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Abstract-- Post-release detection of a software vulnerability does not only cost a company money to fix, but also results 

in loss of reputation and damaging litigation. Techniques to prevent and detect vulnerabilities prior to release, therefore, 

are valuable.  We performed empirical case studies on two large, widely-used open source projects: the Mozilla Firefox 

web browser and the Red Hat Enterprise Linux kernel. We investigated whether software metrics obtained early in the 

software development life cycle are discriminative of vulnerable code locations, and can guide actions for an organization 

to take for improvement of code and development team. We also investigated whether the metrics are predictive of 

vulnerabilities so that prediction models can prioritize validation and verification efforts. The metrics fall into three 

categories: complexity, code churn, and developer activity metrics.  The results indicate that the metrics are 

discriminative and predictive of vulnerabilities. The predictive model on the three categories of metrics predicted 70.8% 

of the known vulnerabilities by selecting only 10.9% of the project’s files. Similarly, the model for the Red Hat Enterprise 

Linux kernel found 68.8% of the known vulnerabilities by selecting only 13.0% of the files. 

 
Index Terms-- Software Security, Software Vulnerability, Process metrics, Product metrics, Fault Prediction, 

Vulnerability Prediction. 

I. INTRODUCTION 

single security problem can cause severe damage to an organization by not only incurring 

large costs for late fixes, but by losing invaluable assets and credibility and leading to legal 

issues. Annual world-wide losses caused from cyber attacks have been reported to be as high as 

$226 billion [8]. Loss in stock market value in the days after an attack is estimated at $50 million 

to $200 million per organization [8]. Therefore, organizations must prioritize vulnerability 

detection efforts and prevent vulnerabilities from being injected. 

One way of identifying the most vulnerable code locations is to use characteristics of the 

software product itself. Perhaps complex code is more likely to be vulnerable than simple code. 
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Another way of identifying the most vulnerable code locations is to use characteristics of the 

process of code development. Perhaps code that has undergone recent changes (i.e. code churn) 

might have new vulnerabilities. Perhaps files worked on by software developers who work alone 

are more likely to be vulnerable than the files worked on by collaborating developers. These 

characteristics of software product and process can be quantified by complexity, code churn, and 

developer activity metrics [4, 24, 25, 28]. Complexity metrics measure the structural complexity 

of code and design such as the number of branches in code. Code churn metrics measure the 

number of check-ins and amount of code changes occurred during development of code. 

Developer activity metrics quantify the relationship between developers and code.  

When metrics are discriminative of vulnerabilities (e.g. a high value of a metric indicates a 

vulnerability), insight can be provided for development teams to take actions to prevent 

vulnerabilities from being injected by restructuring code or reorganizing the development team. 

We call discriminative metrics that can be used by organizations to drive improvement 

actionable discriminative metrics (ADM).  If, for example, complex code is likely to be 

vulnerable, then development teams can use this fact to avoid unnecessarily complex code. 

Alternatively, code churn is often inevitable and metrics of code churn do not offer clear 

recommendations to developers to improve software quality. Therefore, we classify code churn 

metrics as non-actionable.  

We call metrics that can be used during development to predict the reliability of a product or 

the location of vulnerabilities predictive metrics [2]. Predictive metrics can be used to prioritize 

inspection and testing efforts to economically detect vulnerabilities.  

The goal of this paper is twofold: (a) to evaluate whether complexity and developer activity 

metrics can be demonstrated to be actionable discriminative metrics to prevent software 
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vulnerabilities; and (b) to evaluate whether complexity, code churn, and developer activity 

metrics are predictive of vulnerable locations of code. To complete this goal, we performed 

empirical studies on two widely-used, large scale open source projects: the Mozilla Firefox1 web 

browser and the Linux kernel2 as distributed in Red Hat Enterprise Linux3. We analyzed 34 

releases of Mozilla Firefox and one release of Red Hat Linux that consist of over three millions 

lines of source code in each release. We collected the reported vulnerability information 

spanning four years. From 197 vulnerability reports for Mozilla Firefox we identified 1197 

instances of file changes to fix vulnerabilities. From 192 vulnerability reports for Red Hat we 

identified 258 instances of file changes to fix vulnerabilities. We also collected complexity, code 

churn, and developer activity metrics from the two projects and performed an empirical 

evaluation of the metrics.  

The rest of the paper is organized as follows: Section II defines background terms used in this 

paper. Section III provides related work. Section IV discusses the hypotheses behind the metrics 

and provides our methodology for evaluating the hypotheses. In Sections V and VI, we describe 

the empirical case studies on the Mozilla Firefox web browser and the Red Hat Enterprise Linux 

kernel. Section VII discusses our observations from the case studies and Section VIII discusses 

the threats to validity of our study. Section IX summarizes our work. 

II. BACKGROUND 

This section describes the terms that we will use in this paper.  

A. Internal and External Metrics 

Since software quality, such as reliability or security, can be measured only after release, 

metrics that are available early in the development life cycle can be used to estimate software 

 
1 http://www.mozilla.com/firefox/ 
2 http://kernel.org/ 
3 http://www.redhat.com/rhel/ 
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quality prior to release. Internal metrics measure the “non-executable software product during its 

development stages” such as code and design specification [16]. An external metric measures 

“the quality of the software product by measuring the behavior of the system” [16]. The internal 

metrics we use in this study are complexity, code churn, and developer activity.  We use these 

internal metrics as predictors of the external metric of discovered software vulnerabilities. The 

external metric we are evaluating in this study is nominal: whether or not a file is vulnerable or 

neutral. We consider a file to be vulnerable if the file was found to have at least one vulnerability 

that required a patch after release. A vulnerability is “an instance of a [fault] in the specification, 

development, or configuration of software such that its execution can violate an [implicit or 

explicit] security policy” [19]. 

B. Discriminative Power and Predictability 

Discriminative power is defined as the ability to “discriminate between high-quality software 

components and low-quality software components” [2]. Discriminative power is used for quality 

control of software by evaluating software  components  against  predetermined critical  values 

of metrics and by identifying components  that  fall  outside  quality  limits [35].  In our study, 

discriminative power is the ability to discriminate vulnerable code from neutral code.  

Predictability is defined as the ability of a metric measured at time T1 to predict the software 

quality at time T2 with required accuracy. Whether the required accuracy is satisfied or not is 

determined by testing whether the predicted quality and the actual quality of software is within a 

certain error range [2].  

Note that while both of discriminative power and predictability evaluate the ability to classify 

code as vulnerable or neutral, their purposes are different. The main purpose for evaluating 

discriminative power in this study is to take proactive actions to change the measures of metrics 
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to improve software security, for example, by redesigning code based on the measures of metrics 

or by reorganizing the team. The main purpose for evaluating predictability in this study is to 

take corrective actions on the vulnerabilities found in the code locations predicted as vulnerable 

by further inspection or testing. Discriminative power and discriminant analysis, a statistical 

modeling technique that will be explained in Section IV, are different in our study. While 

discriminant analysis can be used to evaluate both of discriminative power and predictability, we 

used discriminant analysis only for the purpose of prediction in our study. 

C. Binary Classification Evaluation Criteria 

We perform binary classification to predict vulnerable files. A binary classifier can make two 

possible errors: false positives (FP) and false negatives (FN). A FP is the classification of a 

neutral file as a vulnerable file, and a FN is the classification of a vulnerable file as neutral. A 

correctly classified vulnerable file is a true positive (TP), and a correctly classified neutral file is 

a true negative (TN). A FP may cause a team to do additional testing or inspection of a file only 

to find no vulnerabilities.  A FN may allow a vulnerability to escape to the field after release. For 

evaluating binary classification models, we use recall, precision, inspection rate, and 

vulnerability rate. 

Recall (R) is defined as the percentage of vulnerable files found: R=TP*100/(TP+FN).  

Precision (P) is defined as the percentage of correctly predicted vulnerable files: 

P=TP*100/(TP+FP). 

Inspection rate (IR) is the percentage of files that were classified as vulnerable: 

IR=(TP+FP)*100/(TP+TN+FP+FN). 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

6

The inspection rate represents the percentage of files required for inspection or testing to achieve 

the reported recall. For example, a IR=20% and R=80% means that 20% of files were classified 

as vulnerable and those predicted vulnerable files contained 80% of actual vulnerabilities.  

Vulnerability rate (VR) is the percentage of the number of vulnerabilities that were included in 

the files classified as vulnerable: 

VR = (Number of vulnerabilities in the files classified as vulnerable)*100 / (Total number of 

vulnerabilities). 

Note that VR is similar to recall, but differs where recall counts the number of vulnerable files, 

VR counts the number of vulnerabilities in each file that was classified as vulnerable.  

D. Network Analysis 

In this paper, we use several terms from network analysis [6] and provide their meaning with 

respect to developer and contribution networks in Section IV. Network analysis is the study of 

characterizing and quantifying network structures, represented by graphs [6]. In network 

analysis, vertices of a graph are called nodes, and edges are called connections. A sequence of 

non-repeating, adjacent nodes is a path, and a shortest path between two nodes is called a 

geodesic path (note that geodesic paths are not necessarily unique).   

Centrality metrics are used to quantify the location of one node relative to other nodes in the 

network. The centrality metrics we use for developer activity are degree, closeness, and 

betweenness metrics. The degree metric is defined as the number of neighbors directly connected 

to a node. The closeness centrality of node v  is defined as the average distance from v  to any 

other node in the network that can be reached from v . The betweenness centrality [6] of node v  

is defined as the number of geodesic paths that include v .  
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Cluster metrics are used to measure the strength of interconnection between groups of nodes. 

A cluster of nodes is a set of nodes such that there are more edges within a set of nodes (intra-set 

edges) than edges between a set and other sets of nodes (inter-set edges). The cluster metric we 

use for developer activity is edge betweenness [13]. The edge betweenness of edge e is defined 

as the number of geodesic paths which pass through e. Since clusters have many intra-cluster 

edges, edges within clusters have a low betweenness; conversely, edges between two clusters 

have a high betweenness [13]. 

III. RELATED WORK 

This section introduces a few studies on software vulnerability prediction. Then we provide 

some prior studies that have used complexity, code churn, and developer metrics to predict 

faults. 

 

A. Vulnerability Prediction 

Alhazmi et al. [3] investigated whether the number of latent vulnerabilities in a software 

system can be predicted.  The researchers analyzed the Windows and Red Hat Enterprise Linux 

operating systems and observed that the ratio of vulnerabilities to the total number of faults falls 

in the range of 1%~5%. If this ratio is constantly true across projects, the discovered 

vulnerability densities can be a useful indicator to estimate the efforts to find undiscovered 

vulnerabilities. While their study is useful for estimating the effort required to identify and 

correct undiscovered security vulnerabilities, our approach provides specific locations of the 

vulnerabilities in source code.   

Neuhaus et al. [31] introduces a tool, Vulture, to automatically map vulnerability reports to 

vulnerable components in the Mozilla open source code. Using the tool, they observed common 
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patterns of imports (#include) and function calls in vulnerable components using pattern 

mining techniques. Vulture identified 45% of all vulnerable components (recall) using import 

analysis, and 70% of all identified vulnerable components were true vulnerable components 

(precision) using function call analysis. Vulture was also able to identify 82% of actual 

vulnerabilities in the top 30% of files ranked in the order of predicted vulnerabilities. Our study 

was also performed on Mozilla, but using different metrics that can be obtained from 

development process as well as from source code.   

Gegick et al. [12] modeled vulnerabilities in a large commercial telecommunications 

software system. These researchers used source lines of code, alert density from a statistic 

analysis tool, and code churn information. One of the models they tried identified 100% of 

vulnerable components with an 8% false positive rate. However, the model predicted 

vulnerabilities only at the component level and cannot direct developers to more specific 

vulnerable code locations. Gegick et al. [11] also investigated whether non-security failure 

information can be used to predict security failures. In their case study on a Cisco software 

system, the number of failure reports per component was used as an internal metric to classify 

vulnerable and neutral components. Their classification and regression tree model was able to 

identify 57% of vulnerable components from the top 9% of components ranked in the order of 

predicted probability of vulnerability with a 48% false positive rate. Our study provides 

predictions at the file level and uses metrics that are available prior to release.  

Shin and Williams [36] investigated whether the traditional code level complexity metrics 

such as cyclomatic complexity can be used as indicators of vulnerabilities in the Mozilla 

JavaScript Engine. Their results show that the correlations between complexity metrics and 

vulnerabilities are weak (Spearman r=0.30 at best) but statistically significant. Therefore, 
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traditional code level complexity metrics can be used as indicators of vulnerabilities, but further 

investigation is required with new complexity metrics and other types of metrics including 

process information.  

B. Fault Prediction with complexity, code churn, and developer metrics 

Basili et al. [4] showed the usefulness of object oriented (OO) design metrics to predict fault-

proneness in a study performed on eight medium-sized information management systems. The 

logistic regression model with OO design metrics detected 88% of faulty classes and correctly 

predicted 60% of classes as faulty. Briand et al. [7] also used OO design metrics to predict 

defects and their logistic regression model classified fault-prone classes at over 80% of precision 

and found over 90% of faulty classes. Nagappan et al. [29] found that sets of complexity metrics 

are correlated with post-release defects using five major Microsoft product components, 

including Internet Explorer 6. Menzies et al. [25] explored three data mining modeling 

techniques, OneR, J48, and naïve Bayes,  using code metrics to predict defects in MDP, a 

repository for NASA data set. Their model using naïve Bayes was able to predict defects with 

71% recall and 25% false positive rate. 

Nagappan and Ball [26] investigated the usefulness of code churn information on Windows 

Server 2003 to estimate post-release failures. The Pearson correlation and Spearman rank 

correlation between estimated failures and actual post-release failures were 0.889 and 0.929 

respectively for the best model. As an effort to improve the performance of prediction, several 

studies have been performed with combined models of complexity, code churn, and other 

metrics to improve the accuracy of prediction. Ostrand et al. [33] used code churn information 

together with other metrics including lines of source code, file age, file type, and prior fault 

history. They found that 83% of faults were in the top 20% of files ranked in the order of 
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predicted faults using negative binomial regression. Nagappan et al. [27, 28] also performed 

empirical case studies on fault prediction with Windows XP and Windows Server 2003 using 

code churn metrics and code dependency within and between modules. Both studies used a 

multiple linear regression model on principal components and the Spearman rank correlations 

between actual post-release failures and estimated failures were 0.64 and 0.68 at the best cases, 

respectively.  

We use two concepts to measure developer activity: developer networks and contribution 

networks. The concept of a developer network has come from several sources, including [14, 

24]. Gonzales-Barahona and Lopez-Fernandez [14] were the first to propose the idea of creating 

developer networks as models of collaboration from source repositories to differentiate and 

characterize projects. Meneely et al. [24] applied social network analysis to the developer 

network in a telecommunications product to predict failures in files. Pinzger et al. [34] were the 

first to propose the contribution network as a quantification of the direct and indirect contribution 

of developers on specific resources of the project. Pinzger et al. found that files that were 

contributed to by many developers, especially by developers who were making many different 

contributions themselves, were found to be more failure-prone than files developed in relative 

isolation.  Other efforts exist [15, 30, 41] to quantify developer activity in projects, mostly via 

counting the number of distinct developers who changed a file as we did in our study. 

IV. METHODOLOGY 

This section explains our methodology to explore the relationship between complexity, code 

churn, and developer activity metrics and software vulnerabilities. For this purpose, we examine 

the discriminative power and predictability of these metrics, as defined in Section II. First we 
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provide the hypotheses for discriminative power and predictability of the metrics. Then, we 

provide the evaluation criteria for the hypotheses and also explain our prediction models.  

We organize our hypotheses in a three level hierarchy. The top level hypotheses correspond to 

the three categories of metrics. The second level hypotheses correspond to the smaller 

subcategories of metrics. The third level hypotheses correspond to discriminative power and 

predictability for each individual metric. Fig. 1 shows the first and second level hypotheses. The 

suffixes “_D” and “_P” represent the hypotheses for discriminative power and for predictability, 

respectively. 

 

Fig. 1. Hierarchy of hypotheses 

A. Hypotheses for Discriminative Power 

1) Complexity Metrics 

Security experts often relate complexity and security [10, 23].  Complex code is more difficult 

to understand and test, so developers may have a higher chance of introducing undetected errors. 

We hypothesize that complexity metrics can indicate security vulnerabilities as follows: 

HComplexity_D: Vulnerable files are more complex than neutral files.  

We break this general hypothesis down into three more specific hypotheses: unit complexity, 

coupling (interaction complexity), and comment metrics.  

Developers might introduce more errors when code is complex and difficult to understand. 

One characteristic of complex code is having a high number of decisions/branches. Code with 

many branches would require a higher number of tests for full coverage, which could lead to 
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vulnerabilities not being found before release. A popular formulation of this kind of complexity 

is cyclomatic complexity [22]. For the code with same level of complexity, longer code might be 

more difficult to understand and maintain than shorter code. Our specific hypothesis related to 

unit complexity is stated as: 

HUnitComplexity_D: Vulnerable files have a higher unit complexity than neutral files. 

The metrics we use to evaluate HUnitComplexity_D and their definitions are provided in Table I.  

A second type of complexity is calculated based upon dependencies from one code unit to 

other code units. If a code unit has many dependencies (or many other units depend on one code 

unit), that unit is said to be highly coupled. When a unit is highly coupled with other code units 

that are not closely related in their functions, change in a unit can be unnecessarily propagated to 

other code units and improve a chance to introduce errors. Our specific hypothesis related to 

coupling is, therefore, stated as: 

HCoupling_D: Vulnerable files have a higher coupling than neutral files. 

The metrics we use to evaluate HCoupling_D and their definitions are provided in Table I.  

One way to reduce psychological burden imposed by complex code is to add comments [38, 

40]. Comments can be used to record the rationale of design decisions so that the rationale is 

understood when the code is modified by the same developer a long time after the code is 

implemented or by other developers.  Communication by comments between developers is 

valuable in open source projects for which many developers can contribute on the same code 

segment. Our specific hypothesis related to comments is therefore stated as: 

 HComments_D: Vulnerable files have a lower comment density than neutral files. 
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2) Code Churn  

Code is constantly evolving throughout the development process. Each new change in the 

system brings a new risk of introducing a vulnerability.  

Our first level hypothesis on the relationship between code churn and vulnerabilities is as 

follows: 

HCodeChurn_D: Vulnerable files have a higher code churn than neutral files.  

Code churn can be counted in terms of the number of check-ins into a version control system 

and the number of lines that have been added or deleted by code change. Thus, our second level 

hypotheses related to code churn metrics are stated as: 

HNumChanges_D: Vulnerable files have more frequent check-ins than neutral files.  

TABLE I 
DEFINITIONS OF COMPLEXITY METRICS 

 

Related 

Hypothesis 

Metric Definition 

HUnitComplexity 

CountLineCode The number of lines of code in a file 

CountDeclClass The number of classes defined in a file 

CountDeclFunction The number of functions defined in a file 

CountLineCodeDecl The number of lines of code in a file devoted to declarations 

CountLinePreprocessor The number of lines of code in a file devoted to preprocessing 

SumEssential The sum of essential complexity, where essential complexity is 
defined as the number of branches after reducing all the programming 

primitives such as a  for loop in a function’s control flow graph into 

a node iteratively until the graph cannot be reduced any further. 
Completely well-structured code has essential complexity 1 [22, 39] 

SumCyclomaticStrict The sum of the strict cyclomatic complexity,  where strict cyclomatic 
complexity is defined as the number of conditional statements in a 
function 

SumMaxNesting The sum of the MaxNesting in a file, where MaxNesting is defined as 

the maximum nesting level of control constructs such as if or 

while statements in a function 

MaxCyclomaticStrict The maximum of strict cyclomatic complexity in a file 

MaxMaxNesting The maximum of MaxNesting in a file 

HCoupling 

SumFanIn The sum of FanIn, where  FanIn is defined as  the number of inputs to 
a function such as parameters and global variables 

SumFanOut The sum of FanOut, where FanOut is defined as the number of 
assignment to the parameters to call a function or global variables 

MaxFanIn The maximum of FanIn 

MaxFanOut The maximum of FanOut 

HComments CommentDensity The ratio of lines of comments to lines of code 
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HChurnAmount_D: Vulnerable files have more lines of code that have been changed than neutral 

files. 

The metrics we use to evaluate HCodeChurn_D and their definitions are provided in Table II.   

TABLE II 
DEFINITIONS OF CODE CHURN METRICS 

 

Related 

Hypothesis 

Metric Definition 

HNumChanges NumChanges The number of check-ins for a file since the creation of a file 

HChurnAmount 
LinesChanged The cumulated number of code lines changed since the creation of a file 

LinesNew The cumulated number of new code lines since the creation of a file 

 

3) Developer Activity  

Software development is generally performed by development teams working together on a 

common project. Lack of team cohesion, miscommunications, or misguided effort can all result 

in problematic software, including security problems [23]. Version control data can be used to 

construct a developer network and a contribution network based upon “which developer worked 

on which file,” using network analysis defined in Section II. Then we can compute developer 

centrality, developer clusters, and contribution centrality from those networks. 

3.1) Developer Network Centrality 

In our developer network, two developers are connected if they have both made a change to at 

least one file in common during the period of time under study. The result is an undirected, 

unweighted, and simple graph where each node represents a developer and edges are based on 

whether or not they have worked on the same file during the same release.  

A central developer has a high degree, a high betweenness, and/or a low closeness. Refer to 

[24] for a more in-depth example of how centrality metrics are derived from developer networks.  

In this study, we are using developer network centrality metrics to evaluate the following 

hypotheses: 
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HDeveloperCentrality_D: Vulnerable files are more likely to have been worked on by non-central 

developers than neutral files. 

We explain the meaning of high and low values of the metrics that might be associated with 

high vulnerabilities in Table III. Note that we chose to not study DNMaxDegree, 

DNMinCloseness, and DNMaxBetweenness because, for example, a high DNMaxDegree means 

at least one central developer worked on the file, which is not as helpful as knowing that high 

DNMinDegree denotes that all developers who worked on a file were central. In other words, 

since most files in a project are worked on by at least one central developer, metrics that indicate 

that at least one developer worked on a file tend to be homogenous and not particularly useful. 

TABLE III 
MEANING OF DEVELOPER ACTIVITY METRICS 

 

Related Hypothesis Metric Problematic 

When 

Meaning 

HDeveloperCentrality 

DNMinDegree Low 

File was changed by developers who are 
not central to the network 

DNAvgDegree Low 

DNMaxCloseness High 

DNAvgCloseness High 

DNMinBetweenness Low 

DNAvgBetweenness Low 

HDeveloperClustering 
DNMaxEdgeBetweenness High File was contributed to by more than one 

cluster of developers, with few other 
files being worked on by each cluster 

DNAvgEdgeBetweenness High 

HContributionCentrality 

NumDevs High File was changed by many developers 

CNCloseness High File was changed by developers who 
focused on many other files CNBetweenness High 

 

3.2) Developer Network Cluster 

Metrics of developer centrality give us information about individual developers, but we also 

wonder the relationship between groups of developers. In our developer network, a file that is 

between two clusters was worked on by two groups of developers, and those two groups did not 

work on many other files in common. By definition, two developer clusters cannot work on 
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many files in common, or they would be part of the same cluster. In this study, we are using 

developer network cluster metrics to evaluate the following hypothesis:  

HDeveloperCluster_D: Vulnerable files are more likely to be changed by multiple, separate 

developer clusters than neutral files. 

For this study, we use the edge betweenness clustering technique [6] for discovering developer 

clusters. We are interested in identifying the files that lie between clusters. Since edges and files 

have a many-to-many relationship, we use the average and maximum of edge betweenness on 

the developer network as provided in Table III.  

3.3) Contribution Network 

A contribution network is a quantification of the focus made on the relationship between a file 

and developers instead of relationship between developers. Originally described by Pinzger et al 

[34], the contribution network uses an undirected, weighted, and  bipartite graph with two types 

of nodes: developers and files. An edge exists where a developer made changes to a file. The 

weight of an edge is the number of version control commits a developer made to the file.  If a file 

has high centrality, then that file was changed by many developers who made changes to many 

other files – referred to as an “unfocused contribution.” [34] We evaluate the following 

hypotheses: 

HContributionCentrality_D: Vulnerable files are more likely to have an unfocused contribution than 

neutral files. 

Table III provides the meaning of the contribution network metrics. 

B. Hypotheses for Predictability 

When the individual metrics have discriminative power, the individual metrics and the 

combined set of those individual metrics might be able to predict vulnerabilities with reasonably 
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high prediction performance. We hypothesize that complexity, code churn, and developer activity 

metrics individually and combined together in a model can predict vulnerabilities with over 70% 

recall or VR and less than 30% IR. A model that satisfies these criteria indicates that over 70% 

of vulnerable files or vulnerabilities could be detected by inspecting only 30% of the files. Note 

that even when precision is very low, the prediction model is helpful for the organization to 

economically detect vulnerabilities if organization can find high percentage of vulnerabilities 

with small amount of inspection efforts. Therefore, we considered recall, VR, and IR as the most 

important evaluation criteria in our study. Since recall and IR often trade off, obtaining high 

recall and low IR at the same time is a challenging goal. Considering that the economic effect 

that a single security vulnerability can bring to an organization, we favored high recall and VR to 

a low IR. However, organizations may choose their own criteria depending on their quality goal 

for their software products. 

C. Evaluation of Hypotheses 

To evaluate discriminative power of individual metrics, we used Mann-Whitney-Wilcoxon 

(MWW) test to investigate the null hypothesis that the distribution of a given individual metric 

measurement among all vulnerable files is the same as that for the metric among all neutral files. 

The MWW is a non-parametric procedure that enables testing for equality of distributions 

without making any assumptions about the distributions themselves, like the assumption of 

normality [20]. To see the association direction (i.e. positively or negatively correlated), we 

compared the means of the measures of internal metrics for the vulnerable and neutral files. We 

considered our hypotheses for discriminative power are supported when the results from MWW 

test are statistically significant at 0.05 level and when the association is in the direction 

prescribed in the hypotheses. When at least one of the lower level hypotheses is supported, we 
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considered the higher level hypothesis is also supported. For example, if HUnitComplexity_D, 

HCouplng_D, or HComments_D is supported, we considier HComplexity_D supported. 

To evaluate predictability, we built prediction models using discriminant analysis and 

Bayesian network modeling. First, we evaluated the predictability for univariate models with 

individual metrics. Then, we evaluated predictability of a multivariate model by combining 

metrics into a single model. Because our goal is to predict future vulnerabilities that have not 

been observed yet, we used cross-validation. In cross-validation, we build or ``fit" models using 

subsets of the data called training data, and evaluate these fitted models on separate data sets, 

called test data. We performed next-release validation for Mozilla Firefox that has multiple 

releases.  Next-release validation at release N uses all of the data sets previous to N as the 

training data and release N as the test data. We report the average of the results across all 

releases. Alternatively, we used ten iterations of three-fold cross validation for Red Hat because 

we analyzed a single release. Three-fold cross validation validates a model by dividing the data 

set into thirds, using two thirds as the training data, and one third as the test data. The prediction 

is then repeated three times with each of the three data sets as being test data set exactly once. 

We repeated the whole process ten times and averaged the results. 

Our hypotheses on predictability are supported when the models built from our metrics 

provide over 70% recall or VR with less than 30% IR as described in Section IV.B.  

D. Prediction Models 

We utilized two classification techniques, linear discriminant analysis and Bayesian network, 

to evaluate the performance of internal metrics. The two techniques have been used in fault 

prediction literature [9, 18, 25, 26]. 
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Linear discriminant analysis is a multivariate classification technique that uses the linear 

function of p variables that achieves maximum separation among two or more groups [17].  

Discriminant analysis has widespread applications, including facial recognition [21, 37]. Our 

other multivariate modeling technique is the Bayesian network, which is a binary classification 

technique based on Bayesian probability inference. In a Bayesian network, each internal metric 

is represented by a node in a graph, and connections between nodes exist where there is a 

conditional dependence observed between variables in the training set. Bayesian networks have 

also been used in many applications, including gene expression [32] and satellite failure 

monitoring systems [5].  

To select the metrics for multivariate models that combine multiple metrics, we used a 

stepwise variable selection method, proc stepdisc, provide by SAS4 statistical analysis tool.  First 

we selected metrics by applying stepwise selection method on discriminant analysis. We then 

applied the same set of metrics to Bayesian network modeling to see whether the performances 

of predictions are different depending on modeling techniques. Stepwise variable selection 

method selects one variable at a time so that the model with the selected metrics maximizes the 

classification between the two classes of a dependent variable [1]. If already-selected metrics do 

not contribute significantly to the classification based on Wilks' lambda likelihood ratio criterion 

[1], the variables are removed from the model. The variable selection repeats until no more 

metrics meet the criteria for entry (p < .15) or removal (p < .15). 

We used SAS v9.1.3 for the discriminant analysis and Weka5 v3.6.0 for the Bayesian network 

modeling.  

 
4 http://www.sas.com/ 
5 http://www.cs.waikato.ac.nz/ml/weka/ 
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V. CASE STUDY 1: MOZILLA FIREFOX 

Our first case study has been performed on the Mozilla Firefox, a widely-used open source 

web browser.  Mozilla Firefox had 34 releases at the time of data collection developed for four 

years. Each release consists of over 10,000 files and over three million lines of source code. 

A. Data Collection 

We collected vulnerability information from Mozilla Foundation Security Advisories 

(MFSAs) 6.  Each MFSA includes bug ids that are linked to the Bugzilla7 bug tracking system. 

Mozilla developers also add bug ids to the log of the CVS version control system8 when they 

check in the files to the CVS after the vulnerabilities have been fixed. We searched the bug ids 

from the CVS log to find the files that have been changed to fix vulnerabilities. The number of 

MFSAs for Firefox was 197 as of August, 2nd, 2008. The vulnerability fixes for the MFSAs were 

reported in 546 bug reports.   

To collect complexity metrics, we used Understand C++9, a commercial metrics collection 

tool. We obtained code churn and developer activity metrics from the CVS version control 

system. 

At the time of data collection, Firefox 1.0 and Firefox 2.0.0.16 were the first and the last 

releases that had vulnerability reports. The gap between releases ranged from one to two months. 

Since the vulnerable files were too few to perform statistical analysis at each release, we 

combined the number of vulnerabilities for three consecutive releases and used that information 

to predict the vulnerabilities at the fourth releases. We collected metrics for 11 combined 

releases. The combined releases are denoted as R1 to R11 in this paper. We limited our analysis 

 
6 http://www.mozilla.org/security/announce/ 
7 http://www.bugzilla.org/ 
8 https://developer.mozilla.org/en/Mozilla_Source_Code_Via_CVS 
9 http://www.scitools.com 
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to C/C++ and their header files to obtain complexity metrics. Table IV provides the project 

statistics for the combined 11 releases.  

The big increase of the number of files in R4 and R7 indicate that there were major changes in 

those releases. The periods between most of the combined releases were three to four months. 

However, Firefox 2.0.0.8, Firefox 2.0.0.9, and Firefox 2.0.0.10 were released within a month. 

Lower observed fixes for R9 might be because the time gaps between releases 2.0.0.6 and 2.0.0.8 

were shorter than for the other combined releases.  

TABLE IV 
PROJECT STATISTICS FOR MOZILLA FIREFOX 

 

No. Firefox Release # of 

Files 

KLOC Mean 

LOC 

Files 

with 

Vulns. 

Total 

Vulns. 

Vulns. 

per File 

% of Files 

with Vulns. 

R1 1.0 / 1.0.1 / 1.0.2  10,320 3,688,444 357 70 84 0.008 0.678 

R2 1.0.3 / 1.0.4 / 1.0.5 / 1.0.6
10

 10,321 3,692,161 358 123 134 0.013 1.192 

R3 1.0.7 / 1.5 / 1.5.0.1 10,321 3,693,609 358 93 159 0.015 0.901 

R4 1.5.0.2 / 1.5.0.3 / 1.5.0.4 10,956 4,012,915 366 100 138 0.013 0.913 

R5 1.5.0.5 / 1.5.0.6 / 1.5.0.7 10,961 4,018,972 367 109 153 0.014 0.994 

R6 1.5.0.8 / 2.0 / 2.0.0.1 10,961 4,022,681 367 87 124 0.011 0.794 

R7 2.0.0.2 / 2.0.0.3 / 2.0.0.4 11,060 4,131,084 374 114 162 0.015 1.031 

R8 2.0.0.5 / 2.0.0.6 / 2.0.0.8 11,060 4,138,242 374 55 72 0.007 0.497 

R9 2.0.0.8 / 2.0.0.9 / 2.0.0.10 11,076 4,142,497 374 14 15 0.001 0.126 

R10 2.0.0.11 / 2.0.0.12 / 2.0.0.13 11,077 4,142,728 374 84 110 0.010 0.758 

R11 2.0.0.14 / 2.0.0.15 / 2.0.0.16 11,080 4,145,805 374 27 46 0.004 0.244 

 

B. Discriminative Power Test and Univariate Prediction Results 

All of the metrics showed statistically significant difference between vulnerable and neutral 

files using MWW test as shown in Table V. We also compared the mean and median of each 

metric measurement for two groups of files to find the association direction (positive or negative) 

between metrics and vulnerabilities. We performed the comparison for each release and also for 

the whole data across releases. The trend was similar for both of the cases. Fig. 2 shows the 

boxplots of comparisons of measures between the two groups for three representative metrics in 

 
10 The vulnerabilities for Firefox 1.0.5 and Firefox 1.0.6 were reported together. Therefore, we considered those two versions as one version.  
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complexity, code churn, and developer activity metrics; CountLineCode, NumChanges, and 

NumDevs. The left side boxplot for each metric shows the distribution of neutral files and the 

right side boxplot shows the distribution of vulnerable files. The means and medians of the three 

metrics for the vulnerable files were higher than the ones for the neutral files as we expected. 

        

Fig. 2. Comparison of measures for vulnerable and neutral files 

The results of MWW test and association directions for all the metrics are presented in Table 

V.  The plus sign in the Association column indicates that the higher the measure, the more 

vulnerable the file tends to be. The minus sign indicates that the higher the measure, the less 

vulnerable the file tends to be. The developer degree was the only sign that did not completely 

agree: DNMinDegree was negatively correlated but DNAvgDegree was positively correlated. 

This means that files are more likely to be vulnerable if they are changed by developers who 

work on many other files with other developers on average, but when all of the developers are 

central, the file is less likely to be vulnerable. Since this is not a direct contradiction, and the 

other developer centrality metrics are supported, we count HDeveloperCentrality_D hypothesis as 

supported. Overall, all of the hypotheses for discriminative power were supported except for 

DNAvgDegree. 

For the predictability of individual metrics, we performed univariate discriminant analysis and 

validated the models using the next-release validation method. Our criterion to support the 
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hypotheses for predictability is over 70% recall or VR with less than 30% IR as described in 

Section IV. C.  We performed the analysis on the raw data, log transformed data, and square root 

transformed data. Among those, log transformed data provided the best results. Table V shows 

the cross-validated prediction results using discriminant analysis on the log transformed data and 

results of hypotheses tests on predictability based on our criteria.  

TABLE V 
RESULTS OF DISCRIMINATIVE POWER TEST AND UNIVARIATE PREDICTION FOR MOZILLA FIREFOX 

 

     Discriminant Analysis  

Related Hypothesis Metric MWW Associ

ation 

HD
*
 R

*
 P

*
 IR

*
 VR

*
 HP

*
 

HComplexity Complexity Metrics   √√√√     √√√√ 

HUnitComplexity 

CountLineCode √ + √√√√ 79.0 2.1 28.7 82.9 √√√√ 

CountDeclClass √ + √√√√ 52.8 1.1 32.8 52.5 X 

CountDeclFunction √ + √√√√ 77.2 1.9 29.6 80.3 √√√√ 

CountLineCodeDecl √ + √√√√ 79.0 2.2 26.2 82.7 √√√√ 

CountLinePreprocessor √ + √√√√ 70.1 2.1 24.1 75.0 √√√√ 

SumEssential √ + √√√√ 76.0 1.9 29.5 78.7 √√√√ 

SumCyclomaticStrict √ + √√√√ 76.8 1.7 32.9 79.6 X 

MaxCyclomaticStrict √ + √√√√ 71.0 1.6 34.5 74.6 X 

SumMaxNesting √ + √√√√ 64.8 1.8 26.3 68.3 X 

MaxMaxNesting √ + √√√√ 70.4 1.6 35.5 73.5 X 

HCoupling 

SumFanIn √ + √√√√ 71.9 1.7 30.3 74.4 X 

SumFanOut √ + √√√√ 69.8 1.7 30.2 72.2 X 

MaxFanIn √ + √√√√ 72.3 1.8 32.6 74.7 X 

MaxFanOut √ + √√√√ 68.2 1.5 37.1 71.3 X 

HComments CommentDensity √ – √√√√ 84.4 1.3 48.9 86.7 X 

HCodeChurn Code Churn Metrics   √√√√     √√√√ 

HNumChanges NumChanges √ + √√√√ 81.5 3.0 20.0 84.7 √√√√ 

HChurnAmount 
LinesChanged √ + √√√√ 81.5 2.4 24.6 84.6 √√√√ 

LinesNew √ + √√√√ 79.2 2.1 28.3 82.6 √√√√ 

HDeveloper Developer Metrics   √√√√     √√√√ 

HDeveloperCentrality 

DNMinDegree √ – √√√√ 57.0 1.2 36.6 60.5 X 

DNAvgDegree √ + X 93.8 1.0 74.7 94.3 X 

DNMaxCloseness √ + √√√√ 79.8 1.5 39.0 82.6 X 

DNAvgCloseness √ + √√√√ 96.6 0.9 80.2 97.0 X 

DNMinBetweenness √ – √√√√ 69.4 1.4 35.2 75.1 X 

DNAvgBetweenness √ – √√√√ 96.8 0.9 82.1 97.6 X 

HDeveloperClustering 
DNMaxEdgeBetweenness √ + √√√√ 85.5 2.3 27.9 87.3 √√√√ 

DNAvgEdgeBetweenness √ + √√√√ 86.5 2.1 30.5 88.2 X 

HContributionCentrality 

NumDevs √ + √√√√ 82.9 2.8 21.5 85.5 √√√√ 

CNCloseness √ + √√√√ 81.3 2.7 22.6 84.4 √√√√ 

CNBetweenness √ + √√√√ 64.8 4.8 9.6 69.7 X 

*. HD:  Hypothesis test for discriminative power, R: Recall, P: Precision, IR: Inspection rate, VR: Vulnerability rate, HP: 
Hypothesis test for predictability 
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The prior probability of a file being vulnerable or neutral for discriminant analysis was set to 

0.5 in Table V and all the remaining analysis in this study. The bold face in the prediction results 

indicates that the metric satisfied the criterion for over 70% recall or VR with less than 30% IR. 

All of the code churn metrics supported our hypotheses for predictability. We were also able to 

find some sets of complexity and developer activity metrics that supported our hypotheses for 

predictability. While the recall and VR are over 70% for most of the metrics, the precision was 

very low (below 5%) for all the metrics. Prediction with high recall and low IR is possible even 

with this low precision because vulnerabilities were distributed in only a small percentage of 

files in our data set. 

  Note that the metrics that provide high predictability individually do not necessarily provide 

high predictability together with other metrics. Conversely, the metrics that provide low 

predictability individually might be able to improve the overall predictability when they are used 

in a model together with other metrics. 

C. Multivariate Prediction Results 

We created four models using complexity, code churn, developer activity, and combination of 

the three categories of metrics. The independent variables were chosen using the stepwise 

selection method described in Section IV.D. We used only the variables with coefficients that 

were statistically significant at 0.05 level. We also created models with the log and square root 

transformed metrics for the same set of metrics chosen by stepwise selection method for 

discriminant analysis. Then we built models using those metrics for discriminant analysis and 

Bayesian network. Additionally we also built models using all the collected metrics for Bayesian 

network.  Since the performance of Bayesian network is not affected by order-preserving data 

transformations, we did not apply data transformation for Bayesian network modeling.  
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With discriminant analysis, log transformed data provided the best results in general. With log 

transformation, all of the models predicted less than 20% files as vulnerable (IR). Those 

predicted vulnerable files in all the models included over 70% of actual vulnerable files (recall) 

or over 70% of actual vulnerabilities (VR) in the system. The model with code churn metrics 

provided the highest recall and VR, and the combined metrics model provided the lowest IR. 

With Bayesian network, the models with all the collected metrics performed better than the 

models with metrics selected by stepwise selection method. All of the models provided less than 

20% IR. However, only the combined metrics model was able to find over 70% of actual 

vulnerable files (recall) with less than 20% IR. Note that recall from multivariate models has not 

been necessarily improved from univariate models with our data. However, IR clearly became 

lower with multivariate models than with univariate models. Precision was very low (less than 

5%) as was in univariate models.   

Table VI summarizes the cross-validated prediction results using discriminant analysis on log 

transformed metrics and Bayesian network on all the collected metrics. VR was not available for 

Bayesian network modeling with the Weka tool. 

TABLE VI 
RESULTS OF MULTIVARIATE PREDICTION FOR MOZILLA FIREFOX 

 

 Discriminant Analysis Bayesian Network  

 R P IR VR R P IR HP 

Complexity 68.9 3.2 15.4 72.6 58.0 3.4 12.5 √√√√ 

Code churn 80.5 3.1 18.6 84.3 48.2 9.1 3.8 √√√√ 

Developer activity 68.6 4.5 11.0 73.9 68.0 4.3 11.8 √√√√ 

Combined 70.8 4.6 10.9 76.2 72.1 4.0 12.9 √√√√ 

 

Since our metrics and models target at finding future vulnerabilities, the models should be able 

to provide equal or better prediction performance as time passes. Fig. 3 shows the VR across 

releases for the discriminant anlaysis models on the complexity, code churn, developer activity, 

and combined metrics.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

26 

 

Fig. 3. Prediction results of disriminant analysis across releases 

The predictive performance of the four models was slightly better for later releases than for 

earlier releases, which indicates that the models are trained better with the information from 

previous releases. The trend of recall over time was the same as that for VR. The decrease in VR 

of R8 might be because sudden decrease in reported vulnerabilities for R8. However, the reason 

of the sudden decreases in VR of R5 and R9 (complexity model) has not been identified. 

VI. CASE STUDY 2: RED HAT ENTERPRISE LINUX KERNEL 

Our second case study has been performed on the Linux kernel as it was distributed in the Red 

Hat Enterprise Linux 4 (RHEL4) operating system. The Red Hat consists of 13,568 C and their 

header files with over three million lines of source code. The details of the project, data 

collection, and the prediction results are described in this section. 

 

A. Data Collection 

Gathering data for our external metric involved tracing through the development artifacts 

related to each vulnerability reported in the Linux kernel. We collected our vulnerability data 

from the Bugzilla database (including attached patches), the National Vulnerability Database 
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(NVD)11, and the Red Hat Security Advisory (RHSR) security metrics database. Since some 

vulnerability patches affect only certain releases, we examined each defect report manually to 

ensure that developers had decided that patch was, in fact, required. Since we are only interested 

in vulnerabilities that existed at the time of release, we did not include vulnerabilities introduced 

by post-release patches (a.k.a “regressions”) in our data set. For vulnerabilities that did not have 

all of the relevant artifacts (e.g. defect reports, patches), we consulted the director of the RHSR 

team to correct the data. Our data set is a comprehensive list of reported, non-regression 

vulnerabilities from RHEL4’s release in February 2005 through July 2008. We included only C 

and their header files. Because RHEL4 included only one C++ file, we excluded the 

CountDeclClass metric from our analysis. 

To obtain code churn and developer activity data, we used the Linux kernel source 

repository12. The RHEL4 operating system is based on kernel version 2.6.9, so we used all of the 

version control data from kernel version 2.6.0 to 2.6.9, which was about approximately 15 

months of development and maintenance. Table IX provides the project statistics. 

TABLE IX 
PROJECT STATISTICS FOR RED HAT LINUX 

 

# of Files LOC Mean LOC Files with 

Vulns. 

Total Vulns. Vulns. per 

File 

% of Files with 

Vulns. 

13,568 3,068,453 226 194 258 0.019 1.4% 

 
 

B. Discriminative Power Test and Univariate Prediction Results 

All of the metrics showed statistically significant difference between vulnerable and neutral 

files using MWW test except for DNMinDegree and DNMinBetweenness. All of the hypotheses 

for discriminative power were supported except for DNMinDegree, DNAvgDegree, 

DNMinBetweenness, and DNAvgBetweenness. Interestingly, DNAvgDegree was not supported 

 
11 http://nvd.nist.gov/ 
12 http://git.kernel.org/ 
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in Mozilla either (see Section V.B). For the predictability of individual metrics, we performed 

univariate discriminant analysis and validated the models using ten iterations of three-fold cross-

validation. Among the metrics, SumEssential, SumMaxNesting, NumChanges, LinesNew, and 

NumDevs detected over 70% of vulnerable files with less than 30% IR.  

Table X shows the results of discriminative power test and univariate prediction after cross-

validation. 

TABLE X 
RESULTS OF DISCRIMINATIVE POWER TEST AND UNIVARIATE PREDICTION FOR RED HAT 

 

     Discriminant Analysis  

Related Hypothesis Metric MW

W 

Associ

ation 

HD R P IR VR HP 

HComplexity Complexity Metrics   √√√√     √√√√ 

HUnitComplexity 

CountLineCode √ + √√√√ 84.4 3.3 36.2 87.8 X 

CountDeclFunction √ + √√√√ 79.7 3.5 32.0 83.3 X 

CountLineCodeDecl √ + √√√√ 81.3 3.1 36.7 85.0 X 

CountLinePreprocessor √ + √√√√ 66.7 2.4 39.3 69.4 X 

SumEssential √ + √√√√ 82.8 3.9 29.8 85.9 √√√√ 

SumCyclomaticStrict √ + √√√√ 82.8 3.6 32.3 85.8 X 

MaxCyclomaticStrict √ + √√√√ 84.1 3.6 32.8 86.5 X 

SumMaxNesting √ + √√√√ 81.3 4.0 29.0 85.2 √√√√ 

MaxMaxNesting √ + √√√√ 87.5 3.1 39.8 89.2 X 

HCoupling 

SumFanIn √ + √√√√ 87.5 3.9 32.1 89.7 X 

SumFanOut √ + √√√√ 84.1 3.6 33.0 87.0 X 

MaxFanIn √ + √√√√ 88.9 3.6 34.3 90.4 X 

MaxFanOut √ + √√√√ 84.4 3.4 35.2 87.8 X 

HComments CommentDensity √ – √√√√ 79.4 1.8 60.0 81.6 X 

HCodeChurn Code Churn Metrics   √√√√     √√√√ 

HNumChanges NumChanges √ + √√√√ 81.3 5.4 21.2 83.0 √√√√ 

HChurnAmount 
LinesChanged √ +  81.3 3.2 36.1 83.7 X 

LinesNew √ +  73.0 4.2 24.1 76.8 √√√√ 

HDeveloper Developer Metrics   √√√√     √√√√ 

HDeveloperCentrality 

DNMinDegree X – X 54.7 1.5 52.7 52.0 X 

DNAvgDegree √ + X 96.9 2.4 56.5 96.7 X 

DNMaxCloseness √ + √√√√ 93.8 2.1 64.2 94.2 X 

DNAvgCloseness √ + √√√√ 96.9 2.1 65.8 96.1 X 

DNMinBetweenness X – X 48.4 1.5 46.7 51.4 X 

DNAvgBetweenness √ + X 96.9 2.4 56.3 96.9 X 

HDeveloperClustering 
DNMaxEdgeBetweenness √ + √√√√ 50.0 6.0 11.8 54.7 X 

DNAvgEdgeBetweenness √ + √√√√ 50.0 6.0 11.8 54.7 X 

HContributionCentrality 

NumDevs √ + √√√√ 81.3 4.9 23.5 84.1 √√√√ 

CNCloseness √ + √√√√ 98.4 1.9 73.3 97.5 X 

CNBetweenness √ + √√√√ 90.6 3.3 39.2 92.3 X 
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A. Multivariate Prediction Results 

We built multivariate models using the metrics chosen by stepwise variable selection method. 

Table XI provides the cross-validation results of discrimininant analysis on log transformed 

metrics and Bayesian network on all the collected metrics for each category of metrics. With 

discriminant analysis, complexity, code churn, and combined metrics models provided over 70% 

recall or VR with less than 30% IR. With Bayesian network modeling, complexity and combined 

metrics models provided over 70% recall with less than 30% IR. 

TABLE XI 
RESULTS OF MULTIVARIATE PREDICTION FOR RED HAT 

 

 Discriminant Analysis Bayesian Network  

 R P IR VR R P IR HP 

Complexity 79.7 4.5 25.3 83.9 70.8 5.0 20.2 √√√√ 

Code churn 78.1 5.4 20.5 81.3 21.0 17.2 1.8 √√√√ 

Developer activity 51.6 9.1 8.0 57.2 61.1 6.5 13.4 X 

Combined 68.8 7.5 13.0 75.3 73.9 5.5 19.2 √√√√ 

VII. DISCUSSION 

Most of the complexity, code churn, and developer activity metrics we used in this study were 

able to discriminate vulnerable files and neutral files at statistically significant level. The results 

from our case study support the following hypotheses across two projects. 

HComplexity_D: Vulnerable files are more complex than neutral files.  

HCodeChurn_D: Vulnerable files have a higher code churn than neutral files.  

HDeveloper_D: Vulnerable files are more likely to have been changed by poor developer activity 

than neutral files. 

The predictive power of the metrics was different between projects and modeling techniques. 

Discriminant analysis performed better than Bayesian network modeling in our study. With 

discriminant anaylysis, seven of eight multivariate models presented in Table VI and Table XI 

supported our hypotheses. On the other hand, only three models supported our hypothesis with 
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Bayesian network. We also performed logistic regression which is another well known 

classification technique. However, using logistic regression, recall for both projects was less than 

50%. We do not present the results of logistic regression in this paper because of the limited 

space. With discriminant analysis, some of the univariate models outperformed multivariate 

models in recall and VR. However, IRs were consistently lower for multivariate models than 

univariate models for both projects. 

The univariate and multivariate models using complexity, code churn, and combined metrics 

supported our hypotheses for predictability across two projects using discriminant anlaysis 

and/or Bayesian network. Developer activity metrics did not support our hypotheses for 

predictability on Red Hat. Even in this case, however, developer activity metrics were able to 

predict over half of the vulnerable files at 8% IR with discriminant analysis and 13.4% IR with 

Bayesian network modeling. The combined metrics models provided lowest IR among the 

models that supported our hypotheses using discriminant analysis on both projects. Even though 

code churn metrics model provided high recall and low IR using discriminant analysis, the 

prediction performance with Bayesian network was poor. Overall there was no clear evidence 

whether one category of metrics is better than another because some metrics provided relatively 

high recall with high inspection rate while other metrics provided relatively low recall with low 

inspection rate.  For example, code churn metrics provided higher recall than developer metrics, 

but also required higher IR than developer metrics. However, all of the models using the three 

categories of metrics and the combined metrics were able to predict vulnerabilities with over 

70% recall or VR with less than 30% IR for one or both of the projects. 
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VIII. THREATS TO VALIDITY 

Internal validity. We performed our case studies on two open source projects whose 

vulnerability information is publicly available. Our analysis does not account for latent 

(undiscovered) vulnerabilities. Additionally, only fixed vulnerabilities are reported in detail to 

avoid the possible attacks from malicious users; unfixed vulnerabilities are usually not publicly 

available.  However, considering the wide use of the subject projects and the size of community 

involved in the development and testing of the projects, we believe the currently reported 

vulnerabilities are not too limited to jeopardize our results.  Also, the associations between 

vulnerabilities and the metrics found in this study do not necessarily indicate causation.  

However, we believe our results provide useful insights for organizations to take proactive or 

reactive actions to reduce vulnerabilities. 

External validity. Our results on vulnerability prediction were not fully consistent between 

the two projects and the modeling techniques we used, even though complexity, code churn, and 

combined metrics models supported our hypotheses for both of the projects. As with all 

empirical studies, our results were limited to the metrics we collected and the modeling 

techniques we used in this study. To generalize our observations from this study to other projects 

in various domain, size, and operational and usage context, further studies should be performed. 

We believe our results can be used to compare with the results from other projects and to 

increase the understanding on the relationship between software vulnerabilities and the metrics 

investigated in this study. 

IX. SUMMARY 

Our study explored the relationship between complexity, code churn, and developer activity 

metrics with vulnerabilities. Complexity and developer activity metrics are actionable metrics 
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that organizations can take actions to change the measures of metrics by redesigning code or 

reorganizing a development team when necessary. In our case study on Mozilla Firefox and Red 

Hat Enterprise Linux kernel, those actionable metrics showed discriminative power between 

vulnerable and neutral files. Therefore, organizations can use complexity and developer activity 

metrics to proactively improve software security. For example, while some code cannot avoid 

complexity, organizations can use the average values of complexity metrics for vulnerable files 

and neutral files as a criterion to redesign unnecessarily complex code. Central developers tend 

to produce less vulnerabilities than developers who work alone. Therefore, appropriate corrective 

action in a development team such as pair programming or careful distribution of central 

developers based on the measures of developer activity metrics is encouraged.  

When metrics can predict vulnerabilities, those predictive metrics can be used to prioritize 

inspection and testing effort.  In our case study, all three categories of metrics had predictability 

at one or both projects by providing over 70% recall or vulnerability rate with less than 30% 

inspection rate. Code churn metrics provided the best recall for Mozilla Firefox among the 

models using the three categories of metrics and combined metrics using discriminant analysis. 

Complexity metrics provided the best recall for Red Hat using discriminant analysis. However, 

there was no clear evidence whether one category of metrics was better than another. Whether 

the prediction results are good or not can be determined by practitioners at organizations. 

However, finding 84.3% of vulnerabilities by inspecting only 18.6% of total files (in the case of 

code churn metrics model with discriminant analysis on Mozilla Firefox) might be a promising 

result to appropriately allocate inspection efforts.  Our results are promising.  However, 

additional studies of these and other metrics could lead to further improvement. 
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