
Evaluating Computational Geometry Libraries for Big Spatial
Data Exploration

Yaming Zhang
yzhan737@ucr.edu

Computer Science and Engineering
University of California, Riverside

Riverside, California

Ahmed Eldawy
eldawy@ucr.edu

Computer Science and Engineering
University of California, Riverside

Riverside, California

ABSTRACT
With the rise of big spatial data, many systems were developed
on Hadoop, Spark, Storm, Flink, and similar big data systems to
handle big spatial data. At the core of all these systems, they use
a computational geometry library to represent points, lines, and
polygons, and to process them to evaluate spatial predicates and
spatial analysis queries. This paper evaluates four computational
geometry libraries to assess their suitability for various workloads
in big spatial data exploration, namely, GEOS, JTS, Esri Geometry
API, and GeoLite. The latter is a library that we built specifically
for this paper to test some ideas that are not present in other li-
braries. For all the four libraries, we evaluate their computational
efficiency and memory usage using a combination of micro- and
macro-benchmarks on Spark. The paper gives recommendations
on how to use these libraries for big spatial data exploration.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • The-
ory of computation → Computational geometry.

KEYWORDS
computational geometry, Java virtual machine, JVM, data explo-
ration

ACM Reference Format:
Yaming Zhang and Ahmed Eldawy. 2020. Evaluating Computational Ge-
ometry Libraries for Big Spatial Data Exploration. In Sixth International
ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial
Data (GeoRich’20), June 14, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3403896.3403969

1 INTRODUCTION
Recently, there has been a notable rise in the amount of pub-
licly available geospatial data from social networks, autonomous
vehicles, and smart phones. As a result, many big geospatial
data systems were developed on-top of existing big-data systems,
Hadoop [11], Spark [32], Impala [10], Storm [21], and others.

All these systems were developed using existing computational
geometry libraries. The two prominent ones are JTS [20] and Esri

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GeoRich’20, June 14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8035-5/20/06.
https://doi.org/10.1145/3403896.3403969

Geometry API [12]. Both are pure Java libraries which make them
well-suited for most big data frameworks. JTS was developed way
before any of the existing big data systems were developed but it
remains to be an active project. Esri API was developed specifically
for big data but did not have the long maintenance of JTS.

This paper evaluates four existing computational geometry li-
braries for exploratory analytics workloads. These workloads, have
the following characteristics that we would like to evaluate.

• In-situ processing of textual data, e.g., in CSV or GeoJSON.
• Serialize/deserialize data in binary to move across machines.
• Scan a large amount of data in a streaming fashion.
• Keep a large amount of data in memory for analytic queries.
• Run a short and quick query on a small amount of data for new
serverless systems such as AWS Lambda.

One of the main concerns that we wanted to address in this
paper is that most big data platforms are built in Java or Scala
which both run in the Java Runtime Environment (JRE). The JRE
treats almost all variables as objects which raises a concern about
the memory and processing overhead in handling all these objects,
e.g., in the garbage collector. While hardcore database developers
would prefer C++, Java claims to be very efficient in handling objects
making it on-par or even better than C++. We can find that some
big data systems, like Hadoop and AsterixDB, try to minimize
object allocation to address this issue, while other systems, like
Spark, are very generous in creating objects. Thus, we felt that
this is something that needs to be addressed in details. In short,
we found that JRE can indeed be very efficient but under specific
circumstances as we details in this paper.

To test the above workloads, we run a set of micro- and macro-
benchmarks on the four libraries, GEOS, JTS, Esri, and GeoLite and
the results revealed some interesting findings. 1) When properly
configured, JTS can provide the best balance between memory
overhead and processing efficiency. 2) For streaming large data,
Java libraries can be as efficient as C++. 3) The performance of
Java seems to deteriorate quickly when a large number of active
objects are kept. 4) For short queries, Java adds a notable overhead
as compared to C++.

The full benchmark is publicly available at https://bitbucket.org/
eldawy/geolitebenchmark revision #aa23bbe, tag ‘georich20’ and
the datasets are available at https://ucrstar.com.

The rest of this paper is organized as follows. Section 2 de-
scribes the related work. Section 3 details the micro- and macro-
benchmarks. Sections 4 and 5 give the experimental setup and
results, respectively. Finally, Section 6 concludes the paper.

https://doi.org/10.1145/3403896.3403969
https://doi.org/10.1145/3403896.3403969
https://bitbucket.org/eldawy/geolitebenchmark
https://bitbucket.org/eldawy/geolitebenchmark
https://bitbucket.org/eldawy/geolitebenchmark/commits/aa23bbe8ce2e3ab60504277ef18dd7d4706f52ff
https://bitbucket.org/eldawy/geolitebenchmark/src/georich20/
https://ucrstar.com


GeoRich’20, June 14, 2020, Portland, OR, USA Yaming Zhang and Ahmed Eldawy

Table 1: Computational Geometry Libraries

Library License Language Comments
JTS [20] EPL Java
GEOS [15] LGPL C++ C++ port of JTS
Esri API [12] Apache 2.0 Java
GeoLite [9] Apache 2.0 Java
GeoTools [16] LGPL Java Builds on JTS
GeoLatte [14] LGPL Java
Spatial4J [28] Apache 2.0 Java Supports geodesic functions

Table 2: Big Spatial Data Systems

System Base System CG Library
PostGIS [24] PostgreSQL GEOS
SpatiaLite [29] SQLite GEOS
MonetDB [19] N/A GEOS
Vertexium [31] Accumulo, Elasticsearch JTS
GeoSpark [32] Spark JTS
Jena [4] N/A JTS, Spatial4J
GeoMesa [13] Accumulo JTS, Spatial4J
SpatialHadoop [11] Hadoop JTS, Esri Geometry API
Beast [8] Spark & Hadoop GeoLite, Esri, and JTS
Calcite [3] N/A Esri Geometry API
AsterixDB [1] N/A Esri Geometry API
Presto [25] N/A JTS, Esri Geometry API
Solr [5] Lucene Spatial4J
Elasticsearch [7] N/A Spatial4J
Titan [30] N/A Spatial4J

2 RELATEDWORK

Computational Geometry (CG) Libraries: The Open Geospatial
Consortium (OGC) defines an industry standard for representing
and processing geometries for spatial database systems [22]. There-
fore, big spatial data systems use existing computational geometry
libraries to support this standard which includes Java Topology
Suite (JTS) [20], Esri Geometry API [12], GeoTools [16], GeoLite [9],
and GEOS [15] as summarized in Table 1. This paper focuses on the
first four libraries. JTS and Esri are the most popular Java libraries.
GEOS is a C++ port of JTS. Finally, we built GeoLite to test the
functionality of mutable (reusable) objects which we could not find
in the other libraries.

Big Spatial Data: Since the rise of big data, many systems were
developed to extend these systems with big spatial data. In order to
support SQL or SQL-like queries, these systems need to use one of
the CG libraries mentioned in Table 1. Table 2 summarizes some
of these systems to show which big data systems they extend and
which computational geometry libraries they use. A base system of
‘N/A’ indicates that it is the core system that supports geospatial
data not an extension. This paper can help the designers of these
and other systems in choosing between the available computational
geometry libraries.

Spatial Benchmarks: There has been some work in developing
benchmarks for geospatial databases but none of them address the
exploratory analytics workloads. Jackpine [26] proposes a bench-
mark for geospatial databases. Sequoia [2] is a storage benchmark
that covers spatial data among others. BSD benchmark [27] focuses
mainly on big spatial data systems. None of these benchmarks di-
rectly target the core computational geometry library used by any
of these systems or the exploratory analytics workload that we
consider in this paper.

3 BENCHMARKS
In this part, we would like to design a benchmark for exploratory
analytic queries. These queries typically execute on raw files in
text format, e.g., CSV. Some queries are scan-based and do not keep
data in memory, and some are iterative queries that need to store
records in memory and occasionally shuffle data between machines,
e.g., clustering. Therefore, we propose the use of the following
benchmarks.

3.1 Micro-benchmarks
create-polygons: This benchmark creates a set of random poly-
gons to test the creation process.
wkt: Reads a CSV file and parses records represented in the Well-
Known Text (WKT) standard format.
wkb: Parses a set of geometries from theWell-KnownBinary (WKB)
standard representation to test the efficiency of the shuffle.
point-count: Counts the total number of points in a set of in-
memory geometries. This benchmark tests a simple CG operation
that involves only integer calculations.
area: Computes the total area of a set of in-memory polygons.
This benchmark tests a more complex CG operation that involves
floating point calculations.

3.2 Macro-benchmarks
We also propose the following macro-benchmarks which are all
implemented on Apache Spark.
rq: Runs a range query over a CSV input file with WKT geometries.
This algorithm runs a simple scan-based algorithm for the input
and counts the number of results.
sj: Runs spatial join between two CSV input files to find all intersect-
ing polygons. This algorithm uses the Partition-based Spatial-merge
(PBSM) algorithm [23] using a uniform grid of dimensions 360×180
over the world. It runs a plane-sweep algorithm in each partition
and uses the reference-point to avoid duplicates [6]. It finally com-
putes the intersection of each pair of records in the answer.

4 EXPERIMENTAL SETUP
CG Libraries: For the micro-benchmarks, we consider one C++
library (GEOS 3.8.1) and three Java libraries (JTS 1.16.1, Esri Geom-
etry API 2.2.3, and GeoLite 0.2.3).
Hardware Specification:We run all experiments on AmazonWeb
Services (AWS) with one master and 10 slaves all of type r5d.4xlarge
which has 16 cores, 128 GB RAM, and 600GB SSD storage.
Datasets: For the create-polygons benchmark, we generate random
polygons since we focus only on the performance not the shape of
the polygon. For all other benchmarks, we use three real datasets.
(1) All-Objectswhich contains 264M polygons with a size of 80GB.
(2) Parks which contains 10M polygons with 7GB size. (3) Lakes
which contains 377M polygons with 7GB size. All datasets are
available on UCR-STAR [17].
Parameters:We use the following configurations some of which
apply to specific libraries.
• Number of geometries (𝑁 ): The number of polygons to create
in the create-polygons benchmark, or the maximum number of
geometries to process in other micro-benchmarks.

• Points per polygon (𝑛): # of points to generate per polygon.



Evaluating Computational Geometry Libraries for Big Spatial Data Exploration GeoRich’20, June 14, 2020, Portland, OR, USA

103 104 105 106 107

106.5

107

107.5

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

GEOS
JTS

(a) Vary number of polygons (𝑁 )

102 103

3

4

5

6

7

·107

Points per geometry (𝑛)
Th

ro
ug

hp
ut

(p
oi
nt
s/
se
c)

GEOS
JTS

(b) Vary points per polygon (𝑛)

Figure 1: Object creation throughput C++/Java

• Discard: When this Boolean flag is set, geometries are immedi-
ately discarded after they are generated/processed.

• Reuse: (Only for GeoLite and Esri) When this flag is set, the same
geometry object is reused whenever possible to avoid creating
too many objects.

Performance Metrics: We use two performance metrics, the
throughput (Θ) in terms of number of processed points per second,
and the memory capacity (𝑀) in terms of number of points stored
per megabyte. Both metrics consider the per-point performance to
account for the varying sizes of geometries.

5 BENCHMARK RESULTS
This section presents the results of the benchmarks in three parts.
First, we present the micro-benchmark results on GEOS and JTS to
evaluate the difference between C++ and Java. Second, we present
the micro-benchmark results on Java libraries. Finally, we present
the results of the macro-benchmarks which are only done on Java.

We consider three configurations for JTS, JTS-A: which rep-
resents coordinates as an array of point objects, JTS-PD: which
represents coordinates as a packed array of doubles, and JTS-PF:
which represents coordinates as a packed array of floats. For clarity
of the figures, we will only distinguish them when their results
are significantly different. Otherwise, we will only present their
average under the name ‘JTS’.

5.1 C++ Vs Java
This part focuses on the comparison between C++ and Java. We
compare JTS (in Java) and GEOS (its C++ port) which we think is
a fair comparison since both are stable libraries that use the same
algorithms. Our goal is to evaluate three types of overhead that JRE
might introduce: (1) Object creation overhead, (2) Object memory
storage, and (3) Processing overhead.

Object creation overhead. We use the create-polygons benchmark
and measure the throughput as we vary number of polygons (𝑁 )
and points per polygon (𝑛). We enable the discard option to keep
the memory usage low. First, in Figure 1(a) we vary 𝑁 from 1,000
to 15 million and fix points-per-polygon 𝑛 = 50. GEOS maintains a
stable throughput regardless of the number of geometries. On the
other hand, the throughput of JTS steadily increases as the number
of geometries increases. This indicates a fixed overhead in JTS (or

105 106

1

2

3

4

5

6

·104

Number of geometries (𝑁 )

M
em

or
y
Ca

pa
ci
ty

(p
oi
nt
s/
M
B)

GEOS
JTS-A
JTS-PD
JTS-PF

(a) Generated polygons

103 104 105 106 107 108

102

103

104

Number of geometries (𝑁 )

M
em

or
y
Ca

pa
ci
ty

(p
oi
nt
s/
M
B)

GEOS
JTS-A
JTS-PD
JTS-PF

(b) Real data

Figure 2: Memory capacity in C++ Vs Java

Java) which has a bigger effect for a few polygons but its effect
diminishes as more polygons are created.

Second, in Figure 1(b) we fix number of polygons 𝑁 = 1𝑀
and vary 𝑛 from 50 to 1,000. In this case, the throughput of both
GEOS and JTS increases since the number of polygons objects
remains fixed which reduces the overhead of creating these objects
as compared to the total number of points created.

Memory Overhead on Objects. Figure 2(a) runs the create-polygons
benchmark while keeping all objects in memory and measure the
memory capacity in term of number of points per MB. Again, GEOS
keeps a stable memory capacity while the capacity of JTS increases
with the number of generated polygons 𝑁 . This is due to the con-
stant overhead of the JVM that diminishes when the data size gets
bigger. JTS-A gives a much lower capacity due to the huge overhead
of creating an individual object for each point. JTS-PD is almost
similar to GEOS since it keeps coordinates in a primitive array
of doubles. JTS-PF provides an even better capacity since it uses
the less accurate 32-bit float data type. Figure 2(b) measures the
memory capacity of the wkt benchmark when loading the real data
all-objects. We observe an increase in throughput for all libraries
since the latter polygons in the all-objects dataset tend to have
more points per polygon which increases the memory capacity.
However, as the data size increases even more, all JTS variations
eventually run out of memory (> 50𝐺𝐵). JTS-A even fails on a
smaller input due to the excessive number of objects that it creates.

JRE Performance Overhead. Figure 3 shows the four compute-
centric benchmarks, namely, wkt, wkb, point-count, and area. We
did not find a significant difference between the three variants of
JTS so we only report the average for clarity. We expected that
the compiled GEOS library in C++ would be much faster than the
semi-interpreted JTS library in Java. However, we were surprised
to find that JTS can often be more efficient. In particular, JTS is only
more efficient when it works when a medium to large number of
polygons, e.g., around 100K or more objects. This is because the
fixed overhead that Java adds which diminishes as the data size
increases. Additionally, when the number objects grows to fill most
of the allotted memory, the garbage collector starts to be more
aggressive and it slows down JTS again as compared to GEOS. In
short, GEOS is more predictable but JTS can often be more efficient.
In Figure 3(b), the performance of JTS drops at 200M polygons due
to the additional memory needed to store the binary data.



GeoRich’20, June 14, 2020, Portland, OR, USA Yaming Zhang and Ahmed Eldawy

103 104 105 106 107 108
104

105

106

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

GEOS
JTS

(a) WKT Parsing

103 104 105 106 107 108

106

107

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

GEOS
JTS

(b) WKB Parsing

103 104 105 106 107 108

107

108

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

GEOS
JTS-A

(c) Point Count

103 104 105 106 107 108

106

107

108

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

GEOS
JTS

(d) Area Computation

Figure 3: The computational performance (throughput) of GEOS (C++) and JTS (Java)

103 104 105 106 107
0

5

10

15

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

in
cr
ea
se

GEOS
JTS-A
JTS-PD
JTS-PF

(a) Polygon creation. Xms=2G

103 104 105 106 107
0

0.5

1

1.5

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

in
cr
ea
se

GEOS
JTS-A
JTS-PD
JTS-PF

(b) Polygon creation. Xms=Xmx=50G

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

in
cr
ea
se

GEOS
JTS-A
JTS-PD
JTS-PF

(c) WKT Parsing. Xms=Xmx=50G

103 104 105 106 107 108
0

0.5

1

1.5

2

2.5

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

in
cr
ea
se

GEOS
JTS-A
JTS-PD
JTS-PF

(d) WKB Parsing. Xms=Xmx=50G

Figure 4: Effect of discarding objects on the throughput (Θ) in both C++ and Java

103 104 105 106 107

0

1

2

3

4

·107

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(a) Vary number of polygons (𝑁 )

102 103
0

2

4

6

8
·107

Points per geometry (𝑛)

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(b) Vary points per polygon (𝑛)

Figure 5: Throughput of create-polygons for Java libraries

Effect of Object Discard: In this part, we study the effect of dis-
carding objects in both Java and C++. Java discards objects through
the garbage collector while in C++ we have to destroy the object
manually. We measure the ratio of throughput increase when we
discard objects. If that ratio is higher than one, it indicates that the
discard option improved the throughput.

Figure 4(a) shows the throughput increase with the create-
polygons benchmark when the memory of the JVM is initialized
at 2GB (JVM option ‘-Xms=2g’). JTS runs faster as the input size
increases since the garbage collector will need to deal with a huge
number of objects when not discarded. GEOS also gains around 1.5x
speedup since it uses less memory when objects are discarded. In
Figure 4(b) we run the same experiment again but this time we ini-
tialize the JVM memory at 50GB, similar to the maximum memory
allowed (JVM options ‘-Xms=50g -Xmx=50g’). In this case, there is

105 106

1

2

3

4

5

6

·104

Number of geometries (𝑁 )

M
em

or
y
Ca

pa
ci
ty

(P
oi
nt
s/
M
B)

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(a) Synthetic data (𝑛 = 50)

103 104 105 106 107 108

0

0.2

0.4

0.6

0.8

1

·104

Number of geometries (𝑁 )

M
em

or
y
Ca

pa
ci
ty

(P
oi
nt
s/
M
B)

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(b) Real data

Figure 6: Memory capacity for Java libraries

no significant performance gain since the garbage collector will not
need to run until the memory usage gets close to the 50GB limit.
For the WKT and WKB benchmarks in Figures 4(c) and 4(d), respec-
tively, no significant improvement was found since we initialize the
memory to 50GB. However, for very large input that fills almost all
the memory, the discard option yields a higher performance since
it indicates less objects to maintain in the memory space.

Key findings: Java can indeed run as fast as C++ because it can
handle its memory space more efficiently. However, the perfor-
mance of Java degrades when the total number of active objects
in memory becomes very large. Also, we found that the perfor-
mance of C++ is much higher for both processing and memory
efficiency for relatively small inputs which makes it more suitable
for serverless processing, i.e., AWS Lambda.



Evaluating Computational Geometry Libraries for Big Spatial Data Exploration GeoRich’20, June 14, 2020, Portland, OR, USA

103 104 105 106 107 108

104

105

106

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

Esri
GeoLite
JTS

(a) WKT parsing

103 104 105 106 107 108

0

2

4

6

·106

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
nt
s/
se
c)

Esri
GeoLite
JTS

(b) WKB parsing

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1
·108

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(P
oi
nt
s/
se
c)

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(c) Point count

103 104 105 106 107 108

106

107

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(P
oi
nt
s/
se
c)

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(d) Area calculation

Figure 7: Throughput for compute-centric workloads in Java libraries

103 104 105 106 107
0

5

10

15

Number of geometries (𝑁 )

Ra
tio

of
th
ro
ug

hp
ut

in
cr
ea
se

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(a) Polygon creation (Xms=2g)

103 104 105 106 107
0

0.5

1

1.5

Number of geometries (𝑁 )

Ra
tio

of
th
ro
ug

hp
ut

in
cr
ea
se

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(b) Polygon creation (Xms=Xmx)

103 104 105 106 107 108
0

0.5

1

1.5

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

(p
oi
tn
s/
se
c)

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(c) WKT parsing (Xms=Xmx)

103 104 105 106 107 108
0

0.5

1

1.5

2

2.5

Number of geometries (𝑁 )

Th
ro
ug

hp
ut

in
cr
ea
se

Esri
GeoLite
JTS-A
JTS-PD
JTS-PF

(d) WKB parsing (Xms=Xmx)

Figure 8: Throughput increase when discarding objects immediately after creation in Java libraries

5.2 Performance of Java-based Libraries
Object Creation Overhead: Figure 5 shows the performance of

the create-polygons benchmark as we vary the number of polygons
and number of points per polygon. The only one that stands out is
the Esri library which is significantly slower than all other libraries.
Furthermore, the performance of JTS-A drops significantly when
the number of objects is very high, e.g., 1000 points per polygon,
due to the overhead of maintaining all these objects.

Memory Capacity: Figure 6 shows the memory capacity for stor-
ing generated polygons and real geometries. For both cases, JTS-A
provides the lowest memory capacity due to the overhead of storing
a lot of objects. The three other libraries, JTS-PD, Esri, and GeoLite,
provide a higher capacity as they store coordinates as arrays of dou-
bles. Finally, and as expected, JTS-PF provides the highest capacity
since it uses 32-bit float coordinates. With real data in in Figure 6(b),
JTS-A fails for 50M polygons since it runs out of memory. All of
them fail to load 200M polygons in 50GB of memory.

Processing Efficiency: Figure 7 shows the results of the four
compute-centric benchmarks, wkt, wkb, point count, and area. For
WKT parsing in Figure Figure 7(a), both JTS and Esri provide the
same throughput while GeoLite is significantly slower. The reason
for that is that GeoLite uses a parser based on JavaCC which adds
a significant overhead for detecting errors. The other two libraries
use a hand-crafted parser which happens to work well for WKT
and is also much faster. For WKB parsing (Figure 7(b)), GeoLite
is slightly faster than other libraries due to the fewer objects it
creates. As the input size increases, the performance of all libraries

decreases due to the high memory usage which triggers the garbage
collector more frequently.

Figure 7(c) shows the result of the point counting benchmark
which is very simple and runs at almost the same speed for all
libraries. However, JTS either fails or becomes slower for very large
input. Finally, for area calculation (Figure 7(d)), Esri library was
significantly slower than other libraries. When we investigated the
code, we found that all libraries use the same algorithm but the
slowdown of Esri algorithm was attributed to the use of the Kahan
summation algorithm [18], which reduces the numerical error in
adding up the floating point numbers.

Effect of discarding objects: In Figure 8(a) we run the create-
polygons benchmark while initializing the JVM memory at 2GB.
In this case, we start to see a significant increase in throughput
because the garbage collector needs to work with more polygons
when the discard option is disabled. In Figure 8(b) we set the initial
JVM memory to 50GB (similar to the maximum) which results in
fewer runs of the garbage collector, hence, almost no benefit of
discarding objecting. In Figures 8(c) and 8(d) we run the WKT and
WKB, respectively. In both cases, enabling the discard option does
not yield a significant improvement until the number of geometries
is so large in which case the discard option saves in the overhead
of the garbage collector.

Effect of reusing objects: This experiment verifies if reusing the
Java objects and avoid creating additional objects is beneficial. This
feature is only available in GeoLite and partially in Esri. Figure 9(a)
runs the create-polygons benchmark and measures the increased
throughput when reusing objects. Esri went a little slower when



GeoRich’20, June 14, 2020, Portland, OR, USA Yaming Zhang and Ahmed Eldawy

103 104 105 106 107

2

4

6

Number of geometries (𝑁 )

Ra
tio

of
th
ro
ug

hp
ut

in
cr
ea
se

Esri
GeoLite

(a) Polygon Creation

103 104 105 106 107 108
0

0.5

1

Number of geometries (𝑁 )
Ra

tio
of

th
ro
ug

hp
ut

in
cr
ea
se

WKT
WKB

(b) WKT/WKB parsing in GeoLite

Figure 9: Effect of object reuse in Esri and GeoLite

reusing objects while GeoLite became up-to 6x faster. Figure 9(b)
shows the increased throughput with the WKT and WKB bench-
marks. WKT showed no improvement but WKB showed a slight
improvement. Overall, we think that the benefit of reusing objects is
strongly tied to very light-weight processing which is another way
for saying that object creation in Java is indeed very light-weight.

Key findings: JTS-PD seems to provide the best balance between
computation and memory. While reusing objects can be beneficial,
it needs to be applied only when running a light-weight workload.

5.3 Macro-benchmarks
Figure 10 shows the results of the two macro-benchmarks, range
query (rq) and spatial join (sj), on Spark for the three Java libraries.
Figure 10(a) shows the running time of rq on three input files,
lakes, parks, and all-objects. JTS and Esri provided almost the same
performance but JTS was slightly faster. On the other hand, for sj in
Figure 10(b), Esri is apparently the fastest while JTS is the slowest.
However, when we futher investigated this issue, we found that
JTS produces significantly more results than Esri. It seems that the
spatial logic is not similar, even though it is supposed to be exactly
the same. Thus, we decided to make no conclusion for spatial join
and we call upon the community (and ourselves) to make a further
investigation to the logic of those CG libraries but this goes beyond
the scope of this paper.

6 CONCLUSION AND FINAL REMARKS
This paper ran a set of micro- and macro-benchmarks on four
computational geometry libraries, GEOS, JTS, Esri, andGeoLite. The
goal is to find the most efficiently library for exploratory analytic
workloads. When comparing C++ to Java, we found that C++ is
significantly more efficient for very small and very large workloads.
Among the Java libraries, we found JTS to provide the best balance
between memory and computation. Finally, we found that these
libraries differ in their spatial logic which is not supposed to be and
we think that a thorough investigation can be done for the logic of
these libraries.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
(NSF) under grants IIS-1838222 and CNS-1924694 and by the USDA
National Institute of Food and Agriculture, AFRI award number
A1521.

AllObjects Lakes Parks
0

20

40

60

Ru
nn

in
g
tim

e
(s
ec
)

Esri
GeoLite
JTS

(a) Range Query (RQ)

Esri GeoLite JTS
0

100

200

300

400

Ru
nn

in
g
tim

e
(s
ec
)

(b) Spatial Join (SJ) (parks⊲⊳lakes)

Figure 10: Results of the macro-benchmarks

REFERENCES
[1] Sattam Alsubaiee et al. 2014. AsterixDB: A Scalable, Open Source BDMS. PVLDB

7, 14 (2014), 1905–1916.
[2] Jean T. Anderson and Michael Stonebraker. 1994. SEQUOIA 2000 Metadata

Schema for Satellite Images. SIGMOD Rec. 23, 4 (1994), 42–48.
[3] Apache. 2020. Apache Calcite: Dynamic data management framework. https:

//calcite.apache.org/.
[4] Apache. 2020. Apache Jena. https://jena.apache.org/.
[5] Apache. 2020. Apache Solr. https://lucene.apache.org/solr/.
[6] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate

Detection in Spatial Join Processing. In ICDE. IEEE Computer Society, San Diego,
CA, 535–546.

[7] Elasticsearch. 2020. Elasticsearch. https://www.elastic.co/.
[8] Ahmed Eldawy. 2020. Beast: Big Exploratory Analytics for Spatio-temporal data.

http://bitbucket.org/eldawy/beast/.
[9] Ahmed Eldawy. 2020. GeoLite: A light-weight computational geometry library.

https://bitbucket.org/mehradae/beast/src/master/geolite/.
[10] Ahmed Eldawy et al. 2017. Sphinx: Empowering Impala for Efficient Execution

of SQL Queries on Big Spatial Data. In SSTD. Springer, Arlington, VA, 65–83.
[11] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce

Framework for Spatial Data. In ICDE. IEEE Computer Society, Seoul, South Korea,
1352–1363.

[12] Esri. 2020. Esri Geometry API. https://github.com/Esri/geometry-api-java.
[13] Anthony D. Fox et al. 2013. Spatio-temporal indexing in non-relational distributed

databases. In IEEE BigData. IEEE Computer Society, Santa Clara, CA, 291–299.
[14] GeoLatte. 2020. GeoLatte: Open Source GIS Components for Java. http://www.

geolatte.org/.
[15] GEOS. 2020. Geometry Engine, Open Source (GEOS). https://trac.osgeo.org/geos/.
[16] GeoTools. 2020. GeoTools The Open Source Java GIS Toolkit. https://www.

geotools.org/.
[17] Saheli Ghosh et al. 2019. UCR-STAR: The UCR Spatio-Temporal Active Repository.

ACM SIGSPATIAL Special 11, 2 (2019), 34–40.
[18] Nicholas J. Higham. 2002. Accuracy and stability of numerical algorithms, Second

Edition. SIAM, Manchester, England.
[19] Stratos Idreos et al. 2012. MonetDB: TwoDecades of Research in Column-oriented

Database Architectures. IEEE Data Engineering Bulletin 35, 1 (2012), 40–45.
[20] LocationTech. 2020. Java Topology Suite (JTS). https://locationtech.github.io/jts/.
[21] Ahmed R. Mahmood et al. 2015. Tornado: A Distributed Spatio-Textual Stream

Processing System. PVLDB 8, 12 (2015), 2020–2023.
[22] OGC. 2020. Open Geospatial Consortium (OGC) Simple Feature Access. https:

//www.ogc.org/standards/sfs/.
[23] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.

In SIGMOD. ACM Press, Quebec, Canada, 259–270.
[24] PostGIS. 2020. PostGIS: Spatial and Geographic Objects for PostgreSQL. https:

//postgis.net/.
[25] Presto. 2020. Presto: Distributed SQL Query Engine for Big Data. https:

//prestodb.io/.
[26] Suprio Ray et al. 2011. Jackpine: A benchmark to evaluate spatial database

performance. In ICDE. IEEE Computer Society, Hannover, Germany, 1139–1150.
[27] Shashi Shekhar et al. 2012. Benchmarking Spatial Big Data. In WKDB, Vol. 8163.

Springer, Pune, India, 81–93.
[28] Spatial4J. 2020. Spatial4j. https://projects.eclipse.org/projects/locationtech.

spatial4j/.
[29] SpatiaLite. 2020. SpatiaLite. https://www.gaia-gis.it/fossil/libspatialite/index/.
[30] Titan. 2020. Titan: Distributed Graph Database. https://titan.thinkaurelius.com/.
[31] Vertexium. 2020. Vertexium. http://vertexium.org/.
[32] Jia Yu et al. 2015. GeoSpark: A Cluster Computing Framework for Processing

Large-scale Spatial Data. In SIGSPATIAL. ACM, Bellevue, WA, 70:1–70:4.

https://calcite.apache.org/
https://calcite.apache.org/
https://jena.apache.org/
https://lucene.apache.org/solr/
https://www.elastic.co/
http://bitbucket.org/eldawy/beast/
https://bitbucket.org/mehradae/beast/src/master/geolite/
https://github.com/Esri/geometry-api-java
http://www.geolatte.org/
http://www.geolatte.org/
https://trac.osgeo.org/geos/
https://www.geotools.org/
https://www.geotools.org/
https://locationtech.github.io/jts/
https://www.ogc.org/standards/sfs/
https://www.ogc.org/standards/sfs/
https://postgis.net/
https://postgis.net/
https://prestodb.io/
https://prestodb.io/
https://projects.eclipse.org/projects/locationtech.spatial4j/
https://projects.eclipse.org/projects/locationtech.spatial4j/
https://www.gaia-gis.it/fossil/libspatialite/index/
https://titan.thinkaurelius.com/
http://vertexium.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Benchmarks
	3.1 Micro-benchmarks
	3.2 Macro-benchmarks

	4 Experimental Setup
	5 Benchmark Results
	5.1 C++ Vs Java
	5.2 Performance of Java-based Libraries
	5.3 Macro-benchmarks

	6 Conclusion and Final Remarks
	Acknowledgments
	References

