
Evaluating Clusterings by Estimating

Clarity

by

John Samuel Whissell

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2012

c© John Samuel Whissell 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis I examine clustering evaluation, with a subfocus on text clusterings specif-

ically. The principal work of this thesis is the development, analysis, and testing of a new

internal clustering quality measure called informativeness.

I begin by reviewing clustering in general. I then review current clustering quality mea-

sures, accompanying this with an in-depth discussion of many of the important properties

one needs to understand about such measures. This is followed by extensive document

clustering experiments that show problems with standard clustering evaluation practices.

I then develop informativeness, my new internal clustering quality measure for esti-

mating the clarity of clusterings. I show that informativeness, which uses classification

accuracy as a proxy for human assessment of clusterings, is both theoretically sensible and

works empirically. I present a generalization of informativeness that leverages external

clustering quality measures. I also show its use in a realistic application: email spam fil-

tering. I show that informativeness can be used to select clusterings which lead to superior

spam filters when few true labels are available.

I conclude this thesis with a discussion of clustering evaluation in general, informative-

ness, and the directions I believe clustering evaluation research should take in the future.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Charlie Clarke, for providing guidance in this

work, and for helping me to become a better researcher in general. I would also like to

thank Dr. Chyrsanne DiMarco for being there at the beginning of this work. Finally, I

would like to thank all my friends and family for the numerous discussions we had relating

to this work, and more importantly, for keeping me sane while perusing it, and other things,

over the years.

iv

Dedication

This thesis is dedicated to my daughter Melissa. She reminds me every day, just by

being herself, that richness does not come from coins, and that meaning does not have to

come from moving mountains.

v

Contents

List of Tables xiii

List of Figures xvi

1 Introduction 1

2 Clustering Survey 7

2.1 Clustering Structures . 8

2.1.1 Hard versus Soft Clustering . 8

2.1.2 Hierarchical Clustering . 11

2.1.3 Generative versus Discriminative Clustering 12

2.2 Data Representations . 13

2.2.1 Feature Selection . 16

2.2.2 Dimensionality Reduction . 20

2.2.3 Feature Weighting . 23

2.2.4 Text Dataset Representations . 24

vi

2.3 Similarity/Dissimilarity Measures . 26

2.4 Algorithms . 31

2.4.1 Center-Based Clustering . 32

2.4.2 Linkage-Based Clustering . 34

2.4.3 Subspace Clustering . 36

2.4.4 Density-Based Clustering . 38

2.4.5 Matrix Factorization/Approximation Clustering 39

2.4.6 Model-Based Clustering . 43

2.4.7 Information Theoretic Clustering 45

2.4.8 Maximum Margin Clustering . 47

3 Clustering Quality Measures 50

3.1 Internal Clustering Quality Measures . 51

3.1.1 Within-Cluster Scatter Measures 52

3.1.2 Between-Cluster Scatter Measures 53

3.1.3 Measures Using all Within and Between-Cluster Distances 53

3.1.4 Measures using Selective Distances 55

3.1.5 Model-fitting Measures . 58

3.2 External Clustering Quality Measures . 59

3.2.1 Mutual Information Based Measures 60

3.2.2 Pair-Counting Measures . 64

vii

3.2.3 Matching Measures . 66

4 Properties of Clustering Quality Measures 71

4.1 Concept . 72

4.2 Consistency . 73

4.3 Fullness . 76

4.4 Homogeneity and Completeness . 77

4.5 Noise Tolerance . 79

4.6 Number of Clusters in an Optimal Clustering 81

4.7 Scale Invariance . 83

4.8 Random Chance . 84

4.9 Richness . 89

4.10 Time Complexity . 89

5 Improving Document Clustering using Okapi BM25 Feature Weighting 92

5.1 Preliminaries . 94

5.2 Experimental Setup . 97

5.2.1 Datasets . 97

5.2.2 Clustering Algorithms . 99

5.2.3 Clustering Quality Measures . 101

5.3 Effects of Document Feature Weightings 101

viii

5.3.1 Effect of tf-idf on Document Clustering 102

5.3.2 Effect of tf and binary weighting on Document Clustering 107

5.4 BM25 based Feature Weighting . 108

5.4.1 Parameter Estimation . 110

5.4.2 Results . 111

5.5 Summary and Discussion . 114

6 Clustering Clarity 119

6.1 Informativeness . 120

6.2 Generalizing Informativeness . 135

6.3 Synthetic Dataset Experiment . 135

6.3.1 Datasets . 136

6.3.2 Clustering Algorithms . 137

6.3.3 Competing Evaluation Measures . 138

6.3.4 Classification Algorithms . 139

6.3.5 Analysis . 139

6.4 Real Dataset Experiment . 146

6.4.1 Datasets . 146

6.4.2 Analysis . 147

ix

7 A Spam Filtering Application 151

7.1 Spam Filtering and Clustering . 152

7.2 Clustering Email . 155

7.2.1 Datasets . 156

7.2.2 Clustering Algorithms . 157

7.2.3 Clustering Quality Measure . 157

7.2.4 Purity Experiment . 158

7.3 Spam Filtering using Clustering . 160

7.3.1 Algorithms . 160

7.3.2 Efficiency . 165

7.4 Spam Filtering Experiment . 167

7.5 Discussion . 175

8 Conclusion 177

References 180

x

List of Tables

2.1 Various clusterings of the dataset from Fig. 2.1(a). 9

3.1 Notation for the major kinds of pair-counts used in pair-counting ECQMs. 64

4.1 Properties of some of the clustering quality measures discussed in Chapter 3. 91

5.1 The datasets used in my experiments. 98

5.2 The clustering algorithms used in my document clustering experiments. . . 100

5.3 The percentage change in clustering quality measures when using tf-idf doc-

ument representations over tf, by dataset and overall. 102

5.4 The best algorithm for tf and tf-idf weighting on each dataset by each mea-

sure. Diff is the improvement in using the best tf-idf over the best tf algorithm.103

5.5 Improvements by clustering algorithms when using tf-idf over tf weighting. 103

5.6 Algorithmic Rankings by my clustering quality measures when using tf. . . 105

5.7 Algorithmic rankings by my clustering quality measures when using tf-idf. . 105

5.8 Kendall’s τ correlation between all the rankings in Table 5.6 and Table 5.7. 105

xi

5.9 The best algorithm for tf and binary weighting on each dataset by each

measure. Diff is the improvement in using the best binary algorithm over

the best tf algorithm. 108

5.10 Improvement by BM25-tf over tf. 112

5.11 Improvement by BM25-tf-idf over tf-idf. 112

5.12 Improvements by algorithms when using BM25-tf over tf weighting. 112

5.13 Improvements by algorithms when using BM25-tf-idf over tf-idf weighting. 113

5.14 Improvements by algorithms when using BM25-tf-idf over BM25-tf weighting.114

6.1 Kendall’s τ -b correlations between rankings of the synthetic dataset clus-

terings by the ICQMs and the rankings made by NMI. τ ranges from -1

(anti-correlated) to 1 (perfectly correlated), 0 is uncorrelated. The higher

the τ , the better the measure was performing. All results are significant

with p ∼ 0. 140

6.2 Estimations of the number of clusters in the synthetic datasets by the ICQMs.149

6.3 The datasets used in my real dataset experiment. 150

6.4 Kendall’s τ -b correlations between rankings of the real dataset clusterings

by the ICQMs and the rankings made by NMI. τ ranges from -1 (anti-

correlated) to 1 (perfectly correlated), 0 is uncorrelated. The higher the τ ,

the better the measure was performing. All results are significant with p ∼ 0.150

7.1 The clustering algorithms used in my spam experiments. 157

xii

7.2 Average PQ values obtained by the five clustering algorithms on each dataset

as k varies. Random is the expected PQ from creating a clustering by

randomly assigning points into clusters. 158

7.3 Wilcoxon signed-rank test results between ICQMs’ paired ln(sk/bk) values

for TREC2005. − is not significant, > and < indicate a significance at

p = 0.05, where > indicates the row name had a higher (better) mean, and

< indicates the opposite. << and >> are similar, but with p = 0.005. . . . 169

7.4 Wilcoxon signed-rank test results between ICQMs’ paired ln(sk/bk) values

for CEAS2005. See Table 7.3 for the notation used. 172

7.5 Wilcoxon signed-rank test results between CMSF and FCSF’s paired ln(sk/bk)

values for TREC2005 and CEAS2008. The name entry at (row,column) in-

dicates which of the two methods, if any, was significantly better than the

other with p = 0.05. 174

xiii

List of Figures

1.1 Datsets containing various structures. (a) is two Gaussians. (b) is 6 unevenly

spaced Gaussians. (c) is two ring clusters, and (d) is two ring clusters joined

by a bridge. 4

2.1 (a) is a toy dataset of 9 points. (b) is a hard and disjoint clustering of (a).

(c) is a hard but non-disjoint clustering (a). 9

2.2 A hierarchical clustering of the dataset from Fig. 2.1(a). 11

2.3 (a) is a dataset represented as a 4x3 matrix. (b) is the upper triangular

portion of (a)’s similarity matrix using cosine similarity (see Section 2.3 for

a definition of cosine similarity). (c) is (a) represented as a graph. (d) is (b)

represented as a graph. Edge weights are omitted in these figures. 14

4.1 A consistent change to a 3-clustering. 74

4.2 A single cluster membership change in a 2-clustering that causes a large

change in relative margin’s quality assessment of the clustering. 80

5.1 Percentages of r-nearest neighbors (using cosine) that share the same label

for each dataset. 117

xiv

5.2 The effect on my clustering quality measures when using UPGMA clustering

on the BM25-tf-idf document representation while varying k1 from 0 to 100.

k is the number of clusters in the clusterings. 118

6.1 A sample of a population. 121

6.2 Three clusterings of the sample in Fig. 6.1 with high clarity. The first

clustering is by color, the second by number of edges, and the third by shape.121

6.3 A clustering of the objects in Fig. 6.1 with low clarity. 122

6.4 Maximum NA on a binary clustering with perfect classification accuracy. . 124

6.5 Using MLE p(ci) values to obtain a binary encoding. (a) is the set of cluster

ids for a clustering. (b) gives the binary encoding sizes of the cluster ids

that we obtain from using Eq. 6.4, as well as an example of a real encoding

that uses those sizes. 125

6.6 Evaluating AI. (a) is the predicted cluster ids labels for clustering from

Fig. 6.5 for some classifier type f . Incorrect predicted labels are in boxes.

(b) is the resulting AI. Log bases are 2 in this example. 126

6.7 A two-clustering of a 2GAUSS sample that has the correct number of clus-

ters (two) but it entirely unrelated to the correct two-clustering. 142

6.8 A five-clustering and a ten-clustering, each of which was selected by in-

formativeness measures as containing the optimal number of clusters for a

different sample of the RINGS dataset. 144

6.9 An example of the two-clusterings for the 6GAUSS dataset selected by in-

formativeness as containing the optimal number of clusters. 145

xv

6.10 A seven-clustering for the 6GAUSS dataset selected by Davies-Bouldin as

containing the optimal number of clusters. Cluster 7 is a singleton cluster.

Further, the boundaries between clusters 1, 3, and 4 are unclear. 145

7.1 A graphical representation of the process my two new spam filtering methods

follow. 160

7.2 CMSF and FCSF results for TREC2005. 170

7.3 CMSF and FCSF results for CEAS2008. 171

7.4 Comparison of CMSF and FCSF when using informativeness for TREC2005

and CEAS2008. 174

xvi

Chapter 1

Introduction

In an widely cited clustering survey Jain et al. [88] defined clustering as the unsupervised

classification of patterns (observations, data items, or feature vectors) into groups (clus-

ters). This simplistic definition, while accurate in a technical sense, belies not only the

inherent complexity of clustering, but the staggering array of applications it has. The con-

tributions I present to the expansive field of clustering research that are contained within

this thesis are:

1. A survey of clustering. This includes discussions on clustering outputs, features,

similarity/distance measures, and many varieties of clustering algorithms.

2. A survey of common clustering quality measures, both internal and external.

3. An in-depth discussion of many important properties of clustering quality measures

and how common clustering quality measures behave with respect to them.

4. An extensive document clustering experiment that investigates feature weighting and

evaluation in document clustering.

1

5. The design and validation of a new internal clustering quality measure that is aimed

at estimating the clarity of a clustering. This is the primary work of this thesis,

and is discussed below. I also present a generalization of my new internal clustering

quality measure that leverages external clustering quality measures.

6. The application of the new clustering quality measure to a real problem domain:

email spam filtering.

Considering clusterings to be on independent and identically distributed samples of

populations, I define the clarity of a clustering to be how well a human expert in the data

type of its population can assign previously unseen members of that population to the most

appropriate cluster in the clustering (e.g., botanists can judge the clarity of clusterings of

plants, computer scientists can judge the clarity of clusterings of computer science journal

publications). The estimation of clarity that I design is fully automatic and aids in the

detection of meaningful and useful clusterings and is highly general.

The subject of evaluating clusterings, sometimes referred to as cluster analysis or clus-

ter validation, has quite possibly received as much attention as the design of clustering

algorithms themselves, and rightly so. Electronically accessible datasets (such as Web

pages, news articles, consumer marketing data, protein sequences/structures, and geologi-

cal information) are growing in both number and size. This growth has been accompanied

by an increased need for efficient and effective machine learning algorithms that can make

use of the datasets in important tasks such as Web search, document routing, directed

advertising, and protein structure prediction. In order to make use of clustering in these

tasks, and others, it is necessary to be able to identity when a clustering is good; thus the

subject of how to evaluate clusterings is receiving ever increasing attention.

2

It is generally accepted that the ideal way to evaluate a clustering is situational human

assessment. If a clustering helps with whatever an individual wants to use it for, then it

is a good clustering, for them. In typical clustering literature, this assessment is provided

indirectly via comparing a clustering to a gold standard generated by a human. Judging

clusterings situationally with humans is sensible as it focuses on a clustering’s actual uses as

opposed to abstract notions of clustering goodness, but it is often not practical for various

reasons. Among its notable issues are inconsistent evaluation (both between people and

by just a single individual); uncertainty of what is actually sought (as in exploratory data

analysis); and infeasible amounts of time being required to select good clusterings from

among many. Problems like these have resulted in the profusion of internal clustering

quality measures, i.e., ones that use no human input about what is expected, hereafter

referred to as ICQMs, being used to aid people in selecting good clusterings.

ICQMs have their own issues. They usually focus on specific mathematical notions of

what makes a clustering good (within-cluster scatter, the margin between clusters, etc.).

Such notions, while allowing the measures to be computed easily, have been found lacking

in terms of generality; one can always find clusterings, applications, and/or datasets for

which a particular ICQM is not appropriate. For example, consider Fig. 1. With respect

to assessing the true clustering of each dataset as high quality; within-cluster scatter is

a useful measure for datasets (a) and (b) only; a margin between clusters is most useful

for (a) and (c); while (d) requires some path-based measure in order to handle the small

bridge between the clusters.

Recent theoretical works on clustering evaluation have outlined disparities between IC-

QMs, highlighting further problems with them. For example, Ackerman and Ben-David [2]

show that some commonly accepted notions of clustering quality are in fact pairwise in-

3

(a) (b)

(c) (d)

Figure 1.1: Datsets containing various structures. (a) is two Gaussians. (b) is 6 unevenly
spaced Gaussians. (c) is two ring clusters, and (d) is two ring clusters joined by a bridge.

consistent despite seeming similar. The arbitrary number of clustering structures possible,

combined with the lack of agreement between ICQMs on what an ideal clustering is, makes

one highly skeptical as to if a single ICQM for assessing universal clustering goodness can

exist.

Given the above, I do not attempt to design an ICQM that measures universal clustering

goodness in this thesis; rather I design an ICQM for estimating the clarity of clustering,

where clarity is as I have defined previously. I believe the major appeal of clarity is its

4

generality; I argue that, from its definition, it is something we want every clustering to

have, independent of the particular dataset it was made on or its intended application.

This is in contrast to other clustering quality notions, which are often abstract and may

or may not be useful on a particular clustering, application, and/or dataset.

The ICQM I design for estimating clustering clarity, which I call informativeness, lever-

ages classification. I will show empirically that informativeness is more robust than several

other common ICQMs. An example of an application of informativeness that I will discuss

in this thesis is the design of an email spam filter that uses as few human labels as possible

while simultaneously being as effective as possible. I will show that using informativeness

to select which among many potential clusterings to use in training a spam filter in this

context leads to high quality spam filters.

The rest of this thesis is organized as follows. I begin by presenting a survey of clustering

in Chapter 2. While covering things from a general perspective in the survey, I will also

note how the topics discussed pertain to text specifically. Clustering output structures,

similarity/dissimilarity measures, features, and algorithms are discussed in the chapter.

Chapter 3 focuses on current clustering quality measures. I divide clustering quality

measures into internal clustering quality measures (ICQMs) and external clustering quality

measures (ECQMs). I present a large variety of both categories of quality measures.

In Chapter 4, I investigate properties of clustering quality measures. I discuss the

majority of the important properties identified in previous work and some refinements of

these properties that I design here. In addition, I investigate some less discussed/formalized

aspects of clustering quality measures.

5

In Chapter 5, I present extensive document clustering experiments. I show that while

some clustering algorithms/feature weightings are better for document clustering on av-

erage, there is a large amount of disagreement between how ECQMs rank documents

clusterings, highlighting the disparity between what clustering quality measures are in fact

measuring.

Chapter 6 deals with informativeness, my new ICQM for estimating clustering clarity.

I use classification as the basis for estimating clarity in informativeness. I will discuss the

merits of using informativeness in terms of the ICQM properties discussed in Chapter 4.

I present a generalization of informativeness. I also present experiments on synthetic and

real datasets that show that informativeness and some implementations of its generalized

form are a robust ICQMs—they can detect when good clusterings have been found for a

wide variety of datasets.

In Chapter 7 I present informativeness in a realistic application: email spam filtering.

More specifically, I look at using clustering to minimize the amount of user labelings

required to produce an effective email spam filter. I show that using informativeness to

select which clustering to use in the spam filter training process I present is superior to

using other ICQMs in the same process, as well as being superior to simply training a spam

filter on random emails.

Chapter 8 is my conclusion and discussion of future work.

6

Chapter 2

Clustering Survey

The survey I present here covers things from a general perspective as well as with re-

spect to text clustering specifically. I begin by presenting the various structures clustering

algorithms produce along with their associated terminology. Dataset representations in

clustering, along with feature selection, weighting, and dimensionality reduction are dis-

cussed in Section 2.2. Section 2.3 discusses the similarity/distance measures typically used

by clustering algorithms (Euclidean distance, cosine, KL-Divergence, etc.).

Descriptions of specific clustering algorithms are given in Section 2.4. The algorithms

are organized by the broad concept they use for clustering (center-based, linkage, etc.). Due

to the sheer number of clustering algorithms, I cannot discuss every clustering algorithm

(or even most). Instead, for each concept class, I cover some of its members that are more

notable and/or have been applied to text clustering specifically. It should be noted that my

categorization system of clustering algorithms presented in Section 2.4 is not the only means

of organizing clustering algorithms. For example, one might organize clustering algorithms

by their output as discussed in Section 2.1.1), or by the axioms that are assured by each

7

clustering algorithm. Chapter 4 discusses many axioms, but they are for clustering quality

measures and not clustering algorithms; for clustering algorithm axioms readers should

consult works such as the one by Kleinberg [95]).

2.1 Clustering Structures

One of the principal properties of a clustering algorithm is the structure of the clustering it

outputs. Depending on the intended function of a clustering, a user may want the clustering

in different forms. For example, a tree-like clustering, such as that supplied by DMOZ1

for Web pages, might enable easy browsing and interpretation by human users, or a single

partition of a dataset might be required so one can create actual physical groups of objects,

etc. In the following sections I describe the various structures clustering algorithms create

along with their respective terminology. It should be noted that some literature surveys of

clustering algorithms organize their algorithms by their output structures (as Jain et al. [88]

do partly). This is a popular choice as output structures are easily understandable to those

both familiar and unfamiliar with clustering research. However, such an organization does

not accurately reflect the different concepts that algorithms use while clustering, so instead

I discuss output structures here and organize individual algorithms later on by concept.

2.1.1 Hard versus Soft Clustering

Let X be a dataset, and xi be the ith object of that dataset. A hard clustering algorithm C

takes an X and zero or more additional parameters, and produces a set of subsets of X. I

denote the application of C to X as C(X, ∗), where ∗ represents the additional parameters

1www.dmoz.org

8

(separated by commas), and define C(X, ∗) = (c1, . . . , ck), ∀ci∈C(X,∗)ci ⊆ X. C(X, ∗) is

a hard clustering of X (typically referred to as a clustering unless there is a chance of

confusion with other forms of clustering), and each ci ∈ C(X, ∗) is referred to as a cluster.

A k-clustering (or k-way clustering) of X is any clustering of X with k clusters. A cluster

with only one object in it is referred to as a singleton. If, for a given C,
⋂

C(X,∗) = φ

for any X and ∗, C is also said to be a disjoint clustering algorithm—one that produces

clusters with no overlapping membership. Fig. 2.1 gives an example of hard disjoint and

non-disjoint clusterings of a dataset. For a given C(X, ∗), an xi ∈ X that is not a member

of a cluster in C(X, ∗) is referred to as an outlier of C.

(a) (b) (c)

Figure 2.1: (a) is a toy dataset of 9 points. (b) is a hard and disjoint clustering of (a). (c)
is a hard but non-disjoint clustering (a).

Table 2.1: Various clusterings of the dataset from Fig. 2.1(a).
Hard/Disjoint Hard Soft

c1 = (a, b, c) c1 = (a, b, c, g) c1 = ((a, 0.9), (b, 0.85), (c, 0.55), (d, 0.2),
c2 = (d, e, f) c2 = (d, e, f) (e, 0.1), (f, 0.05), (g, 0.4), (h, 0.2), (i, 0.1))
c3 = (g, h, i) c3 = (c, g, h, i) c2 = ((a, 0.025), (b, 0.05), (c, 0.05), (d, 0.775),

(e, 0.875), (f, 0.925), (g, 0.05), (h, 0.05), (i, 0.05))
c3 = ((a, 0.075), (b, 0.1), (c, 0.4), (d, 0.025),

(e, 0.025), (f, 0.025), (g, 0.55), (h, 0.75), (i, 0.85))

A soft clustering algorithm C takes an X and zero or more additional parameters, and

produces a set of sets (c1, . . . , ck). I denote the application of C in a manner identical to

that of hard clustering algorithms, with C(X, ∗) being referred to as a soft (probabilistic)

9

clustering. As with hard clustering algorithms, each ci ∈ C(X, ∗) is referred to as a cluster.

In this case, though, each ci is a set of tuples (xj, p(xj)), where xj ∈ X and p(xj) is

a measure of how strongly xj belongs to the cluster ci. Table 2.1 gives an example of

hard, hard/disjoint, and soft clusterings of the dataset in Fig. 2.1. The definition of an

outlier for a soft clustering is somewhat ambiguous and may be arbitrarily defined. A soft

clustering may be hardened by assigning each xj exclusively to the ci that has a maximum

p(xj), resulting in a hard clustering (for example, in Table 2.1 hardening the soft clustering

produces the hard/disjoint clustering). Hardening is typically done to facilitate the use of

non-soft clustering quality measures, to compare a set of clusterings where some are soft

and others are hard, and also when applications require hard clusterings.

Often the clustering resulting from the application of a soft clustering algorithm is a

mixture model—a set of distributions where each cluster is one distribution in the mixture.

Together these distributions are taken to have created the dataset. In such a situation,

p(xj) for cluster ci is the probability that ci generated xj. This probability is derived from

properties of the distribution tied to ci.

Unfortunately, it is somewhat common in clustering to erroneously refer to many forms

of clustering output as partitional. Because of this, some works use the term partitional

with quantifiers. A hard, or crisp partition refers to a clustering that is a true partition in

the mathematical sense (hard, disjoint), while a soft or fuzzy partition may refer to any of

the other partition-like structures one may obtain.

10

2.1.2 Hierarchical Clustering

A hard clustering algorithm (or much less commonly, a soft clustering algorithm) may

be hierarchical in nature. In such a case, C(X, ∗) creates a recursive tree-like structure

where each cluster contains a set of clusters itself, with each cluster being a subset of its

containing cluster. Fig. 2.2 gives an example of a hierarchical clustering.

Figure 2.2: A hierarchical clustering of the dataset from Fig. 2.1(a).

Hierarchical clustering algorithms (and clusterings) have their own terms associated

with them. The tree-like structure of clusters produced (as in Fig. 2.2) is referred to as a

dendrogram. The terms parent, child, siblings, descendent, and ascendent have their typical

tree meanings for such dendrograms. More than one root may be present in the dendro-

gram. Likewise, the leaves of the dendrogram need not be singleton clusters. The arity (i.e.,

number of possible children per cluster) in the dendrogram is variable and based on the

individual clustering algorithm used to generate it, although it is overwhelmingly common

for such dendrograms to have binary arity. The large majority of hierarchical clustering

algorithms ensure the following: 1) children are subsets of their parents; 2) the union of

all the children for a given cluster is equal to the cluster itself; and 3) all siblings have

empty intersections. These properties allow one to create true partitionings of a dataset

by cutting off all the descendants of any number of clusters in the dendrogram and taking

11

all the remaining leaves of the dendrogram as a partitional clustering. For example, in

Fig. 2.2 we may cut the children of (a, b, c) and (d, e, f) off, giving us a partitional cluster-

ing (represented by the leaves) of ((a, b, c), (d, e, f), (g), (h), (i)). Unless noted otherwise,

when I refer to a specific clustering algorithm as hierarchial, it may be taken to have the

three properties mentioned above.

Hierarchical clustering algorithms typically produce their dendrograms in one of two

ways: bottom-up or top-down. A bottom-up algorithm, also referred to as an agglomerative

algorithm, usually begins with singletons clusters and merges them into progressively larger

clusters [141, 88, etc.]. A top-down, or divisive algorithm, usually begins with everything

in a single cluster and splits the clusters iteratively [125, 145, etc.]. Sometimes bottom-up

and top-down algorithms begin with preclustered data. This kind of approach is used in

Zhao and Karypis’ constrained agglomerative clustering algorithms [172] and by Fung et

al. [59]. Rarely, a hierarchical clustering algorithm may have both bottom-up and top-down

aspects to it.

2.1.3 Generative versus Discriminative Clustering

Clustering algorithms may be generative or discriminative. A generative clustering al-

gorithm produces a clustering that is a mixture model. Mixture models, as discussed

previously, describe how datasets might have been generated. A discriminative clustering

algorithm is one that simply tells you which points are or are not in the same cluster.

Mixture model clusterings may be converted to discriminative clusterings via hardening.

Among their benefits are the ability to determine membership of previously unseen objects

in a principled way (using each distribution’s probability density function) and the ability

12

to apply information criterion ICQMs to approaches to evaluate them. However, there

is often a high computational cost for generative clustering algorithms relative to their

discriminative counterparts; this becomes a noticeable problem with many of the larger

datasets used in current clustering research. Significant effort has gone in to speeding

up such generative algorithms. For example, Ordonez and Omiecinski [121] note EM’s

(the most well cited generative clustering algorithm) slowness and design FREM (Fast and

Robust EM) to compensate for this problem (among other issues). Online EM [118] is

another approach that speeds up EM.

As a side note, some clustering algorithms use generative approaches while clustering

despite producing hard clusterings in their final results [70, 125, etc.].

2.2 Data Representations

All clustering algorithms require at least one parameter as input, the representation of X,

the dataset to be clustered. The majority of clustering algorithms (and notably, a majority

of clustering algorithms used on text clustering) are based around X being represented as

numeric valued vectors, that is to say, xi = (xi1, xi2, . . . , xim), where each xij ∈ R (see

Fig. 2.3(a)). m is referred to as the dimensionality of X, with each index of the vectors

of X being referred to as a feature or dimension. This formulation makes X equivalent to

an n by m matrix, with rows being objects and columns being features. In Section 2.2.4 I

will cover representations of text specifically.

Although categorical features are somewhat common in real datasets and some cluster-

ing algorithms operate directly on them [14, 81, 64, etc.], there are many more clustering

algorithms that operate exclusively on numeric feature vectors. This is possibly due to

13

the ability to convert a categorical feature value to a numeric vector. Let CA be some

categorical feature with possible values ca1, ca2, . . . cat, and let ca be a particular instance

of feature CA. We can represent ca as an ordered numeric vector (ca∗1, ca
∗
2, . . . ca

∗
t), where

ca∗j = 1 if ca = caj and 0 otherwise (this was done by Ralambondrainy [127] to apply

k-means to categorical data). This allows for the conversion of representations containing

any combination of numeric and categorical features to an entirely numeric vector.

(a) (b) (c) (d)

Figure 2.3: (a) is a dataset represented as a 4x3 matrix. (b) is the upper triangular portion
of (a)’s similarity matrix using cosine similarity (see Section 2.3 for a definition of cosine
similarity). (c) is (a) represented as a graph. (d) is (b) represented as a graph. Edge
weights are omitted in these figures.

Some clustering algorithms use an n by n real-valued matrix called a similarity matrix;

where the value at i, j is the similarity of xi and xj (this similarity value is generated from

the objects’ base representations, Fig. 2.3(b) gives an example). n by n dissimilarity or

distance matrices are also sometimes used by clustering algorithms, where such matrices

contain dissimilarities and distances respectively, but I omit further discussion of these for

now. Similarity matrices are particularly useful in that any clustering algorithm based on

them, such as spectral approaches [40, 119, 139, etc.], may be applied to anyX regardless of

its object representations, be they vectors or other structures (such as syntactic parsings of

natural language), as long as there exists a definition of similarity between objects with such

14

representations. Many clustering algorithms [38, 76, 119, 139, 162, etc.] explicitly exploit

the matrix nature of their input (either object by object or object by feature) to produce

clusterings (usually by decomposing said matrix into components and/or approximating

it, see Section 2.4).

One may phrase object by feature and object by object matrices in graph terms. The

object by feature matrix may be thought of as a bipartite graph (as shown in Fig. 2.3(c)).

A bipartite graph is any graph G = (V,E), where V is the vertices and E is the set of

edges between the vertices, such that V may be divided in to two sets V1 and V2 such

that there is no edge within V1 and V2, but there are edges between every element of V1

and V2. In this case, V1 is the set of objects, V2 is the set of features, and the weights for

the edges between the sets are simply the corresponding dimensional values of the object

by dimension matrix. A similarity matrix is representable as a general graph G = (V,E),

where V is the set of objects in X, and the value for the edge between xi and xj is

the similarity between xi and xj. Typically, one considers there to be no edge between

xi and xj if they have the minimum similarity possible (usually 0). Beyond the ease of

comprehending graph structures, phrasing clustering inputs as graphs has proven to be

useful in terms of providing theoretical bases for certain clustering algorithms [119, 139,

etc.].

While similarity matrices and numeric feature vectors are the norm in clustering re-

search, they are by no means the only data representations used by clustering algorithms.

Often, structural data simply has its structure stripped to produce feature vectors (as is

almost universally done with text with the famous bags of words model that treats any

text as an unordered, unstructured sequence of tokens). Sometimes, this loss of structure

is harmful enough that clustering meaningfully becomes extremely difficult, in other situ-

15

ations it is simply not possible to remove the structure in a sensible way. In these cases, it

is preferable (or required) to design algorithms that work on the structured data directly.

Notable examples of structured data include social networks [154], purchasing records [65],

and ranked results (such as search engine result pages from Google).

Features may be clustered like objects by transposing X and treating it like a standard

dataset. This fact is exploited by co-clustering [72] (also known as biclustering, direct

clustering, and more than a few other names) algorithms, where both objects and features

are clustered in an attempt to yield superior clusterings [12, 30, 40, 140, etc.]. The notion

of co-clustering has been extended to multi-way clustering [17], where one is clustering

objects that have multiple feature sets that are not amenable to being merged into a single

vector. For example, a Web page consists of words, images, hyperlinks, etc., and it does

not necessarily make the most sense to attempt to represent all these feature sets together

in a single numeric vector. The multi-way clustering approach taken by Bekkerman et

al. [17] was to combine the various feature sets in a pairwise fashion and derive an overall

clustering of the objects from the pairs. Multi-way clustering represents a very difficult

and interesting problem with much potential for future research.

2.2.1 Feature Selection

Many clustering algorithms have significant computational costs associated with them. For

instance, any clustering algorithm that uses a full similarity matrix of a dataset usually

requires O(n2m) time at least, where n is the number of data items and m is the number

of dimensions, without even considering the actual clustering process. Some forms of

data have enormous standard representations. For example, with text clustering a dataset

might be a document by word matrix. As the number of distinct words for any non-trivial

16

collection of documents tends to be rather large, some way of reducing the size of such

a dataset is desirable. Gene datasets are another example of a dataset type associated

with large numbers of features. Beyond just reducing the size of a dataset for speed

reasons, an effect called the curse of dimensionality [19] occurs as m grows larger. The

curse of dimensionality states that as the number of dimensions in a feature space grows

larger, all points in the space approach being equidistant, resulting in distance measures

such as those used in clustering becoming less meaningful. A corollary of this is that

clustering itself becomes more difficult as m increases. Although some work indicates

distance measures do not necessarily become meaningless as m increases [78], the curse

of dimensionality is visible often enough that it provides another strong motive to reduce

m when possible. Feature selection and dimensionality reduction are two techniques that

seek to map a larger m dimensioned space to a smaller m∗ one, where m ≫ m∗, such

that the ‘important’ properties of m are preserved. I discuss feature selection here, and

dimensionality reduction in the next subsection.

Due to a lack of true labels, feature selection in clustering is a noticeably more chal-

lenging task than in supervised learning tasks such as classification. Indeed, Liu and Yu’s

survey of feature selection techniques [105] shows that one has limited choices for clustering

feature selection. Nevertheless, the basic feature selection paradigm for clustering is the

same as for other tasks, usually taking a four stage approach:

1. Generate candidate feature sets (subsets of m).

2. Evaluate the goodness of these feature sets.

3. See if a stopping criterion has been reached, if not, go to Step 1.

4. Validate the selected feature set.

17

Given that there are 2m possible feature subsets, a brute force search using all possible

feature subsets is clearly not an option for any reasonably large m. Although methods

exist to do complete searches in less than O(2m) time [117, etc.], the cost of such searches

is still very high, leading to the use of sequential and random search. Sequential search

approaches are greedy hill climbing techniques that iteratively add and/or remove features

to each candidate feature set. Typically, the best feature sets are kept for the next iteration

while others are pruned, and the algorithm terminates when no meaningful improvement

is obtainable on any of the candidate feature sets. Sequential searches are fast and easy

to implement, and are also the feature selection search method of choice in clustering.

Random searching (such as simulated annealing [52]) is usually performed exactly like

sequential search, except the initial candidate feature sets may be random, and/or the

manner in which potential expansions of current feature sets are investigated is random

also. The randomness aspect helps escape local maxima problems, and may also result in

a faster algorithm, but it also results in non-deterministic final feature sets in general.

Evaluating the goodness of a candidate feature subset is particularly challenging with-

out true labels. Various concepts of how to evaluate goodness in this context include min-

imizing redundancy of features by replacing groups of highly correlated inter-correlated

features with a smaller number of features [113]; deriving feature links between objects in

the full feature set and selecting a feature subset that maintains the pattern of links [36];

attempting to find highly distinct feature sets [94]; and others.

As a final note; the principal way in which feature selection algorithms are categorized

is a three way split between wrapper, filter, and hybrid models. A filter model [36, 113, etc.]

iteratively evaluates feature sets for goodness using some measure on the feature subsets

directly; while a wrapper model [94, etc.] evaluates feature sets by applying a data mining

18

algorithm (in our case, clustering) using the feature sets and evaluating the quality of the

resulting structure. Hybrid approaches [79, 132, etc.] do both of these.

Feature selection in text clustering often does not involve any of the complicated ap-

proaches discussed above. Instead, it is most common to perform three very simple tech-

niques to reduce feature space size/increase feature quality (assuming the dataset is a

document by term matrix, with a document being any logical unit of text). The first

is the use of a stop word list, which is a list of common terms that are to be stripped

from the vector space. Typically, the stop word list contains words such as ‘a’, ‘the’, ‘to’,

‘but’, ‘for’, ‘it’, etc. Such words are seen as unhelpful in determining meaningful similari-

ties/differences in text (although this is not always the case in practice, results I obtained

when clustering Web queries [156] suggest that stop words can be useful in clustering).

The second technique is df (document frequency) pruning, in which terms that do not

occur in at least some threshold of documents are stripped from the vector space. The

notion behind this feature selection method is that, in clustering, one is looking for clusters

of at least reasonable size in a dataset; a term that occurs in almost no documents is unlikely

to provide a basis for such groups. Great care must taken in ensuring that a df threshold

is set leniently enough that it does not harm clustering results (low df, but not too low,

is generally viewed as useful, see Section 2.2.3). Often, huge reductions in the size of a

feature space can be obtained by using even a very lenient df threshold (2-4) because text

usually follows a Zipfian term distribution (many terms with low df and few terms with

high df).

The final technique involves simply selecting some kinds of features that one does not

want. For example, one might decide that any feature that is not solely composed of

alphanumeric characters be pruned from the feature space. Thus, for example, I might say

19

tags such as those in XML and HTML are not to be kept. As with df pruning, a significant

reduction in the size of a feature space can be obtained with this, although the potential

for losing information is, likewise, there.

2.2.2 Dimensionality Reduction

Although dimensionality reduction is sometimes referred to as a form of feature selection

and vice versa, it carries a very different implication. Whereas in feature selection one en-

visions simply selecting features from the set of those available, dimensionality reduction

involves the creation of conjugate features. In the resulting m∗ space produced by dimen-

sionality reduction, each feature is the combination of some number of features from m

and, moreover, each feature of m is often involved in more than one feature m∗. Note that

all the dimensionality reduction techniques discussed here are only applicable to datasets

represented either as object by feature matrices or similarity matrices, as the overwhelming

majority of research on dimensionality reduction is based on such matrices.

The classic version of dimensionality reduction is singular value decomposition (SVD).

In SVD, X is decomposed into three matrices, U , S, and V , such that X ∼ USV T (with T

indicating the transpose of a matrix). U is an n by p matrix, V is m by p matrix, and S is

a p by p diagonal matrix containing the singular values of X (typically ordered from least

to greatest), where 1 ≤ p ≤ min(n,m). For the matrix U , every dimension is orthogonal

(uncorrelated), and further each dimension is a combination of some dimensions in the

original space of X. The dimensions are ordered by decreasing amounts of the variance in

X’s features they account for, thus the first dimension is the most important, and the last

the least. A similar notion may be applied to V , except there, features and objects swap

places. The matrices produced by SVD have an interesting property; if we approximate

20

X as X∗, where X∗ = US∗V T and S∗ is S with all columns after the first m∗ zeroed

out, then ||X − X∗||F (the Frobenius norm) is minimized among all possible choices of

X∗ that are rank m∗. The Frobenius norm of a matrix Y that is n by m is defined as

||Y ||F =
√

∑n
i=1

∑m
j=1 Y

2
ij , thus ||X − X∗||F is how different X and X∗ are—a desirable

thing to minimize.

SVD is expensive, leading to approximation methods and partial computations. In a

landmark paper on applied dimensionality reduction, Deerwester et al. [38] used SVD on

a text dataset for an information retrieval task, coining their procedure Latent Semantic

Indexing/Analysis (LSI/LSA). In this procedure, a standard document by term matrix is

inverted and has SVD applied to it, after which an approximation of the matrix is computed

as X∗ = U∗S∗V ∗T . S∗ has the previously given definition, U∗ is the first m∗ columns of U ,

V ∗T is the first m∗ rows of V T , and X∗ is n by m∗ (this application of SVD is referred to as

truncated SVD). To find documents that are similar to queries, one can represent queries

as vectors and fold them in to the reduced space of X∗, after which standard similarity

measures can be used to find documents related to the query. More generally, one may

use any set of objects in LSI, as long as they can be represented as vectors, and perform

folding of new objects to find the previous objects that are most similar to the new objects

(allowing for operations such as classification, etc.). A staggering number of uses for LSI,

with clustering numbering among them, have been invented, and LSI has led directly to

other research such as Probabilistic Latent Semantic Indexing/Analysis (PLSI/PLSA) [76]

(which is also often used on text).

Principal Component Analysis (PCA) is another very common dimensionality reduc-

tion method that is closely linked with SVD. If one adjusts X so that the mean of

all features is zero, then the PCA of X is (XTU)T , where SVD(X) = USV T , as be-

21

fore (thus one may perform PCA using SVD, although other methods such as using co-

variance/eigendecomposition or expectation maximization are possible). Each column of

(XTU)T is orthogonal (uncorrelated) to the other columns of the matrix. As in SVD,

to achieve dimensionality reduction one trims the higher dimensions of (XTU)T as they

are less important. Interestingly, it has been shown that the individual principal compo-

nents of a dataset correspond to relaxed cluster membership indicators of k-means [47],

indicating that the k-means objective function and PCA are similar notions. One notable

limitation of PCA is that it assumes that objects of the dataset are linear combinations of

the principle components. This may be overcome by performing kernel PCA [136], which

involves mapping X to a larger dimensioned kernel space (as is done in non-linear support

vector machines) and then performing PCA in the kernel space.

Independent Component Analysis (ICA) [31] is much like PCA, except it produces com-

ponents that are independent, with independence being a stronger property than PCA’s

uncorrelated components. ICA is principally applied in signal processing, but it can be

used in clustering [23, etc.].

Eigendecomposition can be used as dimensionality reduction when clustering. How-

ever, because it requires square matrices, it is applied to modified similarity matrices and

not object by feature matrices. Most notably, it forms the basis of spectral clustering

algorithms [119, 139, etc.]. In eigendecomposition, a square matrix X is decomposed into

QEQ−1. Q is an n by n matrix where each column is referred to as an eigenvector (usually

with length normalized to 1), while E is an n by n diagonal matrix of eigenvalues. As

with SVD and PCA, lower dimensions of Q are more important. The approach taken by

spectral clustering methods is usually to generate a specialized similarity matrix called a

Laplacian (detailed in Section 2.4), perform eigendecomposition on it, and use only some

22

number of columns of Q (eigenvectors) to generate a clustering.

A trend in clustering is to apply dimensionality reduction dynamically as a dataset is

clustered [49, etc.]. Results of clustering algorithms based on this concept have been quite

encouraging as they appear to perform well relative to the standard procedure of applying

static dimensionality reduction to a dataset then clustering the reduced representation.

There are many avenues to explore with respect to dynamic dimensionality reduction,

both for clustering and other machine learning techniques.

While many other forms of dimensionality reduction exist, those described above are

the most common with respect to clustering. I summarize this subsection by noting two

things; firstly, there is more than sufficient research to conclude that clustering benefits

significantly from dimensionality reduction over a wide range of applications and datasets;

and secondly, dimensionality reduction of any kind, including when it is applied dynami-

cally, is very costly relative to the application of simple clustering algorithms. One may

think of dimensionality reduction as a tradeoff between quality and speed.

2.2.3 Feature Weighting

Often times, we have a notion that some features in a feature space are more important

than others, but we do not desire to simply remove the less important features (as in

feature selection) or transform the space (using dimensionality reduction). In such a case,

feature weighting is the operation of choice. Here the influence of features we deem are

important have increased impact on clustering results by being given increased weights in

the vectors of the dataset. For example, consider a dataset of objects with 4 features, each

ranging from 0 to 1. Let us say we know the first feature is the most important. Then

23

we might multiply the value of the first feature for each object by some number greater

than 1. As a result, when we are clustering using the measures detailed in Section 2.3,

the first feature will likely have a greater overall influence on the clustering result than

any other individual feature. Feature weighting is focused on improved clustering results,

and usually does not offer speed increases during clustering that come with reduced feature

spaces created by feature selection or dimensionality reduction. Because weighting methods

tend to be extremely domain specific, I only discuss text feature weighting in this thesis.

2.2.4 Text Dataset Representations

Although there are many distinct kinds of text datasets (Web pages, emails, scientific

abstracts, news articles, etc.), the vast majority are given the same common representation,

referred to as a ‘bag of words’ model, while clustering. In such a model the raw text (after

some preprocessing) of each object is treated as a sequence of tokens (with tokens often,

but not necessarily, being delimited by white spaces). The tokens are often subjected to a

stemmer which uses linguistic knowledge to conflate some different tokens to the same form.

For example, ‘run’, ‘runs’, and ‘running’ might all be stemmed to ‘run’. While there are

many varieties of stemmers, the most ubiquitous for English is the Porter stemmer [126]. I

refer to all the different kinds of tokens found in the dataset after the above process terms.

The order in which tokens occur within each object is discarded, resulting in a conceptual

‘bag of words’ for the object containing terms and how often they occurred. Note that

‘bag of terms’ would be more accurate to use here because tokenization defines the units

of text in the bag, allowing for non-word tokens, but bag of words is the standard in the

literature. It is straightforward to take all the bags of words for a dataset as a whole and

transform them into a document by term matrix X, where xij is the number of times term

24

j occurs in document i (the term frequency (tf) of j in i, denoted tfij for short). While it

is clear that this bag of words model strips all the structural information out of the text,

it is nonetheless the basis of most document clustering and produces reasonable results.

Typical practice in text clustering is to incorporate an inverse document frequency (idf)

feature weighting into the raw document by term matrix:

xij = tfij log(
n

nj

), (2.1)

where n is the number of documents in X, and nj is the number of documents in X that

contain term j. To avoid unfavorable biases based on different document lengths, it is also

a standard to make each document unit Euclidean length (||Xi||2 = 1) by setting each xij

as follows:

x
′

ij =
xij

√

m
∑

j=1

x2
ij

(2.2)

The majority of document clustering literature discusses using tf-idf weighting, mostly

with length normalization [8, 140, 145, 162, 80, 172, 173, etc.]. Less commonly, raw doc-

ument by term matrices, with and without length normalization, are used directly in

clustering algorithms [16, 38, 59, 76, etc.]. It is interesting to note that Eq. 2.1 has been

superseded in other fields of research which use text (such as Information Retrieval) by

better weighting functions, yet there is little indication of adoption/investigation of new

weights for text clustering. In Chapter 5, I will investigate this issue, showing that there

are better text weighting methods than simple tf-idf.

Before any weighting is done on the document by term matrix df pruning, stop word

lists, and general feature pruning are often applied. After weighting, dimensionality reduc-

25

tion is sometimes applied before clustering.

2.3 Similarity/Dissimilarity Measures

Every clustering algorithm is based, directly or indirectly, on some particular notion of

what makes individual pairs of objects similar/dissimilar. Although the exact method

in which pairwise similarities/dissimilarities are used to derive a clustering varies greatly

by the clustering algorithm, the similarity/dissimilarity measures themselves are usually

drawn from a small pool of well known measures, the most common of which I describe

here.

I denote a similarity measure between two objects as s, with s(xi, xj) being the simi-

larity between xi and xj; higher s(xi, xj) indicates xi and xj are more similar. I denote a

dissimilarity measure as d, with d(xi, xj) being the dissimilarity of xi and xj; lower d(xi, xj)

indicates higher similarity. A clustering algorithm may use either a similarity measure or

a dissimilarity measure while clustering (or it may use neither directly, but in such case it

will still be based indirectly on one or the other). Often, but not always, a particular d

used in a clustering algorithm is a distance function over R
m for any positive integer m.

That is to say, d satisfies all of the following:

1. Non-negativity: For all xi, xj ∈ R
m, d(xi, xj) ≥ 0.

2. Identity: d(xi, xj) = 0 if and only if xi = xj.

3. Symmetry: For all xi, xj ∈ R
m, d(xi, xj) = d(xj, xi).

4. Triangle Inequality: For all xi, xj, xl ∈ R
m, d(xi, xj) + d(xj, xl) ≥ d(xi, xl)

26

I first consider measures that apply to objects represented as numeric vectors in R
m as

that is the standard representation for text in clustering. The most well-known of these, and

possibly the most widely used distance function in clustering today, is Euclidean distance:

deuc(xi, xj) =

√

√

√

√

m
∑

l=1

(xil − xjl)2. (2.3)

This function measures the straight line distance between xi and xj. Euclidean distance

forms the basis of many clustering algorithms, notably most k-means type algorithms [91,

106, etc.], and is also often used in notions of clustering quality (see Chapter 4). Euclidean

distance is often referred to as L2, as it is a specific instance of the Lp norm distances. An

Lp norm distance is defined as:

dL
p

(xi, xj) =
p

√

√

√

√

m
∑

l=1

(xil − xjl)p, (2.4)

where p is any real number between 1 and ∞ inclusive. From this definition we can see L1

is Manhattan distance (also known as city-block distance):

dman(xi, xj) =
m
∑

l=1

|xil − xjl|, (2.5)

and L∞ is Chebyshev distance:

dchby(xi, xj) = max
l=1..m

|xil − xjl|. (2.6)

These three are the Lp-norm distances one is likely to see in clustering, with Euclidean

being the most common by far.

27

Kullback-Leiber Divergence (KL-Divergence) has been used in clustering as a dissimi-

larity measure [12, etc.]. For its application to make sense, each object must be a vector

with entries that sum to one, as KL-Divergence expects probability distributions as input.

Formally, KL-Divergence is:

dkl(xi, xj) =
m
∑

l=1

xil log(
xil

xjl

). (2.7)

Many datasets are not amenable to representations as probability distributions so KL-

Divergence has more limited use in clustering than other measures discussed here. Further,

it is not a distance function as it is not symmetric, although it can trivially be made so:

dskl(xi, xj) = dkl(xi, xj) + dkl(xj, xi). (2.8)

The Jensen-Shannon divergence can act as a smoothed, symmetric KL-Divergence:

djs(xi, xj) = 0.5dkl(xi, avg(xi, xj)) + 0.5dkl(xj, avg(xi, xj)). (2.9)

In this context, avg(xi, xj) is the average of the distributions xi and xj (avg(xi, xj)l =

xil+xjl

2
).

With respect to text, one can represent text units as probability distributions over

terms, allowing KL-Divergence to be applied.

Spectral clustering algorithms [119, 139, etc.] and some others often use Gaussian

affinity as a similarity measure when clustering, where Gaussian affinity [119] is defined as:

sgauss(xi, xj) = e
−deuc(xi,xj)

2

2σ2 . (2.10)

28

σ is a parameter, the selection of which has been seen to be crucial to Gaussian affinity’s

effectiveness when used in spectral clustering [119]. For a good discussion on the selection

of this parameter, readers may consult Mouysset et al. [116]. Gaussian affinity and spectral

clustering have been paired together and used on text in several papers [162, etc.].

The Mahalanobis distance [107] between two vectors that come from the same distri-

bution Y is:

dmaha(xi, xj) =
√

(xi − xj)TCoVar(Y)−1(xi − xj), (2.11)

where CoVar(Y) is the covariance of Y . Mahalanobis distance is sometimes used as a

object-wise distance measure in clustering, although it is often also used as a measure of

distance between a vector xi and a distribution Y (as in Gaussian EM [39]). In such a case

the formula becomes:

dmaha(xi, Y) =
√

(xi − µY)TCoVar(Y)−1(xi − µY), (2.12)

where µY is the mean vector for the distribution Y .

Cosine similarity, arguably the most common similarity measure, is defined as:

scos(xi, xj) =

∑m
l=1 xilxjl

√
∑m

l=1 x
2
il

√

∑m
l=1 x

2
jl

. (2.13)

Cosine similarity ranges between -1 and 1 and, as the name suggests, measures the cosine

of the angle between xi and xj. Its popularity as a similarity measure in text clustering

is likely traceable back to Salton and Buckley’s early use of cosine in information retrieval

experiments [134].

29

Extended Jaccard similarity is a less popular alternative to cosine:

sej(xi, xj) =

∑m
l=1 xilxjl

∑m
l=1 x

2
il +

∑m
l=1 x

2
jl −

∑m
l=1 xilxjl

. (2.14)

Categorical object vectors use different measures of similarity/dissimilarity than nu-

meric ones. For binary categorical vectors xi and xj, let nab(xi, xj) be the number of pairs

of features (l1, l2) such that xil1 = xjl1 = a and xil2 = xjl2 = b, let na(xi, xj) be the number

of features for which xil = xjl = a. Three of the most common similarity measures for

binary categorical vectors are Dice’s coefficient [46]:

sdice(xi, xj) =
n1(xi, xj)

2||xi||
, (2.15)

the Jaccard coefficient [85]:

sjac(xi, xj) =
n11(xi, xj)

n00(xi, xj) + n01(xi, xj) + n10(xi, xj)
, (2.16)

and the Rand Index [128]:

srand(xi, xj) =
n11(xi, xj) + n00(xi, xj)

n00(xi, xj) + n01(xi, xj) + n10(xi, xj) + n11(xi, xj)
. (2.17)

Hamming distance [71] is often used on binary and non-binary categorical vectors. It

measures the number of features for which xi and xj have different values:

dham(xi, xj) = |{(xil, xjl) : xil 6= xjl}|. (2.18)

Hamming distance is often used for comparing strings, and is one of a class of similar

30

definitions for edit distance, the amount of editing required to make one string equivalent

to another.

For a dataset that is transposed so that it is feature by object (one where we are trying

to cluster features), the use of a correlation similarity measure makes sense. Pearson’s

correlation coefficient [130] r is often used as a similarity measure in such cases:

sr2(xi, xj) =
ss(xi, xj)

2

ss(xi, xi)ss(xj, xj)
, (2.19)

where ss(xi, xj) =
∑m

l=1(xil − x̄i)(xjl − x̄j) and x̄i is the average value of index i over the

dataset. While other correlation coefficients such as Kendall’s Tau [93] and Spearman’s

Rank Correlation [144] can be applied to feature by object matrices, Pearson’s correlation

coefficient is the standard choice.

There are many other notions of similarity/dissimilarity between objects beyond those

described above that one may run into, including extensions of those described here. For

clustering though, a reader will find that the large majority of papers use the measures

described here.

2.4 Algorithms

In this section I describe some of the clustering algorithms appearing in the literature.

The algorithms are organized by the broad concept type they use while clustering. Within

each concept type I cover some of the more famous representatives and many of those that

have been applied to text clustering specifically. Throughout this section I use the term

objective function to refer to what a clustering algorithm is trying to optimize. Note that

31

this distinct from the actual optimization technique used by a clustering algorithm.

2.4.1 Center-Based Clustering

Arguably the most well recognized concept in clustering, the k-means objective function

has provided a basis for a staggering number of clustering algorithms. It is formally defined

as follows: for some dataset X, we seek a set of vectors V = (v1, v2, ...vk), over the same

feature space as X, such that:
∑

xi∈X

min
vj∈V

deuc(xi, vj)
2 (2.20)

is minimized. The notion behind this definition of quality is compression based: we want to

represent each vector of X as one of k vectors (vector quantization). Eq. 2.20 conceptually

defines a ‘center-based’ clustering C of X with k clusters. At the center of each cluster cj

is the vector vj, referred to as the centroid of cj. The members of cj are all xi ∈ X such

that deuc(xi, vj)
2 = minvl∈V deuc(xi, vl)

2 (all objects which are closer to cj’s centroid than

any other centroid).

Minimizing the k-means objective function for a clustering over a dataset is NP-hard,

which has led to many heuristics and approximations. The simplest, and most often used,

method for obtaining a local minimum in Eq. 2.20 is Lloyd’s method [106]. In this method

the initial centroids are selected randomly. Then a repetition of two steps occurs; 1)

all objects of X are assigned to their nearest centroid forming clusters; 2) centroids are

recomputed as the mean of the objects assigned to their cluster. The loop stops when the

centroids do not change from one iteration to the next, or when the improvement in Eq. 2.20

from one iteration to the next is below some threshold. Despite its age, k-means using

Lloyd’s method is still the most popular clustering algorithm by far, seeing widespread

32

use [86], perhaps because it is so simple and often very fast. The k-means problem has been

extended to deal with categorical features [81, 28, 127, etc.] and soft clustering [20, 53, 28,

etc.]. Initial centroid selection before applying Lloyd’s method has been investigated with

significant success [11], with other work on designing k-means type algorithms based around

making the algorithm insensitive to initial centroid selection entirely [167, etc.].

Most of the methods discussed above are heuristics for k-means type problems. There

are a number of works that focus on the approximation side of things, designing clustering

algorithms that are assured to yield clusterings within some fixed amount of the optimal

value of Eq. 2.20 [84, 99, 108, etc.]. Despite offering assured performance, k-means ap-

proximation approaches have seen little use outside of their actual design, they are often

computationally expensive and/or the bounds they offer are impractically weak.

There are numerous adjustments/improvements on the notion of using distance from

centroids as quality measures. One simple change to Eq. 2.20 is to enforce the use of

medoids in place of centroids, where the medoid for a cluster cj is simply the xi ∈ X

such that deuc(xi, cj)
2 = minxl∈X deuc(xl, cj)

2 (assuming the cluster is non-empty). Eq. 2.20

using medoids is referred to as k-medians. Partitioning Around Medoids (PAM) [91] uses

medoids, initially starting with random medoids and, for each iteration, assigning points

to the closest medoid and swapping a pair of (medoid, non-medoid) objects such that

the k-medians objective function is improved the most possible. It terminates when no

improvement is possible. Another adjustment on the use of centroids is presented by

CURE [64].

Zhao and Karypis [171, 172, 173] offer a number of objective functions similar to the

33

traditional k-means objective function. Their E1 objective function defines quality as:

∑

vj∈V

|cj|cos(vj, VX), (2.21)

where VX is the centroid of the entire dataset and |cj| is the size of cluster cj. Other

functions presented in their works that are closely center-based are I1, I2, H1, and H2.

Optimizing I1, with some algebra, can be shown to be identical to minimizing Eq. 2.20. I2

is simply Eq. 2.20 with cosine similarity instead of Euclidean distance. H1 is I1/E1, and

H2 is I2/E1.

With respect to text clustering, k-means with Lloyd’s method has been seen to be better

than Unweighted Pair Group with Arithmetic Mean (UPGMA) [145] (see the following

section for a description of UPGMA), indicating that it provides reasonable text clustering

solutions. However, repeated bisecting k-means using Lloyd’s method is even better than

this [145]. From this we can conclude k-means using Lloyd’s method is not an ideal text

clustering algorithm. It is, however, extremely fast relative to most competitors. Of the

objective functions discussed from Zhao and Karypis’ works, I2, especially when applied

using a repeated bisecting approaching, is an excellent text clustering technique. PCA,

followed by k-means, has been shown to offer large improvement in text clustering over just

k-means [47], although one can see from the results that too aggressive of a dimensionality

reduction during PCA is not optimal.

2.4.2 Linkage-Based Clustering

Linkage-based clustering algorithms, as their name suggests, derive clusterings by using the

links (similarities) between clusters. The three most well-known linkage based clustering

34

algorithms, UPGMA [88], single linkage [88], and complete linkage [141], are from the same

family of agglomerative clustering algorithms. In each of these clustering algorithms every

object of the dataset begins as a singleton cluster and clusters are progressively merged with

the best similarity. In single linkage similarity between clusters is equal to the similarity

of their closest objects. In complete linkage the farthest objects are used. In UPGMA the

average similarity between all objects is used. Any notion of similarity may be used by

these methods.

While the above three are the standard linkage based clustering algorithms, other link-

age related techniques exist. ROCK [65] is a well-known link based algorithm designed

for categorical data. A less common variant of UPGMA is one where the similarity be-

tween the centroids of each cluster is used for merging [145], and the I1 function from [171]

is highly similar to UPGMA. Linkage-based clustering tends to be on the slower side of

things. If we ignore initial similarity computation time, one of the fastest linkage-based

clustering method is single linkage at O(n2) time.

There are good indications that UPGMA is the best of those discussed above for text

clustering [145, 173], with single and complete linkage producing extremely poor text clus-

terings. This should not be taken to mean those algorithms are useless by any means.

Single linkage, for instance, has the desirable property of finding a minimum spanning

tree [97] with k components for any k and is amenable to theoretical analysis [4, 166, etc.]

with very well understood properties.

35

2.4.3 Subspace Clustering

Subspace clustering is the location of clusters in a subset of the full feature space of a

dataset [123]. Because many datasets have large dimensionality (especially text), and

clusters are often represented in only a small number of dimensions, subspace clustering

is often useful. Dimensionality reduction clustering methods [49, 47, 50, 162, etc.] are

closely related to subspace clustering, as they attempt to map datasets to spaces where

clusters exist. However, as discussed in Section 2.2.2, dimensionality reduction methods

create aggregate dimensions; subspace clustering algorithms do not. Further, subspace

clustering algorithms are different in that they purposefully select dimensions to disregard

or use while clustering. This difference makes subspace clustering much more like wrapper

feature selection. I discuss some of the more well known subspace clustering algorithms

here. For further details consult Parsons [123] and Kriegel et al. [96].

Some subspace clustering algorithms produce only hard partitions. PROCLUS [5] is an

example of this. The main body of PROCLUS operates almost exactly like k-medoids using

Lloyd’s method, except that the selection of cluster medoids, and the distance computation

between medoids and other objects is different. Every cluster is assigned a set of relevant

dimensions in each iteration (using standard deviation of the dimensions from points nearby

the medoid to decide if the dimension is relevant or not). Medoids, and the distance from

any medoid, are computed using only relevant dimensions. One enhancement of PROCLUS

is FINDIT [158], another is ORCLUS [6], which allows for the discovery of clusters that

are not necessarily parallel to the dimensions of the dataset. In ASI (Adaptive Subspace

Iteration [103]), during each iteration of the algorithm every cluster is mapped to a relevant

subspace, and its quality in that subspace is used for its impact on overall clustering quality

and for cluster membership assignment (making the algorithm have a distinctly subspace

36

feel to it). ASI’s results on text clustering are encouraging, although they are not compared

against the best algorithms from Zhao and Karypis [173], only to linkage-based clustering

methods. Ding et al. [50] follow a vein similar to ASI, using PCA and latent dirichlet

allocation. Again, an improvement over another text clustering algorithm is shown (PCA

+ k-means).

An alternative to producing hard partitions, and one which is arguably much more am-

bitious for a subspace clustering algorithm, is the task of locating all meaningful clusters

in any subspace of the dataset, irrespective of their overlap (yielding a hard non-disjoint

clustering). Grid partitioning of the feature space is a common approach to this task.

CLIQUE [7] is the first well-known subspace algorithm to perform this operation. In

CLIQUE, the feature space is cut up into fixed width axis parallel grid blocks along ev-

ery feature. From this basis, CLIQUE behaves much like the APRIORI algorithm, each

iteration dense subspaces over a dimensions, containing some number of dense grid blocks,

are checked to see if they combine to make dense a+ 1 dimension spaces. This procedure

is repeated until an iteration finds no new dense subspaces. Additionally, subspaces are

pruned using a minimum description length principle. Extensions and improvements on

CLIQUE include ENCLUS [29], which uses new definitions of quality and allows for the

discovery of more than one cluster in a dense subspace; MAFIA [62], which uses an adap-

tive grid partitioning of the feature space as opposed to a static one; and nCluster [104],

which allows for overlapping grid units. With respect to using the APRIORI algorithm

directly, frequent item set clustering algorithms [16, 59, etc.] have been designed for text

clustering using it directly as their basis.

Soft-like subspace clustering algorithms are rare, but some exist, such as COSA [58].

COSA does not really cluster, but rather determines a similarity matrix for the dataset,

37

suitable for use by a number of other clustering algorithms.

2.4.4 Density-Based Clustering

For our discussion here, a density-based clustering algorithm is one that looks for dense

clusters in the entire feature space of the dataset. This is different from subspace clustering,

where one may locate clusters that exist only in subsets of the full feature space. By using

only the full feature space, density-based methods avoid having to investigate a staggering

number of different subspaces, resulting in much faster clustering algorithms. However,

this comes at a cost. Clusters may not be readily detectable in the full feature space; in

such cases a strictly density-based approach is likely to fail.

DBSCAN [54] is the most well known density-based clustering algorithm. DBSCAN

performs a depth first clustering of the dataset in the following manner: each xi ∈ X is

examined in a random order. Let ǫ-neighborhoodi be the objects within ǫ distance of xi.

If xi is part of a cluster already, it is ignored, otherwise, if |ǫ-neighborhoodi| ≥ minPts

(some constant), xi ∪ ǫ-neighborhoodi becomes the basis for a new cluster. For each xj in

that cluster, recursively, its ǫ-neighborhoodj is added to the cluster if |ǫ-neighborhoodj| ≥

minPts. After all objects have been visited, DBSCAN classifies all the unclustered objects

remaining as outliers. ǫ and minPts are parameters to which DBSCAN is known to

be extremely sensitive, and DBSCAN is further sensitive to the order in which objects

are examined. Some improvements upon DBSCAN are made by GDBSCAN [135] and

OPTICS [10]. SUBCLU [92], a subspace clustering algorithm, uses DBSCAN on subspaces

of the full feature space to see if they contain dense clusters.

DENCLUE [74] represents an alternative approach to finding dense clusters in the full

38

feature space. For DENCLUE, the probability density function at any arbitrary point in

the full feature space is defined using Gaussian kernels. Conceptually, clustering is done by

‘pulling’ each object of the dataset, using a greedy hill climbing approach, to the nearest

local maxima in that probability density function. Once all objects have been pulled to

their respective local maxima, all objects residing in close maxima are assigned to be

members of the same cluster. DENCLUE 2 [73] offers a significant speed improvement

over DENCLUE, converging to each object’s local maxima much faster.

2.4.5 Matrix Factorization/Approximation Clustering

Matrix factorization/approximation techniques have proven to be amazingly powerful tools

for clustering in a wide variety of applications areas. Their strength invariably lies in their

ability to draw the latent (hidden) similarities in a dataset out.

One of the earliest uses of matrix factorization in a task related to clustering was

LSA [38], which I have already described. LSA may be used for dimensionality reduction

of a dataset before clustering and, likewise, PCA may be applied before clustering. Both of

these techniques have been seen to increase the quality of text clustering results [47, 143],

but require a parameter in the form of the number of dimensions to use in the reduced space

when clustering. Careful selection of this parameter is necessary, as results deteriorate with

too few or too many dimensions, with the ideal number of dimensions varying by dataset.

Spectral clustering algorithms are extremely popular. At the heart of every spectral

clustering algorithm is its graph Laplacian L. After L is computed, spectral clustering

algorithms follow one of a few simple procedures to generate a k-way clustering. One

such procedure is: the eigendecomposition L = QEQ−1 is computed, then the first k

39

eigenvectors of Q (where k is number of desired clusters) are used by some other clustering

algorithm (usually k-means using Lloyd’s method) to produce a k-clustering of X. Ideally,

L is designed in such a way as to result in Q containing very clear cluster membership

indicators, allowing other clustering algorithms to easily find the clusters in L that would

have otherwise been hidden in X.

In order to create L, a spectral clustering algorithm first uses X to create an n by n

(object by object) symmetric matrix referred to as a weighted adjacency matrix W . This

might be done simply by having Wij = s(xi, xj) for all i, j using some similarity function

that is symmetric (Gaussian affinity being a common choice). One can also define:

Wij =















s(xi, xj), if xj ∈ nni,r or xi ∈ nnj,r;

0, otherwise.

(2.22)

or:

Wij =















1, if s(xi, xj) ≥ ǫ;

0, otherwise.

(2.23)

where nni,r is the r-nearest neighborhood of xi (using the appropriate similarity func-

tion). r and ǫ are parameters. Many other methods for generating W are possible. W is

used to generate L in a manner that, again, depends on the algorithm. For example, in

unnormalized spectral clustering [40], L = D −W , where D is the degree matrix of W .

Two of the most popular spectral clustering algorithms are presented by Shi and Ma-

lik [139] and Ng et al. [119]. Shi and Malik’s algorithm, commonly referred to as N-Cut,

normalized cut, or NC, uses L = I − D−1W , where I is the identity matrix. Let C be a

clustering, and let li be the ith object in the laplacian L (which is also the ith object in

40

X, but with a different vector representation). Then Shi and Malik’s approach is aimed at

optimizing the normalized cut objective function:

N-Cut(C) =
k

∑

i=1

cut(ci, L− ci)

assoc(ci, L)
, (2.24)

where cut(ci, L− ci) =
∑

lj∈ci

∑

lo∈(L−ci)
Ljo and assoc(ci, L) =

∑

lj∈ci

∑

lo∈L
Lok. The cost

of each cluster for N-Cut is its internal edges divided by all its edges (internal and external).

Normalized cut favours balanced cluster sizes. Ng. et al. use the same cut notion, but set

L = D−1/2(D−W)D−1/2. Other cuts for spectral clustering include Ratio-Cut [66], which

is defined as:

Ratio-Cut(C) =
k

∑

i=1

cut(ci, L− ci)

|ci|
, (2.25)

and MinMax-Cut [48]:

MinMax-Cut(C) =
k

∑

i=1

cut(ci, L− ci)
∑

lj ,lo∈ci
Ljo

, (2.26)

which also serves as the basis for the G′ objective function in Zhao and Karypis [173].

Ratio-Cut weights each cluster by its size, making no use of similarities within each clus-

ter. As a result, optimizing Ratio-Cut may result in objects being grouped together that

share very low similarity (they need only exhibit the same dissimilarities to other objects).

MinMaxCut defines each clusters’ quality as its external edges divided by its internal edges,

closely linking it with B/W ICQM I discuss in Chapter 3 (average between cluster scatter

divided by average within cluster scatter).

Because of their ability to make non-Gaussian type clusters easy to find, spectral clus-

tering algorithms fair well in tasks such as image segmentation [139, 159, etc.], text clus-

41

tering (where N-Cut is often used as a baseline to compare against as in Wei et al. [162,

etc.]), and other domains. However, a notable drawback of spectral clustering is speed,

the use of eigendecomposition makes spectral clustering very slow. A full eigendecompos-

tion need not be computed to perform spectral clustering though, techniques such as the

power method allow one to approximately compute the required eigenvectors more quickly.

Sample-based spectral clustering [56] is relatively fast also. Alternatively, Dhillon et al. [41]

note that, at least for N-Cut, one does not need to use expensive eigendecomposition at

all, other faster methods of obtaining an optimization of N-Cut exist.

Non-negative Matrix Factorization (NMF), sometimes referred as Non-negative Matrix

Approximation (as it is typically used to obtain an approximation of a matrix), is one of

the newer matrix based clustering methods. The basic concept of NMF is to approximate

X ∼ WH, where W is n by k and H is k by m. X, W , and H are required to be non-

negative, and k is the number of clusters parameter. After W and H are computed, W is

taken, after some normalization, as a cluster membership indicator matrix (the value Wij

being the magnitude of object i’s membership in cluster j).

In NMF W and H are usually seeded with random values to start. Updating functions

are applied to W and H iteratively such that the quality of approximation of X by WH is

strictly greater than or equal to that of previous iterations. Any of the standard stopping

criteria used by k-means with Lloyd’s method may be applied to terminate an NMF al-

gorithm (number of iterations, convergence, lack of meaningful improvement). The exact

updating functions used are entirely dependent on how one defines ‘quality of approxima-

tion’ and can be rather complicated. For example, in Wei et al. [162], the Frobenius norm

42

||X−WH||2 is the approximation measure, allowing for the multiplicative update rules of:

Hij ←
(W TX)ij

(W TWH)ij
, (2.27)

and:

Wij ←
(XHT)ij

(WHHT)ij
, (2.28)

to be used. In general, many updates rules are possible for a given quality of approximation

notion, although some result in much slower NMF algorithms than others. A discussion

of a large number of other potential approximation measures, and their corresponding

update functions, can be found in Dhillon [44]. NMF has been seen to be well suited

to text clustering when using the Frobenius norm [162], and has had various extensions

introduced to handle all manner of extra clustering issues such as prior information [165].

It is worth noting that NMF does not ensure orthogonality in W and H, making the results

it yields potentially very different from PCA, LSA, or spectral clustering. Bao et al. [13]

investigate using NMF with approximation/update functions that do enforce orthogonality,

obtaining encouraging results on text.

2.4.6 Model-Based Clustering

In model-based clustering we usually seek a description of how the dataset was created

and a measure of how good the description is (see Section 2.1.3). The Expectation Max-

imization (EM [39]) procedure forms the basis of most model-based clustering methods.

It is a simple two step procedure. We have some model of our dataset (typically a set of

distributions) with some parameters. An EM procedure alternates between computing the

most likely parameters for the model given the dataset and computing the likelihood of

43

the dataset given model. This simple definition introduces a ‘chicken and the egg problem’

that is solved by bootstrapping initial parameter values in to EM. In the case of clustering,

it is not uncommon to apply k-means using Lloyd’s method to obtain starting parameters

in an EM clustering algorithm. EM type algorithms are almost always slower than other

simpler algorithms such as k-means using Lloyd’s method.

Probabilistic Latent Semantic Analysis (PLSA [76, 77]) uses EM. In PLSA, objects are

represented as probability distributions over features. The dataset is taken to have been

generated by a hidden (latent) set of topics Z = (z1, z2, . . . zk), where each zi ∈ Z is a prob-

ability distribution over features. PLSA alternates between computing the distributions

p(zi) (the weight of each topic), p(fj|zi) (the membership of each feature in each topic),

and p(xj|zi) (the membership of each object in each topic). If one considers each zi to be a

cluster, then the p(xj|zi) distribution may be viewed as soft cluster membership indicators

for X. Alternatively, PLSA may be applied as a form of dimensionality reduction, and a

secondary clustering may be applied to p(xj|zi) to create a final clustering. PLSA has had

various extensions, such as being made hierarchical [60], and is a very popular algorithm for

text applications [60, 76, 77, 163, etc.] and other many other areas. PLSA has been shown

to be closely linked with both NMF [51] and Latent Dirichlet Allocation (LDA [22]) [61],

which is described below.

On closer investigation of PLSA, one may note that it does not define a true model of the

dataset. Given some previously unseen object x∗, PLSA does not allow the determination

of its cluster membership based on the distributions it has computed previously. Instead,

one must add x∗ to X, fix p(fj|zi), and recompute p(xj|zi) and p(zi) using the PLSA

procedure all over again to derive the values p(x∗|zi) values for x∗. LDA [22] tends to

produce better results than PLSA while dealing with this problem. In LDA, an additional

44

layer is added on top of the PLSA in the form of a dirichlet prior distribution that specifies

probabilities of sampling the various topics in Z. Unsurprisingly, the additional layer used

by LDA comes with a speed cost, and the algorithm itself is significantly more complicated

than PLSA. An example of another, more recent EM-type clustering algorithm, along with

pointers to other such algorithms, can be found in Kurihara and Welling [100].

One interesting vein in model-based clustering that is not strictly related to EM is

the use of fitting measures to simultaneously cluster the dataset and select the number of

clusters [70, 55, 125, etc.]. X-means [125] uses information criteria such AIC [75] to select

clusterings. Unfortunately, X-means often leads to over segmentation of datasets [70] (too

many clusters). G-means [70] uses k-means with Lloyd’s method and a fast measure of

Gaussian fitness to determine when clusters need to be split more, and is effective when

true clusters have minimal overlap. PG-means [55] is a significant improvement over this,

allowing the use of any EM algorithm for Gaussian distributions while clustering, and

therefore being able to handle clusters with significant overlap.

2.4.7 Information Theoretic Clustering

Information theoretic clustering algorithms work explicitly with the trade-off between com-

pression and distortion when clustering. Compression is how concise a clustering is, while

distortion is how much (important) information is lost in the clustering. Compression is

a value to maximize and distortion is a value to minimize, with improving one generally

resulting in degrading the other. An information theoretic clustering algorithm attempts

to balance these two properties in a clustering solution.

45

The Information Bottleneck Method (IBN [148]) is the principle information theoretic

clustering method. Let C be a soft clustering of X, and let Y be a variable representing

the ‘important’ information in X, then IBN seeks to minimize:

MI(X,C)− βMI(C, Y), (2.29)

where MI(A,B) is the mutual information between two random variables A and B (see

NMI in Section 3.2 for its calculation). MI(X,C) is the compression component, MI(C, Y)

is the distortion component, and β is the trade-off parameter representing how much value

distortion has relative to compression. An alternating minimization scheme for Eq. 2.29 is

given in [148]. While IBN is a highly principled formulation of clustering, it relies on the

existence of this ‘important’ information variable Y , and knowing the joint distribution

between X and Y .

Slonim and Tishby [140] present an application of IBN to clustering of a document by

term matrix. In their IBdouble algorithm they use IBN to produce word clusters. These

word clusters are then used as the Y in clustering the document by term matrix using IBN.

One way IBN and an agglomerative hierarchical use of IBN are also presented in their work,

but IBdouble seems to fair better than these on their datasets. Dhillon et al. [43] give an

IBN approach to simultaneous clustering of objects and features, and another divisive

hierarchical application of IBN to feature clustering [42], both of which are applied to text.

In terms of more general information theoretic clustering, Banerjee et al. [12] present co-

clustering using information theory and the Bregman divergences. Bekkerman et al. [17]

investigate using information theory in multi-way clustering. Their approach seems to

be particularly effective for clustering, being better than any of the previous information

46

theoretic clustering algorithms discussed here.

It is worth noting that many authors of information theoretic papers that involve text

clustering use non-standard text representations (Slonim and Tishby [140] being a notable

exception). Specifically, they usually represent their text objects as probability distri-

butions over features, often doing this for every clustering algorithm, be it information

theoretic or not. While probability distributions make sense for information theoretic

clustering algorithms, such representations are close to length normalized raw count in-

formation, which has been shown to be a less than ideal feature weighting in document

clustering [155].

2.4.8 Maximum Margin Clustering

Support Vector Machines (SVMs) are well-known and powerful tools for supervised learn-

ing. Broadly speaking, given a dataset with known classes, they conceptually map datasets

to feature spaces where the classes of the datasets may be partitioned using a simple linear

hyperplane. The margin of the hyperplane is the distance from the hyperplane to its sup-

port vectors, the objects of the dataset which ‘hold’ the hyperplane in place. As the margin

of a SVM is something to maximize, SVMs are often called maximum margin classifiers.

With respect to an SVMs’ use in clustering, the function of a clustering algorithm may be

phrased as discovering the true labeling of a dataset. Given that standard SVMs require

preexisting labels, their application to clustering has, unsurprisingly, required some clever

manipulation.

One of the earliest applications of an SVM-like procedure to clustering was Support

Vector Clustering [18] (SVC). In SVC, the entire dataset is mapped to a larger feature

47

space using a Gaussian kernel mapping function. The smallest sphere possible enclosing the

dataset in the larger space is computed. This sphere is then mapped back to the original

space where it produces some number of disconnected ‘contours’. All points contained

within the same contour are assigned to the same cluster.

Xu et al. [161] present the use of SVMs in binary clustering in an approach called

Maximum Margin Clustering (MMC). They formulate the binary clustering task as one

where they are seeking a clustering such that the soft margin between the two clusters

is maximized, subject to a class size balance constraint. Their particular formulation of

binary clustering can be seen as largely ignoring within cluster scatter. Despite this, MMC

is shown to be highly effective, if extremely slow, in their paper, and it is the inspiration for

most current SVM clustering work. In a later work [149], Generalized Maximum Margin

Clustering (GMMC) is presented as overcoming some of MMC’s effectiveness limitations as

well as being significantly faster. However, it can still be seen to be very slow [168]. Zhang et

al. [168] identity the source of these previous approaches’ slowness as reliance on SDP (semi-

definite programming), and develop a method for using support vector regression (IterSVR)

that is orders of magnitude faster than either of the previous approaches. It should be noted

that their approach is still many times slower than other clustering methods, making its

application to text datasets difficult, and it requires bootstrapping of an initial clustering

result to work. Zhao et al. [169], however, do present an SVM clustering algorithm that

works rather quickly on decently sized text datasets (by exploiting feature sparsity).

As suggested in Zhang et al. [168], any of the approaches in the previous paragraph

can be made to produce k-clusterings by using them to perform recursive binary splits.

Considering that those papers mostly present results based on binary clustering tasks, it

would be highly informative to test using those methods to generate k-clusterings, k > 2 in

48

this manner and compare the results to other non-SVM methods of obtaining k-clusterings.

With respect to directly obtaining a k-way clustering, Zhao et al. [170] illustrate a multi-

class support vector clustering method that outperforms other SVM methods as well as

N-Cut and k-means using Lloyd’s method.

As with information theoretic clustering approaches, those SVM clustering methods

that have been applied to text seem to not use standard text weightings method for their

competitors or themselves. In this case, such a choice is rather curious, as it has been shown

that idf weighting is useful for SVMs, at least when they are applied to classification [157].

49

Chapter 3

Clustering Quality Measures

In this chapter I focus on clustering quality measures. I define many common clustering

quality measures and mention some of their more notable aspects.

I divide clustering quality measures into two classes: internal measures and external

measures. For clarity I reiterate the definition of an ICQM that I supplied in Chapter 1.

An ICQM is a clustering quality measure that uses only information contained within

a clustering to evaluate it. Measures that use any other information are referred to as

external clustering quality measures, hereafter denoted as ECQMs. I further divide the two

larger classes into smaller conceptual groups. Note that just because measures fall into the

same conceptual group does not mean that they behave similarly in practice. For discussions

on how the measures actually behave in use readers should consult Chapter 4; there I go

over most important clustering quality measure properties in detail and how most of the

measures discussed here behave relative to them.

The notation I use for clustering quality metrics is as follows: Let M be a clustering

quality metric. I denote its application to a clustering C as M(C, ∗), where * is a comma

50

separated list of parameters thatM takes in addition to C. When in the parameter list, X is

always the same dataset on which C was created, and d is always some distance function.

Unlike X, d may be entirely unrelated to any distance function(s) used to generate C,

although commonly it is related. T is a always a gold standard of X, t is the number of

classes in T , and k is the number of clusters in C. ci is the ith cluster of C, and tj is jth

class of T . xi ∼C xj denotes the set of all pairs of objects in X such that they share the

same cluster in C. xi ≁C xj denotes the set of all pairs of objects in X such that they are

in different clusters in C.

A review/reference source for many older clustering quality measures, a number of which

are very common in current clustering research, can be found in Milligan and Cooper [112].

Halkidi et al. [67, 68, 69] offer more recent discussions/general overviews of evaluation in

clustering. Axiomatic discussions of clustering quality measures are also available, such as

those in Ackerman and Ben-David [1, 3], and Meilă [109].

3.1 Internal Clustering Quality Measures

The universal strength of ICQMs is just that—their internal nature. Because ICQMs do

not rely on information external to a clustering when assessing it, they are conceptually

clear and can be applied in true exploratory data analysis situations. This functionality

comes at a cost though: biases are coded directly into ICQMs in lieu of using external

information.

51

3.1.1 Within-Cluster Scatter Measures

The most straightforward notion of clustering quality is that a good clustering is one with

clusters exhibiting high internal consistency. The simplest ICQM formalization of this

concept is within cluster scatter (WCS):

WCS(C,X, d) =
∑

xi∼Cxj

d(xi, xj), (3.1)

Clusterings minimizing WCS are considered better. Variants of WCS include:

WWCS1(C,X, d) =
∑

ci∈C

∑

xj ,xk∈ci
d(xj, xk)

2|ci|
, (3.2)

WWCS2(C,X, d) =
∑

ci∈C

∑

xj ,xk∈ci
d(xj, xk)

2|ci|(|ci| − 1)
, (3.3)

aWCS(C,X, d) =

∑

xi∼Cxj

d(xi, xj)

|xi ∼C xj|
. (3.4)

WWCS1 is the classic k-means objective function if d is Euclidean distance. WWCS2

weights every cluster equally in its final measure, regardless of the percentage of objects

contained within each cluster. aWCS is the average distance of objects in the same cluster.

ICQMs like those in Eqs. 3.1-3.4 are/have been very popular in clustering research, both

as clustering quality measures and as the basis for clustering algorithms. Unfortunately,

they have notable shortcomings. Besides not considering distance between clusters, basic

WCS measures improve as the number of clusters increases, with a perfect clustering often

being one with all singleton clusters (Eq. 3.1-3.4 yield 0 in such a case); this necessitates

adjustments if they are to be used to compare clusterings with varying values of k. Exam-

52

ples of such adjustments can be found in the gap statistic [147] (which uses WWCS1) and

the weighted gap statistic [164].

3.1.2 Between-Cluster Scatter Measures

Between cluster scatter (BCS), defined as:

BCS(C,X, d) =
∑

xi≁Cxj

d(xi, xj), (3.5)

and variants of BCS such as average between cluster scatter (aBCS), defined as:

aBCS(C,X, d) =

∑

xi≁Cxj
d(xi, xj)

|xi ≁C xj|
, (3.6)

can be used as ICQMs. Such measures can be thought of as complements to WCS measures;

however, unlike WCS measures, they are not commonly used by themselves as ICQMs. An

example of an exception to this is Ratio-Cut, which can take the form of (Ackerman and

Ben-David [1]):

Ratio-Cut(C,X, d) =
∑

(xi,xj)∈xi≁Cxj

1

d(xi, xj)2

∑

ci∈C

1

|ci|
(3.7)

when used as an ICQM; smaller Ratio-Cuts indicate better clusterings.

3.1.3 Measures Using all Within and Between-Cluster Distances

Considering all within and between cluster distances when assessing the quality of a clus-

tering is arguably the most sensible thing for an ICQM to do, and there are many ICQMs

53

that do this. I detail some ICQMs of this variety below.

WCS measures are often combined with BCS measures to create new ICQMs. The

simplest form of this in active use is probably B/W, obtained by diving aBCS by aWCS:

B/W(C,X, d) =
aBCS(C,X, d)

aWCS(C,X, d)
. (3.8)

Higher B/W is better. N-Cut, when rephrased as an ICQM of the form (Ackerman and

Ben-David [1]):

N-Cut(C,X, d) =
∑

(xi,xj)∈xi≁Cxj

1

d(xi, xj)2

∑

ci∈C

1
∑

xj ,xl∈ci,xj 6=xl

1
d(xj ,xl)2

, (3.9)

can be seen as a direct combination of a between-cluster scatter component:

∑

(xi,xj)∈xi≁Cxj

1

d(xi, xj)2
,

and a within-cluster scatter component:

∑

ci∈C

1
∑

xj ,xl∈ci,xj 6=xl

1
d(xj ,xl)2

.

Note that how distance is used in the translation of graph cuts such as N-Cut and Ratio-

Cut to ICQMs is flexible, here I am simply using it in the form 1/d(xi, xj)
2, as suggested

by Ackerman and Ben-David [1]. As with Ratio-Cut, smaller values from N-Cut indicate

better clusterings.

An interesting approach to limiting the influence a few distances/objects can have on

54

a clustering’s quality can be found in the Gamma Index [112], defined as:

Gamma(C,X, d) =
S+(C,X, d)− S−(C,X, d)

S+(C,X, d) + S−(C,X, d)
. (3.10)

S+(C,X, d) is the number of pairs x, y ∈ X and w, z ∈ X such that x and y are in the

same cluster in C, w and z are in different clusters in C, and d(x, y) < d(w, z). S−(C,X, d)

is the opposite of S+(C,X, d). Higher Gamma values are better. By using counts, and

not raw distances, the impact any small group of objects can have on the final score is

limited. While this property is certainly good, one side effect of this limiting aspect is the

counterintuitive concept that making clusters more compact/well separated may not have

any impact on the final score.

3.1.4 Measures using Selective Distances

In the previous section, I looked at ICQMs that use all within and between cluster distances

in their measurement; an alternative to this is to selectively use some within and between

cluster distance. While allowing some distances to be ignored might be dangerous, it greatly

increases the concepts of clustering quality that we can measure. Some measures that fall

in to this category are the Silhouette statistic, the Dunn Index [53], the Davies-Bouldin

Index [37], and the C-Index [83].

The Silhouette statistic [133] can be used as an ICQM that compares each object’s

between and within-cluster distances, and aggregates these individual comparisons into a

full ICQM. For some xi ∈ X and a clustering C of X, the Silhouette of xi with respect to

C is defined as:

Silhouette(xi, C,X, d) =
d≁(xi)− d∼(xi)

max (d≁(xi), d∼(xi))
, (3.11)

55

where d∼(xi) is the average distance of objects in the same cluster as xi to xi, and d≁(xi)

is the average distance of xi to objects in the closest other cluster. Silhouette(xi, C) is

aggregated into an ICQM as follows:

Silhouette(C,X, d) =
1

n

∑

xi∈X

Silhouette(xi, C,X, d). (3.12)

Let Wi be some within-cluster scatter type measure of ci, and let Mi,j be a measure of

separation between clusters ci and cj, then the Dunn Index is defined as:

Dunn(C,X, d) = min
ci∈C

(min
cj∈C,cj 6=ci

(
Mi,j

maxck∈C Wk

)). (3.13)

Typical definitions for Mi,j and Wk result in:

Dunn(C,X, d) = min
ci∈C

(min
cj∈C,cj 6=ci

(
d(vi, vj)

maxck∈C

∑

xl∈ck

d(xl,vk)

|ck|

)), (3.14)

where vi is the centroid of cluster ci, and |ci| is the number of objects in cluster i.

Higher values are better for the Dunn Index. Because the Dunn Index does a form of

worst case evaluation, it is fragile. If even one pair of clusters are poorly separated, the

measure can be arbitrarily large, even if the rest of the clustering is good. The C-Index,

which is less fragile, is defined as:

C-Index(C,X, d) =
WCS(C,X, d)− Smin(X, l)

Smax(X, l)− Smin(X, l)
, (3.15)

where l = |xi ∼C xj|, Smin(X, l) is the minimum l distances over all pairs of objects

in X, and Smax(X, l) is the maximum l distances over pairs of objects in X. Note that

56

the C-Index incorporates between cluster distances indirectly (we may reasonably assume

that Smax(X, l) consists mostly of between cluster distances). The C-Index handles cluster

proximity in a reasonable manner.

Using the notation from the Dunn Index, the Davies-Bouldin Index [37] is defined as:

Davies-Bouldin(C,X, d) =
1

k

∑

ci∈C

max
cj∈C,cj 6=ci

Wi +Wj

Mi,j

. (3.16)

Typical definitions for Wi and Mi,j result in this becoming:

Davies-Bouldin(C,X, d) =
1

k

∑

ci∈C

max
cj∈C,cj 6=ci

∑

xl∈ci

d(xl,vi)

|ci|
+

∑

xl∈cj

d(xl,vj)

|cj |

d(vi, vj)
. (3.17)

Lower Davies-Bouldin scores indicate superior clusterings. Like the Dunn Index, the

Davies-Bouldin Index does a form of worst case evaluation.

Margin-based ICQMs, which have only recently become common as SVMs have gained

in precedence; are another example of ICQMs that use selective distances. A notable

margin-based ICQM is relative margin (RM), which can be found in Ackerman and Ben-

David [1]. Let a representative set of C, denoted R(C), be defined as any set of objects

from X that contains exactly one object of every cluster in C. Let R(C)∗ be the set of all

representative sets of C. Then the relative margin of C is:

RM(C,X, d) = min
R(C)∈R(C)∗

∑

xi∈X\R(C)

min
xj ,xl∈R(C),xj 6=xl

(
d(xi,xj)

d(xi,xl)
)

k
. (3.18)

Relative margin looks for a representative set of points from the clusters in C that splits

up the rest of the dataset by the minimum average margin ratio (closest representative

57

distance divided by second closest representative distance) possible. Unsurprisingly, this

seems very much like what a SVM does. Additive margin [1] is another margin-based

ICQM that is similar to relative margin, as is point-wise margin, a new ICQM which I

design and discuss in Chapter 6. Due to the newness of margin-based measures, there are

not many comparisons of their efficacy relative to older ICQMs.

Various ICQMs exist for soft clusterings (the Xie-Beni Index [160], the PBM Index [122],

etc.), many of which are direct extensions of the various measures from the sections above.

3.1.5 Model-fitting Measures

Model fitting clustering quality measures are a highly distinct alternative to the measures

above. I place them in this section because, given fixed model types and estimation meth-

ods, they operate much more like ICQMs than ECQMs in that they represent clear, specific

notions of clustering quality.

I denote the likelihood that the model represented by a clustering C generated the

dataset X as LC . Let p be the number of free parameters in the model represented by C.

The Bayesian Information Criterion score [137] of C is then defined as:

BIC(C,X, ∗) = −2 ln(LC) + p ln(n). (3.19)

Lower BICs are better. BIC balances the likelihood of the model with the number of free

parameters it contains. The general concept behind it is that a good model will have

high likelihood, but will also require as few parameters as possible (as fitness of models

naturally increases as the number of parameters increases). A score related to BIC, the

58

Akaike Information Criterion score [75], is defined as

AIC(C,X, ∗) = −2 ln(LC) + 2p. (3.20)

AIC is similar to BIC, but penalizes free parameters less severely (it favours solutions

with more clusters relative to BIC). X-means [125] shows the use of both AIC and BIC

in clustering. AIC and BIC are by no means the only model-fitting evaluation techniques,

Hamerly et al. [70, 55] give examples of other fitness measures that can be used while

clustering.

Obviously, the selection of model type/estimation method is of pivotal importance in

making good use of model fitting clustering quality measures. If a clustering does not

conform to the models used to represent it when being evaluating, the likelihood of the

model, and therefore the final score itself, will be poor.

3.2 External Clustering Quality Measures

ECQMs use information outside of the clustering in assessing it, with the information

usually taking the form of a gold standard. ECQMs are useful measures of relative quality

and/or consistency, but are not really suitable for use in determining general quality as

they use arbitrary external information. Despite this, ECQMs are often used to show

which clusterings/clustering algorithms are superior in general.

The ECQMs I discuss here are all based on comparisons between clusterings/gold stan-

dards where, as before, a gold standard is a set of ‘true’ classes/groups for a dataset. Before

giving exact definitions, it should be noted that those measures are sometimes discussed as

59

being between two partitions. However, when actually being used in clustering evaluation,

they are used between a clustering and a clustering or a clustering and a gold standard.

Measures below that are symmetric with respect to their parameters may be used in either

situation, while non-symmetric measures are typically used only for the latter. That said,

I present all ECQMs from the perspective of being between a gold standard (T) and a

clustering (C). Note that unlike ICQMs, the ECQMs I present make no use of the actual

vectors of X, only cluster membership ids and gold standard memberships.

3.2.1 Mutual Information Based Measures

Perhaps no concept is so pervasive in ECQMs as mutual information (MI). Typically,

maximum likelihood estimates of p(ci) =
|ci|
n
, p(ti) =

|ti|
n
, p(ci, tj) =

|ci∩tj |

n
are used in MI

type measures. MI(C, T), the mutual information between C and T , is defined as:

MI(C, T) =
∑

ti∈T

∑

cj∈C

p(cj, ti) log(
p(cj, ti)

p(cj)p(ti)
), (3.21)

As its name suggests, mutual information measures how much information C tells us about

T , and vice versa.

NMI is by far the most common ECQM using MI, and possibly the most common

clustering quality measure in all clustering research. One version of NMI [146] is defined

as:

NMI(C, T) =
MI(C, T)

√

H(C)H(T)
, (3.22)

60

where H(C) is the entropy of C:

H(C) =
∑

ci∈C

p(ci) log(p(ci)). (3.23)

Alternative definitions of NMI include:

NMI(C, T) =
MI(C, T)

min(H(C),H(T))
, (3.24)

and:

NMI(C, T) =
MI(C, T)

H(C, T)
, (3.25)

where H(C, T) is the joint entropy of C and T , defined as:

H(C, T) =
∑

ci∈C

∑

tj∈T

p(ci, tj) log(p(ci, tj)). (3.26)

NMI variants have a value between zero and one and are symmetric, with higher values

indicating C is a better clustering.

While every NMI variation uses mutual information, their normalizations of it are

distinct and result in markedly different behaviors. Eq. 3.22 favours clustering with close

to the number of true classes, being able to obtain a value of one only when the number

of clusters is equal to the number of true classes. This is not the case for Eq. 3.24 though,

as it scales by minimum entropy. Using minimal entropy results in clusterings that are

strict refinements of the true labeling (i.e. no cluster contains more than one type of true

label) scoring highly, which might be a useful property, but it also results in the awkward

situation of having a set of singleton clusters always obtaining NMI(C, T) = 1 for any T.

61

Newer information theoretic measures using mutual information include Variation of

Information (VI) [110] and various adjusted information theoretic measures [151]. VI is

defined as:

VI(C, T) = H(C) + H(T)− 2MI(C, T). (3.27)

VI has numerous benefits including a strong information theoretic backing like NMI and the

fact that it is a proper distance function (as discussed in Section 2.3). Unfortunately, the

upper bound of VI increases with the number of different clusters/classes being evaluating

(e.g., more information can be shared between more complicated structures simply because

they contain more information). Normalizing to account for this is straightforward, but

this breaks many of the properties that make VI appealing.

Adjusted information theoretic measures, as discussed by Vinh et al. [151], account

for correlation by random chance in an information theoretic measure. Vinh et al. show

that this is especially necessary when the number of clusters/classes is large relative to the

number of objects in the dataset. Adjusted Mutual Information (AMI), which can take

forms such as:

AMI(C, T) =
MI(C, T)− E[MI(C, T)]

max(H(C),H(T))− E[MI(C, T)]
, (3.28)

is an example of a corrected information theoretic measure in relatively common use, where

E[MI(C, T)] is the expected value of MI(C, T) by chance.

V-measure [131] is another interesting information theoretic measure that was explicitly

presented as focusing on the concepts of homogeneity and completeness (see Section 4.4).

V-measure is defined as:

V-measure(C, T) =
(1 + β)homogeneity(C,T) ∗ completeness(C,T)

(β ∗ homogeneity(C,T)) + completeness(C,T)
. (3.29)

62

β is a real-valued parameter of the measure. homogeneity(C,T) is defined as:

homogenetiy(C,T) =















1, if H(T |C) = 0;

H(T |C)
H(T)

, otherwise.

(3.30)

completeness(C,T) is defined as:

completeness(C,T) =















1, if H(C|T) = 0;

H(C|T)
H(C)

, otherwise.

(3.31)

Section 4.4 briefly explains how homogeneity and completeness are closely linked with

information retrieval’s precision and recall concepts. This, combined with the fact Eq. 3.29

is like F-measure [150], suggests that one may interpret V-measure as an information

theoretic version of FQ (Eq. 3.45). Note that V-measure has not seen as widespread use

as the previously discussed measures.

Although it does not use MI, cluster entropy is conceptually similar enough to measures

using MI that I include it here. The cluster entropy of some cluster ci, relative to a true

labeling T , is defined as:

Entropy(ci, T) =
∑

tj∈T

p(ci, tj)

p(ci)
log(

p(ci, tj)

p(ci)
). (3.32)

This can be aggregated in a simple fashion to form a full ICQM [173]:

EQ(C, T) = 1−
∑

ci∈C

p(ci)
1

−log(q)Entropy(ci, T), (3.33)

63

Pairs with Same Labels in C Pairs with Different Labels in C

Pairs with Same Labels in T L(C, T) D′(C, T)
Pairs with Different Labels in T D(C, T) L′(C, T)

Table 3.1: Notation for the major kinds of pair-counts used in pair-counting ECQMs.

where q is the number of classes in T . While EQ is similar to NMI, it does not consider

size balance as NMI does. Consider some T and C of X where p(t1) = 0.95, p(t2) = 0.05,

and C has two clusters c1 and c2 such that both clusters are 95% label t1 and 5% label t2.

We can see that NMI(C, T) = 0 (the worst possible), yet EQ(C, T) ∼ 1 (almost the best

possible). Assuming all classes are relatively close in size, the difference between NMI and

EQ diminishes, but for unbalanced sizes, one may prefer NMI as it considers size balance.

For further discussion on this readers should consult Section 4.8.

3.2.2 Pair-Counting Measures

Pair-counting ECQMs, as their name suggests, are measures that use counts of pairs of ob-

jects in their quality assessments. The pair counts typically used by pair-counting ECQMs

are given Table 3.1. Note that while it is common to see just L(C, T) and L′(C, T) in pair-

counting measures, readers should be aware that measures that use those implicitly use

D(C, T) and D′(C, T), as we have L(C, T)+L′(C, T)+D(C, T)+D′(C, T) =
(

n
2

)

. Example

of pairs counting measures are the Rand Index [128], the Adjusted Rand Index [82], the

Jaccard Index [85], and the Fowlkes-Mallows Index [57].

In the context of ECQMs, the Rand Index is defined as:

Rand(C, T) =
L(C, T) + L′(C, T)

(

n
2

) . (3.34)

This base form of the Rand Index is not commonly used; it has been superseded by its

64

adjusted form below.

The Jaccard Index is defined as:

Jaccard(C, T) =
L(C, T)

(

n
2

)

− L(C, T)
. (3.35)

It is interesting to note that the Jaccard Index makes no use of L′(C, T), whereas Rand

Index uses both L(C, T) and L′(C, T); this is akin to the difference we saw between mea-

sures using only within or between cluster versus those that consider both in the ICQM

section. The Fowlkes-Mallows Index [57] is very similar to the Rand and Jaccard Indices.

The Adjusted Rand Index is an alteration of the Rand Index to compensate for corre-

lation by random chance, providing a stronger measure. It is defined as:

ARI(C, T) =
Rand(C, T)− E[Rand(C, T)]

max(Rand(C, T))− E[Rand(C, T)]
, (3.36)

where:

E[Rand(C, T)] =

∑

ci∈C

(

|ci|
2

)
∑

tj∈T

(

|tj |
2

)

(

n
2

) (3.37)

and:

max(Rand(C, T)) = 0.5(
∑

ci∈C

(|ci|
2

)

+
∑

tj∈T

(|tj|
2

)

). (3.38)

Note that the correction for random chance applied in Eq. 3.36 is identical to the correction

used in Eq. 3.28. Assuming that M is a distance function between any two partitions C

and T of some dataset X, it has a correction for random chance of the form [82]:

Chance-Correction(M,C, T) =
M(C, T)− E[M(C, T)]

max(M(C, T))− E[M(C, T)]
. (3.39)

65

Obtaining E[M(C, T)] for a particular ECQM may be rather involved, as it is with adjusted

mutual information [151], but this is a powerful and useful correction regardless. ARI is

an extremely common ECQM and is regarded as being fairly robust.

Measures such as the Rand, Jaccard, and Fowlkes-Mallows Indices are easily extended

to deal with soft clusterings [25, 26, 120, etc.].

3.2.3 Matching Measures

Some ECQMs use matches of clusters to classes in their quality assessments. The nature

of the matching sought is highly variable (see the following chapter for a discussion about

this). Below I list some of the most common matching measures in use.

Accuracy is an interesting ECQM. Let Z be a bijection of C on to T (a one to one and

onto mapping of clusters to true labels). Let PZ be the set of all possible Z with respect

to a given C and T , then the accuracy of a C with respect to T is:

Accuracy(C, T) = max
Z∈PZ

∑

(ci,tj)∈Z

p(ci, tj). (3.40)

Obviously, given the definition above, accuracy requires that the number of clusters and

classes are equal. Accuracy requiresO(k3) time to compute (using the Hungarian method [98]

to solve Z directly). Care is advisable when interpreting a clustering paper that says they

are using accuracy, as they may in fact be using a purity related measure (see below).

Accuracy is usually used in a somewhat different fashion than most other clustering

quality measures when comparing clustering algorithms. A typical procedure for selecting

the ‘best’ clustering algorithm using some generic clustering quality measure might be:

66

1. Select the candidate clustering algorithms.

2. Select some number of datasets.

3. For each dataset, cluster it using each clustering algorithm for some variety of number

of clusters. Apply the chosen clustering quality measure to each clustering.

4. The best clustering algorithm is the one that performs the best, on average.

Accuracy is usually applied in a different manner than above as it requires the number of

clusters to be equal to the number of classes. A typical clustering evaluation procedure

using accuracy might look like:

1. Select the candidate clustering algorithms.

2. Select some number of datasets.

3. For each dataset, for some range of k, sample k different true classes of the dataset,

and cluster those in to k clusters. Apply accuracy to evaluate the quality of each

result.

4. The best clustering algorithm is the one that performs the best, on average.

This second procedure is arguably problematic as it only evaluates clusterings that have

the true numbers of clusters in them, and we do not, in general, know the true number of

clusters prior to clustering.

Edit distances such as Hamming distance [71] are applicable in clustering evaluation,

although they require a procedure similar to that done with accuracy. Using the notation

67

from Eq. 3.40, a Hamming distance ECQM can be defined as:

Hamming(C, T) = 1− Accuracy(C, T), (3.41)

when C and T have equal numbers of clusters/classes.

F-measure ECQMs use Fβ as their basis:

Fβ(ci, tj) = (1 + β2)
Precision(ci, tj) ∗ Recall(ci, tj)

β2Precision(ci, tj) + Recall(ci, tj)
, (3.42)

where:

Precision(ci, tj) =
p(ci, tj)

p(ci)
(3.43)

Recall(ci, tj) =
p(ci, tj)

p(tj)
. (3.44)

F-measure was developed for use in information retrieval [150]. Fβ allows one to tune the

relative value that precision has compared to recall via the β parameter. In practice, F1

(β = 1) is used almost universally when F-measures are applied to evaluating clusterings,

although one can easily envision a case in which valuing precision over recall or vice versa

is appropriate. In terms of a C and T , Fβ deals only with a single (ci,tj) pair, Fβ must

therefore be aggregated in some fashion over all such pairs to produce a full evaluation

measure. The most common form of aggregation is:

FQ(C, T) =
∑

tj∈T

p(tj)max
ci∈C

F1(ci, tj), (3.45)

where F1 is Fβ with β = 1. This version of F-measure looks for the best ci to represent

68

each tj. The individual F1 scores are weighted by their true label class sizes in the final

scoring. As with NMI, FQ is between zero and one with higher scores indicating a better

clustering.

A strength of FQ and similar measures is that they are based on well understood

information retrieval concepts (precision and recall) that, unlike some other definition of

quality, are known to correspond to real user notions of quality, and the ability to weight

those aspects differently. One potential issue with F-measures like Eq. 3.45 is, as many

classes may map to a single cluster, but each individual class only maps to one cluster, there

may be ‘classless’ clusters. A classless cluster does not effect the score of this measure,

leading one to question how good of an evaluation of a clustering’s overall quality the

measure is. Another issue is that minimal and maximal F-measure scores are heavily

dependent on the size and number of true classes relative to the number of clusters in

the solution. It is often not possible to obtain an F-measure score anywhere near zero or

one for a particular dataset with a fixed number of clusters. Nevertheless, F-measures are

popular in text clustering evaluation [16, 145, 172].

Cluster purity, commonly defined as:

Purity(ci, T) = max
tj∈T

p(ci, tj)

p(ci)
(3.46)

measures the maximum precision possible for cluster ci over any tj. A simple conversion

of purity into a matching ECQM is [171]:

PQ(C, T) =
∑

ci∈C

p(ci)Purity(ci, T), (3.47)

PQ is different from FQ: every cluster contributes to the final score, but every true label

69

type may not (in cardinality terms, PQ is 1 class to 0 or more clusters, FQ is 1 cluster to

0 or more classes, and accuracy is 1 class to 1 cluster).

It is notable that FQ and accuracy (as presented here) are easily applicable to hier-

archical clusterings with slight modifications. This same property holds for many other

formalizations of clustering quality. PQ can, with some work, be used in hierarchical defi-

nitions of clustering quality. However; standard NMI is not amenable to use on hierarchical

clusterings.

70

Chapter 4

Properties of Clustering Quality

Measures

While the previous chapter served to define a large number of the clustering quality mea-

sures in common use, this chapter focuses on general properties of clustering quality mea-

sures. I discuss properties that are important to ICQMs and ECQMs, covering many of

those discussed in previous work on clustering evaluation [3, 95, 110, 111, 112, 151, etc.]

as well as some others. By analyzing how clustering quality measures behave relative to

the properties I discuss here, users can be provided with both theoretical and practical

reasons to use certain measures. Although each property has its own section below, careful

investigation can show that many of them are related. Table 4.1, included at the end

of this section, presents how many of the clustering quality measures discussed in Chap-

ter 3 behave relative to most of the properties I discuss here. Readers should be aware

that using alternative forms of the clustering quality measures I present in Table 4.1 may

very well result in different behavior from the clustering quality measures with respect to

71

the properties in this chapter. For example, if I want to use object-pair distances in the

Davies-Bouldin Index, I must do an entirely new analysis of its behavior with respect to the

properties in this chapter. This is because the properties for Davies-Bouldin in Table 4.1

are based on Eq. 3.17, which uses object-centroid distances.

4.1 Concept

Every clustering quality measure is based on some particular concept of what makes a

clustering good. Internal consistency of clusters, as exemplified by the classic k-means

objective function (Eq. 3.2), is the most common quality concept, but there are many

others. Each concept is often distinct from others; resulting in clustering quality measures

based on different concepts behaving very differently. Even clustering quality measures

based on exactly the same concept of what makes a clustering good (such as all the varieties

of WCS I present) can have highly disparate opinions of which clusterings are the best due

to differences in implementation.

There are no right or wrong concepts/implementations in this context, it is simply up

to users to ensure that the clustering quality measures they use are consistent both in

concept and implementation with what their specific needs are. For example, if a user

has no reason to value between-cluster distances, then using relative margin (Eq. 3.18)

is inappropriate. On the other hand, if a user was going to use the clustering to train a

classifier, then relative margin might be an excellent measure, as it is similar to a SVM

classifier.

72

4.2 Consistency

Consistency, in the context of clustering quality measures, is informally used to refer to

the concept that improving a clustering should improve ICQMs’ scores for that clustering,

or at the very least not make scores worse. Intuitively, this is a property every ICQM

should have, but attempting to translate it to a formal definition quickly reveals non-

trivial problems: What does improvement mean? Why should every ICQM agree on what

is an improvement?

The most straightforward way to answer both questions is to make the assumption,

as done by Ackerman and Ben-David [1], that object-pair distances are what indicate

improvement. Specifically, shrinking within cluster distances, or expanding between cluster

distances, improves a clustering. The authors use this concept to create a formal definition

of the previous paragraph for an ICQM of the form M(C,X, d) as follows.

Definition 1 (C Consistent Variant). Distance function d′ is a C consistent variant for a

fixed X, C, and d, if ∀xi,xj∈xi∼Cxj
d(xi, xj) ≥ d′(xi, xj) and ∀xi,xj∈xi≁Cxj

d(xi, xj) ≤ d′(xi, xj).

Definition 2 (Consistency). ICQM M is consistent if, for any X, C, d, and C consistent

variant d′, we have M(C,X, d) ≤ M(C,X, d′) if higher Ms indicate a better C, otherwise

we have M(C,X, d) ≥M(C,X, d′).

Consistency seems reasonable enough that the authors originally suggest it as an axiom

for ICQMs; unfortunately, it leads to some counterintuitive situations. Consider Fig. 4.1;

while the right clustering is a consistent change to the left, it may very well be assessed by

an ICQM as a worse clustering because two clusters are now optimal but the solution still

has three.

73

Figure 4.1: A consistent change to a 3-clustering.

Many of the counterintuitive properties of consistency are dealt with by weak local

consistency.

Definition 3 (C Weakly Locally Consistent Variant). Distance function d′ is a C weakly

locally consistent variant for a fixed X, C, and d, if the following properties hold:

1. For all ci ∈ C there exists a constant λ ≤ 1 such that for all xj, xk ∈ ci we have

d(xj, xl) ≥ λd′(xj, xl).

2. For all xi, xj in different clusters, we have d(xj, xl) ≤ d′(xj, xl).

3. There exists some set R, where R contains exactly one object from every cluster in C,

such that for some constant λ ≥ 1, for all xi, xj ∈ R we have d(xi, xj) ≥ λd′(xi, xj).

Definition 4 (Weakly Locally Consistent). ICQM M is weakly locally consistent if, for

any X, C, d, and C weakly locally consistent variant d′, we have M(C,X, d) ≤M(C,X, d′)

if higher Ms indicate a better C, otherwise we have M(C,X, d) ≥M(C,X, d′).

Weak local consistency seems like a more suitable axiom for ICQMs than consistency.

74

However, it is very weak in the sense that it describes how an ICQM behaves in an extremely

limited number of situations.

It is interesting to note that altering the ≥s and ≤s in both consistency and weak local

consistency to > and < respectively, which translates to requiring that M improves, as

opposed to being allowed to stay the same or improve, whenever the clustering improves,

actually causes a huge number of ICQMs to fail to satisfy them. This leads us to a

practical question: Which ICQMs always improve when a clustering improves? I expand

this question further: Which ICQMs improve when a clustering’s within cluster distances

improve, and which ICQMs improve when a clustering’s between cluster distance improve?

I define properties below that address these questions.

Definition 5 (C Improved Within-Consistent Variant). Distance function d′ is a C im-

proved within-consistent variant for a fixed X, C, and d, if ∀xi,xj∈xi∼Cxj
d(xi, xj) ≥ d′(xi, xj)

and ∃xi,xj∈xi∼Cxj
d(xi, xj) > d′(xi, xj).

Definition 6 (C Improved Between-Consistent Variant). Distance function d′ is a C

improved between-consistent variant for a fixed X, C, and d, if ∀xi,xj∈xi≁Cxj
d(xi, xj) ≤

d′(xi, xj) and ∃xi,xj∈xi≁Cxj
d(xi, xj) < d′(xi, xj).

Definition 7 (Improving Within Consistency). ICQM M is improving within-consistent

if, for any X, non-trivial C, d, and C improved within consistent variant d′, we have

M(C,X, d) < M(C,X, d′) if higher Ms indicate a better C, otherwise we have M(C,X, d) >

M(C,X, d′).

Definition 8 (Improving Between Consistency). ICQM M is improving between-consistent

if, for any X, non-trivial C, d, and C improved between consistent variant d′, we have

M(C,X, d) < M(C,X, d′) if higher Ms indicate a better C, otherwise we have M(C,X, d) >

75

M(C,X, d′).

Improving within and between-consistency are strong characterizations of ICQMs. How-

ever, because they cause a partition of reasonable ICQMs, they are not ICQM axioms, only

useful behaviors to understand. Note that I partly organized ICQMs in Chapter 3 by use

of within and between cluster distance as well. Table 4.1 gives which ICQMs are improv-

ing within-consistent and which are improving between-consistent. No column is given for

weak local consistency as every ICQM in the table is weakly locally consistent.

4.3 Fullness

All ECQMs of the form M(C, T) are based on the joint distribution p(ci, tj); even pair

counting measures have this property. For instance, the L(C, T) in the Rand Index (Eq. 3.34)

can be stated as

L(C, T) =
∑

ci∈C

∑

tj∈T

P ∗(ci, tj, n),

where

P ∗(ci, tj, n) =















(

p(ci,tj)n
2

)

, if p(ci, tj)n > 1;

0, otherwise.

Given the dependency of all ECQMs of the form M(C, T) on p(ci, tj) values, a natural

question to ask is if all ECQMs use the entirety of that distribution, or do some ignore

specific p(ci, tj) values that fail to meet certain criteria. If we allow ECQMs to ignore some

p(ci, tj) values, then we are open to awkward situations such as entire clusters in some

clusterings not effecting the clustering’s quality assessment by ECQMs [155] (and possibly

some classes not being a factor as well). Because of this, one may prefer ECQMs where

76

every p(ci, tj) has some impact for every C and T pairing. I refer to such ECQMs as full.

Definition 9 (Fullness). ECQM M is full if, for any C and T pairing and accompanying

joint distribution of p(ci, tj), changing any single p(ci, tj) value (changing one cluster or

class membership), changes M(C, T).

Table 4.1 presents which ECQMs exhibit fullness. ECQMs adjusted for random chance

(AMI and ARI) were not assessed for this property. All the ECQMs that fail to ex-

hibit fullness fall into the matching measures category in Chapter 3; with every measure

in that category using a best fit mechanic where it looks for the best matches between

clusters and classes. The exact nature of the matching sought by these measures varies:

accuracy (Eq. 3.40) and Hamming (Eq. 3.41) look for a bijection of classes to clusters,

PQ (Eq. 3.47) allows many clusters to be matched to the same class, and FQ (Eq. 3.45)

allows many classes to be matched to the same cluster. While fullness is usually a good

property to have, it is entirely possible that matching patterns like these are more desir-

able in ECQMs than fullness for some application domains, thus I only suggest that users

ensure that their ECQMs match desired behavior with respect to fullness (as opposed to

requiring that all ECQMs they use exhibit it).

4.4 Homogeneity and Completeness

Homogeneity and completeness are ECQM concepts that have been used directly in several

clustering evaluation works [9, 131, etc.] and indirectly in many others. Homogeneity

refers to the concept that clusters should contain only one kind of true label, whereas

completeness refers to the concept that all objects of one kind of true label should be in

77

the same cluster. The former is closely related to precision, as it is used in information

retrieval [150]. The latter is closely related to recall, again, as it is used in information

retrieval.

An argument can be made that a sensible ECQM should do two things with respect to

these concepts; 1) it should reward a clustering the more it exhibits these two concepts;

and 2) a clustering exhibiting perfect homogeneity and completeness simultaneously should

be given a score better than any other clustering.

Unfortunately, while seeming sensible (1) does not have as clean a formalization as a

property like consistency; it can be implemented in many different ways. For example, V-

measure (Eq. 3.29) is an ECQM based on information theoretic measurements of the two

concepts, while Amigó et al. [9] suggest specific constraints that an ECQM must satisfy to

be considered as respecting both homogeneity and completeness. Because of the variety of

formalizations possible, I do not include detailed information on how ECQMs behave with

respect to (1), although intuitively the majority of ECQMs can be said to satisfy (1) in

one sense or another.

On the other hand, (2) has only one formalization: a clustering that is a perfect copy

of the true labeling must be the uniquely best clustering possible. We can see that (2) is

failed by some ECQMs. For example, PQ (Eq. 3.47) is based only on homogeneity. As

long as clusters in a clustering are entirely homogenous, PQ will assign a perfect value for

that clustering, regardless of the completeness of the clusters in the clustering. In general,

any ECQM which does not enforce that the optimal number of clusters in a clustering is

equal to the number of true label types will fail (2). The ECQMs which do satisfy this in

Table 4.1 mostly satisfy (2).

78

4.5 Noise Tolerance

Noise tolerance is a pivotal property of any machine learning technique. With respect

to clustering quality measures I use it to refer to slight changes in a clustering quality

measure’s parameters causing only slight changes in its output.

Some ICQMs have poorer noise tolerance than others; notable examples from this thesis

are WWCS1 (Eq. 3.2), WWCS2 (Eq. 3.3), Davies-Bouldin (Eq. 3.17), Dunn (Eq. 3.14), and

relative margin (Eq. 3.18). In general, poor noise tolerance may be present in any ICQM

with the ability to weight individual distances/objects much more heavily than others in

their computations.

Recall that the definition of WWCS1 is:

WWCS1(C,X, d) =
∑

ci∈C

∑

xj ,xk∈ci
d(xj, xk)

2|ci|
.

Consider the addition of δ to one of the within-cluster distances used in computingWWCS1,

then the new value of WWCS1 is:

WWCS1(C,X, d) =
∑

ci∈C

∑

xj ,xk∈ci
d(xj, xk)

2|ci|
+

δ

2|c∗|
,

where |c∗| is the size of the cluster containing the within-cluster distance that was increased.

The change is scaled by |c∗|. Because of this large, changes in WWCS1 can occur with only

a small change to within-cluster distances if they happen in small clusters. For example,

when |c∗| = 100 the change is δ/200, but for |c∗| = 2 it is δ/4, approximately a 50 times

greater change. Changing a single cluster id in a smaller cluster produces an overly large

effect in WWCS1 as well.

79

WWCS2 is not vulnerable to the second problem noted above, but suffers from the first

even more dramatically. Adding δ to one within-cluster distance results in a new WWCS2

of:

WWCS2(C,X, d) =
∑

ci∈C

∑

xj ,xk∈ci
d(xj, xk)

2|ci|(|ci| − 1)
+

δ

2|c∗|(|c∗| − 1)
.

Thus, for WWCS2, when |c∗| = 100 the change is δ/19800, but for |c∗| = 2 it is δ/4,

approximately a 5000 times greater change. The Dunn and Davies-Bouldin Index behave

like WWCS1 and WWCS2, allowing changes in smaller clusters to have disproportional

effects on their assessments of clusterings’ quality.

Relative margin is arguably one of the least noise tolerant ICQMs possible, as it uses

only one member of each cluster in its final quality assessment. Fig. 4.2 gives an example

of this problem using a 2-clustering; by changing the cluster id of only one object in the

dataset, I make the clustering look many times better for relative margin. ICQMs in this

Figure 4.2: A single cluster membership change in a 2-clustering that causes a large change
in relative margin’s quality assessment of the clustering.

thesis that are not mentioned above can be considered more noise tolerant (WCS (Eq. 3.1),

N-Cut (Eq. 3.9), Silhouette (Eq. 3.12), etc.).

Unlike ICQMs, most ECQMs are relatively stable with respect to small parameter

changes. For example, changing a single label in C or T can alter Rand(C, T) (Eq. 3.34)

80

by no more than 1/n. Given that there are n objects in the dataset C and T are based on,

and that the range of the Rand Index is 0 to 1, this seems like an ideal maximum reaction

to such a change. Even ECQMs that allows certain cluster/class ids to have larger impact

on their assessments have built in counterbalances that prevent high noise sensitivity. In

general, noise tolerance is not much of an issue for ECQMs.

4.6 Number of Clusters in an Optimal Clustering

One of the most important and heavily examined tasks in clustering is that of selecting the

right number of clusters for a dataset. A naive approach to this is to find the clustering

on the dataset that scores the maximum by a chosen ICQM and state that the number

of clusters contained in that clustering is right for the dataset. However, it is easy to

show that this procedure is flawed. A great many ICQMs have biases with respect to

the number of clusters. While an in-depth analysis of the by-number of clusters biases

of various ICQMs is beyond the scope of this thesis, users should be aware that fairly

complicated procedures [70, 55, 112, 125, 147, 164, etc.] are often used in combination

with ICQMs in selecting the right number of clusters for a dataset. In general, a user

should always be cautious when comparing clusterings with ICQMs when the clusterings

contain a large spread in number of clusters; making the ICQM compensate for random

chance (see Section 4.8) can mitigate this concern.

With respect to an ECQM of the form M(C, T), all the ones in Chapter 3 return

optimal scores when C = T , so we have k = t for an optimal clustering, as we might

expect. However, for many ECQMs the clustering returning the optimal score for some

81

fixed T is not unique. Consider EQ (Eq. 3.33), the quality of a single cluster in EQ is:

Entropy(ci, T) =
∑

tj∈T

p(ci, tj)

p(ci)
log(

p(ci, tj)

p(ci)
).

For some C and T on the same X, C is a refinement of T if:

∀ci∈C∃tjp(ci, tj) = p(ci). (4.1)

Informally, a refinement of T is any clustering that can be made by splitting the classes in

T zero or more times (refining each class). We can see that when C is a refinement of T ,

we have ∀ci∈CEntropy(ci, T) = 0. Substituting this in to Eq. 3.33 we have:

EQ(C, T) = 1−
∑

ci∈C

p(ci)
1

−log(q)0

= 1.

Combining this with the fact that a refinement must have t or more clusters, we can say

that any clustering C with t or more clusters that is a refinement of T is an optimal

scoring clustering with respect to T for EQ. This property seems like it might be useful for

an ECQM in some situations, but problematic in others (notably, for an ECQM with this

property any clustering C with all singleton clusters is always an optimal scoring clustering

with respect to T). It is easy to show that PQ (Eq. 3.47) behaves exactly like EQ with

respect to optimal scoring clusterings. My second NMI variant (Eq. 3.25) is even more

relaxed than EQ, giving optimal scores not only when C is a refinement of T , but also

when T is a refinement of C, allowing for potentially any number of clusters up to n to be

optimal scoring. All the other ECQMs in Chapter 3 can be shown to have a single unique

82

optimal clustering C = T (which means k = t), this is arguably a more sensible/expected

property, as we have told the ECQM that t is right number of clusters.

4.7 Scale Invariance

As with weak local consistency, Ackerman and Ben-David present scale invariance as an

axiom for ICQMs [1]. Informally, a scale invariant ICQM is one where multiplying the

distances between all the objects in any dataset by some constant value does not alter the

ICQM’s score for any clustering of that dataset. As with consistency, I assume the form

of all ICQMs is M(C,X, d) for the following discussion.

Definition 10 (Scale Invariance). ICQM M is scale invariant if, for any X, C, d, and

λ ∈ R
+, we have M(C,X, d) = M(C,X, λd).

Intuitively, scale invariance seems like a reasonable property. However, given that some

ICQMs that have been used effectively for many years are not scale invariant (for example,

basic k-means using Lloyd’s method, as described in Chapter 2, uses WWCS1, which is

not scale invariant) it is possible that scale invariance is too restrictive.

There is nothing inherently wrong with clustering quality measures of C changing as

we shrink/expand the X’s object representations uniformly, rather the problem is that

relative quality of clusterings may change. Uniform changes to datasets should never

change ICQMs’ relative quality assessments of clusterings on the datasets. Based on this,

I define the property of relative scale invariance as follows.

Definition 11 (Relative Scale Invariance). ICQM M is relative scale invariant if, for any

83

X, C, C ′, d, and λ ∈ R
+ we have:

M(C,X, d)

M(C ′, X, d)
=

M(C,X, λd)

M(C ′, X, λd)
. (4.2)

Clearly, scale invariance implies relative-scale invariance, but we can see from Table 4.1

that relative-scale invariance includes a larger number of ICQMs that are in active use

and widely accepted. Given this, relative-scale invariance might be a more suitable ICQM

axiom.

4.8 Random Chance

Consider performing clustering using the following steps: 1) select a random number of

clusters; and 2) randomly place each object into a cluster. Consider further that we have a

set of true labels for the objects. We may reasonably expect that all clusterings generated

by this process will score roughly the same for a fixed CQM. Unfortunately, what we find

in practice is that the quality of random clusterings like this, for a given CQM, often

vary based on the number of clusters and cluster sizes. This ‘variable’ amount of random

chance hinders our ability to determine if a CQM has detected a meaningful clustering. It

is therefore desirable to identify which clustering quality measures have variable random

chance and, whenever possible, correct for it.

Let M be a clustering quality measure. I will first consider the situation of variable

random chance when M is an ECQM. For this case, I begin by assuming that M has the

form M(C, T). There are three scenarios where we want to know if the M has variable

amounts of random chance; the first situation is when both C and T may vary, the second

84

situation is when only C may vary, and the final situation is when only T may vary. Each

of these scenarios is important for a different kind of clustering evaluation experiment.

Scenario one is important when we are looking for the best (C,T) pairing possible, where

C and T are both treated identically (neither is a gold standard); scenario two is important

when we are looking for the best clustering relative to a single gold standard; and finally

scenario three is important when we are looking for the gold standard among many that

most closely matches a single clustering. All three of these situations arise in clustering

evaluation, so an ideal M will correct for variable random chance in all of them.

Let E[M(C, T)] be the value of M(C, T) that we expect by random chance for some

unrelated C and T . A simple assumption may lead one to believe that E[M(C, T)] is based

on only C, or only T , or is always 0 for an ECQM, specifically that for unrelated C and T

we have:

∀ci∈C∀tj∈Tp(ci, tj) = p(ci)p(tj). (4.3)

Eq. 4.3 can be used to erroneously derive what variable random chance exists for an ECQM.

For example, consider determining E[M(C, T)] for PQ (Eq. 3.47). Recall that the purity

for a single cluster using PQ is defined as:

Purity(ci, T) = max
tj∈T

p(ci, tj)

p(ci)
.

Using Eq. 4.3 this becomes:

Purity(ci, T) = max
tj∈T

p(ci)p(tj)

p(ci)

= max
tj∈T

p(tj).

85

Substituting this in to PQ’s final equation (Eq. 3.47) we get our measure of E[PQ(C, T)]:

E[PQ(C, T)] =
∑

ci∈C

p(ci)max
tj∈T

p(tj)

= max
tj∈T

p(tj).

From this we assume that PQ’s variable random chance depends on only T. Similar rea-

soning may be used to derive E[M(C, T)]s that are 0 for a good number of ECQMs such

as NMI variants.

Unfortunately, our assumption that p(ci, tj) = p(ci)p(tj) is not correct as p(ci, tj) is

part of the joint distribution of two finite populations and requires a more complicated

distribution to model properly. In such a situation, p(ci, tj) 6= p(ci)p(tj) in general but it

is dependent on both p(ci) and p(tj). Given this, and that all the ECQMs I consider use

p(ci, tj) values (as discussed Section 4.3), we can say that there is variable random chance

in many ECQMs for all three of our scenarios.

As a side point, p(ci, tj) = p(ci)p(tj) if C and T are on an infinite dataset but do

not contain infinite clusters/classes themselves. It is worthwhile knowing what happens

to variable random chance in this situation as there are many times when the size of

a dataset is large enough, and C and T have few enough clusters/classes, that variable

random chance will behave almost as if p(ci, tj) = p(ci)p(tj). To that end, in Table 4.1

I present two columns for ECQMs, one for the situation where the ECQM ever has any

variable random chance, and a second for what its variable random chance is based on

asymptotically as a dataset approaches infinite size but C and T remain fixed in number

of clusters/classes.

I now investigate Ms that are ICQMs. Assuming M has the form M(C,X, d), M ’s

86

variable random chance may depend C, X, and/or d. I make the assumption that all

ICQMs have variable random chance with respect to X and d, and investigate only if

variable random chance depends on C as well.

Let E[M(C,X, d)] be the expected value of M for some X, C, d combination. It can

be shown that all the ICQMs in Table 4.1 have variable random chance with respect to C.

I give two examples, WCS and N-Cut.

Lemma 1 (WCS has variable random chance with respect to C).

Proof. It suffices to show that there are at least two clusterings of some X that have

different E[M(C,X, d)]s for some d. For WCS (Eq. 3.1); let A be a set of all singleton

clusters of any X and let B be a clustering of the same X with one cluster containing

everything. Clearly, we have WCS(A,X, d) = 0 (as there are no within clusters distances

to count) and WCS(B,X, d) =
∑

xi∈X

∑

xj∈X,xi 6=xj

d(xi, xj) (every distance is a within cluster

distance). As these always hold, we may treat them as E[WCS(C,X, d)]s for clusterings

in their situations (i.e. all singletons clusters and one cluster, respectively), but we have

WCS(A,X, d) 6= WCS(B,X, d) in general. This means E[WCS(C,X, d)] is not fixed as

C changes, so WCS has a variable amount of random chance depending on C.

Lemma 2 (N-Cut has variable random chance with respect to C).

Proof. Consider a size balanced random clustering with k clusters (n/k objects per cluster),

generated on an X where ∀xi,xj∈X,xi 6=xj
d(xi, xj) =

√
λ and

√
λ is some constant in R

+. N-

Cut is defined as

N-Cut(C,X, d) =
∑

xi,xj∈xi≁Cxj

1

d(xi, xj)2

∑

ci∈C

1
∑

xj ,xl∈ci,xj 6=xl

1
d(xj ,xl)2

.

We can use the fact we know the number of clusters and the size of each cluster, combined

87

with λ, to derive E[N-Cut(C,X, d)]:

E[N-Cut(C,X, d)] =
∑

xi,xj∈xi≁Cxj

1

λ

∑

ci∈C

1
∑

xj ,xl∈ci,xj 6=xl

1
λ

= (
n(n− 1)

2
− k

(n/k)(n/k − 1)

2
)
1

λ
k

2λ

(n/k)(n/k − 1)

= (n(n− 1)− k(n/k)(n/k − 1))k
1

(n/k)(n/k − 1)

=
nk(n− 1)

(n/k)(n/k − 1)
− k2

= k2(
n− 1

(n/k − 1)
− 1).

This shows a dependence on k for E[N-Cut(C,X, d)]. As k is not fixed for all clusterings,

we can say that N-Cut has variable random chance with respect to C.

It seems that variable random chance with respect to C is ignored in ICQMs in general;

though it is worth noting that C-Index comes close to dealing with it. If we replace

Smin(X, l) with the average we would obtain from adding together |xi ∼C xj| random

distances from X in C-Index (Eq. 3.15), then C-Index implements an ICQM’s version of

chance correction (Eq. 3.39) for WCS (Eq. 3.1). In general, we can correct any ICQM M

of the form M(C,X, d) for variable random chance with respect to C using the following

adjustment:

Chance-Correction(M,C,X, d) =
M(C,X, d)− E[M(C,X, d)]

max(M(C,X, d))− E[M(C,X, d)]
. (4.4)

To the best of my knowledge, this correction is not in active use for any ICQM that I know

of even though many ICQMs could benefit greatly from its application; I will use it in

my new ICQM though. As all the ICQMs I have considered have variable random chance

88

with respect to C, both in general and asymptotically, I omit the variable random chance

columns for the ICQMs in Table 4.1.

Overall, we can say the clustering quality measures in widespread use do not usually

handle variable random chance well, even though they need to do so to be the most effective

they can be.

4.9 Richness

Richness is another property for ICQMs discussed by Ackerman and Ben-David [1].

Definition 12 (Richness). ICQM M is rich if, for any non-trivial C and X, we are always

able to pick a d such that M(C,X, d) = maxC′∈C∗ M(C ′, X, d), where C∗ is the set of all

clustering possible on X.

The concept here is that we can make any clustering look like the best clustering

possible through careful selection of our distance function. We can argue that this is a

necessary property for every ICQM if we agree that distances are the only things that

make a clustering good or bad (much like we had to agree on using distances to define

improvement in consistency). Unfortunately, it can be seen that many ICQMs have implicit

value assigned other things, such as the number of clusters, thus the authors later suggested

co-final richness [1] as an axiom.

4.10 Time Complexity

Clustering algorithms often have substantial runtime; as I have noted it is not uncom-

mon for such algorithms to require greater than O(n2) runtime, and the computation of a

89

full similarity/distance matrix which many of them require takes O(n2m) runtime. Such

runtimes are prohibitively expensive given the massive datasets on which clustering algo-

rithms are often applied, it is therefore important that clustering quality measures do not

exacerbate the problem and have as little runtime as possible while still being effective.

Table 4.1 gives the runtimes of most of the clustering quality measures in Chapter 3.

For the ICQMs it is assumed a distance matrix has been pre-computed for them. We

can see that the runtimes of most of the ICQMs are reasonable, but there are some that

are notably high: C-Index; Gamma; and relative margin. When k ≤ √n and t ≤ √n,

every ECQM has equal or superior runtime to the fastest ICQM. The slowest ECQMs

under these assumptions are the pair-wise comparison measures (the Jaccard, Rand, and

Adjusted Rand Index) at O(n2).

90

Table 4.1: Properties of some of the clustering quality measures discussed in Chapter 3.

Improving Relative
Consistency Scale Scale

ICQM Eq. Between Within Invariant Invariant Runtime

aWCS 3.4 no yes no yes O(n2)
B/W 3.8 yes yes yes yes O(n2)
C-Index 3.15 no yes yes yes O(n2log(n))
DB Index 3.17 no no yes yes max(O(nm), O(k2m))
Dunn Index 3.13 no no yes yes max(O(nm), O(k2m))
Gamma 3.10 no no yes yes O(n2log(n))
N-Cut 3.9 yes yes yes yes O(n2)
Ratio-Cut 3.7 yes no no yes O(n2)
Rel. Margin 3.18 no no yes yes O(nk)
Silhouette 3.12 yes yes yes yes O(n2)
WCS 3.1 no yes no yes O(n2)
WWCS1 3.2 no yes no yes O(n2)
WWCS2 3.3 no yes no yes O(n2)

Possible
Optimal Scoring Asymptotic
of Clusters Variable Variable
Relative to Random Random

ECQM Eq. Fullness # of Classes Chance Chance Runtime

Accuracy 3.40 no NA yes with C, T max(O(n), O(k3))
ARI 3.36 - k = t no none O(n2)
AMI 3.28 - k = t no none -
EQ 3.33 yes k ≥ t yes with C,T max(O(n), O(tk))
FQ 3.45 no k = t yes with C,T max(O(n), O(tk))
Hamming 3.41 no NA yes with C,T max(O(n), O(k3))
Jaccard 3.35 yes k = t yes with C,T O(n2)
NMI 1 3.22 yes k = t yes none max(O(n), O(tk))
NMI 2 3.24 yes 1 ≤ k ≤ n yes none max(O(n), O(tk))
NMI 3 3.25 yes k = t yes none max(O(n), O(tk))
PQ 3.47 no k ≥ t yes with T max(O(n), O(tk))
Rand 3.34 yes k = t yes with C,T O(n2)
VI 3.27 yes k = t yes with C,T max(O(n), O(tk))

91

Chapter 5

Improving Document Clustering

using Okapi BM25 Feature Weighting

Anil K. Jain, the co-author of a prominent clustering review paper cited in the first para-

graph of this thesis [88], and a book on the subject of clustering [87], recently pointed

out [86] that it is more than 50 years after the design of the first k-means type algorithm

for clustering, but that algorithm is still in widespread use today. One may ask, given

all the supposedly superior clustering algorithms that exist now, why is that one still so

popular? I argue that a large part of the reason for this, and most of the issues with

clustering today, is due to problems with evaluating clusterings.

In the two previous chapters I looked at clustering quality measures (CQMs) and many

of their important properties. I showed some of the wide array of clustering quality mea-

sures available, as well as several conceptually complex properties to consider, some of

which are not necessary properties, but merely interesting ways to differentiate clustering

quality measures. These chapters lead to fundamental questions.

92

What does it mean if one clustering is better than another using a particular CQM? I

have already discussed how we cannot use such a result to indicate universal superiority of

clusterings, but one may not even know what it means within a specific context, particularly

as we understand most CQMs and their relationships poorly.

Unfortunately, most of clustering literature does not help us with practical questions like

those above. While I believe that there are many interesting and high-quality theoretical

papers in the literature [1, 2, 4, 109, 151, etc.], such papers tend not to help with practical

issues/questions like these. This is not a failing of such papers, but rather it is the result

of needing to remove the particulars of practical clustering in order to make any broadly

applicable theoretical headway. One might expect experimental/algorithm design papers

to help more with practical clustering, but they are often not helpful as well due to very

weak experimental components. For example, it is extremely common for authors of papers

presenting new clustering algorithms to spend the majority of the paper developing the

algorithm, then try to show that the algorithm works in practice using a few datasets, a few

competitors (often just three or less), and a few ECQMs (often just one). This is wholly

insufficient to indicate that a specific clustering algorithm is of high quality. Further, it is

very uncommon for any clustering paper at all to investigate specific domain trends in an

effort to justify why certain clustering algorithms and/or quality measures are appropriate

for them. As a comparison, consider classifiers. Joachims [90] gives extensive reasons for

using SVM classifiers on text through investigating properties of actual text datasets. This

kind of investigation seems to be missing almost entirely from the mainstream clustering

literature.

In view of the above, in this chapter I present a document clustering experiment that

is extremely broad. I believe that, beyond its explicit stated purposes in the following

93

section, the experiment serves to illustrate the level of detail that is necessary for practical

use to be made of the results.

5.1 Preliminaries

Certain assumptions regarding the weighting of text features are nearly ubiquitous in the

text clustering literature. I explore some of these assumptions here, investigating the effect

of typical text feature weighting on document clustering. The aim of the experiments in

this chapter is to determine if standard term weighting strategies for document clustering

can be improved upon, as well as illuminating some issues with clustering evaluation.

I reiterate some notation for clarity. X is a dataset we want to cluster, here always one

of documents, xi is the ith document in X, represented using the standard vector space

model:

xi = (xi1, xi2, . . . , xim). (5.1)

xij is the weight of feature j in document i. tf weighted vectors for documents have the

form

xij = tfij, (5.2)

where tfij is the term frequency of j in i. Binary weighted vectors for documents have the

form

xij =















1, if tfij > 0;

0, otherwise.

(5.3)

94

tf-idf weighted vectors for documents have the form

xij = tf ij log(
n

nj

), (5.4)

where n is the number of documents in X and nj is the number of documents in X

that contain term j. Euclidean-length normalization of a vector is done by applying the

following transformation:

x
′

ij =
xij

√

m
∑

j=1

x2
ij

. (5.5)

Most document clustering literature discusses using (or uses) the tf-idf weighting in Eq. 5.4,

mostly with the length normalization in Eq. 5.5 [8, 140, 145, 162, 80, 172, 173, etc.].

There is some research from fields related to clustering, such as classification, that

indicate that idf is an important part of feature weighting for documents, while tf is not

as useful [157]; such results suggest that the same might be true of document clustering.

Despite this research, I will show that tf weighting is superior to binary weighting, and

also that the inclusion of an idf component to tf is not necessarily beneficial in document

clustering. While I will show idf generally has a small positive effect on clustering results,

for some datasets it is substantially harmful to a wide range of clustering algorithms.

Further, the effect of idf is heavily dependent on the clustering algorithm.

BM25 [129] is a weighting function that has been shown to be effective in many fields

outside of clustering, but has only recently been seriously considered in document clus-

tering, with works that do use BM25 still being a small minority [15, 45, 101, 153, 156].

An examination of these works suggests that document clustering using BM25 feature

weighting is promising, but it also reveals several areas where research is lacking. First, no

95

broad investigation of the suitability of BM25 feature weighting for document clustering

has been done; the rational for its use, up to this date, has simply been that it has worked

well in other applications. Second, suitable parameter values for BM25 when document

clustering have not been investigated; researchers have simply adopted default values for

them. Finally, no work has assessed the merits of using just the BM25 term saturation

component as a feature weight. I investigate all three of these my experiments.

I show that replacing the tf in tf-idf weighting (Eq. 5.4) with the BM25 term saturation

component, and changing nothing else about how the clustering is performed, produces

results superior to tf-idf weighting in an extensive test. I also investigate the use of just

the BM25 term saturation component as a feature weight, which I show outperforms tf.

Parameter estimation for k1 in BM25 is also investigated, with my research leading to

the conclusion that typical values for k1 from other tasks such as ad-hoc retrieval are

unsuitable; k1 should be higher to achieve better clustering results.

With respect to clustering evaluation in general, I will show that certain clustering

algorithms are biased towards certain clustering quality measures, and, more distressingly,

that clustering quality measures have large amounts of disagreement in how they rank

clusterings/clustering algorithms.

The rest of this chapter proceeds as follows. Section 5.2 describes my tf, tf-idf, and bi-

nary weighting experiments and the datasets, clustering algorithms, and clustering quality

measures used in them. Section 5.3 discusses the results of these experiments, highlight-

ing some key discoveries and analyzing why they occurred. Section 5.4 demonstrates that

BM25-weighted document representations produce superior clusterings when compared to

their non-BM25 counterparts. Section 5.5 gives a summary.

96

5.2 Experimental Setup

In this section I describe my tf, tf-idf, and binary weighting experiments and the datasets,

clustering algorithms, and clustering quality measures used in them.

I selected 17 clustering algorithms and eight document datasets, which are described

in Section 5.2.2 and Section 6.3.1 respectively. For each dataset I generated three repre-

sentations: one using tf, another using tf-idf, and a final one using binary weighting. The

definitions used for the weighting functions, while creating the representations, were ex-

actly as detailed at the start of this chapter. All three weightings were length normalized

as per Eq. 5.5. Each clustering algorithm was run on each representation with two to 30

clusters. This gave a total of 11832 (8 ∗ 3 ∗ 17 ∗ 29) clusterings. These clusterings were

evaluated using the four clustering quality measures described in Section 5.2.3. The results

of the clustering quality measures on the clusterings are used in Section 5.3 to analyze the

effect of the weightings. The following subsections detail the specific datasets, clustering

algorithms, and clustering quality measures I used.

5.2.1 Datasets

I used a total of eight datasets in my experiment, all of which are available at the Karypis

Lab website1 in the form of preprocessed term frequency count vectors. The vectors for

each dataset can be created from the base documents of each dataset using a simple script

called doc2mat2. Conceptually, doc2mat performs the following operations to generate the

vectors for the datasets: 1) all non-alphanumeric characters are converted to whitespace; 2)

1http://glaros.dtc.umn.edu/gkhome/views/cluto/download
2http://glaros.dtc.umn.edu/gkhome/files/fs/sw/cluto/doc2mat.html

97

Table 5.1: The datasets used in my experiments.
Dataset # of Doc # of Terms # of Classes

fbis 2463 2000 17
new3 9556 36306 44
tr31 927 10128 7
tr41 878 7454 10
tr45 690 8261 10
re0 1504 2886 13
re1 1657 3758 25
wap 1560 8460 20

documents are tokenized using whitespace as a separator; 3) a simple stopword list (built

in to the program) filters out all stopwords; 4) a Porter stemmer is applied to the tokens,

5) tokens containing any non-alphabetic characters are discarded and all other tokens are

case-normalized (lower case); 6) the remaining tokens are used to generate the terms for

the dataset; and 7) the final term count vectors are created using the results of steps (5)

and (6). I did not apply doc2mat myself; instead I simply used the preprocessed vectors

provided by the site owners (it should be further noted that the default parameter settings

of doc2mat do not match those discussed here, see the doc2mat documentation for details

on which parameter settings were used to generate the dataset vectors).

The eight datasets (and sometimes larger versions of them) have been used in numerous

publications [16, 59, 145, 162, 172, etc.] and may thus be considered as standard test sets

for document clustering. Table 5.1 summarizes their characteristics.

The document collections new3, tr51, tr41, and tr31 are derived from collections used

at TREC (Text REtrieval Conference3). The fbis collection is from the Foreign Broadcast

Information Service dataset in TREC-5. The first 2000 of the fbis documents were used in

my tests. This allowed us to use a standard Java matrix package (JAMA4) which required

that the number of dimensions be greater than or equal to the number of objects when

3http://trec.nist.gov
4http://math.nist.gov/javanumerics/jama/

98

applying singular value decomposition (fbis has 2000 dimensions). Re0 and re1 are from

the Reuters-21578 text categorization test collection distribution 1.05. The wap collection

is the from the WebACE project [24]. Each document of the wap dataset was a single web

page in the Yahoo! directory.

5.2.2 Clustering Algorithms

Of the 17 clustering algorithms used in my experiments, I implemented all but the six

based on Zhao and Karypis [171, 172, 173] myself. Where possible, my implementations

were validated through comparisons to previously published results. The algorithms using

the objective functions from Zhao and Karypis were performed using the authors’ own

clustering toolkit6.

Selection of the clustering algorithms was based on the following criterion: 1) Were

they well-established algorithms? 2) Did they take a pre-specified number of clusters as

a parameter and produce hard clusters? 3) Together, did the set of algorithms cover a

breadth of the well-established techniques for document clustering? 4) Together, did the

set of algorithms include those algorithms reported to produce good results in previous

research? This last requirement was especially important for a meaningful analysis of the

effects of tf-idf and other term weightings. Table 5.2 lists the 17 clustering algorithms I

used.

UPGMA, Slink, Clink, and PAM operate exactly as detailed in Section 2.4. General

forms of most of the other algorithms in Table 5.2 have been discussed in Section 2.4, below

I give specific details for my implementation/uses of them.

5http://www.daviddlewis.com/resources/testcollections/reuters21578/
6http://glaros.dtc.umn.edu/gkhome/views/cluto/download

99

Table 5.2: The clustering algorithms used in my document clustering experiments.
Algorithm Short Reference

K-means K-means [106]
Partition Around Medoids PAM [91]
Repeated Bisecting k-means RB-K-means [145]
Unnormalized Spectral Spect-Un [152]
Random Walk Spectral Spect-RW [139]
Symmetric Spectral Spect-Sy [119]
Principle Component Analysis+k-means PCA-K [124]
Non-Negative Matrix Factorization NC-NMF [162]
Unweighted Pair Group Method UPGMA [91]
Single Linkage Slink [88]
Complete Linkage Clink [88]
Repeated Bisecting I2 RB-I2 [171, 172, 173]
Repeated Bisecting H1 RB-H1 [171, 172, 173]
Direct I2 Direct-I2 [171, 172, 173]
Direct H1 Direct-H1 [171, 172, 173]
Agglomerative I2 Agglo-I2 [171, 172, 173]
Agglomerative H1 Agglo-H1 [171, 172, 173]

My K-means algorithm used Lloyd’s method [106] with the initial centroids being se-

lected randomly from the vectors of the dataset. I ran the algorithm 20 times for each value

of k and kept only the best result according to the k-means internal objective function.

RB-K-means repeatedly splits the dataset using K-means. Binary splitting was used, with

the largest remaining cluster split at each iteration [145].

I selected three varieties of spectral clustering. For each of these three varieties the

weighted adjacency matrix W was generated through an r-nearest neighbor scheme with

cosine similarity using r = 20. Spect-Un clustered on the k eigenvectors of the Laplacian

L = D − W , where D was the degree matrix of W . For details on the Laplacian for

Spect-RW see [139], and for Spect-Sy see [119]. The clustering of the eigenvectors for all

three methods was done using my K-means algorithm.

For my PCA algorithm, I first applied PCA to produce an n × 20 reduced document

feature space. This was followed by the application of my K-means algorithm. I used the

NC-NMF version NMF from [162] as the authors showed it to be more effective than simple

NMF.

100

Finally, I selected two of the objective functions from Zhao and Karypis [171, 172,

173]: I2 and H1. For each of these, I used three distinct optimization methods: repeated

bisection, direct (partitional), and agglomerative. This gave me a total of six algorithms.

For details on their exact implementations, readers can consult Zhao and Karypis [171,

172, 173], as I used the authors’ own clustering toolkit to perform these algorithms, along

with the exact parameters specified in those papers. The I2 function is essentially the

K-means objective function except any similarity metric may be used in the calculation.

The H1 function is I1/E1, where E1 is an objective function based around minimizing the

weighted similarity of cluster centroids from the centroid of the whole dataset, and I1 is

an objective function similar to UPGMA.

5.2.3 Clustering Quality Measures

I used four ECQMs in my experiments; normalized mutual information (NMI); F-measure (FQ);

purity (PQ); and entropy (EQ). PQ and EQ are exactly as detailed in Chapter 3, for NMI I

used the first version I detailed in Chapter 3 (Eq. 3.22), and FQ is Eq. 3.42 with β = 1 (F1).

These four measures were selected because they are very common in document clustering

literature.

5.3 Effects of Document Feature Weightings

Rather than compare tf, tf-idf, and binary weightings simultaneously I chose to examine

two questions I believe are key with respect to document feature weighting; 1) Is the idf

component of tf-idf weighting needed for document clustering?; and 2) Is term frequency

more useful than simple term presence/absence for document clustering? Question (1) is

101

Table 5.3: The percentage change in clustering quality measures when using tf-idf document
representations over tf, by dataset and overall.

Dataset NMI FQ PQ EQ

fbis -1.6% -0.4% -1.0% -1.3%
new3 0.1% -2.3% -2.0% 0.3
re0 -11.0% -4.1% -5.3% -5.4%
re1 14.8% 4.9% 4.9% 8.6%
tr31 15.9% 8.2% 7.5% 10.4%
tr41 12.5% 7.8% 8.3% 8.8%
tr45 20.0% 17.5% 12.5% 15.6%
wap 6.6% 7.6% 6.4% 7.2%
Overall 7.2% 4.9% 3.9% 5.5%

evaluated in Section 5.3.1 by comparing mytf and tf-idf results. I will show the benefit

of idf is heavily dependent both on the dataset and the clustering algorithm. I examine

question (2) in Section 5.3.2 by comparing my tf and binary results. I will show that tf is

substantially superior to binary weighting.

5.3.1 Effect of tf-idf on Document Clustering

To determine if tf-idf was having a positive effect when compared to tf, I first took the clus-

tering quality measures on the 7888 tuples of (weighting, dataset, algorithm, #clusters)

for the tf and tf-idf weightings and collapsed them by averaging each clustering quality

measure over the number of clusters. This gave 272 tuples of (weighting, dataset, algo-

rithm) with averaged clustering quality measures. From these tuples I derived three tables

comparing tf and tf-idf weighting; 1) By dataset and average over all clustering algorithms

for that dataset (Table 5.3); 2) By dataset and the best clustering algorithm for that

dataset (Table 5.4); and 3) By algorithm (Table 5.5).

The overall row in Table 5.3 indicates that, on average, tf-idf offers improved results

over tf. However, tf-idf is actually substantially worse than tf for re0 and somewhat worse

for fbis and new3. Table 5.4 shows the best clustering algorithm for each dataset and

102

Table 5.4: The best algorithm for tf and tf-idf weighting on each dataset by each measure.
Diff is the improvement in using the best tf-idf over the best tf algorithm.

NMI
tf tf-idf Diff

fbis RB-H1 0.566 RB-H1 0.558 -1.9%
new3 RB-H1 0.577 RB-I2 0.590 2.3%
re0 RB-I2 0.420 RB-H1 0.417 -0.7%
re1 RB-I2 0.492 RB-I2 0.556 12.9%
tr31 RB-H1 0.533 Agglo-I2 0.591 10.8%
tr41 Agglo-I2 0.630 Agglo-I2 0.657 4.4%
tr45 RB-I2 0.622 Agglo-I2 0.667 7.2%
wap RB-I2 0.571 Agglo-H1 0.573 0.3%
Overall 4.4%

FQ
tf tf-idf Diff

fbis Agglo-H1 0.560 Agglo-H1 0.549 -2.0%
new3 RB-H1 0.324 RB-I2 0.323 -0.3%
re0 Direct-H1 0.478 Direct-I2 0.431 -9.8%
re1 Agglo-I2 0.470 Agglo-I2 0.479 1.8%
tr31 Clink 0.585 UPGMA 0.688 17.6%
tr41 Agglo-I2 0.611 Direct-I2 0.655 7.2%
tr45 Agglo-I2 0.590 Agglo-H1 0.672 14.0%
wap Agglo-I2 0.507 Agglo-H1 0.539 6.4%
Overall 3.1%

EQ
tf tf-idf Diff

fbis RB-H1 0.704 RB-H1 0.692 -1.8%
new3 RB-H1 0.601 RB-H1 0.594 -1.1%
re0 RB-H1 0.703 RB-H1 0.689 -2.1%
re1 RB-I2 0.632 RB-I2 0.663 5.0%
tr31 RB-H1 0.859 RB-I2 0.895 4.3%
tr41 RB-I2 0.860 RB-I2 0.884 2.8%
tr45 RB-I2 0.831 RB-H1 0.854 2.8%
wap RB-I2 0.686 RB-H1 0.689 0.5%
Overall 1.3%

PQ
tf tf-idf Diff

fbis RB-H1 0.687 RB-H1 0.676 -1.6%
new3 RB-H1 0.666 RB-I2 0.679 1.9%
re0 RB-H1 0.681 RB-H1 0.679 -0.2%
re1 RB-I2 0.626 RB-I2 0.685 9.4%
tr31 RB-H1 0.810 RB-I2 0.850 4.9%
tr41 RB-I2 0.829 RB-I2 0.859 3.7%
tr45 RB-I2 0.783 RB-H1 0.816 4.3%
wap RB-H1 0.670 RB-H1 0.677 1.1%
Overall 2.9%

Table 5.5: Improvements by clustering algorithms when using tf-idf over tf weighting.
Main Type Algorithm NMI FQ PQ EQ

Hierarchical

UPGMA 22.1% 16.4% 15.8% 22.9%
RB-K-means 14.0% 10.5% 7.7% 9.7%
Agglo-H1 5.6% 4.3% 2.9% 4.4%
Agglo-I2 5.4% 3.1% 2.8% 4.5%
RB-H1 3.1% 2.1% 1.1% 2.6%
RB-I2 2.8% 1.2% 1.1% 2.6%
Slink 6.6% 0.0% 0.2% 0.8%
Clink -5.4% -1.2% -0.1% 0.0%
Overall 6.8% 4.6% 3.9% 5.9%

Partitional

NMF-NC 19.4% 13.5% 12.0% 13.2%
Direct-I2 14.7% 7.4% 7.7% 10.5%
PAM 10.4% 8.3% 7.0% 8.0%

Direct-H1 11.9% 6.0% 6.1% 8.0%
Spect-Un 6.5% 5.4% 4.3% 5.8%
Spect-RW 5.3% 5.7% 3.3% 5.0%
K-means 7.6% 4.4% 2.5% 4.1%
Spect-Sy 4.1% 3.7% 2.4% 3.8%
PCA-K 2.1% 1.2% 4.9% -1.2%
Overall 9.1% 6.2% 3.9% 6.4%

103

weighting, by each of the four clustering quality measures. One can see that Table 5.4 is

mostly consistent with Table 5.3 in terms of when tf-idf or tf is better, with the best tf and

tf-idf results being closer, in general, than average tf and tf-idf results.

A possible reason for idf’s harmful effect on some datasets is apparent from a nearest

neighbor analysis. For each dataset and weighting I calculated the percentage of r-nearest

neighbors, per document, that share the same label as that document. Figure 5.1 presents

the results of this analysis for r = 1 to 30. Considering just the tf and tf-idf lines for

the moment, we see definite trends. For re0, where idf is harmful, we see tf-idf yielding a

consistently worse nearest neighborhood than tf. For the datasets where idf is beneficial

(re1, tr31, tr41, tr45, and wap), we see tf yielding better small neighborhoods, but as

r increases tf-idf reduces less than tf, yielding substantially better neighborhoods than

tf at higher rs. For new3 and fbis, where idf is only somewhat harmful, we see that tf

again begins with better neighborhoods, but as r increases tf and tf-idf approach the same

quality of neighborhood (as opposed to tf-idf becoming better). As clustering algorithms

tend to focus on placing nearest neighbors in similar clusters, this provides a reasonable

explanation for my different by-dataset results.

The average improvement by algorithms presented in Table 5.5 are split into hierarchical

and partitional groups. Note that RB-K-means and other repeated bisection methods are

placed in the hierarchical section, as they generate hierarchies of clusters, even though the

splitting decision at each level is based around partitioning. It is immediately noticeable

from Table 5.5 that the benefit of idf is not divisible along partitional versus hierarchical

lines. For example, UPGMA and NC-NMF gain the largest benefit from using tf-idf, the

former being hierarchical and the latter partitional. Another notable aspect is that the

better clustering algorithms (from Table 5.4, 5.6 and 5.7) benefit less from tf-idf than most

104

Table 5.6: Algorithmic Rankings by my clustering quality measures when using tf.
tf

NMI FQ PQ EQ

RB-I2 Agglo-I2 RB-I2 RB-H1
RB-H1 Agglo-H1 RB-H1 RB-I2
Agglo-I2 K-means Agglo-H1 Agglo-I2
Agglo-H1 Direct-H1 Agglo-I2 Agglo-H1
Spect-Sy Direct-I2 Spect-Sy Spect-Sy
K-means Spect-Sy K-means K-means
PCA-K Spect-Un PCA-K RB-K-means
Spect-Un RB-I2 RB-K-means PCA-K
Spect-RW RB-H1 Spect-RW Spect-Un
RB-K-means UPGMA Spect-Un Spect-RW
Direct-I2 NC-NMF PAM NC-NMF
Direct-H1 Clink NC-NMF PAM
NC-NMF PCA-K Clink Clink
Clink Spect-RW Direct-H1 Direct-H1
PAM RB-K-means Direct-I2 Direct-I2
UPGMA PAM UPGMA UPGMA
Slink Slink Slink Slink

Table 5.7: Algorithmic rankings by my clustering quality measures when using tf-idf.
tf-idf

NMI FQ PQ EQ

Agglo-H1 Agglo-I2 RB-H1 RB-I2
RB-I2 NC-NMF RB-I2 RB-H1
Agglo-I2 Agglo-H1 Agglo-H1 Agglo-I2
RB-H1 UPGMA Agglo-I2 Agglo-H1
NC-NMF Direct-I2 RB-K-means RB-K-means
Spect-Sy Direct-H1 NC-NMF Spect-Sy
RB-K-means K-means Spect-Sy NC-NMF
Spect-Un Spect-Un K-means K-means
K-means RB-K-means Spect-Un Spect-Un
Spect-RW Spect-RW Spect-RW Spect-RW
Direct-I2 Spect-Sy PAM PCA-K
UPGMA RB-H1 PCA-K PAM
Direct-H1 Clink UPGMA Clink
PCA-K RB-I2 Clink UPGMA
PAM PAM Direct-I2 Direct-I2
Clink PCA-K Direct-H1 Direct-H1
Slink Slink Slink Slink

Table 5.8: Kendall’s τ correlation between all the rankings in Table 5.6 and Table 5.7.
tf tf-idf

NMI FQ PQ EQ NMI FQ PQ EQ

tf

NMI 1.000 0.426 0.809 0.824 0.618 0.044 0.632 0.706
FQ 0.426 1.000 0.265 0.279 0.397 0.500 0.176 0.221
PQ 0.809 0.265 1.000 0.926 0.603 -0.059 0.735 0.779
EQ 0.824 0.279 0.926 1.000 0.618 0.015 0.779 0.824

tf-idf

NMI 0.618 0.397 0.603 0.618 1.000 0.279 0.750 0.735
FQ 0.044 0.500 -0.059 0.015 0.279 1.000 0.176 0.132
PQ 0.632 0.176 0.735 0.779 0.750 0.176 1.000 0.926
EQ 0.706 0.221 0.779 0.824 0.735 0.132 0.926 1.000

105

of the other algorithms (except Slink and Clink).

It is highly noteworthy that my investigation of tf versus tf-idf weighting revealed that

certain algorithms appear to favor certain clustering quality measures. To show this, I

used the dataset collapsed by number of clusters again. For each weighting, dataset, and

clustering quality measure, the clustering algorithms were ranked by their clustering qual-

ity measure, from one (best) to 17 (worst). I then computed each algorithm’s average rank

by weighting and clustering quality measure. Table 5.6 shows the algorithms, ordered by

this average ranking (from best to worst) when tf is used, for each clustering quality mea-

sure. Table 5.7 shows similar results for tf-idf weighting. In general, the less than perfect

level of agreement visible in those tables illustrates the problematic nature of clustering

evaluation—if measures in common use don’t agree on what is better, how can we improve

and/or use clustering.

The most striking inconsistency in Table 5.6 and Table 5.7 is the behavior of FQ. We

notice that RB-H1 and RB-I2, which are overall the best algorithms, rank much lower

by FQ for both tf and tf-idf weighting. Also, for both tf and tf-idf, UPGMA fairs much

better with FQ than with other measures, as do Direct-H1 and Direct-I2. A Kendall’s τ

test for correlation between pairs of the eight rankings in Table 5.6 and 5.7 is presented in

Table 5.8. One may note some measure of agreement between tf NMI, tf PQ, tf EQ, tf-idf

NMI, tf-idf PQ, and tf-idf EQ rankings, with the minimum τ between any pair of those

being 0.618. Perhaps unsurprisingly, the tf FQ and tf-idf FQ rankings have a τ of 0.5, with

much lower (even negative in one case) τ values with the other six rankings.

A potential source for FQ’s large disagreement is related to the fullness property I

discussed on page 76. Of the four ECQMs I used, FQ is the only one that allows entire

clusters to be ignored in its quality assessment.

106

With respect to which algorithms are better, several algorithms have generally high

ranks in Table 5.6 and Table 5.7 across all the clustering quality measures, including RB-

H1, RB-h2, Agglo-H1, Agglo-I2, and Spect-Sy. RB-K-means and NC-NMF perform well

with tf-idf clustering quality measures only. Interestingly, K-means performs reasonably

well by all measures. On the other hand, we can see that Slink and Clink provide uniformly

poor performance.

Summarizing this section, I note that tf-idf offers an improvement over tf, but it is not

always better. Its benefit fluctuates heavily with the dataset, clustering algorithms, and

evaluation measures used.

5.3.2 Effect of tf and binary weighting on Document Clustering

To determine if term frequency was more beneficial than binary term weights I compared

the tf results to the binary results. The procedure for performing this experiment was

the same as in the previous subsection, except my tf-idf results were replaced with my

binary results. Table 5.9 shows the difference in the best algorithm results of binary and

tf weightings.

It is clear from Table 5.9 that binary weighting is notably worse than standard tf

weighting. In a few cases the best binary results are better than the tf results, but they are

often dramatically worse. When examining the average behavior of binary weighting, both

by dataset and by clustering algorithm, I likewise found it to be notably worse than tf.

A simple explanation for binary weighting’s poor performance can be found by examining

Figure 5.1. One can see that in every case except re0, the nearest neighborhoods of

binary weightings are greatly inferior to those of tf. For re0, binary weighting produces

107

Table 5.9: The best algorithm for tf and binary weighting on each dataset by each measure.
Diff is the improvement in using the best binary algorithm over the best tf algorithm.

NMI
tf binary Diff

fbis RB-H1 0.569 RB-H1 0.498 -12.4%
new3 RB-H1 0.577 RB-H1 0.527 -8.6%
re0 RB-I2 0.420 RB-I2 0.437 4.1%
re1 RB-I2 0.493 RB-H1 0.431 -12.4%
tr31 RB-H1 0.533 RB-I2 0.505 -5.3%
tr41 Agglo-I2 0.630 RB-H1 0.603 -4.2%
tr45 RB-I2 0.622 RB-H1 0.567 -8.8%
wap RB-I2 0.571 Agglo-I2 0.598 4.6%
Overall -5.4%

FQ
tf binary Diff

fbis Agglo-H1 0.560 Clink 0.476 -15.0%
new3 RB-H1 0.324 RB-H1 0.271 -16.4%
re0 Direct-H1 0.478 Direct-H1 0.455 -4.7%
re1 Agglo-I2 0.470 Direct-H1 0.379 -19.5%
tr31 Clink 0.585 UPGMA 0.558 -4.6%
tr41 Agglo-I2 0.611 Agglo-H1 0.550 -10.0%
tr45 Agglo-I2 0.590 PCA-K 0.537 -9.0%
wap Agglo-I2 0.507 Agglo-I2 0.589 16.1%
Overall -7.9%

EQ
tf binary Diff

fbis RB-H1 0.704 RB-H1 0.641 -9.0%
new3 RB-H1 0.601 RB-H1 0.554 -7.9%
re0 RB-H1 0.703 RB-I2 0.716 1.7%
re1 RB-I2 0.632 RB-H1 0.560 -11.4%
tr31 RB-H1 0.859 RB-I2 0.833 -3.0%
tr41 RB-I2 0.860 RB-H1 0.843 -2.0%
tr45 RB-I2 0.831 RB-H1 0.765 -7.9%
wap RB-I2 0.686 RB-I2 0.710 3.4%
Overall -4.5%

PQ
tf binary Diff

fbis RB-H1 0.687 RB-H1 0.618 -10.0%
new3 RB-H1 0.666 RB-H1 0.622 -6.6%
re0 RB-H1 0.681 RB-I2 0.697 2.3%
re1 RB-I2 0.626 RB-H1 0.570 -8.9%
tr31 RB-H1 0.810 RB-I2 0.781 -3.7%
tr41 RB-I2 0.829 RB-H1 0.807 -2.6%
tr45 RB-I2 0.783 RB-H1 0.722 -7.7%
wap RB-H1 0.670 RB-I2 0.691 3.2%
Overall -4.3%

only slightly worse nearest neighborhoods (with its clustering results being correspondingly

closer to tf in quality). From this we can conclude that term frequency counts are important

in clustering; it is not sufficient to cluster on simple binary term presence/absence.

5.4 BM25 based Feature Weighting

The superiority of tf over binary weighting, which I demonstrated in the previous section,

indicates that term counts are an important aspect of document clustering. A natural

next question is if we can perform some other modification to tf which will yield superior

clustering results. To that end, I applied BM25 [129], which contains a term frequency

dampening component, as a basis for feature weighting. If Q is a query consisting of a set

108

of terms, then Xi’s BM25 score with respect to that query (Eq. 5.4) is:

Score(Q,Xi) =
∑

j∈Q

tfij(k1 + 1)

tfij + k1((1− b) + b dli
avgdl

)
log(

n

nj

), (5.6)

where dli is a count of the tokens in document Xi:

dli =
m
∑

j=1

tfij (5.7)

avgdl is the average document length for documents in the collection, and b and k1 are

parameters that are tuned, with k1 ≥ 0 and 0 ≤ b ≤ 1. Accounting for document length is

handled by the b parameter. The term component in Eq. 5.6 saturates at a maximum of

k1 + 1 as tfij →∞, with the gain from increasing tf diminishing as the tf value increases.

As discussed at the start of this chapter, the previous rationale for the use of BM25

in document clustering was its performance at other tasks. Since its introduction in the

early 1990s, the BM25 formula has been widely adopted, and it has repeatedly proved its

value across a variety of search domains. The saturation characteristics of the BM25 term

weighting function have been identified as a key element in the success of the formula.

Unlike other proposed modifications to tf, growth of the BM25 term weighting function is

relatively rapid when tf is small. However, the function quickly approaches an asymptote,

limiting the impact of a single term.

Although document retrieval and clustering are not identical tasks, there is now enough

clustering research to suggest BM25 might aid in document clustering [15, 45, 101, 153, 156].

This, coupled with the fact that no thorough analysis on the specific benefits of BM25 in

document clustering exists, led me to use BM25 in a clustering experiment similar to my

109

initial experiment discussed Section 5.2.

I altered the document representations of Eq. 5.2 and Eq. 5.4 to use the term saturation

component of BM25. Specifically, Eq. 5.2 became

xij =
tfij(k1 + 1)

tfij + k1((1− b) + b dli
avgdl

)
, (5.8)

and Eq. 5.4 became

xij =
tfij(k1 + 1)

tfij + k1((1− b) + b dli
avgdl

)
log(

n

nj

). (5.9)

I refer to Eq. 5.8 as BM25-tf and Eq. 5.9 as BM25-tf-idf. The selection of values for

the parameters b and k1 is discussed in the next subsection. After creating the BM25

document representations for the various datasets, my experiment followed the procedure

described in Section 5.2 exactly, including the length normalization process. Section 5.4.2

discusses the results of the experiment, comparing my BM25 weightings with their non-

BM25 counterparts and with each other.

5.4.1 Parameter Estimation

Typical values for the BM25 parameters in document retrieval are b = 0.75 and k1 = 1.2 (or

2.0), and previous BM25 clustering papers have mostly used these default values. However,

as the b parameter serves the same roll as Euclidean length normalization, I chose to fix

b = 1.0 in my experiments, and use Euclidean length normalization on top of BM25 to

account for document length. I left the task of exploring the best b value to use for future

work, and instead focused on estimating the k1 parameter.

I set aside two of my datasets, fbis and tr31, to use in selecting k1, while the other

110

six were kept for testing. On each of these two datasets, I ran several of my algorithms

using document representations based on both Eq. 5.8 and Eq. 5.9 with b = 1.0 and

k1 = 0 . . . 100 in increments of one, various numbers of clusters were used as well. I applied

my four clustering quality measures to the resulting clusterings, Figure 5.2 presents the

trend in the clustering quality measures when varying the k1 parameter of Eq. 5.9 with

UPGMA clustering (results for other clustering algorithms and the other weighting are

mostly consistent with these results).

While the plots in Figure 5.2 fluctuate, it is clear that a low value of k1 such as the

typical document retrieval value of 1.2 or 2.0 is not appropriate. Further, setting k1 too high

diminishes performance, although this is much less pronounced. While a more complex

analysis of which k1 is best would be appropriate, I selected a value of k1 = 20 for use in

my experiments based on these plots.

5.4.2 Results

From my previous experiments, we saw that tf and tf-idf behaved differently based on the

dataset and algorithm, thus is made sense to compare BM25-tf versus tf, and BM25-tf-

idf versus tf-idf. Table 5.10 shows the improvement by dataset of BM25-tf over tf, and

Table 5.11 shows the improvement by dataset of BM25-tf-idf over tf-idf. Table 5.12 and

Table 5.13 show the improvement by algorithm for BM25-tf over tf and BM25-tf-idf over

tf-idf respectively.

One can see from Table 5.10 and 5.11 that using BM25 weightings improves the average

clustering quality results for all clustering quality measures. Both weightings offer approx-

imately the same improvement over their non-BM25 counterparts. The by-algorithm re-

111

Table 5.10: Improvement by BM25-tf over tf.
Dataset NMI FQ PQ EQ

new -0.8% -4.5% -1.5% -0.7%
re0 4.2% 2.5% 2.6% 2.3%
re1 2.2% -0.5% 1.2% 1.4%
tr41 2.5% 0.5% 1.9% 2.5%
tr45 3.7% 3.2% 2.8% 3.6%
wap 4.2% 3.3% 2.5% 3.7%
Overall 2.7% 0.8% 1.6% 2.1%

Table 5.11: Improvement by BM25-tf-idf over tf-idf.
Dataset NMI FQ PQ EQ

new3 2.3% 3.4% 2.9% 1.2%
re0 13.1% 4.6% 6.0% 6.4%
re1 -1.0% 0.5% 0.7% -0.7%
tr41 1.6% -0.8% 1.0% 2.1%
tr45 -3.1% -3.9% -1.9% -1.8%
wap 4.4% 4.1% 3.5% 3.5%
Overall 2.9% 1.3% 2.0% 1.8%

Table 5.12: Improvements by algorithms when using BM25-tf over tf weighting.
Main Type Algorithm NMI FQ PQ EQ

Hierarchical

Clink 6.6% 3.5% 5.7% 8.0%
RB-K-means 4.5% 2.0% 2.3% 3.3%
Agglo-H1 2.4% 0.5% 1.3% 1.7%
RB-H1 1.6% 0.0% 0.4% 1.1%
UPGMA 2.6% -0.5% 1.1% 2.2%
RB-I2 1.7% 0.4% 0.8% 1.2%

Agglo-I2 1.6% 0.2% 0.8% 1.0%
Slink -1.8% 0.0% 0.0% -0.2%

Overall 2.4% 0.8% 1.6% 2.3%

Partitional

PCA-K 7.3% 5.5% 4.5% 5.0%
NMF-NC 3.7% 2.4% 3.2% 3.4%
PAM 3.9% 2.9% 2.4% 2.5%

Spect-Un 3.8% 1.3% 2.9% 3.1%
Spect-RW 3.2% 1.8% 1.9% 2.7%
Direct-H1 2.9% 1.2% 2.1% 2.3%
K-means 2.9% 1.6% 1.4% 2.2%
Spect-Sy 3.0% 0.5% 1.5% 2.4%
Direct-I2 1.9% 1.1% 1.6% 1.5%
Overall 3.6% 2.0% 2.3% 2.8%

112

Table 5.13: Improvements by algorithms when using BM25-tf-idf over tf-idf weighting.
Main Type Algorithm NMI FQ PQ EQ

Hierarchical

Clink 18.0% 11.8% 8.2% 7.5%
RB-I2 3.2% 2.6% 2.5% 1.9%

UPGMA 3.3% 0.3% 1.8% 2.4%
RB-H1 2.4% 1.2% 1.8% 1.6%

Agglo-H1 2.1% 0.9% 1.3% 1.3%
Agglo-I2 1.5% 0.5% 1.7% 0.7%
Slink -3.0% 0.2% -0.2% -0.3%

RB-K-means -3.3% -4.3% -2.3% -2.3%
Overall 3.5% 1.7% 1.9% 1.6%

Partitional

PCA-K 10.0% 6.1% 7.8% 9.0%
Spect-Un 5.1% 3.1% 3.7% 3.3%
PAM 5.4% 1.9% 2.6% 3.0%

Spect-RW 5.0% 1.6% 2.4% 3.0%
K-means 2.6% 2.0% 3.3% 3.0%
Spect-Sy 4.4% 0.9% 2.1% 2.4%
Direct-H1 0.5% -0.7% 0.0% 0.0%
NMF-NC -0.6% -0.2% 0.0% 0.0%
Direct-I2 -1.2% -1.1% -0.3% -1.6%
Overall 3.5% 1.6% 2.4% 2.5%

sults in Table 5.12 and 5.13 reveal that the large majority of algorithms benefit from BM25

weighting. It is worth noting that the four best performing algorithms for either tf and

tf-idf from my previous experiment (specifically Agglo-H1, Agglo-I2, RB-I2, and RB-i1) all

improve when BM25 term saturation is used. The benefit of BM25 term saturation is likely

due to its effect on nearest neighborhoods, this is visible in Figure 5.1. From Figure 5.1,

we can see that BM25-tf always has an equal or better neighborhood than tf, likewise,

BM25-tf-idf has better neighborhoods than tf-idf. With respect to comparing BM25-tf and

BM-tf-idf, they follow a pattern similar to that of tf and tf-idf. For example, Table 5.14

shows the improvement by algorithm from using BM25-tf-idf over BM25-tf. The algo-

rithms that benefit most from tf-idf can be seen to benefit most from BM25-tf-idf. When

I analyzed the behavior of BM25-tf-idf versus BM-tf by dataset. I found it to be similar

to the behavior of tf-idf versus tf as well. Additionally, the relative nearest neighborhood

behaviors of BM25-tf-idf versus BM25-tf in Figure 5.1 follow the same pattern as tf-idf

versus tf.

113

Table 5.14: Improvements by algorithms when using BM25-tf-idf over BM25-tf weighting.
Main Type Algorithm NMI FQ PQ EQ

Hierarchical

UPGMA 20.0% 18.3% 17.3% 22.8%
Agglo-H1 4.7% 4.5% 3.0% 3.8%
Agglo-I2 4.4% 3.4% 3.3% 3.9%

RB-K-means 5.0% 3.5% 2.6% 3.7%
RB-I2 3.7% 2.3% 2.3% 3.1%
RB-H1 2.4% 1.2% 1.8% 1.6%
Clink -0.6% 4.9% 0.5% -2.4%
Slink 0.7% -0.2% -0.2% 0.0%

Overall 5.0% 4.7% 3.8% 4.6%

Partitional

NMF-NC 14.6% 8.5% 9.4% 10.2%
PAM 13.2% 9.1% 9.3% 10.2%

Spect-Un 8.3% 7.6% 6.4% 7.3%
Spect-RW 7.4% 6.3% 4.8% 6.4%
Direct-I2 8.4% 5.1% 5.0% 6.1%
Direct-H1 8.6% 4.6% 4.0% 5.8%
K-means 7.8% 4.6% 4.7% 5.7%
Spect-Sy 4.9% 4.2% 3.5% 4.1%
PCA-K 6.0% 2.7% 1.9% 3.0%
Overall 8.8% 5.9% 5.4% 6.5%

On average (by algorithm, dataset, best algorithm, and nearest neighborhoods), BM25-

tf-idf is somewhat better than BM25-tf, and notably better than any of the other three

weightings. From my BM25 weighting experiments in this section I conclude that BM25

term saturation is superior to raw term count information when used as a component of

feature weighting in document clustering. Further, the behavior of my BM25 weightings are

very similar to their non-BM25 counterparts with respect to which clustering algorithms

and datasets benefit the most from their application.

5.5 Summary and Discussion

In this chapter I examined the merits of applying tf-idf term weighting to document clus-

tering through an experiment involving a variety of clustering algorithms, datasets, and

clustering quality measures. I found that the idf component of tf-idf weighting does influ-

ence clustering results, but this result can be either positive or negative when compared

114

against tf weighting alone. On average, tf-idf produces better results than tf, but the ben-

efit of using tf-idf depends very heavily on the exact dataset and the clustering algorithm

used. Binary weighting was also examined, and I determined that it is noticeably inferior

to tf weighting.

An interesting point to come out of these experiments was the bias in the clustering

algorithms and ECQMs I used. Certain clustering algorithms favored certain ECQMs. For

example, UPGMA is biased towards FQ. I found that the clustering quality measures I

used are not perfectly correlated. However, NMI, PQ, and EQ are reasonably correlated.

FQ is poorly correlated with the other three measures. The algorithmic preferences of the

ECQMs I used are relatively consistent across different weighting functions, but there are

some notable exceptions such as NC-NMF, RB-K-means, and UPGMA ranking notably

better when tf-idf weighting is used. In general, my findings reinforce my discussion at the

outset of this chapter: insufficiently thorough experiments are problematic for clustering.

As an example of what can go awry with insufficient experiments, I might have concluded

that Direct-H1 is an excellent document clustering algorithm if I only used FQ in my

experiments, and then attempt to design a new clustering algorithm, comparing it against

Direct-H1. However, Direct-H1 actually has poor results by three other commonly used

ECQMs, so comparing against it is not what I should be doing. Rather, I should compare

my new algorithm against something like Agglo-I2, which is ranked highly by all the

ECQMs I investigated, and further I should perform the comparison using multiple ECQMs

and datasets.

I proposed and evaluated the use of the BM25 term weighting function in clustering.

This function is noted for its term saturation characteristics. I showed that using it in place

of the standard tf component in both tf and tf-idf leads to an improvement in clustering

115

results.

With respect to future research related to these experiments, automatic estimation of

the k1 parameter by dataset is of particular interest. This is because I am unsure if the

best k1 to use in a setup like my own is consistent across datasets, or if it varies a little, or

if it varies a great deal.

116

Figure 5.1: Percentages of r-nearest neighbors (using cosine) that share the same label for
each dataset.

117

Figure 5.2: The effect on my clustering quality measures when using UPGMA clustering on
the BM25-tf-idf document representation while varying k1 from 0 to 100. k is the number
of clusters in the clusterings.

118

Chapter 6

Clustering Clarity

In this chapter I present informativeness, my new ICQM that estimates the clarity of a

clustering. Section 6.1 develops informativeness using classification accuracy as a basis.

Section 6.2 describes a generalization of informativeness. Section 6.3 compares informative-

ness to some other well-known ICQMs, as well as some implementations of its generalized

form. I will show informativeness is more robust than all the alternatives; it behaves well

on a wide variety of the synthetic dataset structures. Using an experimental procedure

similar to that in Section 6.3, I will show in Section 6.4 that informativeness behaves in a

similarly superior fashion on several commonly used real datasets. In the following chapter

I will use informativeness in a real application: email spam filtering.

119

6.1 Informativeness

Recall that in my discussion of clarity in Chapter 1, I modeled a clustering as being on

a dataset that was an independent and identically distributed sample of a population.

I defined the clarity of a clustering as: How well a human expert in the data type of its

population can assign previously unseen members of that population to the most appropriate

cluster in the clustering. As a concrete example of this definition, consider the sample of

objects given in Fig. 6.1. Let us assume, for simplicity’s sake, that the objects in the

sample contain all possible valid combinations of features in the population. Fig. 6.2 gives

three clusterings of this sample: one by color, one by number of edges, and one by shape.

The clusterings all have high clarity in that if we present a previously unseen object from

the population to a human, they can trivially identify the cluster in which to place the

object for each of the three clusterings. However, in the case of the clustering in Fig. 6.3,

no combination of features can be used to assign, with 100% certainty, in which cluster a

previously unseen object from the population should belong in. From this we can say that

the clustering in Fig. 6.3 has low clarity.

A simple anecdote of mine illustrates relative clarity. I showed my daughter, being

seven years of age at the time, the clusterings in Fig. 6.2 and Fig. 6.3. When I asked her

what the groups were based on, she quickly identified what the clusters in the high clarity

clusterings were based on, but was confused by the low clarity clustering (pausing for some

time, and eventually saying “I don’t know”.)

There are two potential concerns with my definition of a clustering’s clarity. The first

is that is it meaningful. This question can be answered by considering the purpose of

clustering: the creation of groups of objects, where objects within groups are similar, and

120

Figure 6.1: A sample of a population.

Figure 6.2: Three clusterings of the sample in Fig. 6.1 with high clarity. The first clustering
is by color, the second by number of edges, and the third by shape.

objects in different groups are dissimilar. Intuitively, the higher the clarity a clustering

exhibits, the more it must exhibit this kind of structure, so clarity is always a meaningful

property.

The second concern is whether my clarity definition is machine computable. Computers

certainly cannot emulate arbitrary human experts at this point in time. Further, often there

is no access to populations from which datasets are drawn. However, with some thought

we can see that machines possess a tool for estimating clarity that handles both of these

problems: classification.

While nothing can perfectly replace human assignments, classifiers can be used as a

machine’s proxy for them. A classifier can treat a clustering as a set of classes to train

on, allowing the assignment of previously unseen objects into clusters to measure clarity.

Because the dataset the clustering is on is an independent and identically distributed

121

Figure 6.3: A clustering of the objects in Fig. 6.1 with low clarity.

sample of the population, we can use this process, combined with techniques like crossfold

validation, to obtain an estimate of how well the population can be classified using the

clustering without ever needing access to the entire population. Given this, we may use

classifiers to estimate clarity.

I will now formalize how I estimate clarity with classifiers. The notation I will use here

is as follows: X is a dataset whose members are an independent and identically distributed

samples of a population X∗; n is the sample size of X; C is a clustering of X; and ci is the

ith cluster in C. Let k be the number of clusters in C. A simple approach to estimating

clarity, based on the discussion of the preceding paragraph, is to train a classifier of some

type f using C as the labels of X. The accuracy of the classifier, obtained through crossfold

validation, can be interpreted as a machine estimate of C’s clarity.

Let xj be the jth object in X and let cxj
be the cluster id of xj for the clustering C.

Assume we have applied crossfold validation using a classifier of type f on C to obtain

predicted clusters of every xj ∈ X. Let fxj
be the predicted cluster id of xj ∈ X from this

process. Let rf (ci) be defined as follows:

rf (ci) =
|{xj ∈ X : (xj ∈ ci) ∧ (cxj

= fxj
)}|

n

122

One possible estimate for the clarity of C is:

A(C,X, f) =
k

∑

i=1

rf (ci). (6.1)

Eq. 6.1 is simply the classification accuracy of a classifier of type f when trained on C,

obtained through crossfold validation. Unfortunately, Eq. 6.1 is not a useful estimate of

clarity as it trivially approaches its maximum for many types of classifiers as the size of

the largest cluster approaches the size of the entire dataset. This happens regardless of the

actual contents of clusters, which is a very undesirable property. In a previous work [156],

which was not centered around estimating clarity but rather just using classification accu-

racy to pick good clusterings, I handled this issue by normalizing Eq. 6.1 by the accuracy

of a trivial classifier T , where I defined a trivial classifier as one that assigns all points of

X to the largest cluster of C. My estimate of T ’s classification accuracy was:

AT (C,X) =
maxi=1..k |ci|

n
, (6.2)

with normalized accuracy (NA):

NA(C,X, f) =
A(C,X, f)

AT (C,X)
, (6.3)

being used as my measure for ranking the goodness of clusterings. I had success in locating

meaningful clusterings among many candidates using NA with a linear SVM classifier.

Using NA as a measure of clarity still has several problems. One problem is that NA

accounts for unbalanced cluster sizes in an ad-hoc manner that heavily favors size balanced

clusterings. For example, with binary clusterings, a clustering with a 75%/25% split of

123

Figure 6.4: Maximum NA on a binary clustering with perfect classification accuracy.

points must have 1.5 times the classification accuracy of a 50%/50% split to obtain the

same score from Eq. 6.3. A direct consequence of this kind of penalty is that there may

be no way for a clustering, no matter how accurate of a classifier it produces, to obtain a

higher NA than a clustering with more balanced cluster sizes (see Fig. 6.1). What is really

needed from the normalization process is the penalization of unjustifiably size unbalanced

clusterings (i.e. clusterings where there is not enough evidence to support smaller clusters

as meaningful) while still allowing size unbalanced clusterings, in general, to potentially

score as high as size balanced clusterings.

A second issue is that no accounting for the change in AT (C,X) caused by increasing

the number of clusters is made in NA. As k increases, AT (C,X) decreases greatly (for

perfectly sized balanced clusterings, AT (C,X) = 1/k), meaning clusterings with more

clusters will tend to score higher from Eq. 6.3.

Finally, using a single classifier type in computing NA unnecessarily restricts what

clusterings can obtain high clarity as individual classifier types may only be accurate for

clusterings with particular structures in them. I will deal with all three of the above issues

in my final estimation of clarity.

I begin by noting that there is a more principled way to use classifier predictions to

124

estimate clarity than is done in Eq. 6.3. Consider the process of repeatedly classifying

unseen members of X∗. Imagine the output of this process as a stream of cluster ids from

C. Let p(ci) be the percentage of cluster ids in the stream that are ci. Then information

theory tells us that to minimize the size of the stream over the course of infinitely many

classifications we should assign each cluster id a code of length − log(p(ci)) to represent it

in the stream. While we do not know p(ci) in general, we can use a maximum likelihood

estimate of it from C:

p(ci) =
|{xj ∈ X : cxj

= ci}|
n

, (6.4)

in minimizing the expected size of the stream. Fig. 6.5 gives an example of using maximum

likelihood estimates of p(ci) values to derive an encoding to use for a stream in the situation

described above.

(a)

Cluster Id MLE p(ci) MLE −log(p(ci)) Binary Encoding

1 0.25 2 00
2 0.25 2 01
3 0.50 1 1

(b)

Figure 6.5: Using MLE p(ci) values to obtain a binary encoding. (a) is the set of cluster
ids for a clustering. (b) gives the binary encoding sizes of the cluster ids that we obtain
from using Eq. 6.4, as well as an example of a real encoding that uses those sizes.

Minimizing the stream size is, by itself, not useful in measuring clarity, but consider

that not everything in the stream is correct, sometimes the classifier will assign incorrect

cluster ids to population members of X∗. By using rf (ci) as a maximum likelihood estimate

of the probability that a cluster id in the stream will be ci and that ci is the correct cluster

id for the object the id corresponds to, we can estimate the average amount of correct data

125

in the stream per cluster id it contains:

AI(C,X, f) = −
k

∑

i=1

rf (ci) log(p(ci)), (6.5)

While Eq. 6.5 is similar to cross entropy it is not identical as
∑k

i=1 rf (ci) may be

less than one; when
∑k

i=1 rf (ci) is one (perfect prediction of cluster ids through crossfold

validation) we have:

AI(C,X, f) = −
k

∑

i=1

rf (ci) log(p(ci))

= −
k

∑

i=1

p(ci) log(p(ci))

= H(C),

where H(C) is the entropy of C. Fig. 6.6 gives an example of computing AI for some

classifier type trained on the clustering in Fig. 6.5.

(a)

AI(C,X, f) = −(0.25 log(0.25) + 0.0 log(0.25) + 0.5 log(0.50)) = 1
(b)

Figure 6.6: Evaluating AI. (a) is the predicted cluster ids labels for clustering from Fig. 6.5
for some classifier type f . Incorrect predicted labels are in boxes. (b) is the resulting AI.
Log bases are 2 in this example.

One can think of AI as information weighted classification accuracy. The weight of

a classification into cluster ci is an estimate of how much correct data we are given, on

average, from seeing a cluster label ci from the classifier. An alternative interpretation is

126

that AI is a balance between micro-averaged classification accuracy (Eq. 6.1) and macro-

averaged classification accuracy:

Amacro(C,X, f) =
1

k

k
∑

i=1

rf (ci)n

|ci|
. (6.6)

Specifically, in micro-averaging (Eq. 6.1) the relative weight of a correct classification for

an object in cluster ci is one, in macro-averaging (Eq. 6.6) it is n/|ci|, and in AI (Eq. 6.5)

it is log(n/|ci|).

AI arises naturally from my definition of clarity. Given this, I chose to use it as a basis

for clarity instead of Eq. 6.1, Eq. 6.3, or Eq. 6.6. However, note that AI still suffers from

the same issues that I noted for NA: cluster size bias, number of clusters bias, and the use

of only one classifier type in its estimation of clarity.

I deal with the first two issues I noted simultaneously by applying the correction for

random chance for ICQMs in Eq. 4.4. As discussed in Chapter 4, this adjustment is

identical to the adjustment for random chance in active use for ECQMs [82], and results

in an equation of the form:

I(C,X, f) =
AI(C,X, f)− E[AI(C,X, f)]

max(AI(C,X, f))− E[AI(C,X, f)]
, (6.7)

where E[A(C,X, f)] is the expected value of AI(C,X, f) by chance and max(AI(C,X, f))

is the maximum value of AI(C,X, f) possible given a fixed C; noting that the latter is

H(C), Eq. 6.7 is equivalent to:

I(C,X, f) =
AI(C,X, f)− E[AI(C,X, f)]

H(C)− E[AI(C,X, f)]
. (6.8)

127

Defining a random classifier as one that places objects in each class with equal likeli-

hood, I estimate:

E[AI(C,X, f)] = −
k

∑

i=1

p(ci)

k
log(p(ci)) (6.9)

=
H(X)

k
. (6.10)

This estimation is derived from noting that the maximum likelihood estimate of my random

classifier placing an unseen object from the population into ci is 1/k, and that the maximum

likelihood estimate of this being correct is p(ci). Eq. 6.9 is therefore a maximum likelihood

estimate of E[AI(C,X, f)].

Substituting Eq. 6.10 in to Eq. 6.8, we obtain:

I(C,X, f) =
AI(C,X, f)− H(C)

k
(k−1)H(C)

k

. (6.11)

Eq. 6.11 solves my first and second issues. All clusterings are scaled between 0 and 1,

except a one-clustering, for which it is not defined. I argue that having no one-clustering

definition is acceptable as investigating Eq. 6.11 values for possible number of clusters

allows us to detect if a particular number of clusters is favored over others. If none are,

we may then conclude that a one-clustering appropriate. Any none one-clustering can

obtain a 1 from Eq. 6.11 if it can be used to produce a classifier with perfect classification

accuracy, regardless of the cluster sizes it contains. Thus the potential for an unbalanced

clustering to score well is there. Penalizing unjustifiably size imbalanced clusterings is

done while still allowing this by using the − log(p(ci)) cluster code sizes. Because I use

these, misclassifying objects that actually belong in smaller clusters is more costly than

128

misclassifying objects that belong in larger clusters. At the same time, a classifier is

more likely to make mistakes when training on smaller clusters as they have fewer training

examples. From this, I can say that it is harder for size imbalanced clusterings to have high

clarity unless the clusters within them are very distinguishable. Note that this property

will also help prevent clusterings with many small size balanced clusters from scoring high

informativeness unless they are, likewise, highly distinguishable.

With respect to the second issue, that of scaling with k, I again note that I(C,X, f) is

normalized between 0 and 1 for k ≥ 2. Further, I have extracted the expected clarity by

random chance from informativeness (E[AI(C,X, f)])—that is to say, there is almost no

variable random chance component in Eq. 6.11. This is especially important because we

can see that E[AI(C,X, f)] changes both with k and the sizes of individual clusters (see

the random chance section in Chapter 4 for further discussion on this).

The final problem, that of a single classifier type being too restrictive, is easily fixed by

using a set of different types of classifiers in computing AI. Each classifier can be trained

and tested separately on the same C and X and the highest AI(C,X, f) from among the

classifiers can be used in estimating the clarity of the clustering. Note that the highest is

used because my definition of clarity is based on expert opinion. The expert, in a machine

context, is the classifier that performs the best. AI, adjusted to handle multiple classifiers,

becomes:

AI(C,X, f ∗) = max
f∈f∗

(
k

∑

i=1

rf (ci) log(p(ci))), (6.12)

where f ∗ is the set of classifier types to be trained/tested on C and X. In theory, for

the same reason that I take the best result in this computation, I should use as many

classifier types in f ∗ as possible. However, in this thesis, and in practice, it is necessary to

129

restrict classifier types for efficiency reasons. In the remainder of this thesis I show that

this restriction does not seem to hamper my final measure of clarity much, it is still highly

useful when using just a few classifier types. Because AI(C,X, f) is the only component

of Eq. 6.11 that is based on f , it is safe to simply replace it with AI(C,X, f ∗), yielding:

I(C,X, f ∗) =
AI(C,X, f ∗)− H(C)

k
(k−1)H(C)

k

. (6.13)

I call the Eq. 6.13 informativeness, where I(C,X, f ∗) is the informativeness of C, a cluster-

ing of X, when using f ∗ as the selection of classifier types. Informativeness is my ICQM for

estimating a clustering’s clarity, with higher values being better. The formal algorithmic

form for informativeness is given below.

Algorithm 1 Informativeness
Input: Clustering C, Classifier Types f∗, Dataset X {C has two or more clusters}
bestScore← 0 {initialize the best score found so far to the lowest value possible}
for all f ∈ f∗ do

T← crossFoldValidationLabeling(C,X, f) {obtain the classifier type’s predicted labeling of C through crossfold valida-
tion}
if I(C,X, f) ≥ bestScore then

bestScore← I(C,X, f)
end if

end for{get the best I(C,X, f) score for this clustering (Eq. 6.8)}
return bestScore

In Chapter 4 I covered many properties of clustering quality measures. As I discussed

there, knowing how specific clustering quality measures behave relative to these is impor-

tant as it can provide theoretical and practical reasons for using certain clustering quality

measures over others. Given this, I analyze how informativeness behaves relative to the

ICQM properties discussed in Chapter 4. I omit a discussion on concept, variable random

chance, and optimal number of clusters, as I have already discussed these at length above.

One might already have realized that informativeness’ behavior with respect to most

of the properties in Chapter 4 depends on the classifier type(s) it uses, but it can also be

130

influenced by the exact nature of the crossfold validation used (i.e. the number of folds

and which objects are in each fold). Below I present how informativeness behaves when it

uses a nearest neighbor classifier (as in Section 6.3.4, except with any number of neighbors

used), with leave-one-out crossfold validation. I use a nearest neighbor classifier because

it is well-understood and, more importantly, it can use any distance function. This allows

me to discuss informativeness as if it has the form I(C,X, d) when necessary. Note that

with some work, we can derive positive results with respect to the properties below for

informativeness when many other kinds of classifiers (SVMs, nearest centroid, etc.) are

used in it (including multiple classifiers).

Lemma 3 (For a fixed C andX let f and f ′ be classifier types such that ∀ci∈Crf (ci) ≤ rf ′(ci).

Then ∀f∗I(C,X, f ∗ ∪ f) ≤ I(C,X, f ∗ ∪ f
′

)).

Proof. It suffices to show that AI(C,X, f) ≤ AI(C,X, f ′). Let △ci = r′f (ci)−rf (ci). Then

AI(C,X, f ′) = −
k

∑

i=1

rf ′(ci) log(p(ci))

= −
k

∑

i=1

(rf (ci) +△ci) log(p(ci))

= −
k

∑

i=1

rf (ci) log(p(ci)) +−
k

∑

i=1

△ci log(p(ci))

= AI(C,X, f) +−
k

∑

i=1

△ci log(p(ci)).

As −
k
∑

i=1

△ci log(p(ci)) ≥ 0, we have AI(C,X, f) ≤ AI(C,X, f
′

).

Lemma 4 (Informativeness is consistent when using a nearest neighbor classifier with

leave-one-out crossfold validation).

Proof. Given the previous lemma, I need only show that for any X, C, d, and d′ that is

131

a C consistent variant of d, all correct classifications made using d are correct when using

d′. If C consists of a single cluster, this is trivially true. Otherwise, for some correctly

classified object xi let xj and xl be elements of X such that xi ∼C xj, xi ≁C xl and

d(xi, xj) < d(xi, xl). (6.14)

From the definition of a consistent variant we have:

d(xi, xj) ≥ d′(xi, xj)

and:

d(xi, xl) ≤ d′(xi, xl).

Substituting these two inequalities into Eq. 6.14 we obtain:

d′(xi, xj) ≤ d(xi, xj)

≤ d(xi, xl)

< d′(xi, xl).

Let rNN(xi) be the list of the r nearest neighbors that were used to predict xi’s label when

using d. In order to make xi become incorrectly classified when using d′ we must find an

xj ∼C xi, xj ∈ rNN(xi) and an xl ≁C xi, xl 6∈ rNN(xi), such that d(xi, xj) < d(xi, xl)

and d′(xi, xj) > d′(xi, xl). However, I have just shown that such an (xj, xl) pair cannot

exist, independent of rNN(xi). Given this, a correctly classified object using d is correctly

classified when using d′.

132

With respect to the refinements of consistency I discussed in Section 4.2, I note that

informativeness is neither improving within or between-consistent, regardless of the classi-

fiers it uses, as it has a maximal value beyond which improvements to a clustering can no

longer increase informativeness’ score on the clustering. This is not a problem though, as

these are not properties I suggested a clustering quality metric must have, only points of

interest.

Noise Tolerance: In the case of a nearest neighbor classifier, changing a single distance

d(xi, xj) in a clustering can result in at most two additional misclassifications/correct

classifications when crossfold validation is used (one for xi, one for xj), but using classifiers

based on larger numbers of nearest neighbors diminishes the odds of any classification

changing. Removing an individual object in a clustering can effect a nearest neighbor

classifier’s crossfold validation accuracy more but, again, using more nearest neighbors in

each classification reduces this problem. This means nearest neighbors classifiers that use

several nearest neighbors are fairly noise robust.

Lemma 5 (Informativeness is scale invariant when using a nearest neighbor classifier with

leave-one-out crossfold validation).

Proof. I simply note that multiplying all distances in d by a uniform amount does not

change the ordering of nearest neighbors for any object regardless of C, X, and d. Thus

we have AI(C,X, d) = AI(C,X, λd) and I(C,X, d) = I(C,X, λd), as required.

Lemma 6 (Informativeness is rich when using a r nearest neighbor classifier with leave-one-out

crossfold validation if the size of each cluster in the clusterings it is used on are always at

least r + 1).

Proof. Recall that satisfying richness requires that for any fixed M , X, and C, we are able

to define some distance function d such that C = argmaxC′
∈C∗ M(C

′

, X, d), where C∗ is

133

the set of all possible clusterings of X. For any fixed C and X let d be a distance function

where for all xi, xj ∈ X we have d(xi, xj) = 0.0 if xi = xj, 0.1 if xi ∼C xj and xi 6= xj, and

d(xi, xj) = 1 otherwise. Then the r nearest neighbors of every xi ∈ X have the same true

cluster id as xi. This assures correct prediction of all cluster ids by the classifier, giving

AI(C,X, d) = H(C), I(C,X, d) = 1, and C = argmaxC′∈C∗ I(C
′

, X, d).

Note the cluster size restriction above, whereas consistency and scale invariance had

none. I argue that this is not a failing of informativeness, but rather that it does not make

sense to apply nearest neighbor classification using a number of neighbors that is close to

the smallest class being trained on. The number of nearest neighbors used should be much

smaller than smallest class size.

Time Complexity: Assuming a distance matrix has been pre-computed, as we did for

other ICQMs, when using a nearest neighbor classifier, informativeness can be computed

using leave-one-out crossfold validation in O(n2 log(n)) time. This is the time it takes to

sort each object’s neighborhood list (after which only O(nr) time is required to classify all

objects). Other classifiers may yield higher time complexities for informativeness. Even us-

ing by-classifier optimization to speed up generating crossfold validation label predictions,

informativeness can be said to have a high time complexity cost for an ICQM.

One can say from the above discussions that informativeness can behave positively

with respect to all the properties for ICQMs discussed in Chapter 4, with the possible

exception of time complexity, when using many different kinds of classifiers. Noting that

many ICQMs have problems with the properties in Chapter 4, this provides a rationale for

using informativeness besides its generality. In the following sections I will provide further

rationale for its use with synthetic and real dataset experiments. The following chapter

will show a real application of informativeness with similarly positive results.

134

6.2 Generalizing Informativeness

A generalization of informativeness follows from noting that Eq. 6.5 is a measurement

between two partitions: 1) the clustering; and 2) the partitioning predicted by a classifier

of type f when trained on the clustering using crossfold validation. One can therefore

generalize informativeness to the following algorithm (assuming higher ECQM scores are

better, otherwise change minValue to maxValue, and ≥ to ≤ in the if statement):

Algorithm 2 GeneralizedInformativeness
Input: ECQM M , Clustering C, Classifier Types f∗, Dataset X
bestEcqmScore← minValue(M) {initialize the best score found so far to the lowest value possible}
for all f ∈ f∗ do

T← crossFoldValidationLabeling(C,X, f) {obtain the classifier type’s predicted labeling of C through crossfold valida-
tion}
if M(C, T) ≥ bestEcqmScore then

bestEcqmScore←M(C, T)
end if

end for{get the best ecqm score for this clustering}
return bestEcqmScore

Using Eq. 6.11 as the ECQM in this algorithm yields base informativeness. In the

following sections, I will show that this is a reasonable choice relative to some other ECQMs.

6.3 Synthetic Dataset Experiment

In my synthetic dataset experiment I compared informativeness to several other ICQMs,

among which were implementations of its generalized form, on clusterings of synthetic

datasets. The synthetic datasets I used in the experiment are detailed in Section 6.3.1, the

clustering algorithms in Section 6.3.2, the ICQMs I compared informativeness against in

Section 6.3.3, and finally the classifiers used to obtain informativeness and its generalized

form in Section 6.3.4.

135

For the experiment, I generated 50 instances of each dataset and clustered each in-

stance with each clustering algorithm using from two to 20 clusters, giving 7600 (50*8*19)

clusterings of each dataset. I then computed each ICQM for each clustering; ten-fold cross

validation was used in computing informativeness and implementations of its generalized

form. In addition, I computed how well each clustering corresponded to the true labeling

of its dataset using the NMI variant from Eq. 3.22.

The correlation between NMI and the ICQMs, as well as using the ICQMs to select

the optimal number of clusters for each dataset, is analyzed in Section 6.3.5. The analysis

will show that informativeness is superior to the other ICQMs I consider.

6.3.1 Datasets

I used five synthetic datasets in the experiment, these are detailed below. They represented

a variety of the structures that are commonly used when analyzing clustering evaluation

measures; included were datasets where cluster boundaries were linear, non-linear, and/or

fuzzy.

2GAUSS consisted of two Gaussian clusters with identity covariance, each with 500

points in two dimensions, with means of (0,-4) and (0,4).

6GAUSS consisted of six Gaussian clusters with identity covariance, each with 500

points in two dimensions. The means of these Gaussians were (0,0), (6,0), (10,0), (5,5),

(0,-5), and (-5,0). There was some overlap between the clusters in this dataset.

ELONGATED had three elongated clusters in two dimensions. The first elongated

cluster made a line from (-0.5,-0.5) to (0.5,0.5). 300 points were spaced evenly along the

line. Gaussian noise with a mean of 0 and standard deviation of 0.01 was added to each

136

dimension for each point. The second and third clusters were generated in an identical

manner, except the second cluster was shifted by −2 on the x-axis, and the third cluster

was shifted by +2 on the x-axis.

CUBE was a set of 8 clusters, each had a mean centered on one of the 8 corners of

a 10x10x10 cube centered at (0,0,0). 200 points were uniformly distributed within each

cluster between (x− 4, y − 4, z − 4) and (x+ 4, y + 4, z + 4), where (x, y, z) was the mean

of the cluster.

RINGS consisted of 2 ring clusters centered around (0,0), a larger outer ring with radius

2 and a smaller inner ring of radius 1. 400 points were evenly spaced by degrees on the

inner ring. A random noise component between 0 and 0.1 was then added to the x and y

coordinates of all the points. The outer ring was created in a similar fashion, except 1200

points were used.

6.3.2 Clustering Algorithms

I used eight clustering algorithms in the experiment; k-means, UPGMA, Repeated Bisecting

k-means, Clink, Slink, Agglo-E1, Agglo-I1, and Agglo-I2. The implementation/manner of

use of these was exactly as detailed in Section 5.2.2. I did not use every clustering algorithm

from Section 5.2.2 for two reasons: 1) some are not meant for use on very low dimensionality

datasets such as some of those in this chapter (ex. spectral clustering algorithms); and 2)

some of the clustering algorithms were similar (ex. RB-I2 optimizes the same objective

function as Agglo-I2).

137

6.3.3 Competing Evaluation Measures

I compared informativeness against five standard ICQMs and four implementations of its

generalized form. The standard ICQMs I compared against were: Silhouette, the Davies-

Bouldin Index, the C-Index, B/W, and point-wise margin. The first four of these measures

are exactly as detailed in Chapter 3; Euclidean distance was used whenever these measures

required a distance function. My final ICQM, point-wise margin, is defined as:

PWM(X) =
1

n

m
∑

i=1

∑

oj∈xi

min
ol∈xi,ol 6=oj

d(ol, oj)

min
ol∈D,ol 6∈xi

d(ol, oj)
. (6.15)

Point-wise margin is similar to relative margin (Eq. 3.18) but has a time complexity of

O(n2). It is the average over all objects in X of the closest object to them in their cluster

divided by the closest object to them that is in another cluster. Intuitively, point-wise

margin will function on well separated clusters regardless of their exact structure; it is,

however, poorly suited to evaluating overlapping clusters. I used Euclidean distance with

point-wise margin.

The four implementations of informativeness’ generalized form that I compared it

against followed the process detailed in Section 6.2. Each implementation used the same

classifier types as informativeness (see the following section), but used a distinct ECQM.

In particular, the ECQMs they used were: adjusted Rand Index (inf-ARI), purity qual-

ity (inf-PQ), entropy quality (inf-EQ), and F-measure using β = 1 (inf-F1). Each of these

ECQMs has been discussed in Section 3.2.

138

6.3.4 Classification Algorithms

Although it would be ideal to use as many classifier types as possible in computing informa-

tiveness (and implementations of its generalized forms), for efficiency reasons I restricted

myself to four classifier types in the synthetic dataset experiment. Given the results in

Section 6.3.5, I can say in hindsight that this restriction also serves to show that informa-

tiveness is useful with even just a few well chosen classifiers.

The four classifier types I used were: a five nearest neighbors (5NN) classifier, a mul-

ticlass polynomial kernel SVM (PSVM), a C4.5 decision tree (C4.5), and a nearest cen-

troid (NC) classifier. With the exception of NC, I used Weka1 implementations of the

classifiers during my experiment; I implemented NC myself.

With respect to classifier parameters, NC used Euclidean distance in classifying. For

all the other classifiers, I used their default parameter settings in Weka.

6.3.5 Analysis

I analyzed two aspects of my ICQM results on the clusterings: overall performance of the

ICQMs, and using the ICQMs to pick the optimal number of clusters for each dataset. To

compare my ICQMs’ overall performance I first created a ranking of all 7600 clusterings

for each dataset by each ICQM, from best to worst; I also generated a similar ranking

for each dataset using NMI, giving ten rankings in total per dataset. The function of

the NMI rankings was that of gold standards (i.e., they ranked the clusterings for each

dataset by their true quality). This choice was inline with the fact that a large amount of

clustering literature (including many works referenced in this thesis) use NMI variants as

1http://www.cs.waikato.ac.nz/ml/weka/

139

their measure of true clustering quality. Further, the version of NMI I chose is arguably

the most common of the variants.

For each dataset, I computed Kendall’s τ [93] (τ -b values specifically) between each of

its ICQMs’ rankings and NMI’s ranking. Table 6.1 gives the τs from these computations.

As τ measures the correlation between two rankings, and the NMI rankings were my gold

standard rankings, we can say that the higher the τs an ICQM has in Table 6.1, the better

it performed in my experiment.

Dataset
Evaluation Measure 2GAUSS 6GAUSS ELONGATED CUBE RINGS Average

Informativeness 0.290 0.267 0.748 0.334 0.388 0.406
inf-ARI 0.717 0.329 0.703 0.318 0.415 0.497
inf-PQ 0.690 0.297 0.722 0.192 0.367 0.454
inf-EQ 0.550 0.370 0.618 0.492 0.458 0.497
inf-F1 0.653 0.289 0.723 0.194 0.367 0.445
Silhouette 0.159 0.319 0.599 0.469 0.391 0.388
Davies-Bouldin 0.238 0.291 0.322 0.355 0.178 0.277
C-Index -0.727 0.272 -0.754 0.460 -0.070 -0.163
B/W -0.635 0.228 -0.744 0.427 -0.101 -0.170
Point-Wise Margin 0.248 0.131 0.753 0.005 0.407 0.309

Table 6.1: Kendall’s τ -b correlations between rankings of the synthetic dataset clusterings
by the ICQMs and the rankings made by NMI. τ ranges from -1 (anti-correlated) to 1
(perfectly correlated), 0 is uncorrelated. The higher the τ , the better the measure was
performing. All results are significant with p ∼ 0.

It is immediately noticeable from Table 6.1 that informativeness measures had higher

average τ than any of the other ICQMs analyzed. The difference in average is substantial

for even the closest pairing, with informativeness at τ = 0.406, roughly 5% higher than

the nearest non-informativeness ICQM (Silhouette at τ = 0.388); this suggests that infor-

mativeness measures are highly effective ICQMs. In this experiment, inf-ARI and inf-EQ

were notably better in average performance than the other informativeness measures.

From the results in Table 6.1, I suggest that the non-informativeness ICQMs I tested

overfit particular clustering structures. For example, C-Index performs well on 6GAUSS (τ =

140

0.272) and CUBE (τ = 0.460), yet it was substantially anti-correlated with NMI on ELON-

GATED (τ = −0.754) and not substantially correlated with NMI in any way for the RINGS

dataset. Silhouette and Davies-Bouldin appeared to do less overfitting, but were still no-

ticeably inferior overall to the informativeness measures. It is extremely important to note

that in practice, we do not necessarily know if a dataset fits a certain ICQM well, so we

should not use “best-case” behavior (such as point-wise margin on ELONGATED) to jus-

tify the use of an ICQM in general. Worst-case and average-case, however, make perfect

sense to use, and informativeness measures were superior to all the non-informativeness

ICQMs I tested for both of those.

For the ICQMs besides the informativeness measures, one might surmise that their

failings were due partly to my specific parameter selections (i.e., Euclidean distance, using

centroids in Davies-Bouldin, etc.). However, this only serves to highlight a problem with

using them, and other measures, as ICQMs. If the intention of ICQMs is to be able to

identify good clusterings without human input, how are their parameters selected?

With respect to picking the optimal number of clusters for each dataset, I grouped my

7600 clustering for each dataset by sample. Then, for each ICQM, I recorded the optimal

number of clusters it estimated for each sample of the dataset, where the estimation was

simply the number of clusters in the best scoring clustering for that ICQM. Table 6.2 gives

the frequency of optimal number of cluster estimations for each ICQM on each dataset.

A naive analysis of Table 6.2 may lead one to believe that informativeness measures

picked the right number of clusters only decently. This analysis is somewhat misleading

because we do not know what the clusterings selected as containing the optimal number

of clusterings for each ICQM actually look like. For example, an ICQM could predict two

clusters on a 2GAUSS sample, which is correct, but the clustering from which it derived

141

Figure 6.7: A two-clustering of a 2GAUSS sample that has the correct number of clus-
ters (two) but it entirely unrelated to the correct two-clustering.

this could be one where half of each true cluster was in each predicted cluster (see Fig. 6.7),

although this particular problem did not occur in the experiment for any clustering algo-

rithm. Given this, I present a more thorough analysis below. This analysis will show that

informativeness measures are actually performing better than the other ICQMs at picking

numbers of clusters—they almost always selected clusterings related in some meaningful

way to the true clustering.

The results for every ICQM tested, except B/W and C-Index, were almost perfect for

2GAUSS.

On the ELONGATED dataset, most of the ICQMs tested performed perfectly. As with

2GAUSS, B/W and C-Index performed very poorly on this dataset. Inf-ARI, inf-EQ, and

point-wise margin favored two clusters on this dataset. On investigating this, I found that

all the two-clusterings selected the optimal number of clusters by those ICQMs consisted

of two true clusters grouped together, with a third true cluster on its own. While not ideal,

this choice made sense given the structure of the dataset. Therefore, I argue that those

three ICQMs performed decently on ELONGATED.

142

For the CUBE dataset Davies-Bouldin and Silhouette estimated eight clusters, with the

clusters being the true eight. Informativeness estimated two, four, and eight clusters, with

eight being the most frequent estimation. On investigating this, I discovered that the two-

clusterings informativeness preferred for the CUBE dataset were ones that could be created

by cutting the CUBE dataset with a single hyperplane going through the origin, parallel

to one of the three axes. This means that the two clusters each contained four complete

true clusters. Similarly, the four-clusterings informativeness preferred could be created

by cutting the CUBE dataset with two hyperplanes going through the origin, where each

one was parallel to a different axes, resulting in each cluster containing two complete true

clusters. The results for the other informativeness measures were very similar to the above.

Given that the informativeness measures detected multiple meaningful clusterings/number

of clusters of the CUBE dataset, one of which was the true clustering/number of clusters,

I suggest that they performed as well as Davies-Bouldin or Silhouette, and certainly better

than the other ICQMs (which never estimated eight at all).

For the RINGS dataset, point-wise margin worked most effectively at picking the num-

ber of clusters. It always used the correct two-clustering in its estimation: two rings, one

surrounding the other. Whenever the informativeness measures estimated two clusters, it

was the correct two. Further, whenever they estimated too many clusters, the clusters in

the estimation were always pure—each cluster contained points from only one ring; Fig. 6.8

gives examples of this. This is reasonable given the structure of the dataset. The remaining

ICQMs performed uniformly poorly on the RINGS datasets.

For 6GUASS, Silhouette performed very well and Davies-Bouldin performed relatively

well. Informativeness measures seemed to perform poorly, guessing two clusters often,

and six only sometimes. The other ICQMs performed very poorly, never estimating six.

143

Figure 6.8: A five-clustering and a ten-clustering, each of which was selected by informa-
tiveness measures as containing the optimal number of clusters for a different sample of
the RINGS dataset.

Again, further investigation showed that the informativeness measures were performing

much better than it appeared. The two-clusterings they selected could be created by

dividing the dataset into a left/right split, with the (0,0), (-5,0), and (0,-5) true clusters

on the left side, and the (6,0), (10,0), and (5,5) on the right side; this is a highly sensible

two-clustering when we inspect it visually (see Fig. 6.9), perhaps even more than the true

six-way clustering. This was also the split that point-wise margin selected as containing

the optimal number of clusters most of the time. Unfortunately, point-wise margin never

detected the true six-way clustering. I argue that informativeness measures performed the

best of all the ICQMs on 6GAUSS at picking the number of clusters. They selected two

choices for the number of clusters using very meaningful clusterings, one of which was the

true number of clusters, while the other ICQMs selected either one good number of clusters

(Silhouette), often had unclear cluster boundaries in their optimal clusterings (see Fig. 6.10

for an example), or never even estimated six clusters.

My analysis above suggests that informativeness measures are the best of the ICQMs

I considered at estimating number of cluster values for datasets. Each informativeness

144

Figure 6.9: An example of the two-clusterings for the 6GAUSS dataset selected by infor-
mativeness as containing the optimal number of clusters.

Figure 6.10: A seven-clustering for the 6GAUSS dataset selected by Davies-Bouldin as
containing the optimal number of clusters. Cluster 7 is a singleton cluster. Further, the
boundaries between clusters 1, 3, and 4 are unclear.

145

measures seemed to perform roughly as well as the others. It is worth noting that Silhouette

performed extremely well on the Gaussian-like datasets (everything except RINGS).

6.4 Real Dataset Experiment

My real dataset experiment was identical to the synthetic dataset experiment except as

follows: 1) the datasets I used are detailed in Section 6.4.1; 2) I generated 20 samples (not

50) of each dataset, in each case this was done by randomly sampling 50% the dataset; and

3) informativeness and its generalized forms used only 5NN classifier with leave-one-out

crossfold validation. The ICQMs, types of informativeness, and NMI variant used were

exactly as detailed in Section 6.3. Section 6.4.2 presents an analysis of the results of the

real dataset experiment.

6.4.1 Datasets

I used five datasets in my real dataset experiment: IMAGE, ISOLET, IRIS, PENDIGITIS,

and WINE. Each of these datasets is available from the UCI machine learning repository2

and has been used in multiple papers. They are summarized in Table 6.3 and are detailed

below briefly.

IMAGE is a collection of features for 3x3 pixel regions of 7 outdoors images. The true

labels of this dataset are the physical features found in the regions, either brickface, sky,

foliage, cement, window, path, or grass. IRIS is a collection of measurements on three

different species of iris plants. It is notable that only one species of iris can be linearly

2http://archive.ics.uci.edu/ml/

146

separated from the others. ISOLET is a sample of a spoken letter dataset. Each object

in the dataset is a collection of features corresponding to the utterance of a single letter

of the English alphabet. 150 speakers were used to generate the full dataset, where each

speaker uttered each letter twice. The true labels are the letters spoken. I used a 2398 sized

sample of this dataset in my experiment. PENDIGITS is a collection of evenly-spaced (x,y)

features for hand-written digits from 0 to 9. WINE is a set of chemical analysis results for

samples of wine from 3 cultivar in Italy.

6.4.2 Analysis

Table 6.4 gives Kendall’s τ value between ICQMs and NMI on the real datasets. One

can see that informativeness’ behavior on the real datasets was similar to its behavior on

the synthetic datasets. Specifically, it was always substantially and significantly correlated

with NMI. Its average performance was far superior to its nearest variant, inf-ARI (being

nearly 50% better than it), and was superior to the best non-informativeness ICQM I

tested as well (C-Index). Informativeness and inf-ARI seem to generalize to the higher

dimensionality of real datasets well. It is worth noting that inf-PQ, inf-EQ, and inf-F1

exhibited very poor performance in this particular experiment. This is likely due to the

fact that PQ, EQ and F1 do not correct for number of clusters, cluster size, or random

chance. The synthetic datasets, having very clear clusterings, may not have required these

properties. However, the real datasets were substantially more complicated and most had

many more dimensions, likely necessitating such properties. Of the non-informativeness

ECQMs, C-Index and B/W performed well. The remaining ICQMs functioned poorly.

On another note, the small correlations in Table 6.4 highlights the fragility of ICQMs,

they are often inconsistent with true labelings on real datasets.

147

Given the results of my synthetic and real dataset experiments, I suggest that infor-

mativeness measures are good ICQMs to use in helping humans identify good clusterings.

My experiments suggest that the basic version of informativeness is highly effective in

general, and particularly useful relative to non-informativeness ICQMs when users have

no/minimal biases they want involved during the evaluation of their clusterings (i.e. they

want good clustering of any form), and/or they want multiple good clusterings of a single

dataset. With respect to which version of informativeness is the best, my results suggest

that basic informativeness, or an informativeness variant that uses an ECQM that is cor-

rected for random chance (such as ARI does), is the best choice overall. As a final point,

it should be said that the experiments in this chapter represent only a small fraction of

those possible. Therefore, much additional experimentation (beyond this chapter and the

next) is necessary to truly validate informativeness and its generalized form.

148

Table 6.2: Estimations of the number of clusters in the synthetic datasets by the ICQMs.
2GAUSS

Number of Clusters
Evaluation Measure 2 3 4 5 6 7 8 9 10 11+

Informativeness 50 0 0 0 0 0 0 0 0 0
inf-ARI 50 0 0 0 0 0 0 0 0 0
inf-PQ 50 0 0 0 0 0 0 0 0 0
inf-EQ 49 1 0 0 0 0 0 0 0 0
inf-F1 50 0 0 0 0 0 0 0 0 0
Silhouette 50 0 0 0 0 0 0 0 0 0
Davies-Bouldin 47 3 0 0 0 0 0 0 0 0
C-Index 0 0 0 0 0 0 0 0 0 50
B/W 0 0 0 0 0 0 0 0 0 50
Point-wise Margin 50 0 0 0 0 0 0 0 0 0

6GAUSS
Number of Clusters

Evaluation Measure 2 3 4 5 6 7 8 9 10 11+

Informativeness 44 2 0 0 4 0 0 0 0 0
inf-ARI 42 5 0 0 3 0 0 0 0 0
inf-PQ 49 1 0 0 0 0 0 0 0 0
inf-EQ 35 5 1 0 9 0 0 0 0 0
inf-F1 48 2 0 0 0 0 0 0 0 0
Silhouette 0 0 0 0 50 0 0 0 0 0
Davies-Bouldin 0 0 0 6 19 11 5 7 1 1
C-Index 0 0 0 0 0 0 0 0 0 50
B/W 0 0 0 0 0 0 0 0 0 50
Point-wise Margin 50 0 0 0 0 0 0 0 0 0

ELONGATED
Number of Clusters

Evaluation Measure 2 3 4 5 6 7 8 9 10 11+

Informativeness 0 50 0 0 0 0 0 0 0 0
inf-ARI 36 14 0 0 0 0 0 0 0 0
inf-PQ 0 50 0 0 0 0 0 0 0 0
inf-EQ 50 0 0 0 0 0 0 0 0 0
inf-F1 0 50 0 0 0 0 0 0 0 0
Silhouette 0 50 0 0 0 0 0 0 0 0
Davies-Bouldin 0 50 0 0 0 0 0 0 0 0
C-Index 0 0 0 0 0 0 0 0 0 50
B/W 0 0 0 0 0 0 0 0 0 50
Point-wise Margin 50 0 0 0 0 0 0 0 0 0

CUBE
Number of Clusters

Evaluation Measure 2 3 4 5 6 7 8 9 10 11+

Informativeness 14 1 3 0 0 0 32 0 0 0
inf-ARI 12 3 2 1 0 0 32 0 0 0
inf-PQ 13 3 1 2 0 0 31 0 0 0
inf-EQ 6 1 1 3 2 0 37 0 0 0
inf-F1 21 5 0 0 0 0 24 0 0 0
Silhouette 0 0 0 0 0 0 50 0 0 0
Davies-Bouldin 4 0 0 0 0 0 46 0 0 0
C-Index 0 0 0 0 0 0 0 0 0 50
B/W 0 0 0 0 0 0 0 0 0 50
Point-wise Margin 50 0 0 0 0 0 0 0 0 0

RINGS
Number of Clusters

Evaluation Measure 2 3 4 5 6 7 8 9 10 11+

Informativeness 12 7 13 8 4 5 0 0 1 0
inf-ARI 38 0 1 1 5 4 0 1 0 0
inf-PQ 22 6 5 5 3 5 2 2 0 0
inf-EQ 40 1 1 3 2 3 0 0 0 0
inf-F1 25 6 5 5 2 3 2 2 0 0
Silhouette 0 0 0 0 0 0 0 0 0 50
Davies-Bouldin 4 0 0 0 0 0 0 8 2 40
C-Index 0 0 0 0 0 0 0 0 0 50
B/W 0 0 0 0 0 0 0 0 0 50
Point-wise Margin 50 0 0 0 0 0 0 0 0 0

149

Table 6.3: The datasets used in my real dataset experiment.
Dataset # of Objects # of Features # of Classes # of Objects in largest Class

IMAGE 2100 19 7 300
ISOLET 2398 617 26 52
IRIS 150 4 3 50
PENDIGITS 7494 16 10 780
WINE 178 13 3 71

Table 6.4: Kendall’s τ -b correlations between rankings of the real dataset clusterings by the
ICQMs and the rankings made by NMI. τ ranges from -1 (anti-correlated) to 1 (perfectly
correlated), 0 is uncorrelated. The higher the τ , the better the measure was performing.
All results are significant with p ∼ 0.

Dataset
Evaluation Measure IMAGE ISOLET IRIS PENDIGITS WINE Average

Informativeness 0.468 0.346 0.457 0.194 0.189 0.331
inf-ARI 0.103 0.173 0.596 -0.025 0.282 0.223
inf-PQ -0.384 -0.088 0.563 -0.124 0.172 0.028
inf-EQ -0.266 0.067 0.549 -0.016 0.204 0.107
inf-F1 -0.375 -0.084 0.550 -0.115 0.173 0.030
Silhouette -0.029 -0.043 0.146 0.216 0.075 0.073
Davies-Bouldin -0.338 -0.253 0.401 0.091 0.085 -0.003
C-Index 0.659 0.595 -0.238 0.717 -0.183 0.309
B/W 0.213 0.516 -0.213 0.694 -0.114 0.215
Point-Wise Margin 0.214 0.106 0.311 -0.013 -0.015 0.120

150

Chapter 7

A Spam Filtering Application

In the previous chapter I provided theoretical reasons for the use of informativeness in

terms of the properties in Chapter 4. I also showed, using synthetic and real datasets, that

informativeness detects meaningful clusterings for a wide range of datasets. While this is

certainly important, recall that in the introduction of this thesis I noted that it is typically

considered that the ideal way to evaluate a clustering is situational human assessment,

a clustering is ‘good’ for someone if it does what they want. Thus, to better show that

informativeness can evaluate clusterings well, it should be used in a real application.

In this chapter I show the use of informativeness in a real application: email spam fil-

tering. I first show that clustering, in general, can be a useful tool in email spam filtering.

I then present two algorithms that leverage clusterings to produce highly effective email

spam filters that require few user labelings of emails. Both algorithms take an ICQM pa-

rameter. I will show that using informativeness for this parameter produces more effective

spam filters than using several other commonly used ICQMs, proving that informativeness

is of practical use.

151

7.1 Spam Filtering and Clustering

In laboratory experiments, it is not uncommon for email spam filters to yield outstanding

results. For example, the top spam filters from the TREC 2005 spam filtering track [32]

obtained AUC scores of 0.999 and better. However, field tests of actual spam filters have

yielded much poorer results, with overall misclassification rates on the order of 5% being

observed, even under high-quality commercial spam filters [34]. At this rate, one in 20

email messages are incorrectly assigned either a spam or ham (i.e., non-spam) label. Part

of the disparity between laboratory experiments and field tests may be explained by noting

that many laboratory experiments work under the assumption of a ‘perfect’ user, that is

to say, all the training data is labeled, and further that it is labeled correctly.

As noted by Mojdeh and Cormack [114], the assumption of a perfect user is a highly

unrealistic model. Not only are users very unlikely to label all their email messages, they

may not label any messages at all, instead relying on their spam filter’s default behavior.

Further, users make mistakes while labeling. These considerations lead me to examine

alternative user models that might be more applicable in practice.

The specific user model I investigate in this chapter is that of a user willing to label

some small number of email messages from a much larger collection of unlabeled email, all

in advance of the actual spam filtering process (i.e., an offline process) in order to obtain

an improved spam filter. We can envision my user model as fitting into the situation where

an individual has an existing email account and is changing (or tuning) the spam filter on

the account. This alternative user model engenders a semi-supervised learning problem,

where both labeled and unlabeled data can be used to train a spam filter. Naturally, other

user models are possible, and my work may be adapted to many of them.

152

Semi-supervised spam filtering is itself not a new research topic. Cormack [33] used

dynamic markov compression (DMC) to create improved spam filters by combining labeled

and unlabeled training data. The ECML/PKDD Discovery Challenge Workshop [21] in-

vestigated the use of semi-supervised spam filtering when the training and test data came

from different sources. The results of that challenge suggest that semi-supervised methods

may be superior to fully supervised learning methods. However, Mojdeh and Cormack [114]

obtained the opposite result when they tested a number of semi-supervised spam filtering

techniques, including dynamic markov compression, logistic regression [63], and transduc-

tive support vector machines [89]. In a later work, Mojdeh and Cormack [115] developed

a method for using unlabeled training data, based on singular value decomposition, that

out-performed other semi-supervised methods. Their method also out-performed super-

vised spam filters when the same number of true labels were available, indicating that

the unlabeled training data provided some benefit. Although results with semi-supervised

spam filtering have been mixed, there are clear indications that careful use of unlabeled

training data can lead to improved spam filtering.

Here I look at using clustering in a semi-supervised spam filtering. The tendency of

email datasets to exhibit spam clusters is, as with semi-supervised spam filtering, not

a new concept. For example, Li and Hsieh [102] use URLs for clustering spam emails,

while Jungsuk et al. [142] investigate feature selection in clustering spam emails. I extend

previous notions of clustering and spam filtering by first showing a previously unknown

and important result: Almost any reasonable clustering algorithm will naturally produce

clusters of almost entirely spam or entirely spam. I then exploit this fact to design two

small sample semi-supervised spam filters, based on clustering and ICQMs, the better of

which is superior to state-of-the-art small sample semi-supervised spam filters. Further,

153

I show that both my spam filters are most effective when it uses informativeness as its

ICQM.

As a starting point, I propose an intuitive rationale for the application of clustering to

spam filtering. Since spam filters exhibit very high classification accuracy in laboratory

experiments, where large volumes of labeled training data is available, I suggest that the

representations and features used for these email messages naturally make ham and spam

appear very different to these algorithms. Clustering algorithms are designed to group

similar patterns together, thus I posit that a clustering algorithm will generate clusters

of mostly spam and mostly ham. Section 7.2 validates this intuition using a number of

clustering algorithms and two well-known spam email datasets.

In Section 7.3 I develop two semi-supervised spam filtering methods based on clustering

and ICQMs, designed for use in situations where a large amount of unlabeled training data

is available, of which only a small portion will be labeled. Both of these methods exploit the

nature of email clusters, as demonstrated in Section 7.2, by creating numerous clusterings

of the training data as an initial step, using no true labels. An ICQM is then used to select

the single best clustering to use in the proceeding steps; again, no true labels are used in

this step. The first method then trains a spam filter using the true label of the medoid of

each cluster in the best clustering, which are requested from the user. The second method

is similar to the first, except that the true label for the medoid is assumed to apply to the

email messages in the entire cluster, providing labels for the entire training set, which is

then used to train a spam filter.

Section 7.4 presents the results of experiments involving my two semi-supervised spam

filtering methods. I compare my two methods using various ICQMs from Chapter 4 and

informativeness, as well as comparing all of these against a baseline spam filter trained on a

154

random sample of k email messages and their true labels, where k is equal to the number of

clusters (and true labels) used by my two methods. For test datasets, I use the TREC2005

and CEAS2008 spam email datasets. I show that both my methods perform best when

using informativeness; in this situation they are much better than random sampling. Of my

two methods, I show that the second method is substantially better than the first. Further,

when using informativeness, it produces results superior to those previously published for

other forms of semi-supervised learning. Section 7.5 summarizes the chapter.

7.2 Clustering Email

Given the discussions in previous chapters, one might be skeptical of using clustering in

combination with supervised learning methods. However, spam filtering represents a spe-

cial case. Visual inspection often trivially reveals when a message is spam or ham. Further,

spam filters exhibit exceptionally high classification accuracy. We may posit from these ob-

servations, in addition to research on the clustering behaviour of email datasets [142, 102,

etc.], that a reasonable clustering algorithm will usually produce clusters of mostly ham or

mostly spam with very little crossover.

In the remainder of this section I show that clustering emails with a sufficient number

of clusters k (roughly 6 or more) consistently ensure that the above property holds—

the resulting clusters are mostly ham or mostly spam, regardless of the exact clustering

algorithm.

155

7.2.1 Datasets

I selected two well-known datasets to use in my experiment: the TREC2005 corpus1,

and the CEAS2008 corpus2. To represent these email messages for clustering purposes,

I first truncated them all 2500 bytes. I then converted each message into a vector xi =

(xi1, xi2, · · · xim), where

xij =















1, if tfij > 0;

0, otherwise.

(7.1)

tfij is the term frequency of the 4-byte-gram j, obtained from the overlapping 4-byte-grams

of email xi. Following this, I removed all 4-byte gram features from the vectors entirely

that did not occur in at least 20 messages. Finally, I Euclidean length normalized each

vector:

xij =
xij

√

m
∑

j=1

x2
ij

(7.2)

I made the above choice of dataset representation/weighting for two reasons. First, while

Euclidean length-normalized tf-idf word vectors are commonly used in document cluster-

ing (and I showed that Okapi BM25 Euclidean length-normalized vectors are likely even

better than that in Chapter 5), spam email datasets are very different from standard doc-

ument clustering datasets. Secondly, previous research has suggested that 4-byte-grams

with binary weighting are excellent features for spam filtering [35]. These two points led

to my choice of dataset representation/weighting. Investigating clustering algorithms’ per-

formances in spam filtering tasks when using alternative weightings is an avenue of future

research.

1plg.uwaterloo.ca/ gvcormac/treccorpus/
2plg.uwaterloo.ca/ gvcormac/ceascorpus/

156

Table 7.1: The clustering algorithms used in my spam experiments.
Algorithm Short Reference

K-means K-means [106]
Repeated Bisecting k-means RB-K-means [145]
Random Walk Spectral Spect-RW [139]
Principle Component Analysis+K-means PCA-K [124]
Unweighted Pair Group Method UPGMA [91]

7.2.2 Clustering Algorithms

I selected five well-known clustering algorithms, summarized in Table 7.1. For more details

on these algorithms readers should consult Section 5.2.2, as they were implemented/used

in the manner described there.

7.2.3 Clustering Quality Measure

My measure of how well a clustering algorithm splits ham and spam was PQ (Eq. 3.46),

restated here:

PQ(C, T) =
∑

ci∈C

p(ci)Purity(ci, T),

where:

Purity(ci, T) = max
tj∈T

p(ci, tj)

p(ci)
.

C is a clustering of an email dataset and T is the true labeling of the same email dataset;

ci is the ith cluster in C and tj is a true label type in T ; p(ci) =
|ci|
n

and p(ci, tj) =
|ci∩tj |

n
,

where n is the number of email messages in the dataset.

If a clustering algorithm was effectively separating ham and spam, I expected PQ(C, T) >

max(#of spam,# of ham)
n

, which is approximately the expected PQ value by random chance.

157

Table 7.2: Average PQ values obtained by the five clustering algorithms on each dataset
as k varies. Random is the expected PQ from creating a clustering by randomly assigning
points into clusters.

TREC2005 CEAS2008
of clusters # of clusters

Algorithm 2 5 10 25 50 2 5 10 25 50

K-means 0.848 0.854 0.855 0.905 0.921 0.832 0.897 0.947 0.966 0.961
RBK-means 0.848 0.860 0.910 0.949 0.949 0.803 0.933 0.973 0.976 0.979
Spect-RW 0.850 0.877 0.930 0.940 0.940 0.817 0.928 0.971 0.971 0.961
PCA-K 0.853 0.863 0.895 0.951 0.959 0.821 0.870 0.938 0.966 0.980
UPGMA 0.835 0.923 0.950 0.960 0.967 0.803 0.978 0.979 0.983 0.986
Random 0.572 0.803

7.2.4 Purity Experiment

To show that clustering algorithms naturally separate ham and spam, I first constructed 10

random samples of the TREC2005 and CEAS2008 email datasets. For each sample, each

email of the appropriate dataset was included in the sample with some fixed probability

(0.015 for TREC2005, 0.01 for CEAS2008). The representation used for the email messages

was exactly as detailed in Section 7.2.1, except to increase clustering speed I removed 4-

byte-grams on a by-sample basis when the sample did not contain at least 20 messages

with that 4-byte-gram. This resulted in approximately 20000 distinct 4-byte-grams per

sample.

I ran my five clustering algorithms on each sample of each dataset with the number

of clusters k varying from 2 to 50, giving 4900 clusterings in total (49*2*5*10). PQ

values were obtained for each clustering. I then averaged the PQ values for each (dataset,

clustering algorithm, k) triplet. Average PQ values for some of these triplets are given

in Table 7.2. For comparison purposes, a baseline PQ value for each dataset, equal to

max(#of spam,# of ham)
n

, is included in the table. As discussed, if a clustering algorithm is

doing a good job of separating spam and ham, I expected its PQ values to be higher than

the baseline.

158

It is immediately noticeable from Table 7.2 that for any number of clusters k beyond a

very small value (k > 5 or so), all the clustering algorithms do better than the baseline. The

differences are significant with p = 0.05, with the exception of RBK-means and UPGMA

at k = 2. Moreover, all the significant results substantially outperform the baseline. PQ

values rise noticeably with k, with all PQs approaching one (perfect) as k increases. Such

strikingly high PQ values suggest that a ham/spam split is a very ‘natural’ and/or dominant

way of partitioning email.

When investigating the relatively poor performance of the clustering algorithms when

k was very low (versus higher values for k), I discovered there were simply not enough

clusters to represent a spam/ham split properly, possibly due to the skew in the ratio of

ham and spam messages. For example, CEAS2008 has more than three times as much

spam as ham. Given this ratio, when k = 2 we might expect a good clustering algorithm

to focus on the differences between spam messages, especially if the algorithm attempts

to balance cluster sizes. If we have a approximate understanding of the ratio of spam to

ham, we can select k to be large enough that roughly equal-sized clusters could achieve a

split between ham and spam.

From Table 7.2 we see that UPGMA provides the best performance overall. Although

some of my clustering algorithms perform better than others, all of the clustering algo-

rithms substantially outperform the baseline. From these results, it appears that clustering

provides a simple, unsupervised method for separating email spam from ham, but unfortu-

nately without indicating which cluster is which. However, one can take advantage of the

structure uncovered by clustering by requesting a label for a selected representative email

from each cluster.

159

Figure 7.1: A graphical representation of the process my two new spam filtering methods
follow.

7.3 Spam Filtering using Clustering

In this section I present my two new methods for spam filtering. Both methods use clus-

tering, an ICQM, and only a small number of true labels.

7.3.1 Algorithms

The general procedure followed by both my methods is relatively simple (see Fig. 7.1 for

a graphical representation). Given a user with some training email messages and some

new (test) messages they wish to filter, the first step is to create a random sample of

160

the training messages. This sampling is required only to control the size of the input to

clustering algorithms of the following step, and is not required if the clustering algorithms

can cluster the entire training set quickly enough. The second step is the production of

multiple k-way clusterings of the sample using a set of clustering algorithms. After this,

an ICQM, such as those in Chapter 3 or informativeness, is used to select the single best

clustering from those with which to proceed.

The user is then asked to label a single message from each of the k clusters in the best

clustering. After the user labels these k training messages, a classifier is trained using these

k messages, and potentially other training messages that use labels derived from those k

messages and the properties of the clustering. Finally, the trained classifier is used to spam

filter the test data. It is important to stress that at no point in my experiments are any

of test messages, labeled or unlabeled, used in the training of the spam filter (hence the

separate boxes for test and training data in Fig. 7.1).

From the experiments in Section 7.2, I assume that the clustering step in Fig. 7.1

will produce clusterings containing clusters of mostly ham and mostly spam, regardless of

clustering algorithms I use, but I also assume a little more, specifically that each individual

cluster in a clustering represents a distinct subgroup of the larger class (ham or spam) they

fall into. This assumption leads to my first spam filtering method, which I call cluster-

medoid spam filtering (CMSF).

CMSF exploits my assumption that each cluster in a clustering represents a different

subgroup of ham or spam by sampling a single representative from each cluster to use in

training a spam filter. This approach intuitively provides a better view of the different

groups than exist within the dataset than might be provided by a random sample. For

example, a random sampling is highly vulnerable to sampling the more common kinds of

161

spam, while CMSF generally ensures that points used in training are different. Further,

CMSF also serves my requirement of using a small number of true labels (k, the number

of clusters used for the clustering).

For the representative used by CMSF for each cluster in the best clustering, I opted

to use the cluster’s medoid. Because the medoid of a cluster is centrally located, one may

think of it as exemplar of the cluster, making it perhaps the ideal object to use to represent

a cluster if only one object can be selected.

A full definition of how CMSF spam filters is provided below in Algorithm 1. There are

five parameters in CMSF: k; C∗; M ; A; and p. Note that for M , the ICQM, it is assumed

that higher scores are better, for ICQMs where this is not the case we can simply multiple

scores by −1 and still use Algorithm 1. For C∗ and M , the extra parameters they might

require (such as distance functions) are assumed to be fixed, so they are not included in the

parameter list. The results in Section 7.2 suggest that a wide range of values for k and C∗

will result in good spam filters (assuming k is not a very small number). The classifier type

for CMSF (the parameter A) can be selected from those spam filtering classifiers known

to work well in previous research (such as SVMs and logistic regression). I will show that

CMSF is highly effective when the ICQM is set to informativeness, given the choice of a

number of ICQMs. Considering these points, the parameters of CMSF are easy to select.

Further, the number of labels required from the user by CMSF is only k.

One potential issue with CMSF is that it may not obtain both ham and spam labels, as

it does not request true labels of a specific class. This limitation is shared with any method

for unsupervised learning, clustering algorithms have no notion of true labels; however, I

found in practice this is not an issue when k ≥ 8. On testing the clusterings produced

in Section 7.2, I found that when k ≥ 8 there was always at least one cluster that was

162

Algorithm 3 Cluster-Medoid Spam Filtering
Input: int k, Clustering Algorithms C∗, ICQM M, Classifier Type A, Dataset dTrain, Dataset dTest, double p {k is the
number of clusters, p is the percentage of dTrain to sample}
X ← randomSample(dTrain, p) {sample the training data}
bestIcqmScore← minValue(M)
bestClustering← null {initialize the best clustering results so far}
for all C ∈ C∗ do

currentClustering← C(X, k, ∗)
if M(currentClustering, X, ∗) ≥ bestIcqmScore then

bestIcqmScore←M(currentClustering, X, ∗)
bestClustering← currentClustering

end if
end for{find the best clustering}
medoids← {φ}
for all ci ∈ bestClustering do

currentMedoid← getMedoid(ci)
medoids← medoids ∪ currentMedoid
userLabel(currentMedoid)

end for{get the user label for the medoid of each cluster in the best clustering}
T ← trainClassifier(A,medoids) {train the classifier using those emails/labels}
result← classify(dTest, T) {test the classifier}
return result

primarily spam and had a spam medoid, and at least one cluster that was primarily ham

and had a ham medoid (across thousands of clusterings).

While CMSF leverages clustering to obtain a good set of training email messages, it is

possible to do more. Table 7.2 indicates that when the label of one object in a cluster is of

a certain type, then there is a good chance that the label for any of the other messages in

the cluster is the same type. My second spam filtering method, which I call Full-Cluster

Spam Filtering (FCSF) (detailed fully in Algorithm 2), uses this concept. FCSF is identical

to CMSF, except after obtaining the medoids and their labels, the labels of each medoid

is generalized to label its entire cluster, resulting in a fully labeled training set with which

the spam filter may be trained. Again, I will show FCSF is highly effective when its M

parameter is set to informativeness versus the other ICQMs I present here.

Because clustering PQ (Eq. 3.47) values are probably not perfect for any clusterings,

FCSF will always guess the incorrect label for some number of messages in the sample, with

a minimum percentage of wrong labels equal to 1 − PQ. This means the k requirement

163

Algorithm 4 Full-Cluster Spam Filtering
Input: int k, Clustering Algorithms C∗, ICQM M, Classifier Type A, Dataset dTrain, Dataset dTest, double p {k is the
number of clusters, p is the percentage of dTrain to sample}
X ← randomSample(dTrain, p) {sample the training data}
bestIcqmScore← minValue(M)
bestClustering← null {initialize the best clustering results so far}
for all C ∈ C∗ do

currentClustering← C(X, k, ∗)
if M(currentClustering, X, ∗) ≥ bestIcqmScore then

bestIcqmScore←M(currentClustering, X, ∗)
bestClustering← currentClustering

end if
end for{find the best clustering}
labeledTrainingData← {φ}
for all ci ∈ bestClustering do

currentMedoid← getMedoid(ci)
userLabel(currentMedoid) {get and label the ith medoid}
for all xj ∈ ci do

setLabel(xj , getLabel(currentMedoid))
labeledTrainingData← labeledTrainingData ∪ xj

end for{use the medoid label to label the rest of its cluster}
end for
T ← trainClassifier(A, labeledTrainingData) {train the classifier using those emails/labels}
result← classify(dTest, T) {test the classifier}
return result

FCSF is more stringent than CMSF—more clusters, and therefore more user effort in

labeling, is required (as PQ keeps increasing with k) to minimize the mislabeling. A

further concern is that a medoid does not share the majority label of its cluster, in which

case FCSF will label the entire cluster with incorrect labels. However, I found that this

rarely occurs. Of the thousands of clusterings produced by the experiments described in

Section 7.2, only a very small number had any cluster medoids that did not match the

majority label of the entire cluster, and these tended to be very small clusters. There are

ways to reduce this problem even further, but they require more work for the user (labeling

of multiple objects per cluster, for example), and I do not further discuss them here.

Finally, I note that both CMSF and FCSF can be classified as active learning spam

filters [138]. Active learning is a form of learning in which the learner can selectively

query the user for their desired labels on specific objects. Typical active learning spam

filters [138] use an iterative process whereby the current true labeled objects plus the

164

unlabeled objects are used to select the next object(s) to request user labels for. We can

therefore consider CMSF and FCSF to be a single iteration of this active learning process,

whereby the algorithms use 0 true labeled objects plus n unlabeled objects to select k

objects (the cluster medoids) to request labels for simultaneously.

7.3.2 Efficiency

In order to make use of algorithms in real applications, it is vital that they are efficient

enough to handle the amounts of data they will encounter in reasonable amounts of time.

With respect to this, I provide the following analysis. Let n1 be the number of emails in

the training data, n2 be the number of emails in the test data, m be the number of distinct

ngrams in the training data, t be the maximum number of ngrams read from a training

email (2500 in my case), and k be the number of clusters used in the clustering algorithm.

As a preprocessing step the emails in the training data are converted to vectors. This

requires building a dictionary followed by mapping each training email to a vector. Dic-

tionary construction can be done in O(tn1) time with a hashtable. Mapping each email

to a vector using the dictionary is a simple sequence of hashtable lookups (O(tn1) total

for all emails) followed by length normalized binary weighting (O(mn1) time). As m ≥ t,

preprocessing requires O(mn1) time total. The preprocessing step in my experiments was

extremely fast, requiring a few seconds per training dataset to complete.

For CMSF, let O(Aclust(n1)) be the time complexity of the most time expensive clus-

tering algorithm in C∗ on the preprocessed training data; then all clusterings in CMSF

take O(|C∗|Aclust(n1)) time together. Let O(|C∗|Aicqm(n1)) be the time complexity of

computing M on every clustering of the preprocessed training data. Selecting the clus-

165

tering with the best ICQM score requires O(|C∗|) time. Computing all the medoids of

the best clustering requires O(n1m) time. Obtaining true labels for those medoids re-

quires O(k) time. Let O(Atrain(k)) be the time complexity of training the classifier, and let

O(Aclassify(k)) be the time complexity of labeling a single email using the trained classifier.

Then the time complexity of CMSF is O(|C∗|Aclust(n1) + |C∗|Aicqm(C) + |C∗|+ n1m+ k+

Atrain(k) + n2Aclassify(k)). It is reasonable to assume that the selection of the clustering

with the best ICQM score, computing of medoids, and assigning of true labels to those

medoids are dominated by the other four components, giving CMSF a time complexity of

O(|C∗|Aclust(n1) + |C∗|Aicqm(C) + Atrain(k) + n2Aclassify(k)).

The analysis of FCSF is almost identical, except we must map the labels of the medoids

on to the clusters, requiring O(n1) time. Assuming this cost is inconsequential, by using

the same assumptions as we did for CMSF we obtain O(|C∗|Aclust(n1) + |C∗|Aicqm(C) +

Atrain(n1) + n2Aclassify(n1)). Note that n1 is used in the train and classify components, as

FCSF trains/classifies using n1 messages, not k as CMSF does.

In short, both my methods have a time complexity based on the clustering time, plus

the time to evaluate the quality of each clustering using the ICQM, plus the time to train

the classifier, plus the actual classification process. CMSF is faster than FCSF, as k << n1,

though it may have the same time complexity. As I noted earlier in this thesis, the time

complexity of clustering algorithms can be very high. This means we cannot simply ignore

the cost of clustering in my methods, even when n1 << n2. Similarly, ICQMs such as

informativeness can be expensive. However, in my experiments I found that the process of

training CMSF or FCSF spam filters was very fast, taking much less time than the actual

filtering of the test data using the spam filters.

In the following section, I will show that both CMSF and FCSF perform best when used

166

with informativeness as their ICQM, as opposed to some other common ICQMs. I also

show that when they use informativeness, both my spam filtering methods are significantly

and substantially better than using random labeled email messages to train a spam filter,

and that FCSF is especially effective at spam filtering despite its potential drawbacks.

7.4 Spam Filtering Experiment

To demonstrate the performance of CMSF and FCSF, and that they performed best when

using informativeness as their ICQM, I used the same data as the previous experiment,

the TREC2005 and CEAS2008 email corpora. The representations for their emails was

identical to the form detailed in Section 7.2.1.

To create training and test data from these datasets, I constructed ten samples of each,

following the method detailed in Section 7.2.4, except a sample rate of 0.01 was used for

both corpora. Each sample was treated as training data for a single run of my methods.

The test data corresponding to that specific sample was the remainder of the dataset. Note

that this setup meant that for each individual test run my methods used absolutely no test

data in the training process.

For the parameters required by my methods, I continued to use the five clustering

algorithms detailed previously, and the 2 to 50 range of k as well. For the ICQMs required

by my methods I used informativeness (Eq. 6.13, its base version), as well as the Davies-

Bouldin Index, the C-Index, B/W, and point-wise margin.

The exact form of the ICQMs besides informativeness was identical to what I used in

the synthetic dataset experiments in Section 6.3. For informativeness, I used leave-one-out

crossfold validation with a special five-nearest neighbor classifier. To classify each email,

167

this classifier first computed the ten nearest neighbors of the email by Euclidean distance.

For each possible cluster, the average Euclidean distance to emails in that cluster from the

ten nearest neighbors was computed. Clusters without representation in the ten nearest

neighbors were assigned an average Euclidean distance of∞. The email was then assigned

to the cluster which had the smallest average Euclidean distance. I used this classifier

because it allowed very fast computation of leave-one-out crossfold validation and with

many classes at once.

The classifier used by the spam filter itself (as opposed to that used by informativeness)

was a simple logistic regression (LR) method as detailed by Cormack et al. [35], except no

hash function was used on the 4-byte-grams. This classifier was selected for two reasons: 1)

it is extremely fast, and 2) it has performance competitive with other state-of-the-art spam

filters. During the classification process, an unknown 4-byte-gram in the test data (one

that was not in the sample, or was stripped from it by my filtering process) was treated as

if it did not occur. The p parameter was set to 1 as the size of each training sample was

made small enough so as to ensure it could be clustered relatively quickly.

I computed the average one minus the area under the curve percentage ((1-AUC)%)

obtained over the 10 samples per (ICQM, dataset, k) tuple for each of my two methods.

I refer to these averages as bk values. I also computed the average (1-AUC)% obtained

from training a spam filter on k random email messages and classifying the rest of the

emails using that classifier for each (dataset, k) tuple for k = 2 to 50. 50 trails were used

to compute each of these tuples, and the classifier used was the same logistic regression

classifier used by my methods. I refer to these averages as sk values.

Fig. 7.2 gives plots of ln(sk/bk) on TREC2005 for the CMSF and FCSF when they use

the various ICQM parameters. Fig. 7.3 gives similar plots for the CEAS2008 dataset. As

168

Table 7.3: Wilcoxon signed-rank test results between ICQMs’ paired ln(sk/bk) values for
TREC2005. − is not significant, > and < indicate a significance at p = 0.05, where >
indicates the row name had a higher (better) mean, and < indicates the opposite. << and
>> are similar, but with p = 0.005.

TREC2005
CMSF FCSF

Inf. B/W C-Index PWM DB Inf. B/W C-Index PWM DB
Inf. - >> >> > >> - >> >> >> >>
B/W << - - - - << - - - -
C-Index << - - - - << - - - -
PWM < - - - - << - - - -
DB << - - - - << - - - -

low (1-AUC)% is better, the higher ln(sk/bk), the better a method was performing. When

ln(sk/bk) > 0, my methods were outperforming the baseline.

ln(sk/bk) was greater than 0 for all but approximately 10 of the data points in Fig. 7.2

and Fig. 7.3. Averaging over all the results, sk was 95% worse than bk for FCSF on

TREC2005, 65% worse than bk for CMSF on TREC2005, 397% worse than bk for FCSF on

CEAS2008, and 81% worse than bk for CMSF on CEAS2008. The differences between sk

and bk for fixed ks were significant with p = 0.05 in all cases. It is clear that both CMSF and

FCSF are substantially superior to the baseline spam filter. This reinforces my suggestion

that most clustering algorithms produce clusters that reflect the different kinds of ham

and spam present in email datasets (beyond just being mostly ham or mostly spam), and,

just as importantly, provides motivation to use my methods in practice. Perhaps the only

failing of CMSF and FCSF was on CEAS2008 when k was low; every (ICQMs, method)

pairing had poor results in this situation. I believe this is a product of their being much

more spam than ham in CEAS2008. As discussed, in a field application of my methods

one could pick the minimum k to use based on some understanding of the approximate

ratio of ham to spam in the emails, avoiding this problem entirely.

With respect to comparing how the five ICQMs performed in conjunction with my two

169

Figure 7.2: CMSF and FCSF results for TREC2005.

170

Figure 7.3: CMSF and FCSF results for CEAS2008.

171

Table 7.4: Wilcoxon signed-rank test results between ICQMs’ paired ln(sk/bk) values for
CEAS2005. See Table 7.3 for the notation used.

CEAS2008
CMSF FCSF

Inf. B/W C-Index PWM DB Inf. B/W C-Index PWM DB
Inf. - >> >> >> - - >> >> - -
B/W << - - << << << - << << <<
C-Index << - - << << << >> - << <<
PWM << >> >> - - - >> >> - -
DB - >> >> >> - - >> >> - -

spam filterings, one can see a few interesting trends from Fig. 7.2 and 7.3. Point-wise

margin produces excellent spam filters when few clusters/user labels are used by either

method; this is especially notable for CMSF on CEAS2008. Equally interesting is that its

performance degrades relative to the other ICQMs as k increases, being rather poor when

k ≥ 20. B/W and C-Index exhibit uniformly poor across all the results. Davies-Bouldin

fairs well on CEAS2008 (Fig. 7.3), but poorly on TREC2005 (Fig. 7.2). On the other hand,

we can see that informativeness performed well in all the situations that I tested.

In order to establish the general significance of the results in Fig. 7.2 and Fig. 7.3, for

each dataset and method, I computed a Wilcoxon signed-rank test between ln(sk/bk) values

for all possible ICQM pairings. Table 7.3 gives the results of these tests for TREC2005,

Table 7.4 gives the results for CEAS2008. For TREC2005 we can see that informativeness

is significantly better, with p = 0.005, than all the other ICQMs when using CMSF or

FCSF, except point-wise margin for CMSF; that result is still significant in favor of in-

formativeness, but only with p = 0.05. None of the other ICQM pairings had significant

differences on TREC2005. This indicates that on TREC2005 informativeness was superior

to its four competitors, the four of which were not notably better than each other.

For CEAS2008, Table 7.4 shows that informativeness, Davies-Bouldin, and point-wise

margin are significantly better than B/W and C-Index. The only other significant result is

172

that informativeness is better than point-wise margin for CMSF. This suggests that infor-

mativeness and Davies-Bouldin were best for CEAS2008, followed by point-wise margin,

then B/W and C-Index.

Overall, the significance tests suggest that informativeness was the best ICQM. It was

significantly better than all the other ICQMs in at least two of four of the results in Table 7.3

and Table 7.4. Further, no competitor was ever significantly better than it. Davies-Bouldin

and point-wise margin were next in line. B/W and C-Index were the worst, neither was

significantly better than another ICQM even once, and they were frequently significantly

worse than the other three ICQMs.

I now consider two final aspects of my results; 1) Which was superior, CMSF or FCSF?;

and 2) How did my methods’ results compare against other semi-supervised spam filtering

approaches? To answer the first question, I performed more Wilcoxon signed-rank tests,

this time between each ICQM’s results when using CMSF versus when using FCSF for each

dataset; Table 7.5 shows the results of this. From the table, it seems that CMSF was better

on TREC2005, and FCSF was better on TREC2008, so one might argue that there is little

evidence to conclude one method is better than the other. However, informativeness was

better on both datasets with FCSF. With the previous results showing that informativeness

is likely the best ICQM to use in either of my methods, we can argue that FCSF is the

better of my two spam filtering methods. That being said, the difference between CMSF

and FCSF diminishes as k increases. I offer the following explanation for this: as the

number of clusters/user labels increase, CMSF obtains a sufficient view of the different

kinds of ham/spam. Once this “saturation” point is reached, adding in additional labels,

as FCSF does, does not help anymore. It is worth noting that CEAS2008 does not reach

my supposed saturation point by the time k = 50, although TREC2005 seems to reach

173

Table 7.5: Wilcoxon signed-rank test results between CMSF and FCSF’s paired ln(sk/bk)
values for TREC2005 and CEAS2008. The name entry at (row,column) indicates which of
the two methods, if any, was significantly better than the other with p = 0.05.

TREC2005 CEAS2008
Inf. FCSF FCSF
B/W CMSF FCSF
C-Index CMSF FCSF
PWM CMSF FCSF
DB CMSF FCSF

Figure 7.4: Comparison of CMSF and FCSF when using informativeness for TREC2005
and CEAS2008.

it around k = 30 (see Fig. 7.4 for an example of this with informativeness). It would be

interesting to look at the specific clusterings in order to analyze this behavior, but I do not

consider this further here.

The second question from the previous paragraph is the most important of my ex-

periment. While informativeness was the best for both CMSF and FCSF, if it was not

outperforming other semi-supervised spam filtering approaches (as opposed to a simple

random baseline I used), then it was still not practical to use it in a real spam filter.

The results I obtained for FCSF with informativeness are better than those obtained in

a recent paper on semi-supervised spam filtering using small numbers of true labels [115].

In that work the authors investigated semi-supervised spam filtering methods using the

CEAS2008 and TREC2007 corpora. Their experimental methodology was different from

ours, and the results they presented used overall misclassification rate (as opposed to (1-

174

AUC)%) so definitive comparisons are difficult between their work and mine. However, for

CEAS2008 they obtained higher misclassification rates than FCSF with informativeness

obtained, on average, with k beyond a small threshold. For example, the average misclas-

sification rate of FCSF with informativeness for CEAS2008, when k = 32, was roughly 2%.

An average misclassification rate of greater than 3% for the new semi-supervised spam fil-

tering method presented by Mojdeh and Cormack [115] was observed for CEAS2008 when

k = 32. It is important to note that that method was shown in the paper to be superior to

previous semi-supervised spam filtering approaching, so FCSF is at least competitive with

the state-of-the-art small sample semi-supervised spam filter.

Overall, I can conclude from my experiment that small sample spam filtering, in my

framework, is improved by incorporating unlabeled training data information via cluster-

ing. Both my methods are significantly and substantially better than a simple baseline

spam filter, justifying their increased time complexity over it. I showed that FCSF with

informativeness was the best pairing to use in my methods. Further, that pairing is at least

competitive with a state-of-the-art semi-supervised spam filter which uses a small amount

of training data.

7.5 Discussion

In this chapter I investigated the use of clustering algorithms and ICQMs in semi-supervised

spam filtering. I showed that, given suitable representations for email messages, many clus-

tering algorithms partition email datasets into mostly ham and mostly spam clusters. This

result is surprising as clusterings are not always closely related to true labelings, especially

when dealing with text datasets. Because a ham/spam split is a natural clustering for an

175

email dataset, clustering can and should be investigated further as a tool for augmenting

spam filters.

Along these lines, I presented two spam filtering methods, which illustrate that cluster-

ing can be an effective tool for spam filtering. The specific context in these methods can

be applied is a setting where there exists a large amount of unlabeled training emails from

which we need request only a small number of true labels from the user.

Both my methods exploit clustering and ICQMs. First, my two methods use an ICQM

to select the best candidate clustering to use. My first method uses the medoids of clusters

in the best clustering to train a spam filter, the second maps the medoid labels onto the

entire cluster to obtain a much larger labeled training set. Despite the potential issues I

discussed in this chapter, my experiments verify that my two approaches outperform spam

filters trained on random labelings.

Informativeness was the best ICQM to use in my two methods among those I tested,

with FCSF performing better than CMSF when informativeness was used. The quality

of the spam filters produced by this pairing was competitive with state of the art semi-

supervised spam filters that used an equivalent number of user labels. This, combined with

the fact that my experiment showed that my methods can be applied on large amounts of

data, even with slower clustering algorithms and slower ICQMs such as informativeness,

proves that informativeness can be of use in real applications.

It is worth noting that spam filtering is classification based, aligning with informative-

ness’ basis well. There are many other real applications that use classification, such as

document routing and protein structure prediction. Given my results here, it is highly

possible that clustering, combined with informativeness, would be especially effective in

other real applications such as those.

176

Chapter 8

Conclusion

During the time I worked on this thesis a myriad of new clustering research arose. In fact,

there was so much that it was not feasible to discuss many of the new works out there

in any depth in this thesis. A good amount of newer clustering research is on clustering

evaluation, but this has scarcely kept pace with the volume of research on other clustering

topics. It seems that for every new clustering evaluation work there are dozens on other

clustering topics. This has had the effect of leaving clustering in its precarious poorly

understood state. In view of the above the content of this thesis is particularly important.

I began this thesis with a literature review of clustering in general, describing features,

similarity/distance measures, and clustering output structures. I covered many notable

clustering algorithms and discussed the major points one is most likely to run across in

clustering. Beyond providing a review, I aimed at showing just how massive the scope of

clustering research is. Despite my thoroughness, I feel the review is only a scratch at the

surface of clustering in general. There is a huge amount of literature out there, and more

than a few good works can be found outside of the major journals and conferences that

177

have clustering as one of their focuses.

I followed my general clustering literature review with a more narrow review focused

on CQMs. I discussed specific CQMs, focusing on those that are most widely used, and

extensively analyzed important properties of CQMs in general. While some of the analysis

was taken from previous works, a major portion of it was my own research. In particu-

lar, I analyzed how numerous CQMs behave with respect to a large body of properties

they may have, suggested refinements to previously purposed/analyzed properties, and de-

signed/discussed some new properties. Some of the properties I discussed can be viewed as

must-haves for reasonable CQMs, but my analysis also served to highlight many properties

that meaningfully differentiate CQMs without necessarily making them better or worse.

I believe that such properties aid users in selecting CQMs at least as much, if not more,

than must-have properties. In general, more research needs to be dedicated to the study

of these and must-have CQM properties. A good aim of such research is the creation of

clusterings of CQMs that have high clarity.

The document clustering experiments that followed my CQM discussions showed that

the de facto standard weighting function in text clustering is inferior to Okapi BM25

weighting. While this is the main result to take away from these experiments, the results

nonetheless tie in very well with my CQM research. I showed that there was a disparity

between how ECQMs ranked clustering algorithms/clusterings, leading to the question:

“Can we say that a certain clustering algorithm is better in general?”. Most authors pre-

senting a new clustering algorithm attempt to answer this question, invariably concluding

in favor of the new clustering algorithm they are presenting. However, I argue that it

might be better to focus on what makes the new clustering algorithm different from other

clustering algorithms using meaningful properties. This analysis could be augmented by

178

demonstrating the new clustering algorithm working in real applications. Showing efficacy

in a specific real application cannot prove general superiority, but it is highly sensible if

three things hold: 1) the application is meaningful; 2) we agree that we cannot defini-

tively show superiority of clustering algorithms in general; and 3) we agree that situational

human assessment is the best way to evaluate a clustering.

Two direct follow-ups to experiments in Chapter 5 that I am currently investigating

are the effect of the b parameter in the BM25 weightings, and, more notably, the design of

better document clustering similarity/distance measure.

In Chapter 6, I presented the principal work of this thesis: informativeness, my ICQM

for estimating the clarity of a clustering. My aim in designing informativeness was to

keep it as general an ICQM as possible while also providing good results in practice.

I used classification accuracy as its basis, and gave a generalized form. I showed that

informativeness behaved favorably with respect to the properties for ICQMs I discussed in

Chapter 4. Interestingly, informativeness measures exhibited the best overall performance

in my experiments, while not being optimal for every dataset. The non-informativeness

ICQMs fluctuated dramatically in the quality of their results by dataset. These facts

suggest that I achieved my goal of designing a useful highly general ICQM. It is important

to stress that basic informativeness did poorly on no datasets. One often has no idea what

clustering structures are actually present in a dataset prior to clustering, necessitating a

CQM that will detect as broad a set of clustering structures as possible. Informativeness

seems to be such an ICQM.

With respect to future work with informativeness, investigating how it behaves with

different classifiers and ECQMs, as well as using it in real applications, is of interest to

me. Informativeness might be particularly suited for use in real applications that use

179

classification directly. In Chapter 7, I showed the use of informativeness in one such

application: spam filtering. I was able to design highly effective spam filters using minimal

user labelings by leveraging clustering and informativeness.

Another interesting avenue to explore is using informativeness in a clustering algorithm.

For example, it could be used in a greedy agglomerative clustering algorithm where clus-

ters are progressively merged such that informativeness is maximized for the clustering

at each iteration. This process could be repeated until the desired number of clusters

was reached. Alternative clustering algorithms using informativeness could be created

using other objective function maximization techniques such as those given in Zhao and

Karypis [171, 172, 173]. Intuitively, we might expect clusterings generated using informa-

tiveness, or classification in general, to be of more use than other clusterings in classification

related tasks. Whether this occurs in practice though, remains an open question.

Finally, finding distinct high quality clusterings of a single dataset is a task of some

interest in clustering [27, 156, etc.]. It would be worth investigating how informativeness,

and other ICQMs, might be used in this task. An example of how this could be done

is as follows. We could cluster a dataset many times, then cluster the clusterings to

produce clusters representing the various types of groupings possible for the dataset. After

this, we could use informativeness (or another ICQM) to select which clustering to use as a

representative for each grouping type. This procedure would ensure that the representatives

are distinct, and of high quality (with respect to the ICQM used).

As a closing point, I note that given the quality of informativeness’ results, one might

be curious as to why classification has not been used extensively already in clustering

evaluation—it seems like a very sensible thing to try. Given my results, classification can

and should be investigated further as a tool for evaluating clusterings.

180

References

[1] Margareta Ackerman and Shai Ben-David. Measures of clustering quality: A working

set of axioms for clustering. In Neural Information Processing Systems, pages 121–

128, 2008.

[2] Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study. In

Proceedings of the 12th International Conference on Artificial Intelligence and Statis-

tics, pages 1–8, 2009.

[3] Margareta Ackerman and Shai Ben-David. Axioms of clustering via quality measures.

In journal submission, 2012.

[4] Margareta Ackerman, Shai Ben-David, and David Loker. Characterization of linkage-

based clustering. In Proceedings of the 23rd International Conference on Learning

Theory, 2010.

[5] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, and Jong S. Park.

Fast algorithms for projected clustering. In Proceedings of the 1999 ACM SIGMOD

International Conference on Management of Data, pages 61–72, 1999.

181

[6] Charu C. Aggarwal and Philip S. Yu. Finding generalized projected clusters in

high dimensional spaces. In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, pages 70–81, 2000.

[7] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.

Automatic subspace clustering of high dimensional data for data mining applications.

In Proceedings of the 1998 ACM SIGMOD International Conference on Management

of Data, pages 94–105, 1998.

[8] Bader Aljaber, Nicola Stokes, James Bailey, and Jian Pei. Document clustering of

scientific texts using citation contexts. Information Retrieval, 13:101–131, 2010.

[9] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. A comparison

of extrinsic clustering evaluation metrics based on formal constraints. Information

Retrieval, 12:461–486, 2009.

[10] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. OPTICS:

Ordering points to identify the clustering structure. SIGMOD Record, 28(2):49–60,

1999.

[11] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seed-

ing. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, pages

1027–1035, 2007.

[12] Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, Srujana Merugu, and Dharmen-

dra S. Modha. A generalized maximum entropy approach to Bregman co-clustering

and matrix approximation. Journal of Machine Learning Research, 8:1919–1986,

2007.

182

[13] Lei Bao, Sheng Tang, Jintao Li, Yongdong Zhang, and Wei-Ping Ye. Document clus-

tering based on spectral clustering and non-negative matrix factorization. In Pro-

ceedings of the 21st International Conference on Industrial, Engineering and Other

Applications of Applied Intelligent Systems: New Frontiers in Applied Artificial In-

telligence, pages 149–158, 2008.

[14] Daniel Barbará, Yi Li, and Julia Couto. COOLCAT: an entropy-based algorithm

for categorical clustering. In Proceedings of the 11th ACM International Conference

on Information and Knowledge Management, pages 582–589, 2002.

[15] Shariq Bashier and Andreas Rauber. Improving retrievability of patents with cluster-

based pseudo-relevance feedback documents selection. In Proceedings of the 18th

ACM International Conference on Information and Knowledge Management, pages

1863–1866, 2009.

[16] Florian Beil, Martin Ester, and Xiaowei Xu. Frequent term-based text clustering.

In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 436–442, 2002.

[17] Ron Bekkerman, Ran El-Yaniv, and Andres McCallum. Multi-way distributional

clustering via pairwise interactions. In Proceedings of the 22nd International Con-

ference on Machine Learning, pages 41–48, 2005.

[18] Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vapnik. Support

vector clustering. Journal of Machine Learning Research, 2:125–137, 2002.

183

[19] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishan, and Uri Shaft. When is

”nearest neighbor” meaningful? In Proceedings of the 7th International Conference

on Database Theory, pages 217–235, 1999.

[20] James C. Bezdek. Pattern recognition with fuzzy objective function algorithms. New

York: Plenum Press.

[21] Steffen Bickel. Overview. In European Conference on Machine Learning/Principles

and Practice of Knowledge Discovery in Databases Discovery Challenge Workshop,

2006.

[22] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

[23] Christian Böhm, Christos Faloutsos, and Claudia Plant. Outlier-robust clustering

using independent components. In Proceedings of the 2008 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 185–198, 2008.

[24] Daniel Boley, Maria Gini, Robert Gross, Eui-Hong Han, Kyle Hastings, George

Karypis, Vipin Kumar, Bamshad Mobasher, and Jerome Moore. Document cate-

gorization and query generation on the World Wide Web using WebACE. Artificial

Intelligence Review, 11:365–391, 1999.

[25] Roelof Brouwer. Extending the Rand, Adjusted Rand and Jaccard indices to fuzzy

partitions. Journal of Intelligent Information Systems, 32(3):213–235, 2009.

[26] Ricardo Campello. A fuzzy extension of the rand index and other related indexes for

clustering and classification assessment. Pattern Recognition Letters, 28(7):833–841,

2007.

184

[27] Rich Caruana, Mohamed Elhawary, Nam Nguyen, and Casey Smith. Meta clustering.

In Proceedings of the 6th IEEE International Conference on Data Mining, pages 107–

118, 2006.

[28] Ning Chen, An Chen, and Longxiang Zhou. Fuzzy k-prototypes algorithm for cluster-

ing mixed numeric and categorical valued data. Journal of Software, 23(8):1107–1119,

2001.

[29] Chun-Hung Cheng, Ada W. Fu, and Yi Zhang. Entropy-based subspace clustering

for mining numerical data. In Proceedings of the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 84–93, 1999.

[30] Hyuk Cho, Inderjit S. Dhillon, Yuqiang Guan, and Suvrit Sra. Minimum sum-

squared residue co-clustering of gene expression data. In Proceedings of the 4th

SIAM International Conference on Data Mining, 2004.

[31] Pierre Comon. Independent component analysis: A new concept? Signal Processing,

36(3):287–314, 1994.

[32] Gordon Cormack and Thomas Lynam. Spam track overview. In The 14th Text

REtrieval Conference, 2005.

[33] Gordon V. Cormack. Harnessing unlabeled examples through iterative application of

dynamic markov modeling. In European Conference on Machine Learning/Principles

and Practice of Knowledge Discovery in Databases Discovery Challenge Workshop,

2006.

185

[34] Gordon V. Cormack and Mona Mojdeh. Autonomous personal filtering improves

global spam filter performance. In Proceedings of the 6th Conference on Email and

Anti-Spam, 2009.

[35] Gordon V. Cormack, Mark D. Smucker, and Charles L. A. Clarke. Efficient and

effective spam filtering and re-ranking for large web datasets. Information Retrieval,

pages 1–25, 2011.

[36] Manoranjan Dash, Kiseok Choi, Peter Scheuermann, and Huan Liu. Feature selec-

tion for clustering - A filter solution. In Proceedings of the 2nd IEEE International

Conference on Data Mining, pages 115–122, 2002.

[37] David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1:224–227, 1979.

[38] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41:391–407, 1990.

[39] Arthur Dempster, Nan Laird, and Donald Rubin. Likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society of Britian, Series B,

39:1–38, 1977.

[40] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph

partitioning. In Proceedings of the 7th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 269–274, 2001.

186

[41] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: Spectral clus-

tering and normalized cuts. In Proceedings of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 551–556, 2004.

[42] Inderjit S. Dhillon, SubramanyamMallela, and Rahul Kumar. A divisive information-

theoretic feature clustering algorithm for text classification. Journal of Machine

Learning Research, 3:1265–1287, 2003.

[43] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha. Information-

theoretic co-clustering. In Proceedings of the 9th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 89–98, 2003.

[44] Inderjit S. Dhillon and Suvrit Sra. Generalized nonnegative matrix approximations

with Bregman divergences. In Neural Information Processing Systems, pages 283–

290, 2005.

[45] Joris D’hondt, Joris Vertommena, Paul Armand Verhaegena, Dirk Cattryssea, and

Joost R. Dufloua. Pairwise-adaptive dissimilarity measure for document clustering.

Information Sciences, 180:2341–2358, 2010.

[46] Lee R. Dice. Measures of the amount of ecologic association between species. Ecology,

26:297–302, 1945.

[47] Chris Ding and Xiaofeng He. K-means clustering via principal component analysis.

In Proceedings of the 21st International Conference on Machine Learning, pages 225–

232, 2004.

187

[48] Chris Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst Simon. Spectral

min-max cut for graph partitioning and data clustering. Technical report, Lawrence

Berkeley National Laboratory, 2001.

[49] Chris Ding, Xiaofeng He, Hongyuan Zha, and Horst D. Simon. Adaptive dimension

reduction for clustering high dimensional data. In Proceedings of the 2nd IEEE

International Conference on Data Mining, pages 147–154, 2002.

[50] Chris Ding and Tao Li. Adaptive dimension reduction using discriminant analysis

and k-means clustering. In International Conference on Machine Learning, pages

521–528, 2007.

[51] Chris Ding, Tao Li, and Wei Peng. On the equivalence between non-negative matrix

factorization and probabilistic latent semantic indexing. Computational Statistic and

Data Analysis, 52(8):3913–3927, 2008.

[52] J. Doak. An evaluation of feature selection methods and their application to computer

security. Technical report, University of California, 1992.

[53] John C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting

compact well-separated clusters. Cybernetics and Systems, 3:32–57, 1973.

[54] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Proceedings

of the 2nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 226–231, 1996.

[55] Yu Feng and Greg Hamerly. PG-means: Learning the number of clusters in data. In

Neural Information Processing Systems, pages 393–400, 2006.

188

[56] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral grouping

using the Nyström method. IEEE Transactions on Pattern Analysis and Machine

Learning, 26:907–916, 2004.

[57] E. Fowlkes and C. Mallows. A method of comparing two hieararchical clusterings.

Journal of the American Statistical Society, 78(383):553–569, 1983.

[58] Jerome H. Friedman and Jacqueline J. Meulman. Clustering objects on subsets of

attributes. Journal of the Royal Statistical Society of Britian. Series B, 66:825–849,

2004.

[59] Benjamin C. M. Fung, Ke Wang, and Martin Ester. Hierarchical document clustering

using frequent itemsets. In Proceedings of the 3rd SIAM International Conference

on Data Mining, pages 59–70, 2003.

[60] Eric Gaussier, Cyril Goutte, K. Popat, and F. Chen. A hierarchical model for clus-

tering and categorising documents. In Advances in Information Retrieval, pages

121–125, 2002.

[61] Mark Girolami and Ata Kabán. On an equivalence between PLSI and LDA. In Pro-

ceedings of the 26th ACM SIGIR International Conference on Information Retrieval,

pages 433–434, 2003.

[62] Sanjay Goil, Harsha Nagesh, and Alok Choudhary. Efficient and scalable subspace

clustering for very large data sets. Technical report, Northwestern University, 1999.

[63] Joshua Goodman and Wen tau Yih. Online discriminative spam filter training. In

Proceedings of the 3rd Conference on Email and Anti-Spam, 2006.

189

[64] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient clustering al-

gorithm for large databases. In Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data, pages 73–84, 1998.

[65] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust clustering algo-

rithm for categorical attributes. In Proceedings of the 15th International Conference

on Data Engineering, pages 512–521, 1999.

[66] Lars Hagen and Andrew B. Kahng. New spectral methods for ratio cut partitioning

and clustering. IEEE Transactions on CAD, 11:1074–1085, 1992.

[67] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On clustering validation

techniques. Journal of Intelligent Information Systems, 17:107–145, 2001.

[68] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Cluster validity meth-

ods: Part I. SIGMOD Record, 31(2):40–45, 2002.

[69] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Clustering validity

checking methods: Part II. SIGMOD Record, 31(3):19–27, 2002.

[70] Greg Hamerly and Charles Elkan. Learning the k in k-means. In Neural Information

Processing Systems, pages 281–288, 2003.

[71] Richard W. Hamming. Error detecting and error correcting codes. Bell Systems

Technical Journal, 29(2):147–160, 1950.

[72] John Hartigan. Direct clustering of a data matrix. Journal of the American Statistical

Association, 67:123–132, 1972.

190

[73] Alexander Hinneburg and Hans-Henning Gabriel. DENCLUE 2.0: Fast clustering

based on kernel density estimation. In Advances in Intelligent Data Analysis, pages

70–80, 2007.

[74] Alexander Hinneburg and Daniel A. Keim. An efficient approach to clustering in

large multimedia databases with noises with noise. In Proceedings of the 4th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

58–65, 1998.

[75] Akaike Hirotugu. A new look at the statistical model identification. IEEE Transac-

tions on Automatic Control, 19:716–723, 1974.

[76] Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of the 15th

Conference on Uncertainty in Artificial Intelligence, pages 289–296, 1999.

[77] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd

ACM SIGIR International Conference on Informationa Retrieval, pages 50–57, 1999.

[78] Michael E. Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur

Zimek. Can shared-neighbor distances defeat the curse of dimensionality? In Pro-

ceedings of the 22nd International Conference on Scientific and Statistical Database

Management, pages 217–235, 2010.

[79] Eduardo R. Hruschka, Thiago F. Covoes, Estevam R. Jr. Hruschka, and Nelson F.F.

Ebecken. Feature selection for clustering problems: A hybrid algorithm that iterates

between k-means and a bayesian filter. pages 405–410, 2005.

[80] Xiaohua Hu, Xiaodan Zhang, Caimei Lu, Eun K. Park, and Xiaohua Zhou. Exploiting

Wikipedia as external knowledge for document clustering. In Proceedings of the ACM

191

SIGKDD 15th International Conference on Knowledge Discovery and Data Mining,

pages 389–396, 2009.

[81] Zhexue Huang. Extensions to the k-means algorithm for clustering large datasets

with categorical values. Data Mining and Knowledge Discovery, 2:283–304, 1998.

[82] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classifica-

tion, 2:193–218, 1985.

[83] Lawrence Hubert and James Schultz. Quadratic assignment as a general data-analysis

strategy. British Journal of Mathematical and Statistical Psychology, 29:190–241,

1976.

[84] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted Voronoi

diagrams and randomization to variance-based k-clustering. In Proceedings of the

10th Symposium on Computational Geometry, pages 332–339, 1994.

[85] Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes

et des jura. Bulletin de la Socit Vaudoise des Sciences Naturelles, 37:547–579, 1901.

[86] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,

31:651–666, 2010.

[87] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,

Inc., 1988.

[88] Anil K. Jain, M. N. Murty, and Patrick J. Flynn. Data clustering: A review. ACM

Computing Reviews, 31:264–323, 1999.

192

[89] Thorsten Joachims. Making large-scale support vector machine learning practical.

1998.

[90] Thorsten Joachims. Learning To Classify Text Using Support Vector Machines:

Methods, Theory, and Algorithms. Kluwer Academic Publishing, 2002.

[91] Leonard Kafuman and Peter Rousseeuw. Finding groups in data: An introduction

to cluster analysis. Wiley (New York), 1990.

[92] Karin Kailing, Hans-Peter Kriel, and Peer Kröger. Density-connected subspace clus-

tering for high-dimensional data. In Proceedings of the 4th SIAM International Con-

ference on Data Mining, pages 246–257, 2004.

[93] Maurice Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–89,

1938.

[94] YongSeog Kim, W. Nick Street, and Filippo Menczer. Feature selection for unsu-

pervised learning via evolutionary search. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 365–369,

2000.

[95] Jon Kleinberg. An impossibility theorem for clustering. In Neural Information Pro-

cessing Systems, pages 446–453, 2002.

[96] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-dimensional

data: A survey on subspace clustering, pattern-based clustering, and correlation

clustering. ACM Transactions on Knowledge Discovery from Data, 3:1–58.

193

[97] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. In Proceedings of the American Mathematical Society, volume 7,

pages 48–50, 1956.

[98] Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Re-

search Logist Quarterly, 2:83–97, 1955.

[99] Amit Kumar, Yogish Sabbarwal, and Sandeep Sen. A simple linear time (1 + ǫ)-

approximation algorithm for k-means clustering in any dimensions. In Proceedings

of the 45th IEEE Symposium on Foundations of Computer Science, pages 454–452,

2004.

[100] Kenichi Kurihara and Max Welling. Bayesian K-means as a ”Maximization-

Expectation” algorithm. Neural Computation, 21(4):1145–1172, 2009.

[101] Sangeetha Kutty, Richi Nayak, and Yuefeng Li. Utilising semantic tags in XML

clustering. In Focused Retrieval and Evaluation, pages 416–425, 2010.

[102] Fulu Li and Mo Han Hsieh. An empirical study of clustering behavior of spammers

and group-based anti-spam strategies. In Proceedings of the 3rd Conference on Email

and Anti-Spam, 2006.

[103] Tao Li, Sheng Ma, and Mitsunori Ogihara. Document clustering via adaptive sub-

space iteration. In Proceedings of the 27th ACM SIGIR International Conference on

Information Retrieval, pages 218–225, 2004.

[104] Guimei Liu, Jinyan Li, Kelvin Sim, and Limsoon Wong. Distance based subspace

clustering with flexible dimension partitioning. In Proceedings of the 2007 IEEE

International Conference on Data Engineering, pages 1250–1254, 2007.

194

[105] Huan Liu and Lei Yu. Toward integrating feature selection algorithms for classi-

fication and clustering. IEEE Transactions on Knowledge and Data Engineering,

17:491–502, 2005.

[106] Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28:129–137, 1982.

[107] Prasanta C. Mahalanobis. On the generalised distance in statistics. Proceedings of

the National Institude of Sciences of India, 2(1):49–55, 1936.

[108] Jiri Matousek. On approximate geometric k-clustering. Discrete and Computational

Geometry, pages 61–84, 2000.

[109] Marina Meilă. Comparing clusterings: an axiomatic view. In Proceedings of the 22nd

Internation Conference on Machine Learning, pages 577–584, 2005.

[110] Marina Meilă. Comparing clusteringsan information based distance. Journal of

Multivariate Analysis, 98:873–895, 2007.

[111] Glenn W. Milligan. A monte carlo study of thirty internal criterion measures for

cluster analysis. Psychometrika, 46:187–199, 1981.

[112] Glenn W. Milligan and Martha C. Cooper. An examination of procedures for deter-

mining the number of clusters. Psychometrika, 50:159–179, 1985.

[113] Pabitra Mitra, C. A. Murthy, and Sankar K. Pal. Unsupervised feature selection using

feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(3):301–312, 2002.

195

[114] Mona Mojdeh and Gordon V. Cormack. Semi-supervised spam filtering: Does it

work? In Proceedings of the 31th ACM SIGIR International Conference on Infor-

mation Retrieval, pages 745–746, 2008.

[115] Mona Mojdeh and Gordon V. Cormack. Semi-supervised spam filtering using ag-

gressive consistency learning. In Proceedings of the 33th ACM SIGIR International

Conference on Information Retrieval, pages 751–752, 2010.

[116] Sandrine Mouysset, Joseph Noailles, and Daniel Ruiz. Using a global parameter for

gaussian affinity matrices in spectral clustering. In High Performance Computing for

Computational Science, pages 378–390. 2008.

[117] Patrenahalli M. Nardendra and Keinosuke Funkunaga. A brand and bound algorithm

for feature subset selection. IEEE Transactions on Computer, 26(9):917–922, 1977.

[118] Radford M. Neal and Geoffery E. Hinton. A view of the EM algorithm that justifies

incremental, sparse and other variants. Technical report, University of Toronto, 1993.

[119] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Neural Information Processing Systems, pages 849–856, 2001.

[120] Alessandro Di Nuovo and Vincenzo Catania. On external measures for validation of

fuzzy partitions. In Foundations of Fuzzy Logic and Soft Computing, pages 491–501,

2007.

[121] Carlos Ordonez and Edward Omiecinski. FREM: fast and robust EM clustering

for large data sets. In Proceedings of the 11th ACM International Conference on

Information and Knowledge Management, pages 590–599, 2002.

196

[122] Malay K. Pakhira, Sanghamitra Bandyopadhyay, and Ujjwal Maulik. Validty index

for crisp and fuzzy clusters. Pattern Recognition Letters, 37:487–501, 2004.

[123] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high di-

mensional data: A review. KDD Explorations, 6:90–105, 2004.

[124] Karl Pearson. On lines and planes of closest fit to systems of points in space. Philo-

sophical Magazine, 2:559–572, 1901.

[125] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with an efficient

estimation of the number of clusters. In Proceedings of the 17th International Con-

ference on Machine Learning, 2000.

[126] Martin F. Porter. An algorithm for suffix stripping. Program, 14:130–137, 1980.

[127] Henri Ralambondrainy. A conceptual version of the k-means algorithm. Pattern

Recognition Letters, pages 1147–1157, 1995.

[128] Willam M. Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, 66:846–850, 1971.

[129] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and

Mike Gatford. Okapi at TREC-3. In TREC ’94: The Third Text REtrieval Confer-

ence, 1994.

[130] Joseph Lee Rodger and W. Alan Nicewander. Thirteen ways to look at the correlation

coefficient. The American Statistican, 42(1):59–66, 1988.

[131] Andrew Roseberg and Julia Hirschberg. V-measure: A conditional entropy-based ex-

ternal cluster evaluation measure. In the 2007 Joint Conference on Empirical Meth-

197

ods in Natural Language Processing and Computational Natural Language Learning,

pages 410–420, 2007.

[132] Volker Roth and Tilman Lange. Feature selection in clustering problems. In Neural

Information Processing Systems, 2004.

[133] Peter J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65,

1987.

[134] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic

text retrieval. Information Processing and Management, 24(5):513–523, 1988.

[135] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-based

clustering in spatial databases: The algorithm GDBSCAN and its applications. Data

Mining and Knowledge Discovery, pages 169–194, 1998.

[136] Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Kernel principal

component analysis. In Proceedings of the 7th International Conference on Artificial

Neural Networks, pages 583–588, 1997.

[137] Gideon E. Schwarz. Estimating the dimension of a model. Annals of Statistics,

6:461–464, 1978.

[138] D Sculley. Online active learning methods for fast label-efficient spam filtering. 2007.

[139] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

198

[140] Noam Slonim and Naftali Tishby. Document clustering using word clusters via the

information bottleneck method. In Proceedings of the 23rd ACM SIGIR International

Conference on Informationa Retrieval, pages 208–215, 2000.

[141] Robert R. Snokal and P. H. Sneath. Numerical Taxonomy, pages 230–234. W. H.

Freeman and Company, San Francisco, 1973.

[142] Jungsuk Song, Masashi Eto, Hyung C. Kim, Daisuke Inoue, and Koji Nakao. A

heuristic-based feature selection method for clustering spam emails. In Neural Infor-

mation Processing. Theory and Algorithms, pages 290–297, 2010.

[143] Wei Song and Soon C. Park. A novel document clustering model based on latent

semantic analysis. In Proceedings of the 2007 International Conference on Semantics,

Knowledge and Grid, pages 539–542, 2007.

[144] Charles Spearman. The proof and measurement of association between two things.

The American Journal of Psychology, 15(1):72–101.

[145] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document

clustering techniques. In KDD Text Mining Workshop, 2000.

[146] Alexander Strehl and Joydeep Ghosh. Cluster ensembles – a knowledge reuse frame-

work for combining multipe partitions. Journal of Machine Learning Research, 3:583–

617, 2002.

[147] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of

clusters in a dataset via the gap statistic. Journal of the Royal Statistical Society of

Britian, 32:411–423, 2001.

199

[148] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck

method. In Proceedings of the 1999 Allerton Conference on Communication, Control,

and Computing, pages 368–377, 1999.

[149] Hamed Valizadegan and Rong Jin. Generalized maximum margin clustering and

unsupervised kernel learning. In Neural Information Processing Systems, pages 1417–

1424, 2007.

[150] Cornelis J. van Rijsbergen. Information Retrieval. Butterworth, 2nd edition, 1979.

[151] Nguyen X. Vinh, Julien Epps, and James Bailey. Information theoretic measures for

clusterings comparison: Is a correction for chance necessary? In Proceedings of the

26th International Conference on Machine Learning, 2009.

[152] Ulrike von Luxberg. A tutorial on spectral clustering. Statistics and Computing,

17:395–416, 2007.

[153] Christopher M. De Vries and Shlomo Geva. Document Clustering with K-tree. In

INEX, pages 420–431, 2008.

[154] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and

Applications. Cambridge University Press, 1994.

[155] John S. Whissell and Charles L. A. Clarke. Improving document clustering using

Okapi BM25 feature weighting. Information Retrieval, 14:466–487, 2011.

[156] John S. Whissell, Charles L. A. Clarke, and Azin Ashkan. Clustering web queries. In

Proceedings of the 18th ACM International Conference on Information and Knowl-

edge Management, pages 899–908, 2009.

200

[157] John Wilbur and Won Kim. The ineffectiveness of within-document term frequency

in text classification. Information Retrieval, 12(5):509–525, 2009.

[158] Kyoung-Gu Woo, Jeong-Hoon Lee, Myoung-Ho Kim, and Yoon-Joon Lee. FINDIT:

A fast and intelligent subspace clustering algorithm using dimension voting. Infor-

mation and Software Technology, 46(4):255–271, 2004.

[159] Rui Wu, Jianhua Huang, Xianglong Tang, and Jiafeng Liu. A text image segmen-

tation method based on spectral clustering. Computer and Information Science,

1(4):9–15, 2008.

[160] Xuanli L. Xie and Gerardo A. Beni. Validity measure for fuzzy clustering. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 3:841–846, 1991.

[161] Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin

clustering. In Neural Information Processing Systems, pages 1537–1544, 2005.

[162] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative ma-

trix factorization. In Proceedings of the 26th ACM SIGIR International Conference

on Information Retrieval, pages 267–273, 2003.

[163] Gui-Rong Xue, Wenyuan Dai, Qiang Yang, and Yong Yu. Topic-bridged PLSA for

cross-domain text classification. In Proceedings of the 31st ACM SIGIR International

Conference on Information Retrieval, pages 627–634, 2008.

[164] Mingjin Yan and Keying Ye. Determining the number of clusters using the weighted

gap statistic. Biometrics, 63:1031–1037, 2007.

201

[165] Yu-Jiu Yang and Bao-Gang Hu. Pairwise constraints-guided non-negative matrix

factorization for document clustering. In Proceedings of the International Conference

on Web Intelligence, pages 250–256, 2007.

[166] Reza Bosagh Zadeh and Shai Ben-David. A uniqueness theorem for clustering. In

Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009.

[167] Bin Zhang, Meichun Hsu, and Umeshwar Dayal. K-Harmonic means - a data clus-

tering algorithm. Technical report, Hewlett Packard, 1999.

[168] Kai Zhang, Ivor W. Tsang, and James T. Kwok. Maximum margin clustering made

practical. IEEE Transactions on Neural Networks, 20:583–596, 2009.

[169] Bin Zhao, Fei Wang, and Changshui Zhang. Efficient maximum margin clustering via

cutting plane algorithm. In Proceedings of the 8th SIAM International Conference

on Data Mining, pages 751–762, 2008.

[170] Bin Zhao, Fei Wang, and Changshui Zhang. Efficient multiclass maximum margin

clustering. In Proceedings of the 25th International Conference on Machine Learning,

pages 1248–1255, 2008.

[171] Ying Zhao and George Karypis. Criterion functions for document clustering: Exper-

iments and analysis. Technical Report 01-40, University of Minnesota, Department

of Computer Science / Army HPC Research Center, 2001.

[172] Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms for

document datasets. Data Mining and Knowledge Discovery, pages 515–524, 2002.

[173] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected

criterion functions for document clustering. Machine Learning, 55:311–331, 2004.

202

