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Evaluating Crop and Revenue Insurance
Products as Risk Management Tools for
Texas Cotton Producers

James E. Field, Sukant K. Misra, and Octavio Ramirez

This paper develops and illustrates the application of a procedure to evaluate and compare
the cost effectiveness of alternative crop insurance products for cotton in terms of their
effect on expected producer net returns and the variation of net returns. Farm unit-level
cotton yields and state-level price distributions are estimated by a multivariate nonnormal
parametric modeling procedure and used to simulate the net returns to alternative crop
insurance products over a 10-year planning horizon. The ranking of alternative insurance
products using third-degree stochastic dominance is presented for Texas cotton producers.
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Cotton production contributed an average of
$5.27 billion/yr. to the U.S. economy from
1988 through 1994 (National Agricultural Sta-
tistics Service). More than 14.5 million acres
of cotton were planted in the U.S. in 1999,
with over 13 million acres harvested and about
16 million bales of cotton produced. Texas ac-
counted for about 42% of planted acres, ap-
proximately 39% of harvested acres, and over
31% of total U.S. cotton production in 1999
(Texas Agricultural Statistics Service 2000).
Cotton production, like many other agricultur-
al enterprises, is inherently risky. Cotton pro-
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ducers are subject to unpredictable, random
shocks, such as adverse weather, pest infesta-
tions, and other natural disasters, such as
drought and flooding. Supply uncertainties,
coupled with an inelastic demand for agricul-
tural products generally lead to a more volatile
price than those commonly experienced in
other sectors of the economy (Goodwin and
Smith).

Cotton producers in the U.S. have tradi-
tionally relied on the federal government for
protection from price and yield variability.
This protection came in the form of a federal
crop insurance program, ad hoc disaster pay-
ments, and deficiency payments. However, the
uncertainty and short-term nature of farm pro-
grams and the need for a longer term risk man-
agement strategy makes the evaluation of the
efficacy of risk management options available
to producers to help become better managers
of paramount importance. Some of the risk
management alternatives currently being scru-
tinized are forward contracting, hedging with
futures and options, and crop and revenue in-
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surance. Crop and revenue insurance, the fo-
cus of this research, has received considerable
attention in recent times (Coble, Heifner, and
Zuniga; Duncan and Myers; Hennessy, Bab-
cock, and Hays; Miranda and Glauber; Ver-
cammen; Wang et al.), including increasing
pressure for a complete reform because of low
participation, poor actuarial performance, and
the existence of ad hoc disaster payments
(Skees et al.). The objective of this study was
to develop and illustrate the application of an
empirical procedure to evaluate and compare
the cost effectiveness of alternative crop and
revenue insurance products from a producer’s
perspective. For the purpose of illustration,
multiple-peril crop insurance (MPCI) products
that guarantee yield and crop revenue cover-
age (CRC) products that guarantee revenue
were chosen along with the catastrophic
(CAT) coverage. CAT is a 50/55 policy that
has yield coverage of 50% and a price election
of 55%; it is subsidized by the Federal Crop
Insurance Corporation (FCIC) for a $60 pro-
cessing fee per crop per county. Both MPCI
and CRC insurance products receive premium
subsidies through the FCIC of the U.S. De-
partment of Agriculture.

Methods and Procedures

Precise estimates of yield and price distribu-
tions are needed to evaluate the cost effective-
ness of crop and revenue insurance products
and their effect on the farmer’s financial con-
dition. Pooled, farm unit- and county-level
yield data are used to estimate the probability
distributions of irrigated and dryland cotton
yields at the farm unit-level in three West Tex-
as regions (the southern High Plains, the
northern High Plains, and the northern Low
Plains) covering 13 counties. Data for 57 dry-
land and 39 irrigated units were collected from
the Texas Agricultural Extension Service (Fin-
cham, personal communication) and included
between 5 and 10 years of producers’ histo-
ry—the number of acres planted, the realized
yield, the location of the farm, and the farming
practice (irrigated or nonirrigated).

The time span of the available unit-level
data was not enough to precisely identify the

mean and variance trends and other critical
features of the yield distributions. Therefore,
county-level time series (Texas Agricultural
Statistics Service 1970-1998) yield data were
used to assist in the estimation of the unit-
level yield distributions and their changes
through time. State-level annual price data
from 1934 to 1999 (National Agricultural Sta-
tistics Service), adjusted for inflation using the
U.S. Producer Price Index with 1999 as the
base year, were used to estimate the price dis-
tribution faced by Texas cotton producers.

Several crop price and yield distributions
have been found to be substantially nonnor-
mal, with means and variances that are shift-
ing through time, location, or both (Gallagher
1986, 1987: Ramirez; Ramirez, Moss, and
Boggess; Taylor). In addition, the conditional
mean of certain crop price distributions has
been shown to be autocorrelated through time
(Ramirez; Ramirez and Somarriba). Because
the modeling and simulation of empirical dis-
tributions that resemble the key statistical fea-
tures of the actual price and yield distributions
is essential for a realistic risk and return anal-
ysis (Ramirez, Misra, and Field), the proce-
dures utilized attempt to correct or minimize
the effects of the previously discussed sample
deficiencies. In particular, a multivariate para-
metric model, developed by Ramirez and ex-
panded by Ramirez and Somarriba and Ra-
mirez, Misra, and Field, was used to estimate
and simulate the yield and price distributions.
This approach utilizes a multivariate, nonnor-
mal distribution that can accurately and sepa-
rately account for heteroscedasticity, distribu-
tional right or left skewness and kurtosis, and
correlation among the variables of interest: ir-
rigated and dryland cotton yields in this case.
The Ramirez and Somarriba adaptation of the
Ramirez model, which can also account for
autocorrelation, was used to model and simu-
late the cotton price distribution.

Although it can be hypothesized that ag-
gregate-level yields are negatively correlated
with prices, sample correlation coefficients be-
tween county- and farm-level yields and pric-
es, however, did not detect a statistically sig-
nificant correlation. This could be because, as
yield data are disaggregated, the yield-price
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correlation likely becomes smaller in magni-

tude and harder to detect statistically. Thus,

price and yield distributions were estimated

independently for the purpose of this analysis.
In Ramirez’s model,

() ElY)] = F(X;, By,

2) VIY] = G(Z,3)’GO, n), ©,>0,

—x<|,1,j<ac,

where F(X,, B)) is a linear or nonlinear func-
tion controlling the mean of the distribution of
Y, through the parameter vector B; and a set
of independent variables X;, G(Z, X)) is an-
other linear or nonlinear function controlling
the standard deviation of the distribution of Y,
through the parameter vector X, and a set of
exogenous variables Z, G(F')j, W) is an expo-
nential function of ©; and p; (the parameters
that control the degree of nonnormality in the
probability distribution), Y; is the random var-
iable of interest (cotton yield in this case), and
j = D and I for dryland and irrigated yield
distributions, respectively.

Equation (1) implies that the mean of the
cotton yield distribution can be specified as a
linear function of a set of independent vari-
ables and slope coefficients, as in the standard
linear regression model estimated by ordinary
least squares (OLS). Equation (2) states that
the variance of the yield distribution is pro-
portional to the value of the parametric func-
tion G(Z,, %) Therefore, both the mean and
the variance of the yield distribution can be
made variable across observations (time and
space in this case) through F(X;, B)) and G(Z,
2% In regards to nonnormality, if ®;, > 0, Y,
has a kurtotic distribution, and if p, # 0, Y;
has a skewed distribution. The sign of p; de-
termines whether the distribution of V; is
skewed to the left (p; < 0) or right (p; > 0).

The 13 counties considered in the study are
combined into three groups on the basis of
geographical location: (1) the southern High
Plains, (2) the northern High Plains, and (3)
the northern Low Plains. Two separate prob-
ability distribution models were estimated for
irrigated and dryland cotton yields. In each of
these models, the mean and variance of the

yield distribution were estimated independent-
ly of each other, and of the distribution’s skew-
ness and kurtosis parameters, by the functions
F(X,, B) and G(Z, X)). The mean, F(B;, X)),
was specified as a third-degree polynomial
function of time.

(3) F(X.B)
= X;B;
= By + ByNHP + B,NLP + B, T
+ B, (T*NHP) + B,(T*NLP) + B,T?

+ B,T? + B,AC + BSAF,

where 7 is a simple time trend variable starting
at 1 in 1970, NHP = 1 if the yield observation
was from a farm or county in the northern
High Plains region and 0 otherwise, NLP = 1
if the observation was from a farm or county
in the northern Low Plains region and 0 oth-
erwise, AF is acres planted on the farm in de-
viations from the mean in the case of a farm-
level yield observation and is 0 otherwise, and
AC is acres planted in the county in deviations
from the mean in the case of a county-level
yield observation and is 0 otherwise. Equation
(3) assumes that the mean of the farm- and
county-level yield distributions was the same
within each region, but it can vary across re-
gions and through time.
The variance function was specified as

@  GZ.3)
= [Zj)'u]z
= [0y + 0o, NHP + 0,,NLP + o, CL
+ a,,T + 0,,(T.*NHP) + o ,(T.*NLP)
+ 0, (T.*CL) + &,T? + 0,AC

+ o,AF]?,

where CL = 1 for county-level observations
and 0 otherwise. Equation (4) allows for a dif-
ferent variance in the yield distribution across
regions and levels (farm versus county). It also
allows for the yield variance to change differ-
ently through time according to region and
level. The acres planted at both the farm- and
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county-unit levels were allowed to affect yield
variability at each of these levels as well.

Each model assumes the same degrees of
distributional skewness and kurtosis through
time and across regions and levels (farm ver-
sus county). In principle, there is no reason to
believe that the farm- and county-level distri-
butions must have the same skewness and kur-
tosis, or that these should be identical across
regions and time. The distributional shapes are
allowed to change through time and across re-
gions and levels by making their means and
variances functions of these variables. Al-
though Ramirez’s methods could be expanded
to make the third and fourth central moments
of the yield distribution functions of time and
regional- and aggregation-level dummies, be-
cause of the need for a relatively large number
of observations required to estimate each
higher order moment (i.e., skewness or kur-
tosis) parameter, this was deemed undesirable
in this particular application.

Separate irrigated and dryland yield distri-
bution models were first estimated by maxi-
mizing the following univariate log likelihood
function

n I n
5) LL =2 G, -5 H},
i=l1 i=1

J

where

G; = In[8,(1 + R})'?/Z;3)]

if ¥, is nonnormally distributed and
G, =-In(Z,3)

if ¥, is normally distributed;
R, = [0®Y,; — X;B)/ZZ,] + F(9,, p,);
{In[R,,(1 + R?)?1/O,;} — p,
if ¥, is nonnormally distributed and
Hy; = (Y; — X;B)Z3,

if ¥, is normally distributed;
F(O,, u)

= [6’(0-5@};)][3(@}%) - (’(”@;P-j)]m-

J = D and I indicate the irrigated and the dry-
land cotton yield models, respectively, Y, is
the ith dryland or irrigated cotton yield obser-

vation, X;B; and Z,X, are the linear functions
described above, and Bj- and P are the param-
eters controlling the nonnormality of the yield
distributions as discussed above.

Standard asymptotic t-tests and likelihood
ratio tests were used to determine which var-
iables should be dropped or combined to ob-
tain final (restricted) univariate irrigated and
dryland yield distribution models. These final
models were then combined into a single
(joint) model in order to estimate the correla-
tion between the irrigated and dryland yield
distributions. The parameters of the joint irri-
gated-dryland yield distribution model were
estimated by maximizing the following bivar-
iate log-likelihood function (Ramirez, Misra,
and Field)

(6) BLL = {2 > G
J=LD

05> > [(HQ")).=H,]
i=1 j=1D
111|Q|}.

= 3 Sm- [—
i=ma+1 j=1.D 2
where BLL is the bivariate log-likelihood
function, j = D for the dryland cotton, and j
= | for the irrigated cotton yield observations:
G; and H; are as defined in Equation (5); ()
is the irrigated-dryland correlation matrix with
diagonal elements equal to one and a pair of
nonzero, nondiagonal elements, p,, = p,,. to
represent the correlation coefficient between Y,
and Y},: * indicates a matrix multiplication; .*
indicates an element-by-element matrix mul-
tiplication; n, is the number of irrigated and
dryland yield observations that are “coupled”
through time (690); and n is the total number
of observations. The coupled data were used
to estimate the correlation between dryland
and irrigated yields. The data set consisted of
yearly observations in which both dryland and
irrigated yields were available at the county
level. Because coupled data were not available
at the unit level, it was assumed that the cor-
relation coefficients at the farm and county
levels were the same. The bivariate log-like-
lihood function linked the univariate log-like-
lihood functions for the irrigated and dryland
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yield distribution models through the cross-
distribution correlation matrix (). The joint
yield distribution model, estimated by maxi-
mizing Equation (6), accounts for any poten-
tial nonnormality (kurtosis [0, and 0], right
or left skewness [, and ], or both) and het-
eroscedasticity (Z,X,, Z,2,) and for the cor-
relation among irrigated and dryland cotton
yields (p;»). The mean of each of the two dis-
tributions was also allowed to shift according
to X,B, and X,B,,, respectively.

The procedure for estimating the cotton
price distribution model was similar to that
used to estimate the dryland and irrigated cot-
ton yield distribution models, except that it ac-
counted for autocorrelation. The mean func-
tion in the price distribution model was
specified as

(N FXep B) = Xepllin = By 4 BT+ BT,
and the variance function was specified as

(8) G(ZCP- 2(‘!"): ™ {Z.:'.r*zt'."]2

= [og + o,T + o, T,

where 7= 1, ..., 65, depending on the year
that the observation was taken (1 = 1934, 65
= 1998). The price model is estimated by
maximizing the univariate likelihood function
in Equation (5), where, to account for auto-
correlation, Y., is replaced by Y..* = PY.,
and X, is replaced by X.* = PXp, Y, being
the vector of original price data and the X,
matrix containing the original data on the ex-
planatory variables (time and time squared)
believed to affect the mean of the price distri-
bution. P is an n X n matrix used to transform
autocorrelated random variables into indepen-
dently distributed random variables. In the
case of first-order autocorrelation, the element
on the first row and column of P is (1 — p?)!2,
where p is the correlation coefficient between
any two consecutive price observations. The
rest of the elements in the principal diagonal
of P are ones. All elements immediately below
the principal diagonal are equal to —p, and the
remaining elements of P are zero (Ramirez
and Somarriba). Under the maximum likeli-
hood procedure utilized, the autocorrelation

coefficient p was estimated jointly with the
other model parameters.

The estimated parameters for the price and
bivariate yield distribution models were used
to simulate 15,000 realizations from each of
the estimated distributions. This simulation
technique, developed by Ramirez, incorpo-
rates, when appropriate, the exogenous factors
shifting the mean and variance of the yield and
price distributions (time, location, etc.), auto-
correlation, kurtosis, and right or left skew-
ness; in this case, it took into account corre-
lation between dryland and irrigated cotton
yields.

To conduct the yield simulations, a 15,000
X 2 matrix (V) of random numbers generated
from a standard normal distribution was mul-
tiplied by the Cholesky decomposition of ().
Because dryland cotton yields were found to
be nonnormally distributed, they were simu-
lated using the following formula.

©)  Yp = [ZoZp/Op]
x {[(e"‘ul‘f'n.*m_\! - e—”|)11"pf+ul_‘|)’,i2]

= F(Op, pp)} + Xp,Bp,

where r = 25, ..., 40 for the year 1995, .. .,
2009, F(0,,, ) is as defined in Equation (5),
O, and ., are the kurtosis and skewness pa-
rameter estimates for the dryland yield distri-
bution, respectively, By, and X, are the esti-
mates for the parameter vectors in the mean
and variance functions [Equations (3) and (4)],
respectively, and V, is the is the ith element
of the first column of V, which corresponds to
dryland cotton. Z,,%, and X,,B,, vary accord-
ing to Equations (3) and (4) as dryland cotton
yields were simulated for different time peri-
ods and regions. Because it was concluded
that irrigated cotton yields were normally dis-
tributed, their simulation involved the simple
formula

(10) Y, = (Z,2)*V, + X,,B,,

where 1 = 25, . .., 40 for the years 1995, .. .,

2009 and V, is the ith element of the second
column of V, which corresponds to irrigated
cotton. As in the nonnormally distributed dry-
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land cotton yield simulation, Z,%, and X, B,
vary according to Equations (3) and (4) as ir-
rigated cotton yields were simulated for dif-
ferent time periods and regions. Because it
was concluded that cotton prices were nor-
mally distributed, but autocorrelated, they
were simulated using the following formula

(11)  CPggy,y

= (ZepainSce)-*v
£ {X('J':J'+:rB(T!’

+ [pE‘P(Y('P[TI - X{'PiTrB("P)]}‘

where v is a 15,000 X 1 vector of random
numbers drawn from a standard normal distri-
bution; F stands for a forecast; 7 is the obser-
vation during the final year in the data set (T
= 64 for 1998); ¢ is the number of years fore-
casted beyond the data set (r = 2, ..., 11 for
2000-2009); Zp, Zcp. Xcp» and B, are as de-
fined in Equations (7) and (8); and p, is the
estimated autocorrelation coefficient. This
simulation procedure incorporates autocorre-
lation into the conditional mean of the price
distributions by multiplying the residual for
the final observation (Yepp, — XeprnBep) by
the cross-observation correlation coefficient
(pep) raised to the power of 7. A simulation
model that does not account for autocorrela-
tion would simulate the mean of the price dis-
tribution at its long-term trend (X pr.,Bcp).
ignoring the presence of price cycles. If the
last price observation is not near the long-term
mean trend, the autocorrelated simulation pro-
cedure smooths the transition back to the long-
term trend.

The draws from the yield and price distri-
butions obtained from the simulations de-
scribed above were used as the first compo-
nent of empirical procedure to analyze the cost
effectiveness of alternative crop insurance
products in terms of their effect on expected
producer net returns and the variation of net
returns over a 10-year planning horizon. From
the total revenue distributions, 15,000 draws
per year were first calculated by multiplying
the draws from the yield distribution by the
draws from the price distribution

(12) TR = SY.*SP,
where TR is an n X T maltrix containing n =
15,000 total revenue realizations at 7 = 10
time periods (years 2000-2009), SY is an n X
T matrix of simulated yields containing the n
draws from the estimated yield distribution for
the 7" time periods under analysis, SP is an n
X T matrix of simulated prices containing the
n random draws from the estimated price dis-
tribution for 7" time periods in the evaluation,
and .* is the element-by-element matrix mul-
tiplication operator. Net revenues per planted
acre were then calculated by subtracting pro-
duction costs from and adding cottonseed rev-
enues to the total revenues'

(13) NR =TR — PC + SR,

where NR is an n X T matrix containing n net
revenue realizations at 7 time periods, PC is
an n X T matrix containing the production cost
per planted acre less insurance and returns to
management, and SR is an n X T matrix con-
taining the seed revenues per planted acre as-
sociated with the n simulated yield realizations
for the T time periods in the analysis. Produc-
tion costs were derived by taking an average
of 1996-1998 costs for each region as report-
ed in the Texas Agricultural Extension Ser-
vice’s (TAEX) crop budgets and were as-
sumed to remain constant for the study period.
Cottonseed yields for each region were based
on the simulated lint yields assuming the same
ratio of seed to lint as the TAEX budgets. Cot-
tonseed revenues were calculated using the av-
erage of the cottonseed price reported in
TAEX budgets during the last 3 years.

Net returns per planted acre were then cal-
culated by subtracting insurance premiums
and adding indemnity payments, when appli-
cable.

(14) NRet = NR — IC + IR,

where NRet is an n X T matrix of net returns,

"It is noted that other farm incomes that include
government payments have not been taken into ac-
count in calculating total and net revenues per planted
acre of cotton.
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IC is an n X T matrix containing the cost of
insurance premiums, and /R is an n X T matrix
containing revenues from insurance indemnity
payments.

Insurance premiums were calculated using
an average production history (APH), esti-
mated base price, and 1999 premium rates and
subsidy factors obtained from the USDA's
FCIC-Risk Management Agency (FCIC-
RMA). Regional rates were held constant
across the planning horizon. The APH was
calculated as a moving average of the previous
5 years’ yields

(]5) APHr - [SYH—Sr F Ser—-iJ + SYtr—.h

+ 80+ S¥)05,

where APH, is the n X 1 vector of APHSs cal-
culated for time period 7. Simulated yield vec-
tors for the previous 5 years were needed to
calculate the APH vector for time 7 = 1. Thus,
a total of T+ 5 n X 1 yield realization vectors
had to be simulated.

The base prices for MPCI insurance prod-
ucts, which are annually set by the FCIC based
on expectations of the market price, were es-
timated by a distributed lag model, and the
model was tested and corrected for first-order
autocorrelation using the first-order autore-
gressive process [Equation (16)]. The estimat-
ed model was

(16) BP,= 0.1134 + 0.2093+P, , + 0.2751%P, ,
(0.0628)  (0.0960) (0.0921)
+0.2449+P, ,  R? = 0.88,

(0.0955)

where BP, is the base price at time 1; P, |, P, ,,
and P, , are the market prices observed at time
t — 1,t— 2, and t — 3, respectively; and the
numbers in parentheses are the standard error
estimates. Base prices for CRC insurance
products, though determined by the FCIC as
95% of the average of December futures con-
tract between January 15 and February 14,
were also predicted for each of the 10 years
in the planning horizon using Equation (16).
The premium rates are dependent on the
APH and coverage level chosen. Indemnity

payments were calculated for each simulated
yield realization. For the MPCI product, the
indemnity payment was calculated as

(17 IR, = [(APH *CL) — SY,]*BP*PE,

where IR, is the ith element of the n X 1 IR
vector for year f, CL is the chosen level of
yield coverage, and PE is the chosen price
coverage level. The indemnity was only cal-
culated when the simulated yield fell below
the guaranteed yield, or when SY, <
(APH *#CL). Otherwise, IR, was set equal to
zero. For the CRC insurance product, because
the indemnity is based on the higher of the
base price and market price at harvest, the in-
demnity payment was calculated as

(18) IR, = {[APH *max(BP,. SP;)]*CL}

o (SYi.r*SPia)v

where SP, is the ith element of the n X 1
vector of simulated prices for year . The in-
demnity was only calculated if the simulated
total revenue fell below the guaranteed level
or when (SY,*SP,) < {[APH,*max(BP,,
SP,)]*CL}. Otherwise, IR, was set equal to
zero.

Simulated net returns under different crop
and revenue insurance products were used to
analyze the efficacy of the insurance products
from the producers’ perspective. The statistical
measures used to compare insurance products
and coverage levels were mean net returns,
standard deviation, coefficient of variation of
net returns, probability of receiving an indem-
nity payment, premiums paid and indemnity
payments received over the 10-year planning
horizon, and the difference between the in-
demnities received and premiums paid. A
third-degree stochastic dominance analysis
was also used to rank crop insurance products
and coverage levels assuming that cotton pro-
ducers are risk averse. Also, confidence pre-
miums were calculated using a method devel-
oped by Mjelde and Cochran as a measure of
a premium subsidy it would take in order to
make a producer indifferent between a domi-
nated scenario and the dominant scenario.
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Table 1. Parameter Estimates for the Irrigated
and Dryland Cotton Yield and the Texas Cot-

ton Price Distribution Models

Parameter Estimate

Final Final Final

Irrigated Dryland Price
Parameter Model Model Model
i} - 0.2631
n — 19.9886
By 394.2706 265.3709
By, === =
By, 91.8765 51.4848
B —7.7264 —16.2232
B, — —
B, —7.4253 -
B, 0.5814 1.7620
B, - —0.0460
B, — 0.2747
B — —
T 230.6986 185.3323
o — —51.5959
O —47.0928 —
oo —112.0892 —49.5568
Tp = =
oy, 1.8243 1.9146
Oy — —1.1149
oL 1.8542 —
o, —-0.0149 —
[y 8 -0.2137 -
o, — ~0.1366
3} J—
m -
p 0.4431
B, 0.7043
B, —0.0022
B, —
o, 0.1180
o, —0.00067
o, .

Notes: All parameters are as defined in Equations (1-4),
(7), and (8) in the text. All parameters included in the
final model are statistically significant at the 10% level,
according to the two-tailed Student’s t- and the single-
parameter likelihood ratio test.

Results
Yield and Price Distributions
Table 1 presents the final estimated yield and

price distribution models. Single-parameter as-
ymptotic t-tests were used to determine the

statistical significance of the model parame-
ters. All parameters that did not appear statis-
tically significant at the 10% level were set
equal to zero in the final models. Likelihood
ratio tests were conducted to make sure that
the restrictions imposed in the final models
were statistically justified. The results indicate
that dryland cotton yields in the northern High
Plains, southern High Plains, and northern
Low Plains are nonnormal, exhibiting a kur-
totic and right-skewed distribution, whereas ir-
rigated yields in those same regions appear to
follow a normal distribution. The mean and
variance of both distributions are changing
through time and are affected by factors such
as region and acres planted. This information
is useful since actuarially fair premiums can
only be calculated under a precise knowledge
of the crop yield distributions.

For 1995, the predicted mean of the irri-
gated cotton yield distribution in the northern
and southern High Plains was approximately
588 Ibs./planted acre, whereas the predicted
mean for the northern Low Plains was about
486 Ibs./planted acre. The standard deviations
of the irrigated cotton yield distributions in the
southern High Plains, northern High Plains,
and northern Low Plains were estimated at
about 266, 219, and 172 Ibs./planted acre, re-
spectively. The means of the estimated dry-
land cotton yield distributions in 1995 were
228 Ibs./planted acre for the northern and
southern High Plains and 279 Ibs./planted acre
for the northern Low Plains. The standard de-
viations were 189 Ibs./planted acre for the
northern and southern High Plains and 159
Ibs./planted acre for the northern Low Plains.

The mean of the yield distribution for each
region was assumed to be the same at the farm
and county levels, but different variances were
estimated at each level. Farm- and county-lev-
el irrigated yield variability was found to be
changing at different rates through time. The
standard deviation of the estimated county-
level irrigated cotton yield distribution for the
year 1995 was about 75 lbs./acre less than the
standard deviation of the estimated farm-level
yield distribution for that year. Farm- and
county-level dryland yield variability was
found to be changing at the same rate through
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Figure 1.

time. The model indicates that from 1960 to
1998, the standard deviation of the farm-level
dryland yield distribution was about 50 Ibs./
acre more than the standard deviation of the
county-level yield distribution.

The simulated farm- and county-level dry-
land and irrigated cotton yield distributions for
the southern High Plains in 1995 are presented
in Figure 1. It should be noted that dryland
yield right skewness is compatible with West
Texas farmers’ and researchers’ intuition. Giv-
en normal rainfall conditions of 7-12 inches
during the growing season, dryland cotton va-
rieties can produce 100-400 lbs./acre. Under
drought conditions (4-7 inches of rainfall),
which can occur once or twice a decade, many
farms achieve low, or even zero, yields. Ex-
tremely high yields (500-700 Ibs./acre) can
occur every 10—-15 years as a result of very
favorable temperatures and rainfall amounts
exceeding 16 inches during the growing sea-
son. Therefore, right skewness of the dryland
cotton yield distribution is derived from the

Comparison of 1995 Cotton Yield Distributions

right skewness of the rainfall distribution. It
should also be noted that average dryland
county-level yields were seldom below 75
Ibs./planted acre, but farm-level yields have a
much higher probability of falling between
zero and 75 lbs./planted acre.

The estimated price model (Table 1) sug-
gests that cotton prices in Texas have been lin-
early declining in real terms (1998 dollars) by
about one cent every 5 years. The model es-
timates that the mean of the price distribution
in 1934 was around $0.70/1b. The standard de-
viation of the 1934 price distribution was es-
timated at about $0.12/lb. and slightly decreas-
ing through time. The statistical tests
discussed earlier suggest that cotton prices are
normally distributed, but autocorrelated.

Analysis of Alternative Crop and Revenue
Insurance Products

Utilizing the simulated yields and prices, net
revenues for the alternative crop and revenue
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insurance products were generated for the
2000-2009 planning horizon. Furthermore, in-
surance premiums and indemnities were
summed across a 10-year horizon to determine
whether the receipt of indemnity payments
offset the cost of the premiums. Tables 2 and
3 present the mean sum of net revenues ($/
acre/yr.) and the mean sum of indemnity-pre-
mium surplus (I-P Surplus; $/acre/yr.) for al-
ternative insurance products for irrigated and
dryland cotton management practices, respec-
tively.

For irrigated cotton (Table 2), the CAT in-
surance option increased the mean sum of net
returns over the no-insurance scenario for all
three regions under consideration. However,
all CRC insurance products appear to decrease
producers’ net revenue relative to the no-in-
surance option, except in the northern High
Plains, where CRC 50 resulted in a marginal
increase in net revenues. CAT was the only
insurance option that returned an I-P surplus
in all of the scenarios studied. The 50/100 and
60/100 options also returned a surplus in the
northern High Plains. The 75/100 option re-
turned an I-P deficit in all scenarios. The 50%
CRC option for irrigated cotton returned a sur-
plus in the NHP, whereas the 60% and the
75% options returned a deficit in all of the
scenarios studied. These results indicate that,
in terms of expected producer net returns, ir-
rigated cotton producers in all regions consid-
ered are better off to purchase at least the cat-
astrophic coverage. In NHP, however, 50/100
and 60/100 MPCI products were also cost ef-
fective. Of the CRC insurance products, the
50% CRC option was the only cost-effective
product for producers in the NHP.

For dryland cotton management practice
(Table 3), CAT, 50/100, and 60/100 insurance
options increased the mean sum of net returns
over the no-insurance scenario for all three re-
gions under consideration. CRC 50 also in-
creased producer net returns relative to the no-
insurance option in all regions, and CRC 60
resulted in a marginal increase in net revenues
in NHP. Similarly, CAT, 50/100, 60/100, and
CRC 50 insurance options returned an I-P sur-
plus in all of the scenarios studied. The CRC
60 option also returned a surplus in NHP. The

75
—104.34
—189.01

—97.75
—166.19
—-177.10
—120.43

CRC
60
—89.77
—57.84
—81.60
—=21 .27

-167.97
—37.82

50
—86.53
—28.34
—78.81

4.04

—165.96
-19.40

75/100

—92.19
—121.39

—91.94
—-110.94
—174.58

—94.64

60/100
—86.47
—26.58
—78.92

4.28

MPCI
—166.62
—24.29

50/100
—84.32
—7.74
—76.98
21.28
—9.32

—164.92

CAT
50/55
—80.57
25.34
—73.96
47.68
—161.92
17.09

No
Insurance
—83.39
-79.29

—163.82

Mean net revenues

Mean net revenues
I-P surplus

I-P surplus

Mean net revenues
NLP

I-P surplus

NHP

Table 2. Net Revenues ($/acre/yr.) and Indemnity-Premium (I-P) Surplus ($/acre/yr.) for Irrigated Cotton for Alternative Insurance Products

and Under a No-Insurance Scenario

SHP
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Table 3. Net Revenues ($/acre/yr.) and Indemnity-Premium (I-P) Surplus ($/acre/yr.) for Dryland Cotton for Alternative Insurance Products

and Under a No-Insurance Scenario

CRC

MPCI

CAT

50/55

No

Insurance

60 75

75/100 50

60/100

50/100

SHP

—123.22 —127.60 —147.08
—188.94

—141.44
—138.04

—-124.92

—121.48

-119.27

—125.85

Mean net revenues
[-P surplus

NHP

19.99 8.54 23.35 —15.63

58.55

—94.78 —96.85 —109.97 —96.12 —98.99 —114.83
—=127.50

—93.93

—100.53

Mean net revenues
I-P surplus

NLP

39.11 13.47

—83.55

32.90

51.23

58.67

10.69
—79.20

19.35

—1.64

20.51

14.92
—39.95

19.45 22.84 21.69 21.21
30.19

Mean net revenues

I-P surplus

9.04

15.78

19.99

Table 4. Ranking of Alternative Crop Insur-
ance Products and Confidence Premiums for
Irrigated Cotton According to Stochastic
Dominance

Irrigated
MPCI CRC
Confi- Confi-
dence dence
Premium Premium
Region Ranking (%) Ranking (%)
SHP CAT — No Ins. -
No Ins. — 50 28.33
50/100 62.76 60 34.41
60/100 59.05 75 49.70
75/100 53.14
NHP CAT — 50 —
50/100 38.13 No Ins. —
60/100 31.26 60 13.12
No Ins. — 75 39.11
75/100 46.44
LHP CAT — 60 -
50/100 57.59 50 1.49
60/100 36.40 No Ins. -
No Ins. —_— 75 19.15
75/100 46.51

75/100 and CRC 75 options, however, re-
turned an I-P deficit in all scenarios. These
results suggest that available crop and revenue
insurance products are relatively more effec-
tive for dryland cotton management practice
in all regions considered. Producers were
found to be better off to purchase up to 60/
100 MPCI products and CRC 50 in all re-
gions. In NHP, the CRC 60 product was also
cost effective.

The stochastic dominance analysis for a
risk-adverse irrigated producer indicates that
the CAT is the overwhelmingly preferred
MPCI option for all scenarios (Table 4). The
ranking of the other MPCI options was con-
sistently 50/100, 60/100, and 75/100. How-
ever, if no insurance is considered an option,
it was found to be the second preferred option
after CAT for irrigated cotton in the southern
High Plains and was preferred over the 75/100
option in the northern High Plains and north-
ern Low Plains. For dryland management
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Table 5. Ranking of Alternative Crop Insur-
ance Products and Confidence Premiums for
Dryland Cotton According to Stochastic Dom-
inance

Dryland
MPCI CRC
Confi- Confi-
dence dence
Premium Premium
Region Ranking (%) Ranking (%)
SHP CAT — 50 —
50/100 21.84 No Ins. ==
60/100 37.78 60 25.43
No Ins. —_ 75 45.36
75/100 49 98
NHP CAT — 50 —
50/100 9.11 60 227
60/100 27.89 No Ins. —
No Ins. — 75 44.67
75/100 47.09
LHP CAT — 50 —
50/100 34.00 No Ins —
60/100 24.80 60 12.43
No Ins. - 7 i) 3943
75/100 42.23

practice, the ranking of the other MPCI op-
tions (Table 5) was also consistently CAT, 50/
100, 60/100, and 75/100 in all scenarios, and
the no-insurance option always fared better
than the 75/100 option.

In the case of the CRC insurance products
for irrigated cotton (Table 4), the 50%, 60%,
and 75% options ranked in that order in SHP
and NHP. In NLP, CRC 60 was ranked higher
that CRC 50, followed by CRC 75. The no-
insurance option fared better than any of the
CRC options in SHP. In the northern High
Plains, the 50% option was preferred to no
insurance, and in NLP, both CRC 50 and CRC
60 were preferred to no insurance. In the case
of dryland cotton (Table 5), 50% CRC cov-
erage ranked higher than no insurance for both
the southern High Plains and northern Low
Plains. In the northern High Plains, both the
50% and 60% CRC coverage levels fared bet-
ter than the no-insurance option. In all sce-

narios considered, the no-insurance option
ranked above the 75% CRC coverage level.
Tables 4 and 5 also present the confidence
premiums expressed in percentage of subsidy
it would take in order to make a producer in-
different between a dominated scenario and
the dominant scenario. For irrigated cotton
(Table 4), premium confidence results indicate
that the amount of subsidy ranged from 38%
to 63% for the 50/100 option. Subsidy levels
for the 60/100 and 75/100 options ranged from
31% to 49% and from 46% to 53%, respec-
tively. For CRC options, a range of subsidies
from 1.5% to 50% were observed. Premium
confidence for dryland cotton (Table 5) was
generally lower than for that of the irrigated
cotton. It is important to note that confidence
premiums varied considerably across regions
and production practices, perhaps implying
that premium rates, to be actuarially fair, might
have to be adjusted by varying amounts across
regions for irrigated and dryland cotton.

Conclusions

The current study compares crop and revenue
insurance products for selected regions in Tex-
as using farm unit—level data. The main con-
tribution of this study is the development of a
comprehensive empirical procedure for eval-
uating and comparing the cost effectiveness of
alternative crop and revenue insurance prod-
ucts.

An important aspect of the procedure is
that the cotton yield and price distributions are
estimated using an econometric technique that
can accurately and separately account for the
changing means and variances through time
and location, right or left skewness, kurtosis,
and the correlation among the irrigated and
dryland cotton yield distributions. Results in-
dicate that the probability distribution of dry-
land cotton yields in the southern Plains of
Texas is right-skewed and kurtotic. Because of
the right-skewness, assuming a normal distri-
bution would likely overestimate the proba-
bility of low yields and underestimate the
probability of high yields (Ramirez, Misra,
and Field). If the probability of low cotton
yields is being overestimated, certain crop and
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revenue insurance products might appear ef-
ficient in a simulation analysis like the one
conducted in this study, because they would
be triggered by low yields. Also, the calcula-
tion of probabilistic statements about net re-
turns from alternative crop and revenue insur-
ance products would likely be biased because
of the assumption of yield distribution nor-
mality. Clearly, when comparing various crop
and revenue insurance products, it is important
to accurately estimate the underlying yield and
price distributions used for the analyses.

Although the illustration of the empirical
procedure, in this study, is limited to 13 coun-
ties of three west Texas regions and seven al-
ternative insurance products, its potential for
wider adaptability should be recognized. The
illustration suggests that 1999 premium rates
(after subsidies) were too high for most buy-
up insurance products for Texas cotton pro-
ducers. One reason that insurance premiums
appear high for higher levels of insurance
could be adverse selection. Adverse selection
results from a skewed participation rate to-
ward the high-risk producers, increasing the
risk of the insurance pool and indemnity pay-
ments. Actuarially fair premiums should not
only result in increased producer participation
but also might minimize the amount of ad-
verse selection and lower the overall risk of
the insurance pool. However, given premium
confidences were found to vary considerably
across region and production practices, an ex-
tensive evaluation of the current rating policy
and setting mechanism might need to be un-
dertaken on the basis of sound actuarial sci-
ences.

[Received October 2001; Accepted August
2002.]
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