
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:25

https://doi.org/10.1007/s41781-021-00071-1

ORIGINAL ARTICLE

Evaluating CephFS Performance vs. Cost on High‑Density Commodity
Disk Servers

Andreas J. Peters
1
 · Daniel C. van der Ster

1

Received: 1 July 2021 / Accepted: 27 September 2021

© The Author(s) 2021

Abstract

CephFS is a network filesystem built upon the Reliable Autonomic Distributed Object Store (RADOS). At CERN we have

demonstrated its reliability and elasticity while operating several 100-to-1000TB clusters which provide NFS-like storage

to infrastructure applications and services. At the same time, our lab developed EOS to offer high performance 100PB-scale

storage for the LHC at extremely low costs while also supporting the complete set of security and functional APIs required

by the particle-physics user community. This work seeks to evaluate the performance of CephFS on this cost-optimized

hardware when it is combined with EOS to support the missing functionalities. To this end, we have setup a proof-of-concept

Ceph Octopus cluster on high-density JBOD servers (840 TB each) with 100Gig-E networking. The system uses EOS to

provide an overlayed namespace and protocol gateways for HTTP(S) and XROOTD, and uses CephFS as an erasure-coded

object storage backend. The solution also enables operators to aggregate several CephFS instances and adds features, such

as third-party-copy, SciTokens, and high-level user and quota management. Using simple benchmarks we measure the cost/

performance tradeoffs of different erasure-coding layouts, as well as the network overheads of these coding schemes. We

demonstrate some relevant limitations of the CephFS metadata server and offer improved tunings which can be generally

applicable. To conclude, we reflect on the advantages and drawbacks related to this architecture, such as RADOS-level free

space requirements and double-network penalties, and offer ideas for improvements in the future.

Keywords Scientific computing · Distributed file systems · Object storage

Introduction

In the coming years, higher luminosity data taking at the

Large Hadron Collider will place increased demands on the

storage throughput, capacity, and durability of the storage at

CERN [1]. Recent innovations in open source storage sys-

tems demonstrate a compelling level of features and maturity

[2], raising the question of if and how these components

might play a role in future physics storage systems. Off-the-

shelf software is missing important high-level features and

there is limited evidence of the efficiency on the cost-opti-

mized hardware critical to LHC physics programmes; how-

ever, a complete solution might be constructed by layering

HEP-specific gateways on top of the open source offerings

[3]. In this paper we describe and evaluate a novel combi-

nation of one such open source clustered storage system,

CephFS [4], with EOS [5], the high performance and low

cost storage solution designed at CERN for LHC data taking.

CephFS and Its Application at CERN

CephFS is a modern clustered filesystem which acts as an

NFS-replacement in typical computing scenarios for a sin-

gle data centre, including home directories, HPC scratch

areas, or shared storage for other distributed applications.

The software implements a scale-out architecture for data

and metadata IOPS: data and metadata are persisted in

the distributed object store RADOS [7] and the metadata

is mediated by a small number of replaceable MDS serv-

ers. Capacity and performance can be increased dynami-

cally without downtime: raw capacity and IOPS by add-

ing servers to the RADOS backend, and metadata scales

by re-assigning filesystem subtrees to new MDS servers.

 * Daniel C. van der Ster

 daniel.vanderster@cern.ch

 Andreas J. Peters

 andreas.joachim.peters@cern.ch

1 CERN, Geneva, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00071-1&domain=pdf

 Computing and Software for Big Science (2021) 5:25

1 3

 25 Page 2 of 10

RADOS provides a durable object store using either

replication—typically 3 copies—or erasure coding with

arbitrary layouts, for example with four data stripes and

two parity stripes (EC4,2). RADOS uses CRUSH [8] to

place objects across failure-domains: in this way, systems

may be designed to tolerate failures at the disk, host, rack,

power, or switch level depending on local constraints.

CephFS aims to provide consistency guarantees equal to

those of a local filesystem. To accomplish this the MDSs

delegate to clients a range of IO capabilities which grant

different POSIX operations to be carried out synchro-

nously or asynchronously depending on the real time need

for parallel access to directories and files. For example,

a file opened by one writer with no other clients may be

written to quickly with client-side buffering and persisted

only periodically, whereas a file with concurrent writers/

readers must be persisted synchronously and clients are

not permitted to cache their reads.

CERN has operated several CephFS clusters in produc-

tion since 2017, and as of 2021 we use CephFS in three

settings:

– HPC Scratch an all-flash cluster built using Ceph OSDs

co-located on SLURM compute nodes [9], using a

local idle node as the MDS; 3x replication with usable

capacity of around 110 TiB;

– OpenStack Manila [10] a mixed HDD/SSD cluster

offering general purpose shared storage for IT and sci-

entific applications; 3x replication with usable capacity

of around 1 PiB;

– Enterprise Groupware: an all-flash cluster co-located

on OpenStack hypervisors which are dedicated to a new

groupware solution for the CERN community; EC2,2

with usable capacity of around 100 TiB.

In these settings, CephFS has demonstrated its robustness

and performance over several years of operations. These

and other Ceph clusters at CERN have survived several

external outages and lived through three hardware pro-

curement cycles: throughout this we have noted very few

incidents related to data availability, loss, or corruption.

Despite these strengths, CephFS is currently limited

at CERN to the previously listed use-cases due to several

missing features which are essential for the high-energy

physics community:

– authentication mechanisms and user/group manage-

ment: SciTokens [11], X.509, Kerberos, quota and

access control via eGroups [12];

– storage protocols and features: HTTPS, XRootD [13],

and third-party copy;

Moreover, CephFS has not yet been extensively tested at

CERN for high throughput LHC data-taking, for example

with write rates exceeding 20 GiB/s.

Introduction to EOS

EOS is a large scale storage system developed at CERN

currently providing 350 PB of capacity to both physics

experiments and regular users of the CERN infrastructure.

Since its first deployment in 2010, EOS has evolved and

adapted to the challenges posed by ever-increasing require-

ments for storage capacity. EOS is implemented as plug-ins

to the XRootD framework. Files are stored using either rep-

lication or erasure-coding and organized in a hierarchical

namespace using QuarkDB [6] as a persistency backend.

The frontend MGM service provides cached access to the

namespace and other metadata. Storage nodes run one or

several FST services to provide access to data stored on a

locally mounted filesystem (FileIO[posix]) or remote stor-

age (XrdIo[root protocol], DavixIo[Webdav/S3]). As for any

Linux filesystem, files are organised as inodes. The MGM

services translates logical path names to inodes and FST

servers store all data by inode name. The namespace on the

local or remote FST filesystems is organized using a simple

inode hash prefix directory and the hexadecimal inode name

to build a physical path for a given inode number. The only

features require of the FST local filesystem are the basic

POSIX semantics and extended attributes.

It is, therefore, straightforward to replace a local FST

filesystem with CephFS. In this case, data accessed via an

FST makes use of a remote CephFS filesystem. In such a

deployment model, redundancy and data high-availability

is delegated to the CephFS layer and EOS is configured to

store files with single replica layouts.

System Architecture

Ceph Backend Storage

A proof-of-concept was constructed out of eight disk servers

each with the following specifications:

– Dual Intel Xeon Silver 4216 CPUs and 192 GiB RAM;

– Mellanox ConnectX-5 network interface supporting

100Gb/s Ethernet;

– 60x 14 TB enterprise SATA HDDs connected via a single

SAS3616 host bus adapter;

– 1 × 1 TB SSD.

These high-density disk servers are not yet used in produc-

tion at CERN. Presently, EOS uses servers with four 24-disk

enclosures connected to frontends with 192 GiB of memory.

Computing and Software for Big Science (2021) 5:25

1 3

Page 3 of 10 25

Because of the large amount of memory required by each

Ceph OSD, these 96-disk EOS systems would require clus-

tering of disks or extra memory. On the contrary, the high-

density servers evaluated in our PoC are ideal, since they

provide 3 GiB of memory per OSD.

On this hardware we installed Ceph using Octopus ver-

sion 15.2.8. Each server’s disks were prepared to run 61

Ceph OSDs: the HDDs and SSDs were used to host the

CephFS data and metadata pools, respectively. A single vir-

tual machine non-local to the disk servers acts as the MON,

MGR, and MDS for the cluster. CephFS was configured with

top level directories each backed by a different RADOS pool

with erasure coding and CRUSH configured as follows:

– /ec42: Reed–Solomon coding with k = 4, m = 2; each

host has at most one object chunk; 4096 placement

groups, 51.2 per OSD;

– /ec82: Reed–Solomon coding with k = 8, m = 2; each

host has at most two object chunks; 2048 placement

groups, 42.6 per OSD;

– /ec162: Reed–Solomon coding with k = 16, m = 2; each

host has at most three object chunks; 1024 placement

groups, 38.4 per OSD;

We, additionally, evaluated the effect of object size on per-

formance using CephFS’s file layout extended attributes.

The RADOS placement groups were balanced to a max

deviation of one per OSD.

EOS Frontend Server

We used eight additional identical machines as EOS FST

nodes mounting CephFS using the kernel client included

with CentOS 8.2. For each FST we created one separate

data directory in the CephFS mount directory and config-

ured these as eight EOS filesystems. The setup is shown

in Fig. 1, while Figs. 2 and 3 show the EOS space and

filesystem configuration.

Testing and Results

We performed two sets of benchmarks to evaluate the

performance of the CephFS backend and EOS frontend

services:

Fig. 1 Test setup with eight backend disk server (blocks 1–8) to run

Ceph OSDs and eight frontends (blocks 9–16) running EOS FSTs and

CephFS kernel mounts. MGM and MDS handle metadata for EOS

and CephFS, respectively. CephFS metadata is stored on the SSDs,

while the data objects are stored on the HDDs

Fig. 2 Configuration for a ceph space provided by eight CephFS mounts

 Computing and Software for Big Science (2021) 5:25

1 3

 25 Page 4 of 10

– backend using dd commands directly on client ker-

nel mounts, to study the streaming performance of the

CephFS backend;

– frontend using XRootD protocol eoscp copy clients via

EOS FSTs, to study their impact on overall performance.

Benchmarking Setup

Each benchmark uses ten parallel streams per ceph mount

(80 in total) to create/write or read files of 2 GB size each.

Benchmarks were generally executed for several hours to

observe stable running conditions; to test for performance

degradation we, additionally, tested when the backing

CephFS was filled up to 95%. In the frontend benchmarks

the concurrent number of streams can fluctuate by design.

The average number of streams was configured to be again

ten per client mount. We also tuned the RADOS object size

parameters to improve write performance for each erasure

coding layout.

We have benchmarked the raw controller and network

speeds. Both IO paths reach the design spec 12 GiB/s under

optimal load conditions. We, additionally, measured the lim-

itation of a single CephFS kernel client; it reaches a maxi-

mum of 6 GiB/s for reading and writing. Figure 4 shows that

write throughput scales linearly with the number of clients

until the maximum cluster write performance is reached

with 6 out of 8 client nodes. Figure 5 shows equally that the

read throughput is not client-limited when sufficiently many

are working concurrently: read scaling begins linearly and

then shows a damped curve most likely due to platter seek

times increasing with the number of concurrent streams.

Results

Figure 6 shows the dependency of the relative write perfor-

mance depending on the volume usage of the hard disks:

100% performance is equivalent to 31 GiB/s. The degrada-

tion is consistent with an observed increase in IO wait on

the OSD nodes.

Table 1, visualized in Figs. 7 and 8, summarizes the write

performance for various erasure coding layouts and object

sizes measured with space usage under 10%. Table 2, visual-

ized in Figs. 9 and 10, summarizes the read performance for

various erasure coding layouts, object sizes and read block-

sizes measured with space usage under 10%. Both tables

show the average time to upload or download a 2 GiB file

Fig. 3 Filesystem configuration for eight CephFS mounts inside the EOS ceph space

Fig. 4 Performance scaling for writing with number of client nodes

using EC16,2;64M. Write throughput scales with the number of cli-

ents until 6 out of 8 are running concurrently

Fig. 5 Performance scaling for reading with number of client nodes

using EC16,2;64M. Read performance begins scaling linearly but is

damped above 3 concurrent streams

Computing and Software for Big Science (2021) 5:25

1 3

Page 5 of 10 25

with 80 parallel dd commands running on 8 client nodes.

Each benchmark uses 8000 files and 16 TiB of data volume.

In addition, the standard deviation, the average stream rate,

the 99th percentile and the maximum value for the IO time

is shown.

It is intuitive that high-performance streaming favours

large blocksizes. EC16,2 provides the highest write through-

put, because it has the smallest parity payload compared to

EC8,2 or EC4,2 configurations; however these large block-

sizes demonstrate long tails due to the increased variance of

the object distribution. The blocksize impact is more pro-

nounced while reading. The default read-ahead setting of the

kernel mounts are 8 MiB; blocksizes larger than this help

to improve the read throughput. The object size impact also

manifests when reading, since more disk seeks are expected

per GiB served.

Table 3, visualized in Fig. 11, shows the impact access-

ing the CephFS via EOS as a frontend service. The overall

performance does not change but the usage of XRootD pro-

tocol increases tail effects due to unfair stream scheduling

Fig. 6 Correlation of write performance with CephFS total usage.

Peak performance is achieved when the backend CephFS is between

0 and 50% full, but above 75% usage the performance is decreased

Table 1 Write performance for

various erasure coding layouts

(ECk,m) and object sizes (;sM).

IO times and rates are shown

per 2 GiB file stream with 80

concurrent IO streams

– Avg [s] Sigma [s] Rate [MiB/s] 99th percentile

[s]

Max [s]

EC4,2;4M 6.26 1.30 319 8.95 11.07

EC4,2;16M 6.4 1.42 312 9.16 13.81

EC8,2;16M 4.95 0.89 403 7.1 10.08

EC16,2;4M 5.76 0.95 347 7.57 10.56

EC16,2;16M 4.96 1.03 402 8.10 10.31

EC16,2;64M 4.7 2.68 426 17.32 41.62

EC16,2;128M 4.73 2.07 422 13.36 29.95

Fig. 7 Write performance tails: the red line shows the average upload time, the box limit shows the 99 percentile and the error limit the maxi-

mum upload time observed for a given erasure coding layout. Based on data from Table 1

 Computing and Software for Big Science (2021) 5:25

1 3

 25 Page 6 of 10

when writing. These tail effects could be eliminated by throt-

tling each stream to a nominal 325/350 MiB/s client side.

The read performance actually benefits from the frontend,

because the blocksize used in EOS transfers is larger than

the baseline comparison of the native CephFS backend.

Tuning Ceph

During our performance evaluations we came across a few

areas, where the default Ceph configurations and warnings

were not ideal:

Client throttling bytes in transit By default a librados

client limits the number of in-flight writes to 100MiB.

We observed that this throttle was reached often, capping

the achievable write performance. Setting objecter_

inflight_op_bytes to 10485760000 removed this

artificial limitation.

MDS caps recall tuning The EOS fsck process is used

to check the consistency of the EOS namespace with the

backend CephFS storage. This process puts continuous

pressure on the MDS to stat all files as quickly as possible,

which can lead to a scenario, where clients acquire caps

more quickly than the MDS will ask them to be recalled,

causing an out-of-memory error on the MDS. Improved

default caps recall settings, effectively increasing the

caps grant/recall rate by more than 5x were suggested

Fig. 8 Average write stream speed with standard deviation for various erasure coding layouts, based on data from Table 1

Table 2 Read performance

measurements for various

erasure coding layouts (ECk,m),

object sizes (;sM) and dd

blocksize (,bM)

 IO times and rates are shown per 2 GiB file stream with 80 parallel streams. The default kernel readahead

setting of 8 MiB is used

– Avg [s] Sigma [s] Rate [MiB/s] 99th percentile

[s]

Max [s]

EC4,2;4M,1M 14.70 1.24 136 17.37 19.96

EC4,2;16M,8M 11.25 0.54 177 12.61 13.87

EC8,2;16M,1M 13.02 0.64 153 14.61 15.96

EC8,2;16M,128M 5.23 0.61 382 6.81 15.19

EC16,2;4M,1M 25.23 3.85 79 36.74 48.63

EC16,2;4M,128M 13.63 4.05 146 28.61 54.68

EC16,2;16M,1M 11.59 0.84 172 13.7 15.76

EC16,2;16M,128M 4.89 0.91 408 7.61 13.53

EC16,2;64M,1M 9.53 0.78 209 11.46 19.53

EC16,2;64M,128M 5.23 0.31 381 6.07 7.42

EC16,2;128M,1M 9.44 1.17 211 13.02 20.60

EC16,2;128M,128M 5.26 0.38 380 6.27 7.56

Computing and Software for Big Science (2021) 5:25

1 3

Page 7 of 10 25

and accepted by the upstream community [14]. In addi-

tion, EOS fsck can now be throttled to scan the namespace

within a configurable interval.

Single high-latency OSD ruins everything: At one point

in our testing the cluster-wide write performance dropped

from a nominal 25 GiB/s to under 5 GiB/s. After trou-

bleshooting it was found to be the result of a single HDD

with a poor physical SATA connection, causing small IO

requests to take longer than 2s on average. Once this disk

was removed from the cluster, the expected performance

returned. This type of issue had not been previously seen

in production at CERN. Because Ceph does not currently

detect and warn about this type of issue, we are currently

working on an external probe which warns when anoma-

lous OSD latency is detected, to be contributed upstream

if it proves useful.

Conclusions and Discussion

The evaluated setup based on a high-density disk serv-

ers provides excellent performance with various erasure

coding schemes and allows up to 4 GiB/s read or write

data payload per node for streaming access. A substantial

performance degradation with increased CephFS usage

has to be taken into account when planning a service, and

a safe maximum usable space threshold without risking

operational hazards during hardware failures requires

more practical experience. We have tested filling the back-

ing CephFS up to 95%, using upmap data balancing to

achieve a uniform disk utilization.

Erasure code write performance performed at nearly

the network connectivity limit; neither the CPUs nor the

Fig. 9 Read performance tails: the red line shows the average download time, the box limit shows the 99 percentile and the error limit the maxi-

mum download time observed for a given erasure coding layout. Based on data from Table 2

 Computing and Software for Big Science (2021) 5:25

1 3

 25 Page 8 of 10

disks were saturated at these peak throughputs. Bottle-

necks for reading are more difficult to disentangle; they are

most likely dominated by disk platter seek latencies. The

CephFS erasure coding IO model roughly doubles the traf-

fic for reading and writing. During write tests with large

blocksizes the network input on a single node reaches an

impressive 9 GiB/s, while the outgoing traffic is 5 GiB/s

and the disk output is 5 GiB/s. To make use of the total

available disk IO bandwidth of each server (10 GiB/s),

one would have to double the network connectivity. In

Fig. 10 Average read stream speed with standard deviation for various erasure coding layouts based on data from Table 2

Table 3 Comparison of native

CephFS backend performance

and access via the EOS frontend

service, for various erasure

coding layouts (ECk,m), object

sizes (;sM) and IO blocksize

(,bM)

With EOSa and EOSb we throttle the clients to 325 MiB/s and 350 MiB/s, respectively

– Avg [s] Sigma [s] Rate [MiB/s] 99 perc. [s] Max [s]

wr CephFS EC4,2;4M,1M 6.26 1.30 319 8.95 11.07

wr EOS EC4,2;4M 6.13 4.96 326 26.67 47.10

wr EOSa EC4,2;16M,8M 6.61 0.65 302 10.43 15.03

wr EOSb EC4,2;16M,8M 6.33 1.23 315 13.11 20.34

rd CephFS EC4,2;4M,1M 14.70 1.24 136 17.37 19.96

rd CephFS EC4,2;16M,8M 11.25 0.54 177 12.61 13.87

rd EOS EC4,2;4M,8M 10.45 1.25 191 13.26 14.5

Computing and Software for Big Science (2021) 5:25

1 3

Page 9 of 10 25

addition, to the reported results we have also investigated

concurrent read and write use cases. CephFS prioritizes

the available bandwidth to writers, leaving readers with

the remaining bandwidth; writer-preferred IO scheduling

is indeed the ideal behaviour for most use cases.

The EOS frontend has only a marginal impact on the

overall IO performance. The increased tails when writ-

ing should be investigated with respect to the unbalanced

stream scheduling implementation inside the XRootD

server.

In theory it would be possible to co-locate the EOS FSTs

and Ceph OSDs on the same servers, however this would

require mounting CephFS on the OSD nodes: such a mount

is known to lead to a kernel deadlock if memory pressure

occurs. The described hyperconverged storage/gateway

model would require some extra testing under high-load

situations.

The hybrid CephFS+EOS setup is a simple way to com-

bine high performance parallel IO features of CephFS with

the high-level functionalities provided by EOS. This includes

strong security, efficient WAN access using XRootD and

HTTP(S) protocol, extended quota and permission manage-

ment, third party transfers, token authorization, checksum

support, an optional tape backend and more.

When designing a hybrid service with 100Gig-E technol-

ogy, particular attention has to be given to the network in the

backend OSDs and given IO limits per frontend node. We

managed to write at most 4.5 GiB/s and read 6 GiB/s with a

single gateway FST with one CephFS kernel mount. In LHC

storage usage at CERN we observe a typical 10:1 ratio of

Fig. 11 Visualization of impact

of adding EOS frontend to

CephFS backend based on data

from Table 3

 Computing and Software for Big Science (2021) 5:25

1 3

 25 Page 10 of 10

read vs. write. Therefore, it could be an interesting option to

add a redirect to local functionality to EOS in cases, where

CephFS can be mounted with open access for reading on

client nodes. The local redirect could be conditional on

per-directory permission settings. The CephFS mount itself

could also be triggered inside an XRootD plug-in based on a

redirect response containing the cephx authentication key for

the required CephFS read-only mount. When file access is

sparse the gateway FST model provides an additional cach-

ing layer to convert client-side sparse access into stream-

ing backend traffic. This requires appropriate tuning of the

CephFS mount read-ahead settings.

The proposed service model allows to cluster sev-

eral independent CephFS setups with independent failure

domains and different quality of service behind a single

administrative domain. It enables operators to carry out

transparent hardware migrations between CephFS systems

from an old to new backend using EOS management tools

and third-party transfers without interrupting production

usage.

We have validated this setup for IO streaming operations.

Usability for sparse physics analysis use cases would be a

next step for validation. In addition, an expected fragmen-

tation penalty after aging through several filling/deletion

cycles has not yet been evaluated. We demonstrated that

CephFS can be used for high-throughput streaming IO with-

out requiring dedicating SSDs for the BlueStore metadata

block.db. The main requirement to operate large capac-

ity server is to provide at least 3 GiB of memory per OSD

(HDD).

In summary CephFS + EOS is a viable solution to com-

bine the object storage concepts of Ceph and high-level

service functionalities of EOS in a very simple way. One

needs to balance the reasons of the additional complexity

and service cost against benefits of such an approach.

Funding Open access funding provided by CERN (European Organiza-

tion for Nuclear Research).

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article's Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Albrecht J et al (2019) A roadmap for HEP software and comput-

ing R&D for the 2020s. Comput Softw Big Sci 3(1):1–49

 2. Carlson M et al (2014) Software defined storage. Storage Net-

working Industry Assoc, San Francisco. https:// www. snia. org/

educa tion/ white papers

 3. Dewhurst A et al (2017) The deployment of a large scale object

store at the RAL Tier-1. J Phys Conf Ser 898(6):062051

 4. Weil SA et al (2006) Ceph: a scalable, high-performance distrib-

uted file system. In: Proceedings of the 7th symposium on operat-

ing systems design and implementation, pp 307–320

 5. Peters AJ, Sindrilaru EA, Adde G (2015) EOS as the present

and future solution for data storage at CERN. J Phys Conf Ser

664(4):042042

 6. QuarkDB—a highly available datastore. https:// github. com/ gbitz

es/ Quark DB. Accessed 1 May 2021

 7. Weil SA et al (2007) Rados: a scalable, reliable storage service for

petabyte-scale storage clusters. In: Proceedings of the 2nd inter-

national workshop on Petascale data storage: held in conjunction

with Supercomputing’07, pp 35–44

 8. Weil SA et al (2006) CRUSH: controlled, scalable, decentralized

placement of replicated data. In: SC’06: Proceedings of the 2006

ACM/IEEE conference on supercomputing, pp 31–31

 9. Yoo Andy B, Jette Morris A, Grondona Mark (2003) Slurm: sim-

ple linux utility for resource management. In: Workshop on job

scheduling strategies for parallel processing, pp 44–60

 10. Sefraoui O, Aissaoui M, Eleuldj M (2012) OpenStack: toward

an open-source solution for cloud computing. Int J Comput Appl

55(3):38–42

 11. Withers A et al (2018) SciTokens: capability-based secure access

to remote scientific data. In: Proceedings of the practice and expe-

rience on advanced research computing, pp 1–8

 12. Aguado CA et al (2020) CERN’s identity and access management:

a journey to open source. In: EPJ Web of Conferences, vol. 245, p

03012

 13. Dorigo A et al (2005) XROOTD-A highly scalable architecture

for data access. WSEAS Trans Comput 1(4.3):348–353

 14. Github Ceph Pull Request: mds: update defaults for recall configs.

https:// github. com/ ceph/ ceph/ pull/ 38574. Accessed 1 May 2021

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://www.snia.org/education/whitepapers
https://www.snia.org/education/whitepapers
https://github.com/gbitzes/QuarkDB
https://github.com/gbitzes/QuarkDB
https://github.com/ceph/ceph/pull/38574

	Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers
	Abstract
	Introduction
	CephFS and Its Application at CERN
	Introduction to EOS

	System Architecture
	Ceph Backend Storage
	EOS Frontend Server

	Testing and Results
	Benchmarking Setup
	Results
	Tuning Ceph

	Conclusions and Discussion
	References

