be essential to promote a better understanding of the 

potential applications for the organoid technology and will provide a unique opportunity 

to study human development that is otherwise inaccessible.
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Induced pluripotent stem cells

(iPSCs). Pluripotent stem cells created from differentiated somatic cell types, such as 

fibroblasts, by reprogramming with a set of transcription factors or other approaches.

Mertens et al. Page 25

Nat Rev Neurosci. Author manuscript; available in PMC 2018 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Direct conversion

This term (also known as direct cell fate conversion, lineage conversion or 

transdifferentiation) describes the forced identity change of a somatic cell — for 

example, a fibroblast — directly into another related or unrelated somatic cell — such as 

a neuron — by means of transcription factors or other approaches.
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Epigenetic

Describes changes in gene function that occur through changes to the genome that do not 

involve altering the DNA sequence. Examples of epigenetic events include DNA 

methylation, histone acetylation or X-chromosome inactivation. Epigenetic changes 

control biological processes such as differentiation, cell type identity or ageing.
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Human pluripotent stem cells

(hPSCs). Stem cells that have the potential to form any cell type of the human body. They 

include human embryonic stem cells (hESCs) and human induced pluripotent stem cells 

(iPSCs). All hPSCs have the same ability to differentiate into cells of distinct lineages, 

such as neurons.
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Human embryonic stem cells

(hESCs). Pluripotent stem cells that are derived from the inner cell mass of the 

developing blastocyst.
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Mitogens

Proteins or chemical compounds that induce cell division by triggering mitosis. 

Proliferation of stem cells during development in vivo and in vitro depends on mitogen-

induced signalling, whereas mitogen-deprivation induces stem cell differentiation.
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Morphogens

Proteins or chemical compounds that define the relative position of stem and progenitor 

cells in the developing organ in vivo and thereby lay out the pattern for the spatial 

organization of cellular subtypes within the same tissue. In vitro, morphogens are used to 

pattern stem and progenitor cells such as neural progenitor cells (NPCs) to promote the 

generation of a desired cellular subtype that is associated with a certain tissue region in 
vivo.
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Neural progenitor cells

(NPCs). A broad term describing stem and progenitor cells of the nervous system. There 

are many types of NPCs during neural development and in the adult brain that all share 

the characteristics of proliferation and multipotency, meaning that they can give rise to 

enlarged numbers of differentiated neurons and glia.
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Neural rosette

The developmental signature of neural progenitors in cultures of differentiating human 

pluripotent stem cells; rosettes are radial arrangements of columnar cells that express 

many of the proteins expressed in neuroepithelial cells in the neural tube.
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Radial glial cells

A subtype of neural progenitor cells that span the radial axis of the developing cortex and 

serve as precursors or guides for newly born postmitotic neurons on their way into the 

mantle zone.
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Embryoid bodies

Aggregates of pluripotent stem cells that are in the process of differentiation. The 3D 

structure of embryoid bodies is thought to provide a cellular environment that promotes 

the differentiation of pluripotent cells into desired cell types in several differentiation 

protocols.

Mertens et al. Page 35

Nat Rev Neurosci. Author manuscript; available in PMC 2018 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Short interfering RNA

(siRNA). Short double-stranded RNA molecules that silence gene expression in a 

sequence-specific manner by a process termed RNA interference.
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Genetic mosaicism

The presence of a variety of genetically distinct populations of cells within one 

individual. Differences in the cellular genotypes may comprise single-nucleotide 

polymorphisms (SNPs), indels, copy number variations and loss of heterozygosity. Such 

genetic changes can be caused by viral insertions, endogenous retrotransposition, DNA 

damage or repair and other mechanisms and may arise during development or later in 

life.
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Figure 1 |. Reprogramming or direct conversion to generate neural cells.
Neural cells can be generated from somatic cells through somatic tissue reprogramming, 

which produces induced pluripotent stem cells (iPSCs), or by direct conversion. Neural 

progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs) can be generated 

through the differentiation of human pluripotent stem cells (hPSCs), which can comprise 

human embryonic stem cells (hESCs) or iPSCs, or by direct neural conversion of somatic 

cells such as fibroblasts. Differentiation-derived NPCs as well as direct conversion-derived 

induced NPCs (iNPCs) can further be differentiated into neurons and/or glial cells and can 

allow the study of aspects of human neurodevelopment. When somatic cells or iPSCs are 

directly converted into induced neurons (which are then known as iNs or iPSC–iNs, 

respectively), the NPC stage is bypassed. Cultures of neurons and glia can be used for 

studying disease-related biology and to develop phenotypic assays and screening to evaluate 

patient- or disease-specific phenotypes. For example, cellular morphology, activity patterns 

and connectivity can be assessed. Once a distinct disease-related phenotype is identified that 

can be reliably monitored, drug-screening platforms can be developed to test compounds 
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that improve cellular phenotype. New diagnostic tools and therapeutic compounds could 

emerge from the screenings.
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Figure 2 |. Stages of neural differentiation in vitro and in vivo.
When human pluripotent stem cells hPSCs (comprising human embryonic stem cells 

(hESCs) and induced pluripotent stem cells (iPSCs)) differentiate into neurons in vitro 
(upper row), they transit through defined stages during which they resemble distinct neural 

progenitor cell (NPC) populations present during in vivo neurogenesis (lower row). hPSCs 

resemble the inner cell mass (ICM) of the blastocyst3,190. hPSCs differentiate into 

neuroepithelial stem cells in vitro, corresponding to the neuroepithelial NPCs that form the 

neural plate in vivo13. During in vivo neurulation, the neural tube closes, patterning along 

the developmental axes takes place and the first waves of neurons are generated. In vitro, the 

rosette-type NPCs that can also be derived from hPSCs resemble this developmental 

stage28,116,156. During fetal and adult neurogenesis, radial glia give rise to postmitotic 

neurons. These correspond to the radial glia-like NPCs that are generated from the rosette-

type NPCs in vitro28,68.
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Figure 3 |. Methods for direct iN conversion.
a | During direct conversion into induced neurons (iNs), fibroblasts progressively convert 

into neurons through an as yet poorly defined transient intermediate state. This process 

involves dramatic morphological changes but no cell division. General pro-neuronal 

transcription factors (TFs) such as achaete-scute homologue 1 (ASCL1) and neurogenin 2 

(NGN2) act as pioneer transcription factors that trigger the expression of structural neuronal 

proteins such tau (which help to drive the establishment of neuronal compartments such as 

the axon or dendrites)191, neurotransmitter receptors (which are required for postsynaptic 

structures)192,193 and ion channels (which build up a neuronal membrane potential)194,195. 

Pioneer transcription factors also open chromatin structures to allow binding of secondary 

transcription factors (both transgenic and endogenous) that facilitate the expression of more 

mature or subtype-specific proteins, such as the enzymes tyrosine hydroxylase (TH) or 

tryptophan hydroxylase (TPH), which are needed for dopamine or serotonin production, 

respectively. b | The relative timeframe for direct iN conversion using different approaches. 

Orange bars indicate the stage at which the respective factors or compounds are believed to 

be effective. General pro-neuronal pioneer transcription factors such as ASCL1 and NGN2 

work to reprogramme the cells at the fibroblast stage and tend to result in the production of 

glutamatergic neurons (the majority) and GABAergic neurons (a minor fraction). Secondary 

transcription factors such as neurogenic differentiation factor 1 (NEUROD1), BRN2 and 

myelin transcription factor 1-like protein (MYT1L) are not sufficient to initiate iN 

conversion but support the process at later stages7,102,108. c | To facilitate neurotransmitter-
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specific iN conversion, cocktails of specific transcription factors can be added to shape a 

specific neuronal identity. These lineage-specifying transcription factors are typically well 

known for their essential roles during the development of the targeted neuronal subtype in 
vivo88,89,99,119,122–124,196. d | Manipulation of signal transduction pathways through growth 

factors and small molecules that inhibit the transforming growth factor-β (TGFβ)–ALK–

SMAD pathway and glycogen synthase kinase 3β (GSK3β), as well as the promotion of 

cyclic AMP signalling, increases iN conversion efficiencies. Addition of other molecules 

(such as I-BET151, isoxazole 9 (ISX9) or protein kinase C (PKC), JUN amino-terminal 

kinase (JNK) or RHO-associated protein kinase (ROCK) inhibitors) to that mix facilitates 

direct conversion from fibroblasts without the need for transgenes98,102,113,114. CTIP2, 

COUP-TF-interacting protein 2; FOX, forkhead box protein; LMX1, LIM homeobox 

transcription factor 1; PITX3, pituitary homeobox 3; PTB1, polypyrimidine tract-binding 

protein 1; REST, RE1-silencing transcription factor.
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Figure 4 |. Comparing iPSC differentiation and direct iN conversion.
a | Time course and efficiency. Direct induced neuron (iN) conversion is a rapid process for 

the generation of neurons from donor cells. However, human embryonic stem cell (hESC) 

and induced pluripotent stem cell (iPSC)-based strategies can yield infinite numbers of 

neurons, whereas iN conversion is limited to the expandability of fibroblasts. b | 

Development and age. In contrast to iNs, human pluripotent stem cell (hPSC) differentiation 

follows distinct steps of human neural development and transits through cell types 

corresponding to the various stages of neurulation and neurogenesis. However, hPSC-
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derived cells transit through the embryo-like hPSC stage and, as a result, hPSC-derived 

neurons are regarded as rejuvenated neurons. Direct conversion skips these steps and 

directly transforms a fibroblast into a neuron, thus maintaining the signatures of their 

donors’ ages. c | Diversity and mosaicism. Human somatic cells within an individual do not 

have identical genomes, and this somatic mosaicism might be an important determinant for 

biological function of tissues and organs183. During iN conversion, a genetically mosaic 

culture of fibroblasts is converted into a mosaic culture of neurons. By contrast, iPSC lines 

are clonal cell lines, leading to a culture of neurons that all arise from the same single 

fibroblast cell.
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