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ABSTRACT Blockchain technology, which provides digital security in a distributed manner, has evolved

into a key technology that can build efficient and reliable decentralized applications (called DApps) beyond

the function of cryptocurrency. The characteristics of blockchain such as immutability and openness,

however, have made DApps more vulnerable to various security risks, and thus it has become of great

significance to validate the integrity of DApps before they actually operate upon blockchain. Recently,

research on vulnerability in smart contracts (a building block of DApps) has been actively conducted,

and various vulnerabilities and their countermeasures were reported. However, the effectiveness of such

countermeasures has not been studied well, and no appropriate methods have been proposed to evaluate

them. In this paper, we propose a software tool that can easily perform comparative studies by adding

existing/new countermeasures and labeled smart contract codes. The proposed tool demonstrates verification

performance using various statistical indicators, which helps to identify the most effective countermeasures

for each type of vulnerability. Using the proposed tool, we evaluated state-of-the-art countermeasures

with 237 labeled benchmark codes. The results indicate that for certain types of vulnerabilities, some

countermeasures show evenly good performance scores on various metrics. However, it is also observed

that countermeasures that detect the largest number of vulnerable codes typically generate much more false

positives, resulting in very low precision and accuracy. Consequently, under given constraints, different

countermeasures may be recommended for detecting vulnerabilities of interest. We believe that the proposed

tool could effectively be utilized for a future verification study of smart contract applications and contribute

to the development of practical and secure smart contract applications.

INDEX TERMS Blockchain, countermeasure, Ethereum, smart contract, vulnerability

I. INTRODUCTION

Since Bitcoin [1], which was designed using blockchain,

was introduced, blockchain technology has evolved and

interests in its applications have greatly been increasing.

With the ability to provide digital security in a distributed

manner, blockchain has been used to develop a variety of

decentralized applications across the industry. In particular,

such decentralized applications, called DApps, often operate

upon the Ethereum Virtual Machine (EVM), and they are

built using smart contracts which are a piece of code that

enables DApps to interact with the underlying Ethereum

blockchain [2].

Despite the great advantages of using the blockchain tech-

nology, however, it has ironically been revealed that smart

contracts are vulnerable to various security risks due to the

blockchain’s essential features, such as transparency and

immutability [3]–[6]. For example, if a smart contract incurs

a wrong transaction (by mistake or malicious attacks) and the

result is once written to the blockchain, then the transaction

can hardly be corrected. Rather, the blockchain should be

destroyed (or hardforked). Because of that reason, it is of

considerable importance to test the integrity and safety of

smart contract applications before they are actually used in

conjunction with the blockchain.

As a result of recent research on vulnerabilities in smart

contracts, representative vulnerabilities were introduced [7],
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[8], and various countermeasures were proposed [5], [6],

[8]–[10]. However, the effectiveness of the countermeasures

has not been properly studied. Most performance evaluations

have been performed using unlabeled data. Hence, their per-

formance comparisons are often not conclusive since when

using unlabeled data, even if a countermeasure detected some

vulnerabilities, it is not clear whether they were actual bugs

or false positives, and also how many vulnerabilities each

countermeasure missed. For example, recently, the authors

of [10] used 47,518 smart contracts for comparative studies,

but reported the test results without confirming that vul-

nerabilities actually exist in the smart contracts. Only 69

contracts having 115 vulnerabilities in total were used as

labeled data, resulting in that it is not clear what the most

effective countermeasures are for each type of vulnerability.

Besides, a comparative study itself may be cumbersome and

time-consuming tasks since different countermeasures may

require different environments to run, and the analysis results

in different formats should be additionally arranged.

In this paper, a new software tool is designed to facilitate

validation of the existing/new countermeasures, into which

the user can easily add new countermeasures and labeled

benchmark datasets. In particular, it automatically analyzes

the results of executing the countermeasures on the avail-

able benchmark datasets, and shows their performance using

tables and graphs under various performance measures to

facilitate easy comparison. To this end, the proposed tool

is implemented using OS-level virtualization and operates

within a Docker container, allowing it to operate indepen-

dently of the underlying system and eliminating the need

for the user to perform separate installation/execution for

each countermeasure. As a result, new countermeasures (as

well as labeled benchmark smart contract codes) can easily

be included and evaluated in the proposed tool, and their

performance can effectively be cross-checked using various

metrics. Using the proposed tool and 237 labeled smart

contract codes, we evaluate the representative existing coun-

termeasures in the literature.

The evaluation results show that, in general, the counter-

measures identifying more vulnerable code produce a much

larger number of false positives, resulting in very low pre-

cision and accuracy. The effectiveness of countermeasures

against ‘Access Control’, ‘Denial of Service’, and ‘Front-

Running’ are questionable. The F1-scores of all counter-

measures are less than 25%. Vulnerable codes with ‘Integer

Overflow/Underflow’ and ‘Timestamp Dependence’ can be

completely detected. However, the performance of the coun-

termeasures needs to be further improved in order to reduce

false positives. As for the vulnerabilities of ‘Reentrancy’

and ‘Unchecked Low Level Call’, we confirm that there are

effective countermeasures that show both high precision and

high recall values. We believe that the proposed tool will

contribute to a future verification study of smart contracts and

development of practical and secure smart contract applica-

tions.

The main contributions are summarized as follows:

• The nine representative vulnerabilities discussed in the

Decentralized Application Security Project (or DASP)

Top 10 of 2018 [7] and their state-of-the-art countermea-

sures are revisited.

• The limitations of the current countermeasures are dis-

cussed from the perspective of practicality, and an ef-

fective software tool that can evaluate the performance

of the countermeasures with great convenience is de-

signed.

• The proposed tool is implemented using an OS-level

virtualization technique, and is open to the public via

https://github.com/93suhwan/uscv.

• The proposed tool eliminates the need to manage a sep-

arate installation/execution environment for each coun-

termeasure and provides easy comparative analysis,

helping to identify the most effective countermeasures

for each type of vulnerability.

• Using the proposed tool and 237 labeled data, we con-

duct a comparative study for the representative existing

countermeasures in the literature, and their performance

is represented using various performance measures.

The rest of the paper is organized as follows. Section II in-

troduces Ethereum smart contracts and their vulnerabilities.

Section III summarizes the state-of-the-art countermeasures

for the vulnerabilities of smart contracts. In Section IV,

we introduce the design of the proposed tool and discuss

the results for evaluating the performance of the existing

countermeasures using the proposed tool. Finally, Section VI

concludes the paper.

II. PRELIMINARIES

A. BLOCKCHAIN AND ETHEREUM SMART CONTRACTS

The first blockchain was introduced in 2008 by a pseudony-

mous person or group known as Satoshi Nakamoto [1].

Essentially, a blockchain is a list of blocks that record in-

formation. Since blocks in the chain are connected using a

cryptographic hash (more specifically, in the way that each

block contains the cryptographic hash of the previous block

in the chain), any information of a block in the chain can

be changed only if all of its subsequent blocks can also be

modified. However, since such modifications require the con-

sent of the majority of the network, consequently, malicious

change in the blockchain is almost impossible.
Since a blockchain can work as a distributed, verifiable

public ledger that records transactions, its first application

was a cryptocurrency, named Bitcoin [1]. In order to add

a new block to the blockchain, Bitcoin uses a consensus

mechanism called Proof-of-Work (PoW), where nodes in the

network compete for generating a right block by solving

a cryptographic puzzle. Extended from Bitcoin, Ethereum

allows to store computer code that can be used to implement

unforgeable decentralized applications [2], which is now be-

ing a building platform for running various kinds of DApps.
A smart contract is a piece of code that enables DApps

to interact with the blockchain, and it actually runs on a

quasi-Turing-complete virtual machine, called EVM. EVM
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is considered as a sort of distributed machine that executes

smart contracts that embed the DApp logic by consuming

Ether (Gas in EVM). Since the blockchain has a property

of immutability, once a smart contract is deployed on the

blockchain, it cannot be modified like other transactions.

Therefore, it is significant to test the integrity and safety

of smart contracts before they are actually used upon the

blockchain. Otherwise, the blockchain must be destroyed or

hardforked if serious errors in the deployed smart contracts

are found afterwords.

B. VULNERABILITIES OF SMART CONTRACTS

This section briefly reviews the nine representative vulnera-

bilities discussed in the DASP Top 10 of 2018 [7].

• Reentrancy (Vre): Before a contract is completed (i.e.,

resolving any effects), the contract is executed recursively

or other contracts are invoked to make the state in a mess.

Below is an example scenario that exploits a reentrancy

vulnerability.

function withdraw(){

- Transfer tokens to someone.

- Update balance.

}

1. The attacker invokes the function

withdraw in succession.

2. The second function call is done

before balance has not been updated

for the first function call.

3. balance is updated only for

the second function call.

• Access Control (Vac): Contract’s private values or func-

tions are accessed abnormally due to an insecure visibility

setting. Below is an example that describes an access

control vulnerability. This function does not check whether

the function was already called and the state has already

been initialized.

function initState(){

owner = msg.sender

}

1. The function can be called abnormally

via a delegatecall.

2. Then, the value of owner could

be manipulated.

• Integer Overflow/Underflow (Vio): Solidity uses variables

of unsigned int type. If programmers process variables of

unsigned int type as if they were the variables of signed

int type, an overflow and underflow can occur. If such

errors happen, for example, a wrong amount of tokens can

be withdrawn. Below is an example that shows an integer

underflow.

function withdraw(uint amount){

if(balance - amount > 0){

- Withdraw tokens.

}

}

1. Suppose balance = 0 and amount = 1.

2. The value of (balance - amount) can

be interpreted positive since balance

is a value of unsigned int.

• Unchecked Low Level Call (Vuc): When errors happen

in low level functions in Solidity, a boolean value set to

false is returned, but the code keeps running. Therefore,

the result of such low level functions should be checked

to confirm successful execution. Below is an example that

shows an unchecked low level call vulnerability.

function withdraw(uint amount){

- balance is updated

(i.e., balance -= amount).

- Transfer tokens (as many as amount)

by calling a send function.

}

1. If send function call fails, balance

is managed incorrectly.

• Denial of Service (DoS, Vdos): When DoS attacks are

launched, smart contracts can be unavailable. Various types

of DoS implementation have been reported including in-

creasing gas necessary, abusing access control, and mali-

ciously behaving. Below is an example that shows a sort

of DoS. Computation at each block is limited by the upper

bound of the amount of gas in Ethereum. If the function

(doSomething), called by the attacker, has a heavy code

that consumes too much gas, other transactions cannot be

included in the block.

function doSomething(){

for(uint i = 0; i < N; i++){

- Heavy code.

}

}

1. Attackers call doSomething.

2. Too much gas is consumed using heavy

code in doSomething.

3. Other transactions cannot be included

in the block since the gas limit for

the block is reached.

• Bad Randomness (Vbr): Generation of a random number

is required in several applications such as games and

lotteries. However, it is tricky to implement a random num-

ber generation on the Ethereum public blockchain since

1) Ethereum is a deterministic Turing machine without

embedding true randomness, and 2) all the data (block
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variables) used for generating a random number is open

to public, even to attackers. Hence, an attacker can predict

the sources of randomness to some extent and replicate

it to attack the function relying on the random value.

Obviously, instead of using block variables open to the

public, a random value can be created using timestamps.

However, as discussed below for timestamp dependence,

the timestamps can be manipulated by miners, resulting in

another type of attacks. Below is an example that exploits

a bad randomness vulnerability.

function coinFlip(bool guess){

value = a hash value generated using

a block number

side = value / given denominator

if (side == guess){

- Win the game.

}

}

1. Attackers can always win using the

function exploit below.

2. Copy the function coinFlip and get

the result in advance (A).

3. Call the function coinFlip based on

the result (B).

function exploit(bool guess){

(A)

value = a hash value generated using

the same block number

side = value / given denominator

(B)

if(side == guess){

conFlip(guess);

} else{

conFlip(!guess);

}

}

• Front-Running (Vfr): Miners perform calculation while

being compensated for the gas. The more gas (higher fees),

the more quickly the transactions can be computed. Since

the public Ethereum is transparent, pending transactions

are visible to anyone. Hence, attackers can preempt the

results of an already calculated transaction by copying the

transaction at a higher fee. Below is an example scenario

that exploits a front-running vulnerability.

1. Information sent in a transaction Ta

(Ether, recipient address) is public.

2. Time elapses until Ta is confirmed.

3. Ta is read by an attacker before it

is confirmed.

4. The attacker’s transaction Tb, which

is generated by copying Ta, is placed

before Ta.

5. The attacker can steal the result of

computing Ta.

• Timestamp Dependence (Vtd): The timestamp of a block

is determined by the miner (they reports the time at which

the mining occurs). However, it can be manipulated by the

miner (the timestamp can be changed within 15 seconds).

Hence, fake time can be advertised by malicious miners,

which allows the output of the contract to be changed.

• Short Address (Vsa): When a contract receives data of

smaller-than-expected size, the missing portion is padded

to zeros in EVM. For example, if the user address,

signature, and the amount of token to be withdrawn

are 0x12345600, 0xabcdef12, and 32(0x00000020), re-

spectively, EVM concatenates all the values in the or-

der of signature, address, and token amount, resulting

in 0xabcdef121234560000000020. If an attacker spec-

ifies a short address such as 0x123456 instead of

0x12345600, in the previous case, EVM generates a value

of 0xabcdef1212345600000020 and two zeros are padded

at the end, resulting in 0xabcdef121234560000002000.

The resulting value can be misinterpreted as having to

withdraw as many tokens as 0x00002000.

III. COUNTERMEASURES USING STATIC AND DYNAMIC

ANALYSIS

In this section, we briefly examine 11 publicly available,

open-sourced, representative countermeasures for Ethereum

smart contracts with a command-line interface (CLI). Table 1

summarizes the characteristics of the considered countermea-

sures such as the main methods, input, and DASP Top 10

vulnerabilities supported. Among the main methods used by

the countermeasures, static analysis refers to any kind of

methods for examining and analyzing the code without ac-

tually executing it, whereas dynamic analysis refers to those

for testing and evaluating the code by running it with test

cases. Typical static analysis includes abstract interpretation,

control-flow analysis, data-flow analysis, symbolic execu-

tion, etc., whereas dynamic analysis includes code coverage,

memory error detection, fault localization, security analysis,

etc. Static analysis is faster but less precise than dynamic

analysis. In addition, static analysis finds properties that hold

for all execution paths, whereas dynamic analysis finds those

for one or more execution paths, but can detect subtle or

complex vulnerabilities that static analysis may not detect.

Below we review each countermeasure in alphabetical order

of their names.

A. ECHIDNA

Echidna [11], [12] is an open-source, easy-to-use, property-

based fuzz testing tool for Ethereum smart contracts, devel-

oped and used by Trail of Bits. Instead of using a prede-

fined set of rules to detect vulnerabilities, it supports user-

defined properties for property-based testing [30], arbitrary
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TABLE 1: Overview of the countermeasures considered in our proposed tool. We considered only publicly available, open-

sourced countermeasures with a CLI. Year denotes the publication year of the first relevant conference, workshop, or journal

paper, if any. Vulnerabilities denote either those that can be detected by the given countermeasure (that is, the countermeasure

implements a detector for the specified vulnerability) or its functionalities if the countermeasure is a testing tool, linter, or

profiler. Vac: Access control; Vdos: Denial of service; Vfr: Front-running; Vio: Integer overflow/underflow; Vre: Reentrancy;

Vtd: Timestamp dependence; Vuc: Unchecked low level call.

Countermeasure Year Main Methods Input Vulnerabilities

Echidna [11], [12] 2020 Property-based fuzzing Solidity
User-defined property, assertion

checking, gas use estimation

Ethlint [13] None
Predefined and user-defined

style and security rules
Solidity Predefined and user-defined properties

Manticore [14], [15] 2019
Symbolic execution,

dynamic analysis, SMT solving
Solidity Vac, Vfr , Vio, Vre, Vtd, Vuc

Mythril [16], [17] 2018
Symbolic execution,

SMT solving, taint analysis
Solidity

EVM bytecode
Vac, Vdos, Vfr , Vio, Vre, Vtd, Vuc

Oyente [18], [19] 2016
Symbolic execution,

SMT solving
Solidity

EVM bytecode
Vac, Vfr , Vio, Vre, Vtd

Securify [20], [21] 2018
Static analysis, data-flow

analysis, control-flow analysis
Solidity

EVM bytecode
Vac, Vfr , Vre, Vtd, Vuc

Slither [22], [23] 2019
Data-flow analysis,

taint traking
Solidity Vac, Vre, Vtd, Vuc

SmartCheck [24], [25] 2018 Static and syntactic analysis Solidity Vac, Vdos, Vio, Vre, Vtd, Vuc

Solhint [26] None
Predefined and user-defined

sytle and security rules
Solidity Vre, Vtd, Vuc

Sol-profiler [27] None Syntactic analysis Solidity Predefined properties

VeriSmart [28], [29] 2020
CEGIS-style verification,

SMT solving
Solidity Vio

assertion checking, and estimation of maximum gas usage.

That is, it automatically generates tests to detect violations

in user-defined properties and assertions, and allows us

to prevent vulnerabilities caused by out-of-gas conditions.

Echidna uses the Slither static analysis tool [22], which

we discuss below, in the preprocessing step to compile and

analyze smart contracts and use information from Slither to

improve fuzz testing. Currently, Echidna can also test con-

tracts compiled with Vyper (https://vyper.readthedocs.io/en/

stable/) and supports smart contract development frameworks

such as Truffle (https://www.trufflesuite.com/) and Embark

(https://framework.embarklabs.io/).

B. ETHLINT

Ethlint [13], formerly known as Solium, is a customizable,

stand-alone linter for Solidity smart contracts. It provides a

predefined set of various style and security rules, which the

user can configure, for example, by choosing which rules to

apply to the code or by passing options to the rules to modify

their behavior. Ethlint was originally designed to strictly ad-

here to the Solidity style guide (https://solidity.readthedocs.

io/en/develop/style-guide.html), but now it allows the user to

not only customize the predefined rules but also write and

distribute via NPM new plugins for their own rules. It can

also automatically fix the detected style and security issues,

but there is no benchmark result.

C. MANTICORE

Manticore [14], [15] is an open-source dynamic symbolic

execution framework not only for Ethereum smart contracts

but also for native binaries. It consists of the Core Engine

implementing a generic platform-independent symbolic ex-

ecution engine, the Native and Ethereum Execution Mod-

ules for symbolic execution of binaries and smart contracts,

respectively, and the Satisfiability Modulo Theories (SMT)

module and a Python API for supporting a customized

analysis and interacting with external solvers such as Z3

(https://github.com/Z3Prover/z3), Yices (https://yices.csl.sri.

com/), and CVC4 (https://cvc4.github.io/). Currently, Man-

ticore supports various built-in vulnerability detectors such

as for problematic uses of delegatecall, integer overflows,

reentrancy bugs, uses of potentially insecure instructions,

reachable external calls, reachable selfdestruct instructions,

uninitialized memory and storage usage, invalid instructions,

and unused internal transaction return values. The main

downside of using Manticore is its long execution time; it

is very much slower than other static analysis tools (while

it took about 24 minutes on average, other tools just took

from a few seconds to a few minutes under experiments using

47,518 contracts) [10].

D. MYTHRIL

Mythril [16], [17] is an open-source, interactive, security

analysis tool for Ethereum smart contracts, which also

supports other EVM-compatible blockchains such as Quo-

rum (https://consensys.net/quorum/), VeChain (https://www.

vechain.org/), and Tron (https://tron.network/). It is one of

the earliest developed automated smart contract analysis

tools and can be used to detect various security vulnerabilities

such as use of delegatecall to untrusted contracts, integer

overflows/underflows, and multiple sends in a single trans-
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action. It uses various program analysis techniques such as

symbolic execution, SMT constraint solving, taint analysis

and control flow checking to detect such vulnerabilities.

Mythril has been shown to be highly accurate in detecting

the DASP Top 10 vulnerabilities when compared with other

tools [9], [10]. It can also be used in a commercial SaaS smart

contract security analysis platform called MythX (https://

mythx.io/) which is more optimized and provides a wider

range of functionalities.

E. OYENTE

Oyente [18], [19] is one of the first Ethereum smart contract

analysis tools, which has served as a basis for the design

and development of other tools such as HoneyBadger [31],

Maian [32], and Osiris [33]. It performs symbolic execution

and SMT constraint solving using the Z3 theorem prover

to analyze EVM bytecode and detect various vulnerabilities.

The authors of [18] conducted an experiment using existing

19,366 Ethereum smart contracts and reported that Oyente

identified 8,833 contracts as vulnerable. However, several

recent studies [9], [10] revealed that Oyente produces a

considerable number of false positives, in particular, due

to the integer overflow/underflow vulnerability, as is also

discussed in Section IV-B. That is, Oyente is not appropriate

for detecting arithmetic vulnerabilities. We also remark that

while Oyente currently reports a call stack depth attack vul-

nerability, it is no longer possible as of the EIP 150 hardfork.

F. SECURIFY

Securify [20], [21] is a security analysis tool for Ethereum

smart contracts, which currently supports more than 37 vul-

nerabilities including reentrancy, locked Ether, transaction

order dependence, and unrestricted write. Together with an

input contract, it takes as input a set of security patterns writ-

ten in a specialized domain-specific language. More specifi-

cally, a security property is encoded into a set of compliance

and violation patterns, each of which ensures that a contract

satisfies and violates the given property, respectively. Such

patterns are checked using the Soufflé Datalog solver [34]

against the semantic facts obtained from the contract by

applying static analysis such as data- and control-flow anal-

ysis. In contrast to symbolic execution-based tools such as

Mythril [16] and Oyente [18], which do not guarantee to

explore every program path, Securify analyzes every contract

behavior, thus avoiding false negatives. Securify aims to

guarantee that if a contract matches a compliance (resp.

violation) pattern, then it definitely complies with (resp.

violates) the corresponding security property. However, as

discussed in [35], most of the security patterns proposed

in [20] are not sound and can produce both false positives

and false negatives.

G. SLITHER

Slither [22], [23] is an open-source Solidity static analysis

framework written in Python 3, which supports automated

detection of about 45 vulnerabilities and code optimizations

that the compiler misses, and visualization of the informa-

tion about contract details, enhancing developers’ code com-

prehension. Given a Solidity contract source code, Slither

takes as input its abstract syntax tree generated by the So-

lidity compiler, and recovers its inheritance graph, control

flow graph, and list of expressions. Then, Slither transforms

the contract code into an intermediate representation called

SlithIR, which uses static single assignment form [36] to

facilitate the analysis, and applies the usual program analysis

techniques such as data-flow analysis and taint tracking. The

authors of [22] compares Slither with other static analysis

tools such as Securify [20], SmartCheck [24], and Sol-

hint [26] with respect to their capability to detect reentrancy

vulnerabilities using 1,000 contracts obtained from Etherscan

(https://etherscan.io/), and show that Slither outperforms the

other tools for detecting reentrancy vulnerabilities with re-

spect to performance, robustness, and accuracy.

H. SMARTCHECK

SmartCheck [24], [25] is an efficient static analysis tool

for Ethereum smart contracts to detect security vulnerabil-

ities and other code issues. It uses an XML-based inter-

mediate representation (IR) to which Solidity source code

is translated. Potential vulnerabilities are then detected by

applying XPath [37] patterns on the generated IR. Although

SmartCheck is very fast when compared with other analysis

tools [10], since it only performs relatively simple lexical

and syntactic analysis, it cannot detect some severe bugs

requiring more advanced techniques such as taint analysis.

It has also shown that SmartCheck produces a large number

of false positives in the experiment on the reentrancy vulnera-

bility detection using 1,000 contracts [22]. An online version

of SmartCheck with more security patterns than the GitHub

version is available at https://tool.smartdec.net/.

I. SOLHINT

Solhint [26] is an open-source linter for Solidity smart con-

tracts, similar to Ethlint [13]. It can be used not only to

validate if the Solidity code complies with the style guide

and best coding practices but also to detect syntax-related

security vulnerabilities. In addition, the user can customize

the predefined rule sets and add new rules if necessary.

Solhint has shown to be fast and robust, but produce a large

number of false positives in the experiment on the reentrancy

vulnerability detection [22].

J. SOL-PROFILER

Sol-profiler [27] is a CLI tool to help the user to visualize

and review Solidity smart contracts by listing down various

properties of every contract method. More specifically, for

each method, it specifies the contract, interface, or library to

which it belongs, its name and parameter types, its visibility

(external, public, internal, or private), if it is a view or pure

function, its return type, and its modifiers. Therefore, by us-

ing Sol-profiler, the user can easily identify the properties of

the contract methods and check if there are errors. However,
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Sol-profiler does not guarantee any security properties of

smart contracts.

K. VERISMART

VeriSmart [28], [29] is a highly precise verification tool for

detecting arithmetic bugs such as an integer overflow and

underflow in Ethereum smart contracts. It automatically dis-

covers the transactions invariants of smart contracts, which

enable to analyze them effectively and exhaustively. More

precisely, it iteratively generates candidate transaction invari-

ants and validates them using an off-the-shelf SMT solver

as in the usual counter example-guided inductive synthe-

sis (CEGIS) framework [38]. By experimentally comparing

VeriSmart with other analysis tools that can detect arithmetic

bugs such as Manticore [14], Mythril [16], Osiris [33], and

Oyente [18], using 60 contracts that contains arithmetic

vulnerabilities [39], the authors of [28] show that VeriSmart

far outperforms the abovementioned analyzers and detects all

arithmetic bugs with a negligible false positive rate. Since

VeriSmart outperforms Osiris, which can detect only integer-

related bugs, we do not include the latter in our proposed

evaluation tool.

IV. THE PROPOSED EVALUATION TOOL

A. DESIGN OF THE PROPOSED TOOL

A number countermeasures have been introduced to detect

vulnerabilities in smart contract applications, as mentioned

in the previous section, but their effectiveness has not been

studied well. It is even not clear which countermeasures

are most effective for each type of vulnerability. When new

countermeasures are proposed, it is definitely necessary to

conduct comparative performance evaluation with existing

ones. However, since different countermeasures could re-

quire different environments for installation and execution

(e.g., different versions of the Solidity compiler and Z3 the-

orem prover, etc.) and their verification outputs are produced

in different formats, it is not a simple task to perform a com-

parative study of countermeasures and compare the analysis

results. In particular, when new datasets are available, one

needs to re-execute all available countermeasures, preprocess

their verification outputs, and analyze the result under various

performance measures. To avoid such time-consuming tasks,

we provide a software tool that can

• easily be extended with existing/new countermeasures

and labeled smart contract codes,

• facilitate comparison of the countermeasures by auto-

matically analyzing their verification outputs in terms of

various performance measures and arranging the results

in tables and graphs, and thus

• help the user to identify the most effective countermea-

sures for each vulnerability.

Fig. 1 shows the overall structure of our proposed eval-

uation tool. In the proposed tool, each countermeasure is

offered in the form of a Docker image using OS-level vir-

tualization and operates within the Docker container, making

FIGURE 1: Overall structure of the proposed evaluation tool.

it easy to meet all operational requirements. This approach

helps to effectively manage the use of computational re-

sources (CPU, memory) in the system, since each coun-

termeasure is containerized only while actually analyzing

the target code. A set of different versions of the Solidity

compiler is provided as a single Docker image and can be

used in different containers where countermeasures operate.

This design is effective because it eliminates the need to

update all Docker images of the existing countermeasures

when a new version of the compiler is required to convert

a new target code into binary code.

The analyzer module analyzes the verification outputs

generated by each countermeasure and demonstrates the

verification performance using various statistical indicators.

More precisely, it preprocesses the verification outputs of

each countermeasure to check if some vulnerabilities were

found in each code in the benchmark dataset. Then, for

each countermeasure and its verification outputs, the analyzer

module automatically computes various performance mea-

sures such as the numbers of true positives, false positives,

true negatives, and false negatives, precision, recall, accuracy,

F1-score, and the area under the curve (AUC), as shown

in Table 2. Finally, it organizes the analysis results and

presents them using tables and graphs as shown in Fig. 2,

3, and 4, making it easy to conduct comparative studies for

each type of vulnerability. In particular, since the verification

performance is represented using various performance mea-

sures, users can identify the most effective countermeasure

according to their own interests. (Here we note that, different

users can place higher importance on different measures. For

example, some users may give higher priority to counter-

measures that maximize the number of true positives than

those that have the minimum number of false positives,

while others may prefer the opposite.) This feature can be

useful if the proposed tool is used to verify smart contract

codes in practice. In addition to selective application of each

countermeasure, an effective subset of countermeasures can

automatically be selected/recommended depending on the

target vulnerabilities, user interests, and constraints.

B. COMPARATIVE STUDY USING THE PROPOSED TOOL

Using the proposed tool, we evaluated the performance of

the state-of-the-art countermeasures with 237 pieces of la-
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TABLE 2: Performance measures used in the proposed tool.

The value of precision, recall, accuracy, and F1-score ranges

from 0 to 100, and that of AUC ranges from 0 to 1.

Measure Description

TP Number of true positives,
i.e., contracts having vulnerability are correctly identified.

FP Number of false positives,
i.e., contracts without vulnerability are determined vulnerable.

TN Number of true negatives,
i.e., contracts without vulnerability are identified non-vulnerable.

FN Number of false negatives,
i.e., contracts having vulnerability are determined non-vulnerable.

Precision Percentage of true positives among those determined as positive,
(P) i.e., P = TP / (TP + FP).

Recall Percentage of true positives among the actual positives,
(R) i.e., R = TP / (TP + FN).

Accuracy Percentage of correctly identified cases among all cases,
i.e., Accuracy = (TP + TN) / (TP + TN + FP + FN).

F1-score Harmonic mean of precision and recall,
i.e., F1-score = 2PR/(P +R) = 2TP / (2TP + FP+FN).

AUC Area under a receiver operating characteristic (ROC) curve
created by plotting the true positive rate (i.e., recall, sensitivity)
against the false positive rate (i.e., fall-out, 1 - specificity)
at various thresholds.

(a) Analysis result of a single piece of code with an arithmetic vul-
nerability using various countermeasures. ‘O’ and ‘X’ respectively
denote "detected" and "undetected" and ‘-’ denotes that the counter-
measure does not support the detection of the given vulnerability.

(b) F1-score of each countermeasure for the benchmark dataset
described in Table 3.

FIGURE 2: Example results of using the proposed tool.

beled code collected from the SWC registry (Smart Contract

Weakness Classification and Test Cases) [40], SmartBugs

SB curated dataset [41], VeriSmart-benchmarks [39], Zeus

dataset [42], and eThor dataset [43]. Each code either has

a single type of vulnerability or is known to be secure, i.e.,

without any vulnerability. The number of pieces of code for

each vulnerability is arranged in Table 3. The proposed tool

arranges the evaluation results in a unified manner as shown

TABLE 3: The number of smart contracts for testing each

countermeasure for each type of vulnerability. Secure de-

notes smart contracts having no vulnerability.

AC DoS FR IO RE TD UC Secure TOTAL

18 6 4 55 31 5 52 66 237

in Fig. 2 and produces graphs for each measure as shown in

Fig. 3 and 4, which allows an easy comparative study and

cross-validation among the countermeasures.

Tables 3–8 respectively shows the TP, FP, precision, recall,

accuracy, and F1-score of each countermeasure for each type

of vulnerability for the dataset described in Table 3. We

omit the TN and FN as they are easily obtained from the

the FP and TP, respectively. In the tables, ‘-’ means that

the countermeasure does not support the detection of the

corresponding vulnerability. In Table 3, TOTAL represents

the number of smart contracts having the corresponding

vulnerability, whereas in Table 4, it represents the number

of those not having the corresponding vulnerability. We ad-

ditionally show the F1-score of each countermeasure for each

type of vulnerability in Fig. 3, which takes both precision and

recall into consideration and thus is a more appropriate metric

for imbalanced datasets. As our dataset is highly imbalanced,

the F1-score is much lower than the accuracy for every case,

but it is much more useful than the accuracy for comparing

the performance of various countermeasures.

Overall, for AC, every countermeasure shows a low de-

tection rate of vulnerable code. That is, for all countermea-

sures, more than 80% of vulnerable codes are not detected.

Mythril detects three of the 18 vulnerable codes, showing the

largest TP value. However, considering the FP value together,

Slither, which represents a slightly smaller TP value, can

be more effective since it shows 100% precision and better

accuracy.

Only Mythril and Oyente work for DoS and FR, respec-

tively. One out of six vulnerable codes with DoS is detected

by Mythril, and two out of four vulnerable codes with FR

are detected by Oyente. Both countermeasures produce more

false positives (compared to the true positives), resulting in

small values in both precision and recall. These results can be

interpreted that neither countermeasure makes a sufficiently

meaningful contribution to DoS and FR detection.

VeriSmart successfully detects all vulnerable codes with

IO and reports a 100% recall value. However, it also gener-

ates 55 false positives, resulting in the precision of 50%. In

general, a large number of false positives require additional

manual examinations, which can be a large overhead. In that

sense, Manticore that detects six out of 55 vulnerable codes

without generating any false positives (100 % precision) may

be preferred.

Oyente may be the most effective tool for detecting RE,

as shown by the highest value in F1-score (Fig. 3) and good

performance for all measures (refer to Tables 5, 6 and 7).

More specifically, 29 out of 31 vulnerable codes are detected
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TABLE 3: The number of true positives (TP).

TOOL AC DoS FR IO RE TD UC

Manticore 0 - 0 6 1 2 1
Mythril 3 1 - 11 9 2 6
Oyente 0 - 2 50 29 0 -
Securify 0 - 0 - 2 1 0
Slither 2 - - - 31 5 45

SmartCheck 2 0 - 1 - 1 52
Solhint - - - - 6 5 -

VeriSmart - - - 55 - - -

TOTAL 18 6 4 55 31 5 52

TABLE 4: The number of false positives (FP).

TOOL AC DoS FR IO RE TD UC

Manticore 0 - 0 0 0 1 2
Mythril 3 3 - 5 4 4 3
Oyente 0 - 29 93 6 10 -

Securify 2 - 4 - 0 0 0
Slither 0 - - - 32 19 1

SmartCheck 2 11 - 3 - 0 14
Solhint - - - - 20 37 -

VeriSmart - - - 55 - - -

TOTAL 219 231 233 182 206 232 185

TABLE 5: Precision (%).

TOOL AC DoS FR IO RE TD UC

Manticore 0 - 0 100 100 66.7 33.3
Mythril 50 25 - 68.8 69.2 33.3 66.7
Oyente 0 - 6.5 35 82.9 0 -

Securify 0 - 0 - 100 100 0
Slither 100 - - - 49.2 20.8 97.8

SmartCheck 50 0 - 25 - 100 78.8
Solhint - - - - 23.1 11.9 -

VeriSmart - - - 50 - - -

TABLE 6: Recall (%).

TOOL AC DoS FR IO RE TD UC

Manticore 0 - 0 10.9 3.2 40 1.9
Mythril 16.7 16.7 - 20 29 40 11.5
Oyente 0 - 50 90.9 93.5 0 -

Securify 0 - 0 - 6.5 20 0
Slither 11.1 - - - 100 100 86.5

SmartCheck 11.1 0 - 1.8 - 20 100
Solhint - - - - 19.4 100 -

VeriSmart - - - 100 - - -

TABLE 7: Accuracy (%).

TOOL AC DoS FR IO RE TD UC

Manticore 97 - 99.3 91.8 95 99.3 91.1
Mythril 97 98.7 - 91.8 95.6 98.8 91.8
Oyente 97 - 94.8 83.5 98.7 97.5 -
Securify 96.6 - 98.7 - 95.1 99.3 91.3
Slither 97.3 - - - 94.6 96.8 98.7

SmartCheck 97 97.1 - 90.4 - 99.3 97.6
Solhint - - - - 92.4 93.8 -

VeriSmart - - - 90.8 - - -

TABLE 8: F1-score (%).

TOOL AC DoS FR IO RE TD UC

Manticore 0 - 0 19.7 6.2 50 3.6
Mythril 25 20 - 31 40.9 36.4 19.7
Oyente 0 - 11.4 50.5 87.9 0 -
Securify 0 - 0 - 12.1 33.3 0
Slither 20 - - - 66 34.5 91.8

SmartCheck 18.2 0 - 3.4 - 33.3 88.1
Solhint - - - - 21.1 21.3 -

VeriSmart - - - 66.7 - - -

while only six false positives are produced (among 206

secure codes). Slither may be considered competitive in that

it completely detects every vulnerable code (even though it

produces 32 false positives, showing 49.2% precision and

100% recall).
It is confirmed that both Slither and Solhint completely

detect five vulnerable codes having TD. However, Slither can

be recommended more preferentially since it produces about

half of the false positives in Solhint. As for UC, it is reported

that all vulnerable codes are detected by SmartCheck which

produces 14 false positives, resulting in the precision of

78.8% and F1-score of 88.1%. Slither is also effective in

detecting UC. It detects 45 out of 52 vulnerable codes while

generating only one false positive, showing good perfor-

mance for all measures.
In Fig. 4, we also show the performance of the counter-

measures using their ROC curve and AUC value. Since our

dataset is imbalanced, the AUC is also an important measure

to be considered. Note that the AUC values in Fig. 4 do not

necessarily coincide with the F1-scores in Fig. 3. Following

the general guidelines in [44], we consider the countermea-

sure to be acceptable, excellent, and outstanding if its AUC

value is greater than or equal to 0.7, 0.8, and 0.9, respectively.

In this regard, there is no effective countermeasure for AC,

DoS, and FR; Oyente is excellent and VeriSmart is outstand-

ing at identifying IO; Oyente and Slither are outstanding for

RE; Slither and Solhint are outstanding for TD; and finally

Slither and SmartCheck are outstanding for UC.

The evaluation results can be summarized as follows:

• In general, countermeasures that identify many vulnera-

ble codes also tend to be less precise and accurate since

they also produce much more false positives.

• There is no effective countermeasure for detecting

the ‘Access Control’, ’Denial of Service’, and ‘Front-

Running’ vulnerabilities yet.

• Vulnerable codes with ‘Integer Overflow’ and ‘Times-

tamp Dependence’ are completely detected. However,

the performance of the countermeasures need to be

further improved in order to reduce false positives.

• As for the ‘Reentrancy’ and ‘Unchecked Low Level

Call’ vulnerabilities, effective countermeasures that

show both high precision and high recall values are

identified.

V. DISCUSSION
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(a) AC (b) DoS (c) FR

(d) IO (e) RE (f) TD (g) UC

FIGURE 3: F1-score of each countermeasure for each vulnerability.

(a) AC (b) DoS (c) FR

(d) IO (e) RE (f) TD (g) UC

FIGURE 4: ROC curve and AUC of each countermeasure for each vulnerability.
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A. RESULTS FROM OUR COMPARATIVE STUDY

Similar to ours, previous studies such as [9], [10], [22], [28]

have also empirically compared various countermeasures

using real-world smart contracts and discussed their perfor-

mance. In [9], four countermeasures such as Mythril, Se-

curify, SmartCheck, and Oyente were evaluated using 10

representative smart contracts, and the results suggested that

SmartCheck was statistically most effective in terms of ac-

curacy and ROC, while Mythril had the least number of

false positives. This result is consistent with our evaluation

results in the case of UC. However, due to a limited number

of test codes, the effectiveness of Oyente against IO did

not seem to be well understood. The authors of [22] pro-

posed Slither and conducted performance comparisons with

Securify, SmartCheck, and Solhint in RE detection using

two famous contracts (DAO and SpankChain), which are

vulnerable to RE, and 1,000 unlabeled contract data. They

reported that Slither overwhelmed the other three counter-

measures in terms of accuracy, execution time, and robust-

ness, which is the same as in our evaluation results. The

performance of Oyente, which was not covered in their work,

is newly verified in our work, and it is discussed that Oyente

could be more effective than Slither in that it generates a

much smaller number of false positives for RE detection.

In [28], the authors introduced VeriSmart, a new method

for IO detection, and compared its performance with that

of Manticore, Mythril, Osiris, and Oyente using 60 labeled

vulnerable contracts. Their evaluation showed that VeriSmart

successfully detected all vulnerable codes with a negligible

false positive rate (0.41%). In our study using an increased

number of codes, VeriSmart’s effectiveness could also be

confirmed. However, in our study, it incurred a much higher

false positive rate. In [10], comprehensive evaluation for the

nine representative countermeasures were performed using a

dataset of 69 labeled vulnerable contracts and 47,518 unla-

beled contracts. The authors reported that Mythril was the

most accurate countermeasure, showing 27% accuracy, when

considered the vulnerabilities altogether. However, this report

is slightly different from our findings. In our work, which

used more labeled codes and measured various evaluation

metrics for each vulnerability, Mythril is not recommended

due to its low value of precision and recall.
Obviously, our experimental results are partially consistent

and complementary with those from previous studies men-

tioned above. Here, we note that in our work, more counter-

measures are evaluated with much more labeled codes, and

their performance is shown with various measures. Hence,

we believe that our comparative study could provide more

reliable insights into the state-of-the-art countermeasures and

help developers choose countermeasures that better suit their

purpose under given conditions.

B. THREATS TO VALIDITY

The limitations of our evaluation are summarized as follows.

In this work, we collected more labeled data than previous

studies to derive more reliable evaluation results. However,

as in other related work, a few smart contracts may have

incorrect labels, as it is very challenging to manually examine

the code. Moreover, our dataset is imbalanced in that the

number of safe smart contracts is much larger than the

number of vulnerable smart contracts. In particular, among

the 237 smart contracts, only six, four, and five vulnerable

contracts for DoS, FR and TD are included, respectively.

Hence, in most cases, the detection accuracy of countermea-

sures against each vulnerability is highly reported. Since new

datasets and countermeasures can be easily added to our tool,

however, we believe that our tool can contribute to achieving

more accurate evaluation results with more data in the future.

VI. CONCLUSIONS

In this paper, we revisited smart contracts using the Ethereum

blockchain technology and summarized various vulnerability

issues of smart contract applications. A number of coun-

termeasures were briefly introduced and discussed. To as-

sess the effectiveness of the countermeasures, we designed

and implemented a software tool that facilitates comparative

evaluations of the countermeasures. Using the tool and 237

labeled benchmark codes, we evaluated state-of-the-art vul-

nerability detection schemes. The evaluation results indicate

that countermeasures that exhibit a larger TP value often

generate a much larger number of false positives, resulting

in very low precision and accuracy. In addition, among the

state-of-the-art countermeasures, Oyente and Slither are most

effective for RE detection; Slither could be recommended

for detection of TD and UC; and VeriSmart could be rec-

ommended for IO detection. Using our tool, researchers can

easily conduct performance comparisons between their own

countermeasure and other state-of-the-art schemes with a

variety of performance metrics. As for practitioners, they

can exploit our tool to find various vulnerabilities within

their smart contract applications. Since in our tool, smart

contracts can be examined by a number of countermeasures

simultaneously, vulnerabilities can be easily identified. We

believe that our proposed tool will be effective in a future

verification study of smart contracts and will contribute to

the development of practical and secure smart contract appli-

cations.

APPENDIX. USAGE OF THE PROPOSED TOOL

The proposed software tool is open to public via the website

https://github.com/93suhwan/uscv. This section details how

to use it.

A. INSTALLATION

As mentioned in Section IV-A, each countermeasure is in-

cluded in the proposed software tool in the form of a Docker

image. To create a Docker image, a dockerfile can be run

under the following command:

$ docker build [dockerfile]

arguments

[dockerfile] location of the dockerfile
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The content of a dockerfile is as follows:

From ubuntu:18.04
RUN [installCommand]
ENTRYPOINT [exeCommand]

/*
- 1st line indicates a layer is created
from the ubuntu:18.04 Docker image

- 2nd line is for building a countermeasure
by executing [installCommand]

- 3rd line specifies the execution command
([exeCommand]) for each countermeasure
(which would run by default)

*/

Using the Docker image, a Docker container is generated

and executed under the following command:

$ docker build -t [dockerImage] [dockerfile]

arguments

[dockerImage] name of the Docker image of a countermeasure
[dockerfile] location of the dockerfile

Since multiple versions of the Solidity compiler may be

required during the process of compiling the source files,

the proposed tool has a Docker image (.solc) that includes

different versions of the Solidity compiler. The installed

compilers can be used at each container under the following

command:

$ docker run -v [curDir]:[containerDir] \
[dockerImage] [options]

arguments

[curDir] current directory in a host (e.g., $ (pwd)/.solc)
[containerDir] directory in a container (e.g., /root/.solc)
[dockerImage] Docker image to be used for testing
[options] built-in options of the Docker container (countermeasure)

All of these processes for the 11 countermeasures dis-

cussed in Section III are executed automatically by running

“createContainers.sh”.

B. EXECUTION

The file named “testing.sh" is used to execute each counter-

measure. It preprocesses the source file and determines the

version of the compiler that can be used for compiling. Then,

it can be run with the generalized options as follows:

$ testing.sh -t [schemeName] \

-f [srcFile] -l [timeout]

(e.g.,)

>> testing.sh -t oyente -f test.sol \

-o "-dl 10 -r" -l 100

options usage

-t used to specify the countermeasure’s name [schemeName]
-f used to specify the target code to be tested [srcFile]
-l used to specify a timeout value (If a timer expires with the

given timeout, the program is forced to quit.)
-o used to specify the options that each countermeasure uniquely

supports

The file named “execution.sh” is provided to run multiple

countermeasures. “execution.sh” supports the following op-

tions:

$ execution.sh -f/d [srcFile/dirName] \

-t [toolName]

(e.g.,)

>> execution.sh -d ./curDir -v AC -l 100

options usage

-f used to specify the name of a target code [srcFile]
(for testing a single target code)

-d used to specify the name of a directory [dirName]
(for testing multiple codes within the directory)

-t used to specify a countermeasure [schemeName]
[-t Aux] : checking grammar and predefined properties

applying Echidna, Ethlint, and Sol-profiler
[-t Vul] : checking vulnerabilities by applying eight

countermeasures but the three mentioned above
[-t All] : applying all countermeasures

-v used to specify a type of vulnerability
- AC (Access control), DoS (Denial of service),

FR (Front-running), IO (Integer overflow/underflow),
RE (Reentrancy), TD (Timestamp dependency),
UC (Unchecked low level call)

- Countermeasures associated with the given vulnerability
are selectively executed.

-l used to specify a timeout value
(When a time expires, countermeasures are forced to quit.)

The analysis results are recorded in the file named

tool_name.txt under the directory of “./result”.

C. ADDING NEW COUNTERMEASURES AND DATA

When new countermeasures are proposed, they can eas-

ily be integrated into our proposed tool and evaluated

with the embedded benchmark data. To this end, the file

named “addScheme.sh” is provided. By specifying meta-

information on a new countermeasure as arguments, the new

scheme can simply be included into the system.

$ addScheme.sh -l/n [dirName/imageName] \

-e [cmd] -o [option] \

-M [word]

(e.g.,)

>> addScheme.sh -l dockerfiles/smartcheck \

-e smartcheck -o p \

-a SOLIDITY_TX_ORIGIN \

-d SOLIDITY_OVERPOWERED_ROLE \

-i SOLIDITY_VAR|SOLIDITY_UINT_CANT \

-t SOLIDITY_EXACT_TIME \

-u SOLIDITY_UNCHECKED_CALL

arguments

-l directory having a dockerfile of the countermeasure [dirName]
-n name of a Docker image created by the user [imageName]
-e execution command of the countermeasure [cmd]
-o [option] when the countermeasure requires a flag to input

the target code
-M unique word [word] in the result strings generated by the

countermeasure against detected vulnerabilities.
values of M : a (AC), d (DoS), f (FR), i (IO), r (RE),

t (TD), u (UC)
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The installed countermeasures can also be removed from

the tool as follows.

$ removeScheme.sh [countermeasureName]

(e.g.,)

>> removeScheme.sh mythril

When labeled codes are newly collected, they can be added

to our tool and used for the analysis.

$ addData.sh -d/f [dirName/fileName] \

-c [vulType]

(e.g.,)

>> addData.sh -f example.sol -c AC

arguments

-d directory that has the target codes [dirName]
-f name of the target code [fileName]
-c vulnerability type [vulType] (AC, DoS, FR, IO, RE, TD, UC)
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