
 Open access Journal Article DOI:10.1109/TSE.2010.81

Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of
Software Vulnerabilities — Source link

Yonghee Shin, Andrew Meneely, Laurie Williams, Jason A. Osborne

Institutions: DePaul University, North Carolina State University

Published on: 01 Nov 2011 - IEEE Transactions on Software Engineering (IEEE)

Topics: Development testing, Software security assurance, Source code, Source lines of code and Software metric

Related papers:

 Predicting vulnerable software components

 Using complexity, coupling, and cohesion metrics as early indicators of vulnerabilities

 Predicting Vulnerable Software Components via Text Mining

 Searching for a Needle in a Haystack: Predicting Security Vulnerabilities for Windows Vista

 Can traditional fault prediction models be used for vulnerability prediction

Share this paper:

View more about this paper here: https://typeset.io/papers/evaluating-complexity-code-churn-and-developer-activity-
400todipe6

https://typeset.io/
https://www.doi.org/10.1109/TSE.2010.81
https://typeset.io/papers/evaluating-complexity-code-churn-and-developer-activity-400todipe6
https://typeset.io/authors/yonghee-shin-3nyzn65z60
https://typeset.io/authors/andrew-meneely-3nbr26kes1
https://typeset.io/authors/laurie-williams-1tuqd0rqxg
https://typeset.io/authors/jason-a-osborne-25qmfbofyh
https://typeset.io/institutions/depaul-university-2wrylz8v
https://typeset.io/institutions/north-carolina-state-university-11nweljb
https://typeset.io/journals/ieee-transactions-on-software-engineering-26rjzvlm
https://typeset.io/topics/development-testing-b72xk32o
https://typeset.io/topics/software-security-assurance-1ccc51n3
https://typeset.io/topics/source-code-7v292uts
https://typeset.io/topics/source-lines-of-code-2a3onlzq
https://typeset.io/topics/software-metric-3tk033e8
https://typeset.io/papers/predicting-vulnerable-software-components-1kxxqnxmv7
https://typeset.io/papers/using-complexity-coupling-and-cohesion-metrics-as-early-1opworawd3
https://typeset.io/papers/predicting-vulnerable-software-components-via-text-mining-1busa6vafh
https://typeset.io/papers/searching-for-a-needle-in-a-haystack-predicting-security-2go5ontr5h
https://typeset.io/papers/can-traditional-fault-prediction-models-be-used-for-n6y94z9l9f
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/evaluating-complexity-code-churn-and-developer-activity-400todipe6
https://twitter.com/intent/tweet?text=Evaluating%20Complexity,%20Code%20Churn,%20and%20Developer%20Activity%20Metrics%20as%20Indicators%20of%20Software%20Vulnerabilities&url=https://typeset.io/papers/evaluating-complexity-code-churn-and-developer-activity-400todipe6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/evaluating-complexity-code-churn-and-developer-activity-400todipe6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/evaluating-complexity-code-churn-and-developer-activity-400todipe6
https://typeset.io/papers/evaluating-complexity-code-churn-and-developer-activity-400todipe6

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

1

Abstract-- Post-release detection of a software vulnerability does not only cost a company money to fix, but also results

in loss of reputation and damaging litigation. Techniques to prevent and detect vulnerabilities prior to release, therefore,

are valuable. We performed empirical case studies on two large, widely-used open source projects: the Mozilla Firefox

web browser and the Red Hat Enterprise Linux kernel. We investigated whether software metrics obtained early in the

software development life cycle are discriminative of vulnerable code locations, and can guide actions for an organization

to take for improvement of code and development team. We also investigated whether the metrics are predictive of

vulnerabilities so that prediction models can prioritize validation and verification efforts. The metrics fall into three

categories: complexity, code churn, and developer activity metrics. The results indicate that the metrics are

discriminative and predictive of vulnerabilities. The predictive model on the three categories of metrics predicted 70.8%

of the known vulnerabilities by selecting only 10.9% of the project’s files. Similarly, the model for the Red Hat Enterprise

Linux kernel found 68.8% of the known vulnerabilities by selecting only 13.0% of the files.

Index Terms-- Software Security, Software Vulnerability, Process metrics, Product metrics, Fault Prediction,

Vulnerability Prediction.

I. INTRODUCTION

single security problem can cause severe damage to an organization by not only incurring

large costs for late fixes, but by losing invaluable assets and credibility and leading to legal

issues. Annual world-wide losses caused from cyber attacks have been reported to be as high as

$226 billion [8]. Loss in stock market value in the days after an attack is estimated at $50 million

to $200 million per organization [8]. Therefore, organizations must prioritize vulnerability

detection efforts and prevent vulnerabilities from being injected.

One way of identifying the most vulnerable code locations is to use characteristics of the

software product itself. Perhaps complex code is more likely to be vulnerable than simple code.

Manuscript received March 18, 2009. This work was supported in part by National Science Foundation Grant No. 0716176 and the U.S.

Army Research Office (ARO) under grant W911NF-08-1-0105 managed by NCSU Secure Open Systems Initiative (SOSI).
Y. Shin is with North Carolina State University, Raleigh, NC 27695 USA (telephone: 919-946-0781, e-mail: yonghee.shin@ ncsu.edu).
A. Meneely is with North Carolina State University, Raleigh, NC 27695 USA (e-mail: apmeneel@ncsu.edu).
L. Williams is with North Carolina State University, Raleigh, NC 27695 USA (e-mail: williams@csc.ncsu.edu).
J. Osborne is with North Carolina State University, Raleigh, NC 27695 USA (e-mail: jaosborn@stat.ncsu.edu).

Evaluating Complexity, Code Churn, and
Developer Activity Metrics as Indicators of

Software Vulnerabilities

Yonghee SHIN, Student Member, IEEE, Andrew MENEELY, Student Member, IEEE,
Laurie WILLIAMS, Member, IEEE, and Jason OSBORNE

A

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

2

Another way of identifying the most vulnerable code locations is to use characteristics of the

process of code development. Perhaps code that has undergone recent changes (i.e. code churn)

might have new vulnerabilities. Perhaps files worked on by software developers who work alone

are more likely to be vulnerable than the files worked on by collaborating developers. These

characteristics of software product and process can be quantified by complexity, code churn, and

developer activity metrics [4, 24, 25, 28]. Complexity metrics measure the structural complexity

of code and design such as the number of branches in code. Code churn metrics measure the

number of check-ins and amount of code changes occurred during development of code.

Developer activity metrics quantify the relationship between developers and code.

When metrics are discriminative of vulnerabilities (e.g. a high value of a metric indicates a

vulnerability), insight can be provided for development teams to take actions to prevent

vulnerabilities from being injected by restructuring code or reorganizing the development team.

We call discriminative metrics that can be used by organizations to drive improvement

actionable discriminative metrics (ADM). If, for example, complex code is likely to be

vulnerable, then development teams can use this fact to avoid unnecessarily complex code.

Alternatively, code churn is often inevitable and metrics of code churn do not offer clear

recommendations to developers to improve software quality. Therefore, we classify code churn

metrics as non-actionable.

We call metrics that can be used during development to predict the reliability of a product or

the location of vulnerabilities predictive metrics [2]. Predictive metrics can be used to prioritize

inspection and testing efforts to economically detect vulnerabilities.

The goal of this paper is twofold: (a) to evaluate whether complexity and developer activity

metrics can be demonstrated to be actionable discriminative metrics to prevent software

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

3

vulnerabilities; and (b) to evaluate whether complexity, code churn, and developer activity

metrics are predictive of vulnerable locations of code. To complete this goal, we performed

empirical studies on two widely-used, large scale open source projects: the Mozilla Firefox1 web

browser and the Linux kernel2 as distributed in Red Hat Enterprise Linux3. We analyzed 34

releases of Mozilla Firefox and one release of Red Hat Linux that consist of over three millions

lines of source code in each release. We collected the reported vulnerability information

spanning four years. From 197 vulnerability reports for Mozilla Firefox we identified 1197

instances of file changes to fix vulnerabilities. From 192 vulnerability reports for Red Hat we

identified 258 instances of file changes to fix vulnerabilities. We also collected complexity, code

churn, and developer activity metrics from the two projects and performed an empirical

evaluation of the metrics.

The rest of the paper is organized as follows: Section II defines background terms used in this

paper. Section III provides related work. Section IV discusses the hypotheses behind the metrics

and provides our methodology for evaluating the hypotheses. In Sections V and VI, we describe

the empirical case studies on the Mozilla Firefox web browser and the Red Hat Enterprise Linux

kernel. Section VII discusses our observations from the case studies and Section VIII discusses

the threats to validity of our study. Section IX summarizes our work.

II. BACKGROUND

This section describes the terms that we will use in this paper.

A. Internal and External Metrics

Since software quality, such as reliability or security, can be measured only after release,

metrics that are available early in the development life cycle can be used to estimate software

1 http://www.mozilla.com/firefox/
2 http://kernel.org/
3 http://www.redhat.com/rhel/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

4

quality prior to release. Internal metrics measure the “non-executable software product during its

development stages” such as code and design specification [16]. An external metric measures

“the quality of the software product by measuring the behavior of the system” [16]. The internal

metrics we use in this study are complexity, code churn, and developer activity. We use these

internal metrics as predictors of the external metric of discovered software vulnerabilities. The

external metric we are evaluating in this study is nominal: whether or not a file is vulnerable or

neutral. We consider a file to be vulnerable if the file was found to have at least one vulnerability

that required a patch after release. A vulnerability is “an instance of a [fault] in the specification,

development, or configuration of software such that its execution can violate an [implicit or

explicit] security policy” [19].

B. Discriminative Power and Predictability

Discriminative power is defined as the ability to “discriminate between high-quality software

components and low-quality software components” [2]. Discriminative power is used for quality

control of software by evaluating software components against predetermined critical values

of metrics and by identifying components that fall outside quality limits [35]. In our study,

discriminative power is the ability to discriminate vulnerable code from neutral code.

Predictability is defined as the ability of a metric measured at time T1 to predict the software

quality at time T2 with required accuracy. Whether the required accuracy is satisfied or not is

determined by testing whether the predicted quality and the actual quality of software is within a

certain error range [2].

Note that while both of discriminative power and predictability evaluate the ability to classify

code as vulnerable or neutral, their purposes are different. The main purpose for evaluating

discriminative power in this study is to take proactive actions to change the measures of metrics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

5

to improve software security, for example, by redesigning code based on the measures of metrics

or by reorganizing the team. The main purpose for evaluating predictability in this study is to

take corrective actions on the vulnerabilities found in the code locations predicted as vulnerable

by further inspection or testing. Discriminative power and discriminant analysis, a statistical

modeling technique that will be explained in Section IV, are different in our study. While

discriminant analysis can be used to evaluate both of discriminative power and predictability, we

used discriminant analysis only for the purpose of prediction in our study.

C. Binary Classification Evaluation Criteria

We perform binary classification to predict vulnerable files. A binary classifier can make two

possible errors: false positives (FP) and false negatives (FN). A FP is the classification of a

neutral file as a vulnerable file, and a FN is the classification of a vulnerable file as neutral. A

correctly classified vulnerable file is a true positive (TP), and a correctly classified neutral file is

a true negative (TN). A FP may cause a team to do additional testing or inspection of a file only

to find no vulnerabilities. A FN may allow a vulnerability to escape to the field after release. For

evaluating binary classification models, we use recall, precision, inspection rate, and

vulnerability rate.

Recall (R) is defined as the percentage of vulnerable files found: R=TP*100/(TP+FN).

Precision (P) is defined as the percentage of correctly predicted vulnerable files:

P=TP*100/(TP+FP).

Inspection rate (IR) is the percentage of files that were classified as vulnerable:

IR=(TP+FP)*100/(TP+TN+FP+FN).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

6

The inspection rate represents the percentage of files required for inspection or testing to achieve

the reported recall. For example, a IR=20% and R=80% means that 20% of files were classified

as vulnerable and those predicted vulnerable files contained 80% of actual vulnerabilities.

Vulnerability rate (VR) is the percentage of the number of vulnerabilities that were included in

the files classified as vulnerable:

VR = (Number of vulnerabilities in the files classified as vulnerable)*100 / (Total number of

vulnerabilities).

Note that VR is similar to recall, but differs where recall counts the number of vulnerable files,

VR counts the number of vulnerabilities in each file that was classified as vulnerable.

D. Network Analysis

In this paper, we use several terms from network analysis [6] and provide their meaning with

respect to developer and contribution networks in Section IV. Network analysis is the study of

characterizing and quantifying network structures, represented by graphs [6]. In network

analysis, vertices of a graph are called nodes, and edges are called connections. A sequence of

non-repeating, adjacent nodes is a path, and a shortest path between two nodes is called a

geodesic path (note that geodesic paths are not necessarily unique).

Centrality metrics are used to quantify the location of one node relative to other nodes in the

network. The centrality metrics we use for developer activity are degree, closeness, and

betweenness metrics. The degree metric is defined as the number of neighbors directly connected

to a node. The closeness centrality of node v is defined as the average distance from v to any

other node in the network that can be reached from v . The betweenness centrality [6] of node v

is defined as the number of geodesic paths that include v .

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

7

Cluster metrics are used to measure the strength of interconnection between groups of nodes.

A cluster of nodes is a set of nodes such that there are more edges within a set of nodes (intra-set

edges) than edges between a set and other sets of nodes (inter-set edges). The cluster metric we

use for developer activity is edge betweenness [13]. The edge betweenness of edge e is defined

as the number of geodesic paths which pass through e. Since clusters have many intra-cluster

edges, edges within clusters have a low betweenness; conversely, edges between two clusters

have a high betweenness [13].

III. RELATED WORK

This section introduces a few studies on software vulnerability prediction. Then we provide

some prior studies that have used complexity, code churn, and developer metrics to predict

faults.

A. Vulnerability Prediction

Alhazmi et al. [3] investigated whether the number of latent vulnerabilities in a software

system can be predicted. The researchers analyzed the Windows and Red Hat Enterprise Linux

operating systems and observed that the ratio of vulnerabilities to the total number of faults falls

in the range of 1%~5%. If this ratio is constantly true across projects, the discovered

vulnerability densities can be a useful indicator to estimate the efforts to find undiscovered

vulnerabilities. While their study is useful for estimating the effort required to identify and

correct undiscovered security vulnerabilities, our approach provides specific locations of the

vulnerabilities in source code.

Neuhaus et al. [31] introduces a tool, Vulture, to automatically map vulnerability reports to

vulnerable components in the Mozilla open source code. Using the tool, they observed common

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

8

patterns of imports (#include) and function calls in vulnerable components using pattern

mining techniques. Vulture identified 45% of all vulnerable components (recall) using import

analysis, and 70% of all identified vulnerable components were true vulnerable components

(precision) using function call analysis. Vulture was also able to identify 82% of actual

vulnerabilities in the top 30% of files ranked in the order of predicted vulnerabilities. Our study

was also performed on Mozilla, but using different metrics that can be obtained from

development process as well as from source code.

Gegick et al. [12] modeled vulnerabilities in a large commercial telecommunications

software system. These researchers used source lines of code, alert density from a statistic

analysis tool, and code churn information. One of the models they tried identified 100% of

vulnerable components with an 8% false positive rate. However, the model predicted

vulnerabilities only at the component level and cannot direct developers to more specific

vulnerable code locations. Gegick et al. [11] also investigated whether non-security failure

information can be used to predict security failures. In their case study on a Cisco software

system, the number of failure reports per component was used as an internal metric to classify

vulnerable and neutral components. Their classification and regression tree model was able to

identify 57% of vulnerable components from the top 9% of components ranked in the order of

predicted probability of vulnerability with a 48% false positive rate. Our study provides

predictions at the file level and uses metrics that are available prior to release.

Shin and Williams [36] investigated whether the traditional code level complexity metrics

such as cyclomatic complexity can be used as indicators of vulnerabilities in the Mozilla

JavaScript Engine. Their results show that the correlations between complexity metrics and

vulnerabilities are weak (Spearman r=0.30 at best) but statistically significant. Therefore,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

9

traditional code level complexity metrics can be used as indicators of vulnerabilities, but further

investigation is required with new complexity metrics and other types of metrics including

process information.

B. Fault Prediction with complexity, code churn, and developer metrics

Basili et al. [4] showed the usefulness of object oriented (OO) design metrics to predict fault-

proneness in a study performed on eight medium-sized information management systems. The

logistic regression model with OO design metrics detected 88% of faulty classes and correctly

predicted 60% of classes as faulty. Briand et al. [7] also used OO design metrics to predict

defects and their logistic regression model classified fault-prone classes at over 80% of precision

and found over 90% of faulty classes. Nagappan et al. [29] found that sets of complexity metrics

are correlated with post-release defects using five major Microsoft product components,

including Internet Explorer 6. Menzies et al. [25] explored three data mining modeling

techniques, OneR, J48, and naïve Bayes, using code metrics to predict defects in MDP, a

repository for NASA data set. Their model using naïve Bayes was able to predict defects with

71% recall and 25% false positive rate.

Nagappan and Ball [26] investigated the usefulness of code churn information on Windows

Server 2003 to estimate post-release failures. The Pearson correlation and Spearman rank

correlation between estimated failures and actual post-release failures were 0.889 and 0.929

respectively for the best model. As an effort to improve the performance of prediction, several

studies have been performed with combined models of complexity, code churn, and other

metrics to improve the accuracy of prediction. Ostrand et al. [33] used code churn information

together with other metrics including lines of source code, file age, file type, and prior fault

history. They found that 83% of faults were in the top 20% of files ranked in the order of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

10

predicted faults using negative binomial regression. Nagappan et al. [27, 28] also performed

empirical case studies on fault prediction with Windows XP and Windows Server 2003 using

code churn metrics and code dependency within and between modules. Both studies used a

multiple linear regression model on principal components and the Spearman rank correlations

between actual post-release failures and estimated failures were 0.64 and 0.68 at the best cases,

respectively.

We use two concepts to measure developer activity: developer networks and contribution

networks. The concept of a developer network has come from several sources, including [14,

24]. Gonzales-Barahona and Lopez-Fernandez [14] were the first to propose the idea of creating

developer networks as models of collaboration from source repositories to differentiate and

characterize projects. Meneely et al. [24] applied social network analysis to the developer

network in a telecommunications product to predict failures in files. Pinzger et al. [34] were the

first to propose the contribution network as a quantification of the direct and indirect contribution

of developers on specific resources of the project. Pinzger et al. found that files that were

contributed to by many developers, especially by developers who were making many different

contributions themselves, were found to be more failure-prone than files developed in relative

isolation. Other efforts exist [15, 30, 41] to quantify developer activity in projects, mostly via

counting the number of distinct developers who changed a file as we did in our study.

IV. METHODOLOGY

This section explains our methodology to explore the relationship between complexity, code

churn, and developer activity metrics and software vulnerabilities. For this purpose, we examine

the discriminative power and predictability of these metrics, as defined in Section II. First we

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

11

provide the hypotheses for discriminative power and predictability of the metrics. Then, we

provide the evaluation criteria for the hypotheses and also explain our prediction models.

We organize our hypotheses in a three level hierarchy. The top level hypotheses correspond to

the three categories of metrics. The second level hypotheses correspond to the smaller

subcategories of metrics. The third level hypotheses correspond to discriminative power and

predictability for each individual metric. Fig. 1 shows the first and second level hypotheses. The

suffixes “_D” and “_P” represent the hypotheses for discriminative power and for predictability,

respectively.

Fig. 1. Hierarchy of hypotheses

A. Hypotheses for Discriminative Power

1) Complexity Metrics

Security experts often relate complexity and security [10, 23]. Complex code is more difficult

to understand and test, so developers may have a higher chance of introducing undetected errors.

We hypothesize that complexity metrics can indicate security vulnerabilities as follows:

HComplexity_D: Vulnerable files are more complex than neutral files.

We break this general hypothesis down into three more specific hypotheses: unit complexity,

coupling (interaction complexity), and comment metrics.

Developers might introduce more errors when code is complex and difficult to understand.

One characteristic of complex code is having a high number of decisions/branches. Code with

many branches would require a higher number of tests for full coverage, which could lead to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

12

vulnerabilities not being found before release. A popular formulation of this kind of complexity

is cyclomatic complexity [22]. For the code with same level of complexity, longer code might be

more difficult to understand and maintain than shorter code. Our specific hypothesis related to

unit complexity is stated as:

HUnitComplexity_D: Vulnerable files have a higher unit complexity than neutral files.

The metrics we use to evaluate HUnitComplexity_D and their definitions are provided in Table I.

A second type of complexity is calculated based upon dependencies from one code unit to

other code units. If a code unit has many dependencies (or many other units depend on one code

unit), that unit is said to be highly coupled. When a unit is highly coupled with other code units

that are not closely related in their functions, change in a unit can be unnecessarily propagated to

other code units and improve a chance to introduce errors. Our specific hypothesis related to

coupling is, therefore, stated as:

HCoupling_D: Vulnerable files have a higher coupling than neutral files.

The metrics we use to evaluate HCoupling_D and their definitions are provided in Table I.

One way to reduce psychological burden imposed by complex code is to add comments [38,

40]. Comments can be used to record the rationale of design decisions so that the rationale is

understood when the code is modified by the same developer a long time after the code is

implemented or by other developers. Communication by comments between developers is

valuable in open source projects for which many developers can contribute on the same code

segment. Our specific hypothesis related to comments is therefore stated as:

 HComments_D: Vulnerable files have a lower comment density than neutral files.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

13

2) Code Churn

Code is constantly evolving throughout the development process. Each new change in the

system brings a new risk of introducing a vulnerability.

Our first level hypothesis on the relationship between code churn and vulnerabilities is as

follows:

HCodeChurn_D: Vulnerable files have a higher code churn than neutral files.

Code churn can be counted in terms of the number of check-ins into a version control system

and the number of lines that have been added or deleted by code change. Thus, our second level

hypotheses related to code churn metrics are stated as:

HNumChanges_D: Vulnerable files have more frequent check-ins than neutral files.

TABLE I
DEFINITIONS OF COMPLEXITY METRICS

Related

Hypothesis

Metric Definition

HUnitComplexity

CountLineCode The number of lines of code in a file

CountDeclClass The number of classes defined in a file

CountDeclFunction The number of functions defined in a file

CountLineCodeDecl The number of lines of code in a file devoted to declarations

CountLinePreprocessor The number of lines of code in a file devoted to preprocessing

SumEssential The sum of essential complexity, where essential complexity is
defined as the number of branches after reducing all the programming

primitives such as a for loop in a function’s control flow graph into

a node iteratively until the graph cannot be reduced any further.
Completely well-structured code has essential complexity 1 [22, 39]

SumCyclomaticStrict The sum of the strict cyclomatic complexity, where strict cyclomatic
complexity is defined as the number of conditional statements in a
function

SumMaxNesting The sum of the MaxNesting in a file, where MaxNesting is defined as

the maximum nesting level of control constructs such as if or

while statements in a function

MaxCyclomaticStrict The maximum of strict cyclomatic complexity in a file

MaxMaxNesting The maximum of MaxNesting in a file

HCoupling

SumFanIn The sum of FanIn, where FanIn is defined as the number of inputs to
a function such as parameters and global variables

SumFanOut The sum of FanOut, where FanOut is defined as the number of
assignment to the parameters to call a function or global variables

MaxFanIn The maximum of FanIn

MaxFanOut The maximum of FanOut

HComments CommentDensity The ratio of lines of comments to lines of code

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

14

HChurnAmount_D: Vulnerable files have more lines of code that have been changed than neutral

files.

The metrics we use to evaluate HCodeChurn_D and their definitions are provided in Table II.

TABLE II
DEFINITIONS OF CODE CHURN METRICS

Related

Hypothesis

Metric Definition

HNumChanges NumChanges The number of check-ins for a file since the creation of a file

HChurnAmount
LinesChanged The cumulated number of code lines changed since the creation of a file

LinesNew The cumulated number of new code lines since the creation of a file

3) Developer Activity

Software development is generally performed by development teams working together on a

common project. Lack of team cohesion, miscommunications, or misguided effort can all result

in problematic software, including security problems [23]. Version control data can be used to

construct a developer network and a contribution network based upon “which developer worked

on which file,” using network analysis defined in Section II. Then we can compute developer

centrality, developer clusters, and contribution centrality from those networks.

3.1) Developer Network Centrality

In our developer network, two developers are connected if they have both made a change to at

least one file in common during the period of time under study. The result is an undirected,

unweighted, and simple graph where each node represents a developer and edges are based on

whether or not they have worked on the same file during the same release.

A central developer has a high degree, a high betweenness, and/or a low closeness. Refer to

[24] for a more in-depth example of how centrality metrics are derived from developer networks.

In this study, we are using developer network centrality metrics to evaluate the following

hypotheses:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

15

HDeveloperCentrality_D: Vulnerable files are more likely to have been worked on by non-central

developers than neutral files.

We explain the meaning of high and low values of the metrics that might be associated with

high vulnerabilities in Table III. Note that we chose to not study DNMaxDegree,

DNMinCloseness, and DNMaxBetweenness because, for example, a high DNMaxDegree means

at least one central developer worked on the file, which is not as helpful as knowing that high

DNMinDegree denotes that all developers who worked on a file were central. In other words,

since most files in a project are worked on by at least one central developer, metrics that indicate

that at least one developer worked on a file tend to be homogenous and not particularly useful.

TABLE III
MEANING OF DEVELOPER ACTIVITY METRICS

Related Hypothesis Metric Problematic

When

Meaning

HDeveloperCentrality

DNMinDegree Low

File was changed by developers who are
not central to the network

DNAvgDegree Low

DNMaxCloseness High

DNAvgCloseness High

DNMinBetweenness Low

DNAvgBetweenness Low

HDeveloperClustering
DNMaxEdgeBetweenness High File was contributed to by more than one

cluster of developers, with few other
files being worked on by each cluster

DNAvgEdgeBetweenness High

HContributionCentrality

NumDevs High File was changed by many developers

CNCloseness High File was changed by developers who
focused on many other files CNBetweenness High

3.2) Developer Network Cluster

Metrics of developer centrality give us information about individual developers, but we also

wonder the relationship between groups of developers. In our developer network, a file that is

between two clusters was worked on by two groups of developers, and those two groups did not

work on many other files in common. By definition, two developer clusters cannot work on

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

16

many files in common, or they would be part of the same cluster. In this study, we are using

developer network cluster metrics to evaluate the following hypothesis:

HDeveloperCluster_D: Vulnerable files are more likely to be changed by multiple, separate

developer clusters than neutral files.

For this study, we use the edge betweenness clustering technique [6] for discovering developer

clusters. We are interested in identifying the files that lie between clusters. Since edges and files

have a many-to-many relationship, we use the average and maximum of edge betweenness on

the developer network as provided in Table III.

3.3) Contribution Network

A contribution network is a quantification of the focus made on the relationship between a file

and developers instead of relationship between developers. Originally described by Pinzger et al

[34], the contribution network uses an undirected, weighted, and bipartite graph with two types

of nodes: developers and files. An edge exists where a developer made changes to a file. The

weight of an edge is the number of version control commits a developer made to the file. If a file

has high centrality, then that file was changed by many developers who made changes to many

other files – referred to as an “unfocused contribution.” [34] We evaluate the following

hypotheses:

HContributionCentrality_D: Vulnerable files are more likely to have an unfocused contribution than

neutral files.

Table III provides the meaning of the contribution network metrics.

B. Hypotheses for Predictability

When the individual metrics have discriminative power, the individual metrics and the

combined set of those individual metrics might be able to predict vulnerabilities with reasonably

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

17

high prediction performance. We hypothesize that complexity, code churn, and developer activity

metrics individually and combined together in a model can predict vulnerabilities with over 70%

recall or VR and less than 30% IR. A model that satisfies these criteria indicates that over 70%

of vulnerable files or vulnerabilities could be detected by inspecting only 30% of the files. Note

that even when precision is very low, the prediction model is helpful for the organization to

economically detect vulnerabilities if organization can find high percentage of vulnerabilities

with small amount of inspection efforts. Therefore, we considered recall, VR, and IR as the most

important evaluation criteria in our study. Since recall and IR often trade off, obtaining high

recall and low IR at the same time is a challenging goal. Considering that the economic effect

that a single security vulnerability can bring to an organization, we favored high recall and VR to

a low IR. However, organizations may choose their own criteria depending on their quality goal

for their software products.

C. Evaluation of Hypotheses

To evaluate discriminative power of individual metrics, we used Mann-Whitney-Wilcoxon

(MWW) test to investigate the null hypothesis that the distribution of a given individual metric

measurement among all vulnerable files is the same as that for the metric among all neutral files.

The MWW is a non-parametric procedure that enables testing for equality of distributions

without making any assumptions about the distributions themselves, like the assumption of

normality [20]. To see the association direction (i.e. positively or negatively correlated), we

compared the means of the measures of internal metrics for the vulnerable and neutral files. We

considered our hypotheses for discriminative power are supported when the results from MWW

test are statistically significant at 0.05 level and when the association is in the direction

prescribed in the hypotheses. When at least one of the lower level hypotheses is supported, we

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

18

considered the higher level hypothesis is also supported. For example, if HUnitComplexity_D,

HCouplng_D, or HComments_D is supported, we considier HComplexity_D supported.

To evaluate predictability, we built prediction models using discriminant analysis and

Bayesian network modeling. First, we evaluated the predictability for univariate models with

individual metrics. Then, we evaluated predictability of a multivariate model by combining

metrics into a single model. Because our goal is to predict future vulnerabilities that have not

been observed yet, we used cross-validation. In cross-validation, we build or ``fit" models using

subsets of the data called training data, and evaluate these fitted models on separate data sets,

called test data. We performed next-release validation for Mozilla Firefox that has multiple

releases. Next-release validation at release N uses all of the data sets previous to N as the

training data and release N as the test data. We report the average of the results across all

releases. Alternatively, we used ten iterations of three-fold cross validation for Red Hat because

we analyzed a single release. Three-fold cross validation validates a model by dividing the data

set into thirds, using two thirds as the training data, and one third as the test data. The prediction

is then repeated three times with each of the three data sets as being test data set exactly once.

We repeated the whole process ten times and averaged the results.

Our hypotheses on predictability are supported when the models built from our metrics

provide over 70% recall or VR with less than 30% IR as described in Section IV.B.

D. Prediction Models

We utilized two classification techniques, linear discriminant analysis and Bayesian network,

to evaluate the performance of internal metrics. The two techniques have been used in fault

prediction literature [9, 18, 25, 26].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

19

Linear discriminant analysis is a multivariate classification technique that uses the linear

function of p variables that achieves maximum separation among two or more groups [17].

Discriminant analysis has widespread applications, including facial recognition [21, 37]. Our

other multivariate modeling technique is the Bayesian network, which is a binary classification

technique based on Bayesian probability inference. In a Bayesian network, each internal metric

is represented by a node in a graph, and connections between nodes exist where there is a

conditional dependence observed between variables in the training set. Bayesian networks have

also been used in many applications, including gene expression [32] and satellite failure

monitoring systems [5].

To select the metrics for multivariate models that combine multiple metrics, we used a

stepwise variable selection method, proc stepdisc, provide by SAS4 statistical analysis tool. First

we selected metrics by applying stepwise selection method on discriminant analysis. We then

applied the same set of metrics to Bayesian network modeling to see whether the performances

of predictions are different depending on modeling techniques. Stepwise variable selection

method selects one variable at a time so that the model with the selected metrics maximizes the

classification between the two classes of a dependent variable [1]. If already-selected metrics do

not contribute significantly to the classification based on Wilks' lambda likelihood ratio criterion

[1], the variables are removed from the model. The variable selection repeats until no more

metrics meet the criteria for entry (p < .15) or removal (p < .15).

We used SAS v9.1.3 for the discriminant analysis and Weka5 v3.6.0 for the Bayesian network

modeling.

4 http://www.sas.com/
5 http://www.cs.waikato.ac.nz/ml/weka/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

20

V. CASE STUDY 1: MOZILLA FIREFOX

Our first case study has been performed on the Mozilla Firefox, a widely-used open source

web browser. Mozilla Firefox had 34 releases at the time of data collection developed for four

years. Each release consists of over 10,000 files and over three million lines of source code.

A. Data Collection

We collected vulnerability information from Mozilla Foundation Security Advisories

(MFSAs) 6. Each MFSA includes bug ids that are linked to the Bugzilla7 bug tracking system.

Mozilla developers also add bug ids to the log of the CVS version control system8 when they

check in the files to the CVS after the vulnerabilities have been fixed. We searched the bug ids

from the CVS log to find the files that have been changed to fix vulnerabilities. The number of

MFSAs for Firefox was 197 as of August, 2nd, 2008. The vulnerability fixes for the MFSAs were

reported in 546 bug reports.

To collect complexity metrics, we used Understand C++9, a commercial metrics collection

tool. We obtained code churn and developer activity metrics from the CVS version control

system.

At the time of data collection, Firefox 1.0 and Firefox 2.0.0.16 were the first and the last

releases that had vulnerability reports. The gap between releases ranged from one to two months.

Since the vulnerable files were too few to perform statistical analysis at each release, we

combined the number of vulnerabilities for three consecutive releases and used that information

to predict the vulnerabilities at the fourth releases. We collected metrics for 11 combined

releases. The combined releases are denoted as R1 to R11 in this paper. We limited our analysis

6 http://www.mozilla.org/security/announce/
7 http://www.bugzilla.org/
8 https://developer.mozilla.org/en/Mozilla_Source_Code_Via_CVS
9 http://www.scitools.com

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

21

to C/C++ and their header files to obtain complexity metrics. Table IV provides the project

statistics for the combined 11 releases.

The big increase of the number of files in R4 and R7 indicate that there were major changes in

those releases. The periods between most of the combined releases were three to four months.

However, Firefox 2.0.0.8, Firefox 2.0.0.9, and Firefox 2.0.0.10 were released within a month.

Lower observed fixes for R9 might be because the time gaps between releases 2.0.0.6 and 2.0.0.8

were shorter than for the other combined releases.

TABLE IV
PROJECT STATISTICS FOR MOZILLA FIREFOX

No. Firefox Release # of

Files

KLOC Mean

LOC

Files

with

Vulns.

Total

Vulns.

Vulns.

per File

% of Files

with Vulns.

R1 1.0 / 1.0.1 / 1.0.2 10,320 3,688,444 357 70 84 0.008 0.678

R2 1.0.3 / 1.0.4 / 1.0.5 / 1.0.6
10

 10,321 3,692,161 358 123 134 0.013 1.192

R3 1.0.7 / 1.5 / 1.5.0.1 10,321 3,693,609 358 93 159 0.015 0.901

R4 1.5.0.2 / 1.5.0.3 / 1.5.0.4 10,956 4,012,915 366 100 138 0.013 0.913

R5 1.5.0.5 / 1.5.0.6 / 1.5.0.7 10,961 4,018,972 367 109 153 0.014 0.994

R6 1.5.0.8 / 2.0 / 2.0.0.1 10,961 4,022,681 367 87 124 0.011 0.794

R7 2.0.0.2 / 2.0.0.3 / 2.0.0.4 11,060 4,131,084 374 114 162 0.015 1.031

R8 2.0.0.5 / 2.0.0.6 / 2.0.0.8 11,060 4,138,242 374 55 72 0.007 0.497

R9 2.0.0.8 / 2.0.0.9 / 2.0.0.10 11,076 4,142,497 374 14 15 0.001 0.126

R10 2.0.0.11 / 2.0.0.12 / 2.0.0.13 11,077 4,142,728 374 84 110 0.010 0.758

R11 2.0.0.14 / 2.0.0.15 / 2.0.0.16 11,080 4,145,805 374 27 46 0.004 0.244

B. Discriminative Power Test and Univariate Prediction Results

All of the metrics showed statistically significant difference between vulnerable and neutral

files using MWW test as shown in Table V. We also compared the mean and median of each

metric measurement for two groups of files to find the association direction (positive or negative)

between metrics and vulnerabilities. We performed the comparison for each release and also for

the whole data across releases. The trend was similar for both of the cases. Fig. 2 shows the

boxplots of comparisons of measures between the two groups for three representative metrics in

10 The vulnerabilities for Firefox 1.0.5 and Firefox 1.0.6 were reported together. Therefore, we considered those two versions as one version.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

22

complexity, code churn, and developer activity metrics; CountLineCode, NumChanges, and

NumDevs. The left side boxplot for each metric shows the distribution of neutral files and the

right side boxplot shows the distribution of vulnerable files. The means and medians of the three

metrics for the vulnerable files were higher than the ones for the neutral files as we expected.

Fig. 2. Comparison of measures for vulnerable and neutral files

The results of MWW test and association directions for all the metrics are presented in Table

V. The plus sign in the Association column indicates that the higher the measure, the more

vulnerable the file tends to be. The minus sign indicates that the higher the measure, the less

vulnerable the file tends to be. The developer degree was the only sign that did not completely

agree: DNMinDegree was negatively correlated but DNAvgDegree was positively correlated.

This means that files are more likely to be vulnerable if they are changed by developers who

work on many other files with other developers on average, but when all of the developers are

central, the file is less likely to be vulnerable. Since this is not a direct contradiction, and the

other developer centrality metrics are supported, we count HDeveloperCentrality_D hypothesis as

supported. Overall, all of the hypotheses for discriminative power were supported except for

DNAvgDegree.

For the predictability of individual metrics, we performed univariate discriminant analysis and

validated the models using the next-release validation method. Our criterion to support the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

23

hypotheses for predictability is over 70% recall or VR with less than 30% IR as described in

Section IV. C. We performed the analysis on the raw data, log transformed data, and square root

transformed data. Among those, log transformed data provided the best results. Table V shows

the cross-validated prediction results using discriminant analysis on the log transformed data and

results of hypotheses tests on predictability based on our criteria.

TABLE V
RESULTS OF DISCRIMINATIVE POWER TEST AND UNIVARIATE PREDICTION FOR MOZILLA FIREFOX

 Discriminant Analysis

Related Hypothesis Metric MWW Associ

ation

HD
*
 R

*
 P

*
 IR

*
 VR

*
 HP

*

HComplexity Complexity Metrics √√√√ √√√√

HUnitComplexity

CountLineCode √ + √√√√ 79.0 2.1 28.7 82.9 √√√√

CountDeclClass √ + √√√√ 52.8 1.1 32.8 52.5 X

CountDeclFunction √ + √√√√ 77.2 1.9 29.6 80.3 √√√√

CountLineCodeDecl √ + √√√√ 79.0 2.2 26.2 82.7 √√√√

CountLinePreprocessor √ + √√√√ 70.1 2.1 24.1 75.0 √√√√

SumEssential √ + √√√√ 76.0 1.9 29.5 78.7 √√√√

SumCyclomaticStrict √ + √√√√ 76.8 1.7 32.9 79.6 X

MaxCyclomaticStrict √ + √√√√ 71.0 1.6 34.5 74.6 X

SumMaxNesting √ + √√√√ 64.8 1.8 26.3 68.3 X

MaxMaxNesting √ + √√√√ 70.4 1.6 35.5 73.5 X

HCoupling

SumFanIn √ + √√√√ 71.9 1.7 30.3 74.4 X

SumFanOut √ + √√√√ 69.8 1.7 30.2 72.2 X

MaxFanIn √ + √√√√ 72.3 1.8 32.6 74.7 X

MaxFanOut √ + √√√√ 68.2 1.5 37.1 71.3 X

HComments CommentDensity √ – √√√√ 84.4 1.3 48.9 86.7 X

HCodeChurn Code Churn Metrics √√√√ √√√√

HNumChanges NumChanges √ + √√√√ 81.5 3.0 20.0 84.7 √√√√

HChurnAmount
LinesChanged √ + √√√√ 81.5 2.4 24.6 84.6 √√√√

LinesNew √ + √√√√ 79.2 2.1 28.3 82.6 √√√√

HDeveloper Developer Metrics √√√√ √√√√

HDeveloperCentrality

DNMinDegree √ – √√√√ 57.0 1.2 36.6 60.5 X

DNAvgDegree √ + X 93.8 1.0 74.7 94.3 X

DNMaxCloseness √ + √√√√ 79.8 1.5 39.0 82.6 X

DNAvgCloseness √ + √√√√ 96.6 0.9 80.2 97.0 X

DNMinBetweenness √ – √√√√ 69.4 1.4 35.2 75.1 X

DNAvgBetweenness √ – √√√√ 96.8 0.9 82.1 97.6 X

HDeveloperClustering
DNMaxEdgeBetweenness √ + √√√√ 85.5 2.3 27.9 87.3 √√√√

DNAvgEdgeBetweenness √ + √√√√ 86.5 2.1 30.5 88.2 X

HContributionCentrality

NumDevs √ + √√√√ 82.9 2.8 21.5 85.5 √√√√

CNCloseness √ + √√√√ 81.3 2.7 22.6 84.4 √√√√

CNBetweenness √ + √√√√ 64.8 4.8 9.6 69.7 X

*. HD: Hypothesis test for discriminative power, R: Recall, P: Precision, IR: Inspection rate, VR: Vulnerability rate, HP:
Hypothesis test for predictability

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

24

The prior probability of a file being vulnerable or neutral for discriminant analysis was set to

0.5 in Table V and all the remaining analysis in this study. The bold face in the prediction results

indicates that the metric satisfied the criterion for over 70% recall or VR with less than 30% IR.

All of the code churn metrics supported our hypotheses for predictability. We were also able to

find some sets of complexity and developer activity metrics that supported our hypotheses for

predictability. While the recall and VR are over 70% for most of the metrics, the precision was

very low (below 5%) for all the metrics. Prediction with high recall and low IR is possible even

with this low precision because vulnerabilities were distributed in only a small percentage of

files in our data set.

 Note that the metrics that provide high predictability individually do not necessarily provide

high predictability together with other metrics. Conversely, the metrics that provide low

predictability individually might be able to improve the overall predictability when they are used

in a model together with other metrics.

C. Multivariate Prediction Results

We created four models using complexity, code churn, developer activity, and combination of

the three categories of metrics. The independent variables were chosen using the stepwise

selection method described in Section IV.D. We used only the variables with coefficients that

were statistically significant at 0.05 level. We also created models with the log and square root

transformed metrics for the same set of metrics chosen by stepwise selection method for

discriminant analysis. Then we built models using those metrics for discriminant analysis and

Bayesian network. Additionally we also built models using all the collected metrics for Bayesian

network. Since the performance of Bayesian network is not affected by order-preserving data

transformations, we did not apply data transformation for Bayesian network modeling.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

25

With discriminant analysis, log transformed data provided the best results in general. With log

transformation, all of the models predicted less than 20% files as vulnerable (IR). Those

predicted vulnerable files in all the models included over 70% of actual vulnerable files (recall)

or over 70% of actual vulnerabilities (VR) in the system. The model with code churn metrics

provided the highest recall and VR, and the combined metrics model provided the lowest IR.

With Bayesian network, the models with all the collected metrics performed better than the

models with metrics selected by stepwise selection method. All of the models provided less than

20% IR. However, only the combined metrics model was able to find over 70% of actual

vulnerable files (recall) with less than 20% IR. Note that recall from multivariate models has not

been necessarily improved from univariate models with our data. However, IR clearly became

lower with multivariate models than with univariate models. Precision was very low (less than

5%) as was in univariate models.

Table VI summarizes the cross-validated prediction results using discriminant analysis on log

transformed metrics and Bayesian network on all the collected metrics. VR was not available for

Bayesian network modeling with the Weka tool.

TABLE VI
RESULTS OF MULTIVARIATE PREDICTION FOR MOZILLA FIREFOX

 Discriminant Analysis Bayesian Network

 R P IR VR R P IR HP

Complexity 68.9 3.2 15.4 72.6 58.0 3.4 12.5 √√√√

Code churn 80.5 3.1 18.6 84.3 48.2 9.1 3.8 √√√√

Developer activity 68.6 4.5 11.0 73.9 68.0 4.3 11.8 √√√√

Combined 70.8 4.6 10.9 76.2 72.1 4.0 12.9 √√√√

Since our metrics and models target at finding future vulnerabilities, the models should be able

to provide equal or better prediction performance as time passes. Fig. 3 shows the VR across

releases for the discriminant anlaysis models on the complexity, code churn, developer activity,

and combined metrics.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

26

Fig. 3. Prediction results of disriminant analysis across releases

The predictive performance of the four models was slightly better for later releases than for

earlier releases, which indicates that the models are trained better with the information from

previous releases. The trend of recall over time was the same as that for VR. The decrease in VR

of R8 might be because sudden decrease in reported vulnerabilities for R8. However, the reason

of the sudden decreases in VR of R5 and R9 (complexity model) has not been identified.

VI. CASE STUDY 2: RED HAT ENTERPRISE LINUX KERNEL

Our second case study has been performed on the Linux kernel as it was distributed in the Red

Hat Enterprise Linux 4 (RHEL4) operating system. The Red Hat consists of 13,568 C and their

header files with over three million lines of source code. The details of the project, data

collection, and the prediction results are described in this section.

A. Data Collection

Gathering data for our external metric involved tracing through the development artifacts

related to each vulnerability reported in the Linux kernel. We collected our vulnerability data

from the Bugzilla database (including attached patches), the National Vulnerability Database

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

27

(NVD)11, and the Red Hat Security Advisory (RHSR) security metrics database. Since some

vulnerability patches affect only certain releases, we examined each defect report manually to

ensure that developers had decided that patch was, in fact, required. Since we are only interested

in vulnerabilities that existed at the time of release, we did not include vulnerabilities introduced

by post-release patches (a.k.a “regressions”) in our data set. For vulnerabilities that did not have

all of the relevant artifacts (e.g. defect reports, patches), we consulted the director of the RHSR

team to correct the data. Our data set is a comprehensive list of reported, non-regression

vulnerabilities from RHEL4’s release in February 2005 through July 2008. We included only C

and their header files. Because RHEL4 included only one C++ file, we excluded the

CountDeclClass metric from our analysis.

To obtain code churn and developer activity data, we used the Linux kernel source

repository12. The RHEL4 operating system is based on kernel version 2.6.9, so we used all of the

version control data from kernel version 2.6.0 to 2.6.9, which was about approximately 15

months of development and maintenance. Table IX provides the project statistics.

TABLE IX
PROJECT STATISTICS FOR RED HAT LINUX

of Files LOC Mean LOC Files with

Vulns.

Total Vulns. Vulns. per

File

% of Files with

Vulns.

13,568 3,068,453 226 194 258 0.019 1.4%

B. Discriminative Power Test and Univariate Prediction Results

All of the metrics showed statistically significant difference between vulnerable and neutral

files using MWW test except for DNMinDegree and DNMinBetweenness. All of the hypotheses

for discriminative power were supported except for DNMinDegree, DNAvgDegree,

DNMinBetweenness, and DNAvgBetweenness. Interestingly, DNAvgDegree was not supported

11 http://nvd.nist.gov/
12 http://git.kernel.org/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

28

in Mozilla either (see Section V.B). For the predictability of individual metrics, we performed

univariate discriminant analysis and validated the models using ten iterations of three-fold cross-

validation. Among the metrics, SumEssential, SumMaxNesting, NumChanges, LinesNew, and

NumDevs detected over 70% of vulnerable files with less than 30% IR.

Table X shows the results of discriminative power test and univariate prediction after cross-

validation.

TABLE X
RESULTS OF DISCRIMINATIVE POWER TEST AND UNIVARIATE PREDICTION FOR RED HAT

 Discriminant Analysis

Related Hypothesis Metric MW

W

Associ

ation

HD R P IR VR HP

HComplexity Complexity Metrics √√√√ √√√√

HUnitComplexity

CountLineCode √ + √√√√ 84.4 3.3 36.2 87.8 X

CountDeclFunction √ + √√√√ 79.7 3.5 32.0 83.3 X

CountLineCodeDecl √ + √√√√ 81.3 3.1 36.7 85.0 X

CountLinePreprocessor √ + √√√√ 66.7 2.4 39.3 69.4 X

SumEssential √ + √√√√ 82.8 3.9 29.8 85.9 √√√√

SumCyclomaticStrict √ + √√√√ 82.8 3.6 32.3 85.8 X

MaxCyclomaticStrict √ + √√√√ 84.1 3.6 32.8 86.5 X

SumMaxNesting √ + √√√√ 81.3 4.0 29.0 85.2 √√√√

MaxMaxNesting √ + √√√√ 87.5 3.1 39.8 89.2 X

HCoupling

SumFanIn √ + √√√√ 87.5 3.9 32.1 89.7 X

SumFanOut √ + √√√√ 84.1 3.6 33.0 87.0 X

MaxFanIn √ + √√√√ 88.9 3.6 34.3 90.4 X

MaxFanOut √ + √√√√ 84.4 3.4 35.2 87.8 X

HComments CommentDensity √ – √√√√ 79.4 1.8 60.0 81.6 X

HCodeChurn Code Churn Metrics √√√√ √√√√

HNumChanges NumChanges √ + √√√√ 81.3 5.4 21.2 83.0 √√√√

HChurnAmount
LinesChanged √ + 81.3 3.2 36.1 83.7 X

LinesNew √ + 73.0 4.2 24.1 76.8 √√√√

HDeveloper Developer Metrics √√√√ √√√√

HDeveloperCentrality

DNMinDegree X – X 54.7 1.5 52.7 52.0 X

DNAvgDegree √ + X 96.9 2.4 56.5 96.7 X

DNMaxCloseness √ + √√√√ 93.8 2.1 64.2 94.2 X

DNAvgCloseness √ + √√√√ 96.9 2.1 65.8 96.1 X

DNMinBetweenness X – X 48.4 1.5 46.7 51.4 X

DNAvgBetweenness √ + X 96.9 2.4 56.3 96.9 X

HDeveloperClustering
DNMaxEdgeBetweenness √ + √√√√ 50.0 6.0 11.8 54.7 X

DNAvgEdgeBetweenness √ + √√√√ 50.0 6.0 11.8 54.7 X

HContributionCentrality

NumDevs √ + √√√√ 81.3 4.9 23.5 84.1 √√√√

CNCloseness √ + √√√√ 98.4 1.9 73.3 97.5 X

CNBetweenness √ + √√√√ 90.6 3.3 39.2 92.3 X

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

29

A. Multivariate Prediction Results

We built multivariate models using the metrics chosen by stepwise variable selection method.

Table XI provides the cross-validation results of discrimininant analysis on log transformed

metrics and Bayesian network on all the collected metrics for each category of metrics. With

discriminant analysis, complexity, code churn, and combined metrics models provided over 70%

recall or VR with less than 30% IR. With Bayesian network modeling, complexity and combined

metrics models provided over 70% recall with less than 30% IR.

TABLE XI
RESULTS OF MULTIVARIATE PREDICTION FOR RED HAT

 Discriminant Analysis Bayesian Network

 R P IR VR R P IR HP

Complexity 79.7 4.5 25.3 83.9 70.8 5.0 20.2 √√√√

Code churn 78.1 5.4 20.5 81.3 21.0 17.2 1.8 √√√√

Developer activity 51.6 9.1 8.0 57.2 61.1 6.5 13.4 X

Combined 68.8 7.5 13.0 75.3 73.9 5.5 19.2 √√√√

VII. DISCUSSION

Most of the complexity, code churn, and developer activity metrics we used in this study were

able to discriminate vulnerable files and neutral files at statistically significant level. The results

from our case study support the following hypotheses across two projects.

HComplexity_D: Vulnerable files are more complex than neutral files.

HCodeChurn_D: Vulnerable files have a higher code churn than neutral files.

HDeveloper_D: Vulnerable files are more likely to have been changed by poor developer activity

than neutral files.

The predictive power of the metrics was different between projects and modeling techniques.

Discriminant analysis performed better than Bayesian network modeling in our study. With

discriminant anaylysis, seven of eight multivariate models presented in Table VI and Table XI

supported our hypotheses. On the other hand, only three models supported our hypothesis with

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

30

Bayesian network. We also performed logistic regression which is another well known

classification technique. However, using logistic regression, recall for both projects was less than

50%. We do not present the results of logistic regression in this paper because of the limited

space. With discriminant analysis, some of the univariate models outperformed multivariate

models in recall and VR. However, IRs were consistently lower for multivariate models than

univariate models for both projects.

The univariate and multivariate models using complexity, code churn, and combined metrics

supported our hypotheses for predictability across two projects using discriminant anlaysis

and/or Bayesian network. Developer activity metrics did not support our hypotheses for

predictability on Red Hat. Even in this case, however, developer activity metrics were able to

predict over half of the vulnerable files at 8% IR with discriminant analysis and 13.4% IR with

Bayesian network modeling. The combined metrics models provided lowest IR among the

models that supported our hypotheses using discriminant analysis on both projects. Even though

code churn metrics model provided high recall and low IR using discriminant analysis, the

prediction performance with Bayesian network was poor. Overall there was no clear evidence

whether one category of metrics is better than another because some metrics provided relatively

high recall with high inspection rate while other metrics provided relatively low recall with low

inspection rate. For example, code churn metrics provided higher recall than developer metrics,

but also required higher IR than developer metrics. However, all of the models using the three

categories of metrics and the combined metrics were able to predict vulnerabilities with over

70% recall or VR with less than 30% IR for one or both of the projects.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

31

VIII. THREATS TO VALIDITY

Internal validity. We performed our case studies on two open source projects whose

vulnerability information is publicly available. Our analysis does not account for latent

(undiscovered) vulnerabilities. Additionally, only fixed vulnerabilities are reported in detail to

avoid the possible attacks from malicious users; unfixed vulnerabilities are usually not publicly

available. However, considering the wide use of the subject projects and the size of community

involved in the development and testing of the projects, we believe the currently reported

vulnerabilities are not too limited to jeopardize our results. Also, the associations between

vulnerabilities and the metrics found in this study do not necessarily indicate causation.

However, we believe our results provide useful insights for organizations to take proactive or

reactive actions to reduce vulnerabilities.

External validity. Our results on vulnerability prediction were not fully consistent between

the two projects and the modeling techniques we used, even though complexity, code churn, and

combined metrics models supported our hypotheses for both of the projects. As with all

empirical studies, our results were limited to the metrics we collected and the modeling

techniques we used in this study. To generalize our observations from this study to other projects

in various domain, size, and operational and usage context, further studies should be performed.

We believe our results can be used to compare with the results from other projects and to

increase the understanding on the relationship between software vulnerabilities and the metrics

investigated in this study.

IX. SUMMARY

Our study explored the relationship between complexity, code churn, and developer activity

metrics with vulnerabilities. Complexity and developer activity metrics are actionable metrics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

32

that organizations can take actions to change the measures of metrics by redesigning code or

reorganizing a development team when necessary. In our case study on Mozilla Firefox and Red

Hat Enterprise Linux kernel, those actionable metrics showed discriminative power between

vulnerable and neutral files. Therefore, organizations can use complexity and developer activity

metrics to proactively improve software security. For example, while some code cannot avoid

complexity, organizations can use the average values of complexity metrics for vulnerable files

and neutral files as a criterion to redesign unnecessarily complex code. Central developers tend

to produce less vulnerabilities than developers who work alone. Therefore, appropriate corrective

action in a development team such as pair programming or careful distribution of central

developers based on the measures of developer activity metrics is encouraged.

When metrics can predict vulnerabilities, those predictive metrics can be used to prioritize

inspection and testing effort. In our case study, all three categories of metrics had predictability

at one or both projects by providing over 70% recall or vulnerability rate with less than 30%

inspection rate. Code churn metrics provided the best recall for Mozilla Firefox among the

models using the three categories of metrics and combined metrics using discriminant analysis.

Complexity metrics provided the best recall for Red Hat using discriminant analysis. However,

there was no clear evidence whether one category of metrics was better than another. Whether

the prediction results are good or not can be determined by practitioners at organizations.

However, finding 84.3% of vulnerabilities by inspecting only 18.6% of total files (in the case of

code churn metrics model with discriminant analysis on Mozilla Firefox) might be a promising

result to appropriately allocate inspection efforts. Our results are promising. However,

additional studies of these and other metrics could lead to further improvement.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

33

ACKNOWLEDGMENT

We thank the Mozilla team who clarified the procedure for version control and vulnerability

fixes. We thank Mark Cox, the director of the RHSR team for verifying our Red Hat data. We

also thank the NCSU Software Engineering Realsearch group for their careful review of and

helpful suggestions for the paper.

REFERENCES

[1] "SAS/STAT 9.1 User's Guide", SAS Institute Inc., 2004.
[2] "IEEE Standard for a Software Quality Metrics Methodology", IEEE Std 1061-1998 (R2004), IEEE Computer Society, 2005.
[3] Alhazmi, O.H., Malaiya, Y.K., and Ray, I., "Measuring, Analyzing and Predicting Security Vulnerabilities in Software Systems",

Computers & Security, 26(3), 2007, pp. 219-228.
[4] Basili, V.R., Briand, L.C., and Melo, W.L., "A Validation of Object-Oriented Design Metrics as Quality Indicators", IEEE Trans. Software

Eng., 22(10), 1996, pp. 751 - 761.
[5] Bottone, S., Lee, D., O'Sullivan, M., and Spivack, M., "Failure Prediction and Diagnosis for Satellite Monitoring Systems using Bayesian

Networks", Proc. Military Communications Conference, 2008 (MILCOM'08), San Diego, CA, USA, 16-19 Nov., 2008, pp. 1-7.
[6] Brandes, U., and Erlebach, T., Network Analysis: Methodological Foundations, Lecture Notes in Computer Science, Springer, 2005.
[7] Briand, L.C., Wüst, J., Daly, J.W., and Porter, D.V., "Exploring the Relationships Between Design Measures and Software Quality in

Object-Oriented Systems", Journal of Systems and Software, 51(3), 2000, pp. 245-273.
[8] Cashell, B., Jackson, W.D., Jickling, M., and Web, B., "CRS Report for Congress: The Economic Impact of Cyber-Attacks", Congressional

Research Service, April 1, 2004.
[9] Fenton, N., Neil, M., Marsh, W., Hearty, P., Radlinski, L., and Krause, P., "Project Data Incorporating Qualitative Facts for Improved

Software Defect Prediction ", Proc. the Third International Workshop on Predictor Models in Software Engineering (PROMISE'07),
Washington, DC, USA, 20-26 May, 2007

[10] Geer, D.E., "A Witness Testimony in the Hearing, Wednesday 25 April 07, entitled Addressing the Nation's Cybersecurity Challenges:
Reducing Vulnerabilities Requires Strategic Investment and Immediate Action", submitted to the Subcommittee on Emerging Threats,

Cybersecurity, and Science and Technology, 2007
[11] Gegick, M., Rotella, P., and Williams, L., "Toward Non-Security Failures as a Predictor of Security Faults and Failures", Proc.

International Symposium on Engineering Secure Software and Systems (ESSoS), Leuven, Belgium, February 04-06, 2009, pp. 135-149.
[12] Gegick, M., Williams, L., Osborne, J., and Vouk, M., "Prioritizing Software Security Fortification through Code-Level Metrics", Proc. 4th

ACM workshop on Quality of protection, Alexandria, Virginia, USA, Oct. 27, 2008, pp. 31-38.
[13] Girvan, M., and Newman, M.E.J., "Community Structure in Social and Biological Networks", the National Academy of Sciences, 99(12),

2001, pp. 7821-7826.
[14] Gonzales-Barahona, J.M., Lopez-Fernandez, L., and Robles, G., "Applying Social Network Analysis to the Information in CVS

Repositories", Proc. International Workshop on Mining Software Repositories (MSR'04), Edinburgh, Scotland, UK, 25 May, 2004
[15] Hudepohl, J.P., Jones, W., and Lague, B., "EMERALD: A Case Study in Enhancing Software Reliability", Proc. International Symposium

on Software Reliability Engineering (ISSRE '97), Albuquerque, NM, 2-5 Nov, 1997, pp. 85-91.
[16] "ISO/IEC TR 9126-2 Software engineering — Product quality Part 2:External metrics", ISO/IEC TR 9126-2:2003(E), 07-01, 2003.
[17] Johnson, R.A., and Wichrn, D.W., Applied Multivariate Statistical Analysis, Prentice Hall, Upper Saddle River, NJ, USA, 2002.
[18] Khoshgoftaar, T.M., Allen, E.B., Kalaichelvan, K.S., and Goel, N., "Early Quality Prediction: A Case Study in Telecommunications", IEEE

Software, 13, (1), Jan., 1996, pp. 65 - 71.
[19] Krsul, I.V., "Software Vulnerability Analysis", PhD dissertation, Purdue University, 1998.
[20] Mann, H.B., and Whitney, D.R., "On a Test of Whether One of Two Random Variables is Stochastically Larger than the Other", the Annals

of Mathematical Statistics, 18, 1947, pp. 50-60.
[21] Martinez, A.M., and Kak, A.C., "PCA versus LDA", IEEE Trans. Pattern Analysis and Machine Intelligence, 23(2), 2001, pp. 228-233.
[22] McCabe, T.J., "A Complexity Measure", IEEE Trans. Software Eng., 2(4), 1976, pp. 308-320.
[23] McGraw, G., Software Security: Building Security In, Addison-Wesley, Boston, NY, 2006.
[24] Meneely, A., Williams, L., Snipes, W., and Osborne, J., "Predicting Failures with Developer Networks and Social Network Analysis", Proc.

16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Atlanta, Georgia, Nov. 9-14, 2008, pp. 13-23.
[25] Menzies, T., Greenwald, J., and Frank, A., "Data Mining Static Code Attributes to Learn Defect Predictors", IEEE Trans. Software Eng.,

33(1), 2007, pp. 2 - 13.
[26] Nagappan, N., and Ball, T., "Use of Relative Code Churn Measures to Predict System Defect Density", Proc. the 27th International

Conference on Software Engineering (ICSE '05), St. Louis, MO, USA, May 15-21, 2005, pp. 284 - 292.
[27] Nagappan, N., and Ball, T., "Using Software Dependencies and Churn Metrics to Predict Field Failures: An Empirical Case Study", Proc.

First International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 20-21 Sept., 2007, pp. 364 - 373.
[28] Nagappan, N., Ball, T., and Murphy, B., "Using Historical In-Process and Product Metrics for Early Estimation of Software Failures", Proc.

the 17th International Symposium on Software Reliability Engineering, Raleigh, NC, U.S.A., November 7-10, 2006, pp. 62-74.
[29] Nagappan, N., Ball, T., and Zeller, A., "Mining Metrics to Predict Component Failures", Proc. the 28th International Conference on

Software Engineering (ICSE'06), Shanghai, China, May 20-28, 2006, pp. 452-461.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO
EDIT) <

34

[30] Nagappan, N., Murphy, B., and Basili, V.R., "The Influence of Organizational Structure on Software Quality", Proc. International

Conference on Software Engineering, Leipzig, Germany, 10 - 18 May, 2008, pp. 521-530.
[31] Neuhaus, S., Zimmermann, T., and Zeller, A., "Predicting Vulnerable Software Components", Proc. the 14th ACM Conference on

Computer and Communications Security (CCS’07), Alexandria, Virginia, USA, October 29–November 2, 2007, pp. 529 - 540.
[32] Numata, K., Imoto, S., and Miyano, S., "A Structure Learning Algorithm for Inference of Gene Networks from Microarray Gene

Expression Data Using Bayesian Networks", Proc. Bioinformatics and Bioengineering, Boston, MA, USA., 14-17 Oct., 2007, pp. 1280-
1284.

[33] Ostrand, T.J., Weyuker, E.J., and Bell, R.M., "Predicting the Location and Number of Faults in Large Software Systems", IEEE Trans.

Software Eng., 31(4), 2005, pp. 340 - 355.
[34] Pinzger, M., Nagappan, N., and Murphy, B., "Can Developer-Module Networks Predict Failures?", Proc. International Symposium on

Foundations in Software Engineering, Atlanta, GA, 9-14 Nov., 2008, pp. 2-12.
[35] Schneidewind, N.F., "Methodology for Validating Software Metrics", IEEE Trans. Software Eng., 18, 1992, pp. 410-422.
[36] Shin, Y., and Williams, L., "Is Complexity Really the Enemy of Software Security?", Proc. the 4th ACM Workshop on Quality of

Protection, Alexandria, Virginia, USA, Oct. 27, 2008, pp. 47-50.
[37] Tae-Kyun, K., and Kittler, J., "Locally Linear Discriminant Analysis for Multimodally Distributed Classes for Face Recognition with a

Single Model Image", Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(3), 2005, pp. 318-327.
[38] Tenny, T., "Program Readability: Procedures Versus Comments", IEEE Trans. Software Eng., 14(9), 1988, pp. 1271-1279.
[39] Watson, A.H., and McCabe, T.J., "Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric", NIST Special

Publication 500-235, September, 1996.
[40] Weissman, L., "Psychological Complexity of Computer Programs: an Experimental Methodology", ACM SIGPLAN Notices, 9, (6), 1974,

pp. 25 - 36.
[41] Weyuker, E.J., Ostrand, T.J., and Bell, R.M., "Using Developer Information as a Factor for Fault Prediction ", Proc. International

Workshop on Predictor Models in Software Engineering (PROMISE '07), Minneapolis, MN, 20 May, 2007, pp. 8.

Yonghee Shin is a PhD student in the Computer Science Department at North Carolina State University (NCSU) under the supervision of Dr.
Laurie Williams. Her research interests are software testing and software quality assurance specialized in software security. She received her MS
degree from Texas A&M University in 2003 and BS degree from Sookmyung Women’s University in 1992. She worked for Daewoo
Telecommunications and Samsung SDS for eight years in Seoul, Korea before returning to academia. She is a student member of the IEEE.

Andrew Meneely is a Ph.D. student in the Computer Science Department at NCSU under the supervision of Dr. Laurie Williams. His research
interests include empirical software engineering, software security, and developer collaboration. He received his MS degree from NCSU in 2008
and received a dual BA in Computer Science and Mathematics from Calvin College in 2006. He is a student member of IEEE.

Laurie Williams is an Associate Professor in the Computer Science Department at NCSU. Her research focuses on agile software development
practices and processes; software reliability, software testing and analysis; software security; open source software development; and broadening
participation and increasing retention in computer science. Laurie is the Director of the North Carolina State University Laboratory for
Collaborative System Development and the Center for Open Software Engineering, and an area representative for the Secure Open Systems
Initiative. Laurie is the technical co-director of the Center for Advanced Computing and Communication (CACC). Laurie received her Ph.D. in
Computer Science from the University of Utah, her MBA from Duke University Fuqua School of Business, and her BS in Industrial Engineering
from Lehigh University. She worked for IBM Corporation for nine years in Raleigh, NC and Research Triangle Park, NC before returning to
academia. She is a member of the IEEE.

Jason Osborne is an Associate Professor in the Department of Statistics at NCSU. Most of his effort goes towards providing internal statistics
consulting to the university and his research is driven by problems that arise from that work. Examples include estimation of linear Boolean
models for particle flow, estimation of population size in software reliability and heterogeneity of variance models for gene expression
experiments. Jason received a PhD in Statistics from Northwestern University and a BS in Mathematics from the University of California at
Santa Barbara.

