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Abstract 25 

This study investigates the sensitivity of winter seasonal rainfall over the Arabian Peninsula (AP) 26 

to different convective physical parameterization schemes using a high resolution WRF model. 27 

Three different parameterization schemes: Kain-Fritch (KF), Betts-Miller-Janjic (BMJ), and Grell-28 

Freitas (GF) are used in winter simulations from 2001 to 2016. Results from seasonal simulations 29 

suggest that simulated AP winter rainfall with KF is in best agreement with observed rainfall in 30 

terms of spatial distribution and intensity. Higher spatial correlation coefficients and less biases 31 

with observations are also obtained with KF. In addition, the regional moisture transport, cloud 32 

distribution, and cloud microphysical responses are better simulated by KF. The AP low-level 33 

circulation, characterized by the Arabian Anticyclone, is well captured by KF and BMJ, but its 34 

position is displaced in GF. KF is further more successful at simulating the moisture distribution 35 

in the lower atmosphere and atmospheric water plumes in the middle troposphere. The higher skill 36 

of rainfall simulation with the KF (and to some extent BMJ) is attributed to a better representation 37 

of the Arabian Anticyclone and subtropical westerly jet, which guides the upper tropospheric 38 

synoptic transients and moisture. In addition, the vertical profile of diabatic heating from KF is in 39 

better agreement with the observations. Discrepancies in representing the diabatic heating profile 40 

by BMJ and GF show discrepancies in instability and in turn precipitation biases. Our results 41 

indicate that the selection of sub-grid convective parameterization in a high-resolution atmospheric 42 

model over the AP is an important factor for accurate regional rainfall simulations. 43 

Keywords: Arabian Peninsula, Rainfall, WRF model, Convective parametrizations, Sensitivity 44 

analysis. 45 

 46 
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1. Introduction  47 

The Arabian Peninsula (AP) is one of the driest and most water-limited environments in the world, 48 

where the availability of fresh water is of major regional concern (Osman-Elasha, 2010; Barlow 49 

et al., 2015). There are no rivers with perennial stream flow, and water supplies in the Kingdom 50 

of Saudi Arabia are principally derived from rainfall, mined groundwater, and (more recently) 51 

desalination (Ouda, 2013). Rapid socio-economic development, expansion of urbanization, 52 

agricultural activities, and high population growth are intensifying the stress on water supplies in 53 

the region. The reported increase in drought episodes (Ragab and Prudhomme, 2000; Kumar et al., 54 

2017) along with the anticipated warmer future climate (Almazroui et al., 2016a; Attada et al., 55 

2018; 2019a,b) will further stress the management of water resources. It is thus essential to 56 

understand in detail the spatio-temporal variability of rainfall over the AP, to enable its accurate 57 

prediction and design efficient strategies for mitigating water scarcity and associated risks. 58 

The availability of accurate datasets is key to studying regional rainfall variability; 59 

however, observations and associated rainfall information over the AP are lacking. Global 60 

reanalysis datasets are a crucial source of information for regions with limited observed data 61 

records. However, global climate reanalyses are still coarse, with resolutions on the order of 50–62 

100 km, not sufficient for investigating regions with complex topography, such as the western and 63 

eastern AP (Almazroui, 2015; Zittis and Hadjinicolaou, 2017). In such areas, regional climate 64 

models with finer grid spacing are more appropriate to resolve the local-to-regional processes that 65 

interact with the large-scale circulations (e.g. Gao et al., 2017). Validated high-resolution 66 

simulations may provide the relevant information at sufficient spatial and temporal scales for data 67 

sparse regions to enable studying and predicting regional rainfall variability. 68 

Most (75%) of the AP annual rainfall falls in winter, from November through April, which 69 
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is known as the wet season for the region (Almazroui, 2011; Dasari et al., 2018). Convective 70 

rainfall predominates with high spatial variability over the region, as a result of the strong impact 71 

of complex terrain on the initiation and organization of convective processes (Kumar et al., 2015; 72 

and references therein). High resolution modelling with a suitable cumulus parameterization could 73 

be used to provide a reliable characterization of regional convection processes. In this respect, 74 

Prein et al. (2015) presented a detailed review of the different aspects of high-resolution convection 75 

modelling and concluded that the choice of cumulus parametrization scheme (CPS) is an important 76 

factor in the simulation of convective precipitation. Cumulus convection has a major effect on the 77 

hydrological cycle through the release of latent heat, on the vertical transport of sensible heat, 78 

water vapor, and momentum (Han et al., 2016). It is therefore necessary to develop models that 79 

accurately represent the interactions between cumulus convection and these movements within a 80 

large-scale environment in order to obtain viable weather and climate simulations and subsequent 81 

predictions.  82 

Identifying the most suitable CPS for a particular region is crucial for reliable simulation 83 

of rainfall. Among the many available CPS schemes, extensive tests have been conducted on the 84 

Grell scheme (Grell et al., 1993; Grell and Devenyi, 2002), which was originally based on Arakawa 85 

and Schubert (1974); the BMJ scheme (Betts and Miller, 1986; Janjic, 1994); and the KF scheme 86 

(Kain and Fritsch, 1993; Kain, 2004), which was developed based on Fritsch and Chappell (1980). 87 

Various sensitivity studies with respect to the CPS have also focused on reproducing 88 

climatological rainfall. For instance, Giorgi and Shields (1999) suggested that the Grell Scheme 89 

produces a realistic regional climate over the continental United States, although Liang et al. 90 

(2004) later reported the superiority of the KF for simulating North American regional climate 91 

rainfall. 92 
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Almazroui (2016a;b) recently used a 50-km regional climate model (RegCM) to investigate 93 

the impact of different CPSs in the Middle East and North Africa (MENA) over a limited time 94 

period of 5 years. The study reported that rainfall over the AP is quite sensitive to the cumulus 95 

parameterization. Similar studies have also been conducted again over short time-frames and using 96 

relatively coarse resolution models (e.g. Evans et al., 2004; Almazroui 2016a). The complex AP 97 

terrain may induce low-level convergence and upslope winds through valleys. This may 98 

significantly impact the stimulation and growth of deep convection (Bennett et al., 2011; Wang et 99 

al., 2016) and cannot be resolved with coarse resolution models. The sensitivity of convective 100 

precipitation over the complex terrain on the AP with respect to different CPSs has yet to be studied 101 

using a high resolution model. 102 

Several studies have investigated the sensitivity of rainfall simulations to CPSs in various 103 

regions. For instance, some studies highlighted the importance of choosing a suitable combination 104 

of parameterization schemes within the Weather Research and Forecasting (WRF) model to 105 

simulate the rainfall features over the Indian region (Mukhopadhyay et al., 2010; Srinivas et al., 106 

2013; Ratnam et al., 2017).  Similar efforts have been conducted for Australia (Evans et al., 2012, 107 

Kala et al., 2015), Spain (Argueso et al., 2011), Europe (Mooney et al., 2013), China (Yuan et al., 108 

2012), South Africa (Crétat et al., 2012, Ratna et al., 2014), and the MENA region (e.g. Zittis et 109 

al., 2014; Ehsan et al. 2017).  110 

This study investigates the sensitivity of WRF simulated rainfall at seasonal scales over 111 

the AP with respect to the choice of CPSs based on a high-resolution (5 km) configuration capable 112 

of resolving the complex regional topography during the period 2001 to 2016. The selected CPSs 113 

are analyzed in terms of their ability to effectively simulate the magnitude and spatial patterns of 114 

rainfall and associated physical processes, and are further tuned to enhance the precipitation 115 
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simulations. The remainder of the paper is organized as follows. Section 2 describes the data and 116 

methodology, which also outlines the model configurations and the design of the numerical 117 

experiments. Sections 3 and 4 present and analyze the results. A summary of the main conclusions 118 

is offered in Section 5. 119 

2. Model, Data, and Methods 120 

2.1 Model details and experimental configuration 121 

We implemented a non-hydrostatic Advanced Research WRF model (Version 3.8.1; Skamarock 122 

et al., 2008) with terrain following coordinates and a constant pressure surface at the top. The 123 

model configuration includes two two-way nested domains with respective horizontal resolutions 124 

of 15 km and 5 km, each with 52 vertical sigma levels. The chosen model domain extends between 125 

30°W to 130°E in the zonal direction and 30°S to 45°N in the meridional direction is used to 126 

resolve the large-scale atmospheric features and internal dynamics of the system (e.g. Wang et al., 127 

2004; Lucas-Picher et al., 2011; Raju et al., 2015a, b). The initial and 6-hourly boundary conditions 128 

are taken from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis 129 

(ERAI) data available at a resolution of 0.75°. Sea surface temperature (SST) data are also 130 

prescribed from the ERAI dataset. For each winter season, simulations are conducted from 131 

November 1 to April 1, with the first month used as a spin-up period to remove spurious effects. 132 

The sensitivity of the model to the following three CPSs is investigated: Kain-Fritsch (KF) 133 

(Kain and Fritsch, 1993; Kain, 2004), Betts-Miller-Janjic (BMJ) (Betts and Miller, 1986; Janjic, 134 

1994), and the scale-aware Grell-Freitas (GF) (Grell and Freitas, 2014): 135 

(i) KF is a simple mass-flux cloud model for moist updraft/downdraft. It includes a trigger 136 

function to initiate convection, compensating for circulation, and closure assumption.  137 
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(ii) BMJ is a convective-adjustment-type scheme that was developed to adjust atmospheric 138 

instabilities (toward a reference profile derived from a climatology) by triggering deep 139 

convection, when sufficient moisture is available.  140 

(iii) GF is an ensemble scheme, in which multiple cumulus schemes and variants are run within 141 

boxes to obtain an ensemble-mean realization. The ensemble members use different 142 

parameters for updraft/downdrafts entrainment/detrainment. It is an updated Grell-Dévényi 143 

scheme (Grell and Devenyi, 2002), such that the scale awareness is improved by 144 

introducing the method of Arakawa et al. (2011). This relaxes the assumptions of 145 

traditional parameterizations in which convection is contained within individual model grid 146 

columns when the fractional area covered by convection clouds is small.  147 

All other physical parameterizations are the same in all experiments and are as follows: the 148 

Thompson (Thompson et al., 2016) microphysical scheme (Hong and Lim, 2006) for cloud 149 

processes, the Rapid Radiative Transfer Model for Global circulation models (RRTMG) for both 150 

longwave and shortwave radiation (Iacono et al., 2008) processes, and the Mellor-Yamada-151 

Nakanishi-Niino turbulent kinetic energy scheme (Nakanishi Niino, 2004) for the planetary 152 

boundary layer. Land surface processes are resolved using the Noah land surface model scheme 153 

(Chen and Dudhia, 2001) with four soil layers. Three sets of experiments were conducted for each 154 

season during the period 2001 to 2016. The 5 km (inner domain) simulations were analyzed to 155 

identify the differences between the model simulations that are solely attributed to the different 156 

CPSs. 157 

2.2 Data and Methods  158 
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Daily precipitation data with a spatial grid resolution of 0.25 0.25 were obtained from the 159 

Tropical Rainfall Measuring Mission (TRMM) version 7 (hereafter referred to TRMM; Huffman 160 

et al., 2007, 2010). This product combines precipitation estimates from various satellite systems 161 

(both infrared and radar) and a surface-gauge analysis on a grid at 3-hourly intervals. Almazroui 162 

(2011) compared the TRMM gridded rainfall data with rain gauge observations over the AP and 163 

concluded that the TRMM rainfall data is in good agreement with the observations, which was 164 

lately confirmed by Hasanean and Almazroui, (2015) and Sultana and Nasrollahi (2018). We also 165 

evaluated the model-simulated temperature, specific humidity, geopotential height and horizontal 166 

wind vectors at different pressure levels against the National Aeronautics and Space 167 

Administration’s Modern-Era Retrospective Analysis for Research and Applications Version 2 168 

(MERRA-2, Gelaro et al., 2017), which is available on an 0.58°  0.625°grid. Mean monthly cloud 169 

information from the Clouds and the Earth’s Radiant Energy System (CERES) database available 170 

at a spatial resolution of 11 was also used to assess the model-simulated cloud characteristics. 171 

To quantitatively assess the model simulations, statistical scores such as mean bias, Root 172 

Mean Square Error (RMSE), Standard Deviation (SD), and the spatial pattern correlation 173 

coefficient (PCC) were computed. Tables 1 and 2 present the four statistical metrics of rainfall and 174 

temperature for the entire AP and for three different sub-regions: the southern AP (SAP; 12– 22° 175 

N, 35–60° E), the northern AP (NAP; 22–32° N, 35–60° E), and the northeastern AP (NEAP; 22–176 

35° N, 45–60° E). The selection of these sub-regions was based on their regional climate 177 

characteristics, as suggested by previous studies (e.g. Almazroui, 2012; Athar et al., 2014; Kang 178 

et al., 2015; Attada et al., 2019a). A two-tailed significance test was performed using a Student’s 179 

t-distribution to evaluate the statistical significance of the results. The vertically integrated 180 

moisture transport (kg m−1 s−1) was estimated as, 181 
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𝑉𝐼𝑀𝑇 = 1𝑔 ∫ 𝑞𝑉𝑑𝑝,𝑃𝑠𝑃𝑡  182 

where V is the horizontal velocity, q is specific humidity, Ps is surface pressure, Pt is the pressure 183 

at the top of the air column, and 𝑑𝑝 is the vertical incremental change in pressure.  184 

 We further computed and analyzed the apparent heat source (e.g. Yanai et al., 1973) to 185 

determine the thermodynamical feedbacks to the seasonal mean precipitation and to identify the 186 

convective parameterization deficiencies in the model. The apparent heat source (Diabatic heating) 187 

is computed as the sum of the latent heating associated with phase changes, the vertical transport, 188 

the sub-grid diffusion, and the radiative heating (e.g. Liu and Moncrieff, 2007). 189 

                       Apparent heat source = 𝐶𝑝 ( 𝑝𝑝0)𝑘 (𝜕𝜃𝜕𝑡 + 𝑉 ⋅ ∇𝜃 + 𝜔 𝜕𝜃𝜕𝑝) 190 

where   is the potential temperature, V is the horizontal velocity,   is the vertical velocity, and p 191 

is the pressure. k = R/Cp, where R and Cp are, respectively, the gas constant and the specific heat 192 

at constant pressure of dry air; po = 1000 hPa.      193 

3. Results and discussion 194 

We first evaluate the sensitivity of the model simulated rainfall to different CPSs with respect to 195 

the TRMM observations. We then analyze the circulation, temperature, moisture and cloud 196 

distributions to understand the dynamic and thermodynamic responses of the model rainfall to the 197 

selected convective schemes. 198 

3.1 Evaluation of seasonal rainfall 199 

Fig. 1 shows a comparison of the spatial distribution of winter (DJFM) TRMM observed total 200 

seasonal rainfall with WRF simulations with the different CPSs, KF, BMJ, and GF over the period 201 

, 
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2001-2016. High rainfall bands are located over the NAP, the Arabian Gulf, and the Mediterranean 202 

region. A considerable amount of rainfall is also observed in the narrow zones over the 203 

southwestern AP followed by the central and southern parts of the Sarawat mountain ranges (Fig. 204 

1a). The high rainfall in the NAP is mainly related to the passage of Mediterranean cyclonic storms 205 

(midlatitude westerlies). The alignment of the mountains along the coast of the Mediterranean Sea 206 

also influences the precipitation distribution in the NAP by creating a pronounced lee effect with 207 

rapidly decreasing rainfall toward the northeast. It is also noticeable that precipitation decreases 208 

from north to south, with a minimal (or no) rain, observed over the SAP (referred to as a dry zone), 209 

particularly over the Rub Al-Khali (the world’s largest desert) region.  210 

These observed rainfall features are simulated reasonably well with KF (Fig. 1b) and BMJ 211 

(Fig. 1c). However, GF (Fig. 1d) simulates an extremely dry area over the entire region of Saudi 212 

Arabia, except the eastern Mediterranean and the southern Red Sea. Although BMJ and KF 213 

underestimate the rainfall compared to observations over the Northeastern AP, KF produces spatial 214 

patterns of rainfall that are more realistic than those of BMJ and GF. KF also interestingly produces 215 

major precipitation zones over the AP: one located in NEAP and the other over the south-central 216 

Red Sea (with 80–150 mm), which is known as the Red Sea Convergence Zone (RSCZ). Northerly 217 

and southerly winds converge in this region and enhance convection, (e.g. de Vries et al., 2013; 218 

Viswanadhapalli et al., 2016; Dasari et al., 2018), and this effect is more realistically resolved by 219 

KF and BMJ compared to the observed rainfall. The spatial correlation coefficients between the 220 

observed rainfall and model simulations (KF, BMJ, and GF) suggest that the superiority of KF, 221 

with a higher correlation coefficient 0.71 compared to 0.66 for BMJ and 0.19 for GF. 222 

To achieve good fidelity of the WRF model with different CPSs, the model should not only 223 

capture the mean fields, but also generate variances that are consistent with those of the 224 
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observations. We therefore compared the standard deviations (SD) of rainfall as they result from 225 

the model with KF, BMJ, GF, and TRMM observations (Fig. 1e-h). TRMM (Fig. 1e) shows the 226 

highest (> 2 mm) SD over the NEAP and eastern Mediterranean regions. This seasonal mean 227 

rainfall variability is reproduced best with KF (Fig. 1f) and BMJ (Fig. 1g). The highest rainfall 228 

variability occurs over the NEAP compared to the other sub-regions, as reported in earlier studies 229 

(Kang et al., 2015; Abid et al., 2016). The weaker SD in GF is similar to the seasonal average, 230 

which has a lower magnitude (Fig 1d). KF and BMJ reproduce better the details of the rainfall 231 

variability in the southern Red Sea where RSCZ-induced rainfall is predominant. Overall, KF 232 

exhibits a spatial variability pattern and amplitude that is more in agreement with TRMM than the 233 

other two CPSs.  234 

The biases between the observed and simulated rainfall are shown in Figs. 1j, 1k, and ll for 235 

KF, BMJ, and GF, respectively. All three schemes produce negative biases over the NEAP and 236 

positive biases over the SAP. KF shows a dry bias of approximately 0.8 to 1 mm day-1, whereas 237 

BMJ and GF exhibit significant dry biases of around 1.5 to 1.8 mm day-1 and more than 2 mm  238 

day-1, respectively. These dry biases are reflected in the higher RMSEs for all schemes and are 239 

more pronounced over the NEAP for BMJ and GF. The regional averaged RMSEs of rainfall over 240 

the AP are 0.29, 0.31, and 0.37 for KF, BMJ, and GF, respectively (Table 1). Overall, the analyses 241 

of mean rainfall patterns, SDs, and biases indicate that the model-simulated precipitation sensitive 242 

to the CPSs over the AP, with the KF outperforming the other two CPSs.  243 

3.2 Seasonal evolution of rainfall 244 

The time series of daily rainfall climatology from TRMM rainfall over the AP, NAP, and SAP are 245 

presented in Fig. 2 for each CPS. Based on the TRMM observations, the amount of precipitation 246 

and rainfall episodes are relatively highest in NAP (Figs. 2a,b,c). All CPSs simulated these 247 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-19-0114.1.



12  

variations in the seasonal evolution of rainfall, but with lower magnitudes than in the observations. 248 

The seasonal variability of rainfall from GF is significantly dampened compared to BMJ and KF, 249 

which well reproduce the seasonal cycle as observed in TRMM for AP, NAP and SAP sub-regions. 250 

TRMM also suggests that the largest rainfalls occur during December and March over the AP and 251 

NAP, whereas over SAP the high rainfall is recorded during February and early March. With the 252 

exception of a few episodes, the simulated rainfall with KF, BMJ, and GF clearly exhibits a 253 

significant dry bias, throughout the winter season over the AP and NAP, and a wet bias over the 254 

SAP. All three CPSs depict the north-south rainfall gradients, with higher rainfall over NAP and 255 

lower over SAP, in agreement with the TRMM observations.  The excess amount of rainfall over 256 

the NAP is attributed to the passage of midlatitude synoptic storms during winter (Almazroui et 257 

al., 2013; Barlow et al., 2015). Out of the three CPSs, the KF-simulated rainfall seasonal cycle 258 

closely follows the TRMM rainfall patterns, with daily peaks over the AP and its sub-regions.  259 

In order to validate the model skill in simulating rainfall, different verification scores 260 

namely the equitable threat score (ETS), bias score (BS) and false alarm rate (FAR) are computed 261 

over a wide range of rainfall thresholds based on the contingency table suggested by Bhomia et al. 262 

(2019). Figure 3 shows the ETS, BS and FAR verification score at different rainfall thresholds 263 

varying from 1 to 15 mm over NAP. ETS first increases and then decreases for the higher rainfall 264 

thresholds of KF and BMJ. For KF, ETS has higher values at all rainfall thresholds compared to 265 

BMJ and GF. Note that KF and BMJ show lower skills for higher rainfall thresholds (above 12mm) 266 

whereas GF has the poorest performance. A gradual increase of BS is seen with increased rainfall 267 

thresholds. KF shows higher BS compared to BMJ for all the thresholds. FAR is increased rapidly 268 

with increased rainfall thresholds, and all CPSs has no/minimal skill for high thresholds. KF has 269 

low FAR values compared to BMJ and GF. Overall, the KF has a better rainfall skill compared to 270 
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the others two CPSs.  The impact parameter (Wilks, 2006; Raju et al., 2018; Kumar et al., 2019) 271 

is also estimated to quantify the improvement/degradation of KF in simulating rainfall over GF 272 

and BMJ. The analysis (not shown) confirms that the KF has a better skill in simulating rainfall.  273 

3.3 Assessment of spatial distribution of near surface temperatures 274 

The presence of complex mountains to the west of AP is generally difficult to handle with 275 

numerical models, and may result in temperature bias which ultimately impacts the simulation of 276 

precipitation. The accurate representation of steep land-sea thermal gradients is one of the basic 277 

requirements for a model to simulate realistic rainfall distributions. To assess the simulated near 278 

surface temperature distributions in the model, we plot the mean seasonal winter daily mean 279 

temperature (2mT), maximum temperature (Tmax), and minimum temperature (Tmin) are plotted 280 

in Fig. 4 at 2 m height for the period 2001–2016 from MERRA-2 and the model with the three 281 

different CPSs. The mean 2mT from MERRA-2 (Fig. 4a) indicates low temperatures (< 288 K) 282 

over the NAP, moderate temperatures (288–296 K) over central and western AP, and higher 283 

temperatures (> 296 K) over SAP and the southern Red Sea (including Sudan and northern 284 

Ethiopian regions). KF (Fig. 3b) and BMJ (Fig. 4c) schemes simulate well the high temperature 285 

observed over the Rub Al-Khali desert region, and the north-south temperature gradients over the 286 

AP and the Red Sea (high temperatures over the southern Red Sea and low temperatures over the 287 

northern Red Sea). GF (Fig. 4d) underestimates the near surface 2mT patterns compared to 288 

MERRA-2. The temperatures in the southeastern AP are higher than in the southwestern AP, due 289 

to the local topography. The lowest temperatures (< 275 K) are confined to the NEAP region in 290 

all CPSs, and these are in good agreement with MERRA-2. All three CPSs simulate the lowest 291 

temperatures over the mountainous region, suggesting the effectiveness of a high-resolution WRF 292 

model in reproducing the lowest temperatures, namely by resolving local topography and their 293 
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effects on temperatures (e.g., Viswanadhapalli et al., 2016). The comparative statistics between 294 

MERRA-2 and the model-simulated 2mT, Tmax, and Tmin for the entire AP and sub-regions are 295 

outlined in Table 2. The spatial correlations between MERRA-2 and WRF with KF, BMJ, and GF 296 

are 0.96, 0.96, and 0.93, respectively. Over the NAP (SAP), these correlations are 0.96 (0.92), 0.95 297 

(0.93), and 0.93 (0.91) with KF, BMJ, and GF, respectively; and for the NEAP, the three schemes 298 

provide even higher correlation coefficients of 0.97, 0.96, and 0.95, with KF being relatively 299 

higher than BMJ and GF.  300 

To quantify the ability of WRF to describe mean temperatures, we further conducted 301 

different statistical skill score analyses over the AP and its sub-regions and these skill scores are 302 

statistically significant at 95% confidence level with the student-t test. The observations exhibit 303 

the highest variability over the NEAP, NAP, AP, and SAP with the values of 2.74 K, 2.59 K, 2.12 304 

K, and 1.68 K, respectively. All three schemes produce higher temperature variability over the AP; 305 

with KF (2.97 K) performing relatively better than BMJ (3.07 K) and GF (3.30 K). Similar results 306 

were also obtained in other sub-regions of the AP (Table 2). BMJ and GF exhibit strong cold biases 307 

of approximately 2.1 K and 3.1 K over the AP, whereas the mean bias of KF is around 1.4 K, 308 

indicating the superiority of KF in simulating mean temperature patterns.  309 

The salient characteristics of winter mean daily Tmax, such as the significant north–south 310 

gradient (higher temperatures over the SAP than the NAP) superimposed with coastal effects and 311 

localized orographic features observed in MERRA-2 (Fig. 4e), are well simulated by all CPSs, 312 

despite being slightly underestimated. MERRA-2 shows that the highest Tmax (> 300 K) occurs 313 

over Sudan and the SAP. KF (Fig. 4f), BMJ (Fig. 4g), and GF (Fig. 4h) show low Tmax over the 314 

NEAP and high Tmax over the SAP, including the Rub Al-Khali region as in MERRA-2. 315 

Relatively, lower Tmax values are noticeable over the eastern side of the Red Sea, suggesting the 316 
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influence of topography on the maximum temperature distribution in the WRF model. Overall, all 317 

CPSs underestimate the Tmax patterns over the AP, although they are able to simulate the north-318 

south Tmax gradient. In terms of spatial distribution, KF simulates a realistic distribution of Tmax 319 

similar to that of MERRA-2; however, those of BMJ and GF are not as accurate, with GF 320 

significantly underestimating Tmax. Moreover, only KF successfully simulates the three distinct 321 

climate regimes (Attada et al., 2019a, b) over the AP that are observed in MERRA-2. In general, 322 

this meridional temperature gradient is mainly modulated by western disturbances originating in 323 

the Mediterranean region during winter (Viswanadhapalli et al., 2016; Dasari et al., 2018; Attada 324 

et al., 2019b). The pattern correlations between the model simulations and MERRA-2 over the AP 325 

reveal higher values for KF (0.91) than BMJ (0.89) and GF (0.84). Higher pattern correlations are 326 

also obtained for NEAP: 0.94, 0.94, and 0.92 using KF, BMJ, and GF, respectively. The SDs of 327 

Tmax are similar in magnitude to those of mean temperatures (Table 2), and Tmax has stronger 328 

negative biases compared to mean 2mT, with values of approximately -2.8 K, -3.5 K, and -4.1 K 329 

over the entire AP for KF, BMJ, and GF, respectively. For the mean temperature, GF leads to 330 

higher RMSEs than KF and BMJ over the AP and its sub-regions.  331 

 The comparison of simulated daily minimum temperatures (Tmin) with MERRA-2 (Fig. 332 

4i-4l) suggests reasonable agreement for the north–south gradient over the AP and the high 333 

minimum over the Red Sea, southeastern AP, and the Arabian Gulf. The simulations also produce 334 

lower temperatures over Ethiopia and western Yemen, consistent with those of Almazroui (2012) 335 

using the RegCM model. The CPSs leads to significant differences when simulating minimum 336 

temperatures over the AP. Although all schemes underestimate minimum temperatures compared 337 

to MERRA-2, KF performs better, in terms of the regional distribution of temperatures, than BMJ 338 

and GF. The spatial distribution of the mean bias of Tmin (not shown) shows a strong cold bias 339 
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over the entire AP, in agreement with the findings of Viswanadhapalli et al. (2016). Furthermore, 340 

higher correlations with MEERA are obtained with KF simulated Tmin patterns over the AP and 341 

its sub-regions (Table 2). The SD of Tmin suggests that all CPSs exhibit a higher SD over NEAP 342 

than the other sub-regions, but are lower compared to MERRA-2. KF has less RMSE over the AP 343 

(1.4 K), NAP (1.2 K), SAP (1.6 K), and NEAP (1.5 K) compared to BMJ and GF (Table 2).   344 

3.4 Seasonal cycle of daily mean, maximum, and minimum temperatures 345 

Fig. 5 depicts the seasonal cycles of daily mean temperature, Tmax, and Tmin over the AP, NAP, 346 

and SAP over the period 2001–2016. The seasonal cycle of daily temperatures from MERRA-2 347 

over the AP (Fig. 5a), NAP (Fig. 5b), and SAP (Fig. 5c) indicates peak temperatures during the 348 

last week of February. This seasonal evolution of temperatures is well re-produced by WRF using 349 

all CPSs. Overall, the temperature evolutions are similar in all climatic zones and are well captured 350 

(with some deviations) compared to MERRA-2. Over the AP and SAP, KF is better at producing 351 

mean temperatures, while GF is slightly better over the NAP. All CPSs simulate the peak 352 

temperatures earlier than MERRA-2. 353 

The seasonal cycle of Tmax (Fig. 5d–5f) is similar to that of mean temperature, but varies 354 

between 292 K to 302 K. All three schemes capture the evolution of Tmax over the AP with notable 355 

underestimation compared to MERRA-2. KF performs better over the AP than over NAP and SAP, 356 

for which it produces cold biases. In the case of NAP, GF shows the best phase of Tmax evolution, 357 

while KF and BMJ depict colder biases. KF seems to not perform as well as BMJ and GF in 358 

simulating the maximum temperature evolution. In MERRA-2, the seasonal evolution of Tmin 359 

(Fig. 5h–5i) varies between 284 K and 286 K over the AP; 281 K to 283 K over the NAP; and 289 360 

K to 294 K over the SAP. All three schemes simulate these evolutions of Tmin over the AP sub-361 
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regions with considerable discrepancies. They also underestimate the seasonal cycle compared to 362 

MERRA-2, with KF performing relatively better than BMJ and GF.  363 

3.5 Monthly variations in rainfall and temperature biases  364 

The sub-regional average precipitation and temperature biases computed for the individual months 365 

of December, January, February, and March between the model simulations with different CPSs 366 

and TRMM observations are presented in Fig. 6. Monthly variations in the rainfall biases of KF 367 

are smaller than those of BMJ and GF for all regions. Over the AP, the rainfall bias ranges between 368 

-0.1 and 0.21 mm day-1 with KF, between -0.1 to 0.30 mm d-1 with BMJ, between -0.19 to 0.35 369 

mm d-1 with GF. All CPSs simulate the wet bias in the month of February and March. Strong wet 370 

biases are obtained with BMJ over NAP during the month of December and while dry bias with 371 

KF and GF. The wet bias in all CPSs over the SAP is observed during February and March.  372 

The average mean temperature bias (Figs. 6d–f) over the AP and its sub-regions for individual 373 

months indicates that the CPSs in WRF produce a cold bias. A stronger cold bias of about -2 to -4 374 

K in GF, about -0.5 to -3K in BMJ and about -0.2 to -2 K with KF is obtained in all months. 375 

Overall, the results indicate that the KF leads to better simulations of mean surface temperatures. 376 

Similar biases are also obtained for maximum and minimum temperatures. From Table 2, the 377 

regional temperatures error statistics suggest lower errors and highest correlations with KF. 378 

3.6 Assessment of circulation patterns 379 

Fig. 7 shows the spatial distribution of seasonal mean winter wind flow and geopotential height 380 

patterns at 850 hPa from MERRA-2, and WRF with KF, BMJ, and GF. The results shows the 381 

salient winter circulation patterns of AP, such as the strong anticyclonic circulation pattern 382 

(clockwise rotation) between the central to SAP (referred to as the Arabian anticyclone), the strong 383 

westerly winds passing through the Mediterranean Sea towards the NAP, the more pronounced 384 
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wind circulation from the Arabian Gulf to the central AP and NAP, and the RSCZ over the central 385 

Red Sea (with its eastern plank towards the AP and its western plank that has moved towards the 386 

Sudan region). The geopotential height 850 hPa also indicates the presence of the Arabian 387 

anticyclone (high geopotential heights) over the eastern AP, which is an important modulator of 388 

rainfall in the region (e.g. Dasari et al., 2018).  389 

The Arabian anticyclonic pattern is well simulated by KF (Fig. 7b) and BMJ (Fig. 7c), 390 

although slightly shifted westward in BMJ (Fig. 7a), while GF (Fig. 7d) misses its location as 391 

compared to MERRA-2. BMJ- and KF-simulated winds over the Gulf of Aden are in good 392 

agreement with MERRA-2, but GF overestimates these winds. KF yields a more realistic 393 

simulation of the Arabian anticyclone, RSCZ, and westerly winds. It also shows the southerly flow 394 

from the Arabian Sea towards land in agreement with MERRA-2 flow patterns. The mid-level 395 

winds (500 hPa) during winter (not shown) from MERRA-2 show a strong anticyclonic circulation 396 

over the southern Red Sea and the Sudan region, and these are better simulated by KF and BMJ 397 

compared to GF. Over the northern AP, strong mid-tropospheric westerlies are observed in both 398 

KF and BMJ, and MERRA-2, which act as wave guides for the Mediterranean westerly systems 399 

to generate rainfall over the eastern AP and NEAP. 400 

The seasonal mean distribution of sea level pressure (SLP) during winter (not shown) 401 

exhibits low pressure systems over east Africa (the Sudan low) and the south western AP 402 

(including the southern Red Sea), and a high pressure system over the NEAP. This meridional 403 

pressure gradient (~5 hPa) plays an important role in the generation of the AP winter rainfall. 404 

Rainfall in the southwestern AP is developed by the penetration of the low-pressure system 405 

emanating from the Sudan low and the Red Sea low, which interacts with the southwestern AP 406 

mountains and trigger rainfall (e.g. Chakraborty et al., 2006, Dasari et al., 2018). These winter 407 
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pressure patterns are well simulated by KF, BMJ, GF compared to MERRA-2, while the Sudan 408 

lows are better simulated by KF. 409 

The upper tropospheric winds (200 hPa) from MERRA-2, KF, BMJ, and GF (Fig. 7e–h) 410 

show the presence of the subtropical westerly jet (SWJ) over the AP, which has highest regional 411 

wind speeds of approximately 45 ms-1. This jet is often referred to as the Middle-East jet stream, 412 

and is an important dynamical precipitation factor in the AP, acting as a wave guide for westerly 413 

disturbances (e.g. Athar et al., 2014; Kumar et al., 2016; Dasari et al., 2018; Attada et al., 2019a). 414 

The position and intensity of the upper tropospheric circulation are well simulated by KF and BMJ, 415 

whereas GF simulates a northward shifted SWJ compared to MERRA-2. The upper tropospheric 416 

geopotential height patterns indicate that the north–south gradient in geopotential height over the 417 

AP is better simulated by KF (Fig. 7f) compared to BMJ and GF. 418 

In the upper troposphere, synoptic transients (western disturbances) are pronounced during 419 

winter, and these have a significant impact on AP winter rainfall (Yadav et al., 2013; Kang et al., 420 

2015; Almazroui et al., 2016c; Attada et al., 2019a; Dasari et al., 2020). These eastward-moving 421 

systems are a result of baroclinic and barotropic energy sources that are generally guided by upper 422 

tropospheric jet streams centered between 25N and 35N (e.g. Hoell et al., 2015). We thus 423 

investigated the sensitivity of synoptic transients during winter to the CPSs over the period 2001–424 

2016. The synoptic variability is shown in terms of 2–8-day filtered upper-level zonal winds. 425 

Meridional winds during winter are a good indicator for upper level synoptic transient activity 426 

(Fig. 8) (Barlow et al. 2015). In MERRA-2 (Fig. 8a), the mean synoptic transients during winter 427 

in the zonal and meridional wind components are pronounced over the NAP and Arabian Gulf 428 

during the entire study period. These transients are relatively low in the SAP compared to the NAP. 429 

KF (Fig. 8b) and BMJ (Fig. 8c) are better able to produce synoptic transients as compared to 430 
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MERRA-2, while the locations of these transients in GF (Fig. 8d) are shifted northward, associated 431 

with the northward shift in the GF-simulated subtropical westerly jet.  432 

We further analyzed the storm tracks to examine the influence of Mediterranean storms on 433 

the AP winter rainfall. Figure 9 plots the storm tracks based on the local vorticity maxima at 850 434 

hPa level (Flaounas et al., 2014) as extracted from WRF simulations with KF, BMJ, and GF and 435 

compared with the corresponding tracks from MERRA-2. Both model simulations and reanalysis 436 

fields show that most of the storm tracks originate in the Mediterranean Sea and propagate 437 

eastward before dissipating over the northern AP. These storm passages confirm their important 438 

contribution to the rainfall over the AP. The simulation of these storm tracks with KF is relatively 439 

in closer agreement with MERRA2 than BMJ and GF. Note that the storms simulated by WRF 440 

that originate over the Red Sea region and propagate northward are not observed in the reanalysis. 441 

These convective storms, triggered by the RSCZ that form over the central Red Sea move inland  442 

into AP. The horizontal length scales of these storms are about 3-5km and require a high resolution 443 

model to properly simulate these features. Our high resolution configuration is able to reproduce 444 

these small-scale convective activities and their propagation toward the AP. Overall, the intrusion 445 

of midlatitude synoptic transients towards the AP, in conjunction with the low-level northward 446 

advection of warm and moist air from the Red Sea and Arabian Sea, prompts the dynamic and 447 

thermodynamic instabilities to enhance rainfall during winter (e.g. Chakraborty et al., 2006; 448 

Kumar et al., 2015; De Vries et al., 2016; Dasari et al., 2019), and this is realistically produced by 449 

KF. 450 

3.7 Analysis of moisture distribution and its dynamics 451 

The distribution of moisture and its dynamics are key factors determining the variability of rainfall 452 

and characterizing the vertical distribution of specific humidity is crucial for understanding moist 453 
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convective processes over the AP (Chakraborty et al., 2006; Babu et al., 2011, 2016; Kang et al., 454 

2015; Dasari et al., 2018). Analysis of different datasets suggests that moisture budgets over the 455 

Mediterranean Sea and the Red Sea, have strong links with AP winter rainfall (Jin et al., 2011; 456 

Sahin et al., 2015; Dasari et al., 2018; Zolina et al., 2017). Zolina et al. (2017) pointed that the 457 

moisture transportation in the surface layer is dominated by breezes driven by SST, and the 458 

advection of moisture above the boundary layer is controlled by regional circulation patterns. This 459 

section analyzes the characteristics of the mean specific humidity at different tropospheric levels 460 

during winter over the AP as simulated by the WRF model with the different CPSs and from 461 

MERRA-2 (Fig. 10).  462 

The spatial distribution of low level (850 hPa) specific humidity (Fig. 10a) from MERRA-463 

2 exhibits highest values of approximately 10 g.kg-1 over the southern Red Sea, about 5–6 g.kg-1 464 

over the SAP (between 10°N and 23°N), and below 3 g.kg-1 over the NAP. KF (Fig. 10b) and BMJ 465 

(Fig. 10c) reproduce these regional changes in the specific humidity distribution over the AP, while 466 

GF underestimates them over the southern Red Sea and SAP regions, in conjunction with the 467 

weaker winds (Fig. 10d). All three schemes show the north–south gradient in the lower 468 

tropospheric moisture over the Red Sea, but GF provides lower values, particularly over the 469 

Arabian Gulf and NEAP. MERRA-2 (Fig. 10e) shows a narrow zone of specific humidity at a 470 

pressure level of 500 hPa from east Africa to the northeastern AP through southwestern AP. The 471 

highest specific humidity is reached over the southern Red Sea and Sudan regions, whereas the 472 

lowest specific humidity is found over the Arabian and Mediterranean regions. KF (Fig. 10f) 473 

exhibits a clear maximum specific humidity extending from the equatorial regions and eastern 474 

Africa towards the AP, which is typical of tropical plumes over the region (Ziv, 2001; Rubin et 475 

al., 2007; Tubi and Dayan, 2014). These tropical plumes are primarily confined to the winter and 476 
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contribute to the light to heavy widespread rainfall across arid desert regions like the AP. These 477 

plumes follow the southward penetration of mid-latitude troughs that are associated with an 478 

intensified thermal wind and longer jet streaks (e.g. Tubi and Dayan, 2014). BMJ (Fig. 10g) also 479 

simulates these atmospheric plumes of specific humidity, but significantly underestimates their 480 

magnitude. GF (Fig. 10h) fails to simulate the mid-tropospheric specific humidity band. Moisture 481 

availability in the GF is therefore meager, which results in a dry bias in the precipitation simulation 482 

in the NAP. The comparison between the simulated upper tropospheric (200 hPa) specific 483 

humidity with MERRA-2 (Figs. 10i-10l) indicates an increased moisture content in KF compared 484 

to BMJ and GF. This is due to the higher values of extended specific humidity plumes from the 485 

equatorial regions and eastern Africa towards the AP in KF. It also shows that most of the moisture 486 

is confined to the SAP and southern Red Sea regions compared to the NAP during winter.  487 

To investigate the moisture source that triggers moist convection and associated rainfall 488 

over the AP, the composite winter means of vertically integrated (from the surface to 400 hPa) 489 

moisture transport from the model simulations and MERRA-2 are analyzed and presented in Fig. 490 

11, where the vectors represent the resultant moisture transport components of zonal and 491 

meridional moisture components. MERRA-2 shows that the moisture fluxes occur predominantly 492 

over the Arabian Sea and Red Sea and are driven by the Arabian anticyclone (Fig. 11a). 493 

Furthermore, the subtropical jet is associated with an anticyclonic flow over the south of the AP, 494 

which advects moisture from the Red Sea and the Arabian Sea. MERRA-2 suggests that moisture 495 

originates in the Arabian Sea, Gulf of Aden, and the southern Red Sea as a result of the formation 496 

of the Arabian Anticyclone and the effect of the Indian winter monsoon flow (Dasari et al., 2018). 497 

It can be discerned that a significant amount of moisture is transported by the westerly winds from 498 

the eastern Mediterranean towards the NAP region. Compared to MERRA-2, KF (Fig. 11b) 499 
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provides a more realistic representation of moisture transport and the location of maximum 500 

moisture transport (more than 130 Kg m-1s-1) over the southern Red Sea and the Gulf of Aden. The 501 

model simulations with different CPSs confirm that the Red Sea is a major contributor of moisture 502 

for the AP precipitation (Zolina et al., 2017; Dasari et al., 2018; Sandeep and Ajayamohan 2018). 503 

The BMJ (Fig. 11c) simulates a similar vertical integrated moisture transport structure to KF and 504 

MERRA-2, but with a weaker magnitude. The BMJ also shows that moisture from the southern 505 

Red Sea is advected towards eastern Africa. In contrast, GF (Fig. 11d) fails to simulate the 506 

locations of maximum moisture transport, and both GF and BMJ display weaker moisture transport 507 

flux vectors compared to KF and MERRA-2, which leads to a dry bias in rainfall (Fig. 6). Our 508 

analysis of the vertically integrated horizontal moisture fluxes suggests that the availability of 509 

higher moisture during winter provides a favorable condition for generating rainfall over the AP 510 

and is also associated with weather disturbances migrating from the Mediterranean region. 511 

Therefore, proper representation of the sources of moisture in the model is essential to properly 512 

resolve the mechanisms for developing moist convection and the associated dynamics of 513 

precipitation over the AP. KF and BMJ successfully reproduce these features while GF fails to do 514 

so.  515 

4. Vertical structures of dynamic and thermodynamic profiles 516 

This section evaluates the three-dimensional representation of the atmosphere in the model to 517 

understand the winter dynamics. Specifically, it focuses on the vertical profiles of temperature and 518 

moisture that are interrelated with convective processes, which are essential for initiating 519 

convective activity (e.g. Raju et al., 2015a; Martínez‐Castro et al., 2017). The representation of 520 

these profiles in the model is determined by the convective schemes and is connected with the 521 

precipitation formation process. 522 
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Seasonally averaged vertical profiles of different variables were averaged over the NAP 523 

(with respect to the highest precipitation in a sub-region) from MERRA-2, KF, BMJ, and GF, and 524 

the results are presented in Fig 12. In general, the vertical distribution of temperature decreases 525 

with height in MERRA-2 and the model with the three CPSs (Fig 12a). However, KF and BMJ 526 

agree better with MERRA-2, albeit for cold biases in the lower troposphere, while GF exhibits a 527 

strong cold bias in the lower troposphere and a warm bias in the middle to upper troposphere. 528 

Overall and compared to MERRA-2, the temperature distribution in KF is slightly better than that 529 

of BMJ and is far superior to that of GF. Warm temperature biases in the upper troposphere are 530 

systematically stronger in GF, consistent with weak/scanty rainfall amounts. 531 

The seasonally averaged vertical profile of specific humidity over the NAP (Fig. 12b) 532 

shows high magnitudes at the surface (about 6.5 g.kg-1) and a gradual decrease with height 533 

thereafter. The vertical variations in specific humidity are well simulated by the model with all 534 

CPSs. KF exhibits higher moisture in the lower troposphere compared to MERRA-2, whereas BMJ 535 

is dry at the surface and in the mid to upper troposphere; however, its results are in good agreement 536 

with MERRA-2 in the lower troposphere. GF configuration exhibits a dry bias of approximately 2 537 

g.kg-1 in the entire troposphere over the AP, which is further corroborated by the underestimation 538 

of rainfall. Compared to the other schemes, the vertical profile configuration of KF is overall closer 539 

to that of MERRA-2.  540 

The vertical distribution of zonal winds shows lower tropospheric weak westerlies and 541 

mid-to-upper tropospheric strong westerlies over the NAP (Fig. 12c). The highest zonal wind 542 

speed (45 ms-1) occurs at 200 hPa over the NAP and is associated with the subtropical westerly 543 

jet. This vertical zonal wind structure in KF agrees better with that of MERRA-2 than BMJ and 544 

GF, where BMJ simulates stronger zonal wind speeds at 200 hPa and GF underestimates the zonal 545 
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wind in the entire troposphere. These results suggest that the BMJ (GF) simulated zonal wind is 546 

strongly (weakly) driven by the subtropical jet. The mean vertical profile of the relative vorticity 547 

from MERRA-2 (Fig. 12d) shows a cyclonic circulation (positive values) in the upper troposphere 548 

(from 600 hPa to 100 hPa) and an anticyclonic circulation (negative values) in the surface to the 549 

middle troposphere (from surface to 600 hPa). In KF, a low-level anticyclonic vorticity and 550 

cyclonic vorticity aloft is noticeable, in agreement with the observations. The relative vorticity 551 

profile is also reproduced by BMJ, but with considerable discrepancies compared to MERRA-2, 552 

while the results of GF are completely offset from the observations, except at the surface.  553 

The time-averaged vertical distributions of diabatic heating over the north Arabian 554 

Peninsula (NAP) region from MERRA-2 and WRF simulations with KF, BMJ and GF are shown 555 

in Figure 12e. MERRA-2 shows maximum diabatic heating in the lower (upper) troposphere below 556 

900 hPa (above 150 hPa), whereas strong diabatic cooling with two maxima in the middle 557 

troposphere (between 900 to 150 hPa), indicating the dominance of radiative cooling. KF, BMJ 558 

and GF simulated similar vertical structures of diabatic heating as those of MERRA-2, but not in 559 

terms of magnitudes. As compared to BMJ and GF, the vertical profile of apparent heat source 560 

from KF is in better agreement with MERRA-2. GF shows a large deviation in the vertical profile 561 

compared to MERRA-2, with a maximum surface heating and strong diabatic cooling in the upper 562 

troposphere. Discrepancies in representing the diabatic heating profile by BMJ and GF lead to 563 

discrepancies in instability, and in turn precipitation biases. These profiles are qualitatively similar 564 

to those reported in earlier studies (e.g. Shay-El and Alpert, 1991).  565 

4.1 Evaluation of cloud distribution 566 

In this section, we evaluate the efficiency of different convective schemes in representing different 567 

cloud types. Clouds are evidently important for providing the precipitation distribution (e.g. Diaz 568 
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et al., 2015) and cloud processes are often poorly represented in numerical models (e.g. Randall et 569 

al., 2003; Stevens and Bony, 2013). We present different cloud levels (low, middle and high 570 

clouds) during winter from CERES observations along with those from the model simulations 571 

using the three different CPSs (Fig. 13). 572 

 Observations (Fig. 13a) indicate that a high percentage (more than 25%) of low-level 573 

clouds (which have a cloud-top height below 700 hPa level) are located over the southern and 574 

central Red Sea, Mediterranean Sea, Arabian Gulf, and the Gulf of Aden. Other parts of the Red 575 

Sea and the NAP show a 10% to 20 % coverage of low-level clouds. 10%–15% of low-level clouds 576 

are distributed over the NAP and NEAP regions, and low-level cloud coverage is limited over the 577 

land regions of the SAP. This indicates that most of the low-level clouds over the Red Sea are 578 

associated with the RSCZ, which is a shallow system that creates maritime stratocumulus clouds, 579 

and this is also observed over the Arabian Gulf and the Mediterranean Sea. KF (Fig. 13b) and BMJ 580 

(Fig. 13c) are able to well simulate the low-level cloud distribution, slightly underestimated, over 581 

the Red Sea and AP. Although GF captures the correct low-level cloud over the RSCZ and Arabian 582 

Gulf regions, it fails to simulate the low-level clouds in the NAP (Fig. 13d). All the schemes fail 583 

to reproduce the observed cloud structure in the SAP.  584 

The observed middle clouds over the region with cloud-top heights between 350 hPa and 585 

700 hPa levels (Fig. 13e) show maximum cloud coverage over the NAP region (> 10%–15 %), 586 

while the SAP is not covered by these alto-stratus cloud types. KF (Fig. 13f) and BMJ (Fig. 13g) 587 

provide a proper representation of mid-level clouds over the NAP, but with excess coverage 588 

compared to MERRA-2, whereas GF fails to produce these mid-level clouds and confines them to 589 

the far north of the domain. Overall, KF simulates a north–south distribution of mid-level clouds 590 

that is more in agreement with the observations than the other two CPSs.  High-level clouds from 591 
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MERRA-2 (Fig. 13i) show less amount of cirrus clouds compared to low- and mid-level clouds 592 

during winter, whereas KF (Fig. 13j) and BMJ (Fig. 13k) simulated more high-level clouds 593 

compared to the observations. This is more noticeable over the SAP for GF, which simulates high 594 

values of cloud coverage. GF results over the NAP well match the observed high-level clouds 595 

during winter. However, the locations of high clouds are better depicted by KF and BMJ, as 596 

compared to MERRA-2. Overall, KF and BMJ outperform GF in simulating the low and mid-level 597 

clouds, but they struggle with the simulation of high-level clouds during winter over the AP. 598 

4.2 Vertical distribution of cloud microphysical properties 599 

The vertical structures of cloud hydrometeors have a large impact on precipitation processes (e.g. 600 

Rajeevan et al. 2013), and are thus investigated here. We focus in particular on the cloud 601 

microphysical properties over the NAP, which receives the largest amount of rainfall. 602 

The vertical profiles of liquid hydrometeors (cloud and rain water) and solid hydrometeors 603 

(graupel, ice, and snow) over the NAP are presented in Fig. 14. Because of the lack of data, the 604 

validation of the model-simulated hydrometeors is only conducted for cloud water and ice mixing 605 

ratio profiles using MERRA-2. The results suggest an increase in cloud water from the surface to 606 

700 hPa, and thereafter a decrease with height in both MERRA-2 and the model simulations. The 607 

main cloud deck (maximum peak of cloud water mixing ratio) is located at 700 hPa in KF and 608 

BMJ, is in agreement with the observations (Fig. 14a). KF shows slightly higher values of cloud 609 

water than BMJ, while GF fails to produce cloud water, leading to a significant underestimation 610 

and shift of the maxima to lower levels at around 900 hPa.  611 

The vertical profile of the rain water maxing ratio (Fig. 14b) suggests that the maximum 612 

amount of rain water is available at a pressure level of 750 hPa (slightly below cloud water) in 613 

both KF and BMJ. Raindrops are the only precipitating hydrometeor at the lowest level of the 614 
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atmosphere as can be seen in Fig. 14(b) for both BMJ and KF. The rain water mixing ratio 615 

produced from GF is different than that of KF and BMJ. For the graupel mixing ratio (Fig. 14c), 616 

BMJ simulates the maximum peak at 650 hPa reasonably well, whereas GF fails to achieve this. 617 

The ice mixing ratio (Fig. 14d) has a maximum peak at 300 hPa (above the freezing level), which 618 

is more underestimated in BMJ than in KF. GF fails to distribute the ice mixing ratio over the 619 

NAP. All CPSs leads to a significant underestimation of cloud ice compared to MERRA-2. The 620 

ice hydrometeor profile is the key microphysical processes in the formation of precipitation. As 621 

the ice crystals grows, they become heavier than snow particles before they start falling, which 622 

leads to growth of graupel by accretion of supercooled water and then melt just above the surface 623 

to form rainfall (e.g. Gao et al., 2016). Although KF underestimates this process, it performs 624 

slightly better than BMJ and GF. The failure of BMJ and GF in reproducing this important process 625 

could be one of the reasons for their simulated dry rainfall biases over the AP. The vertical profile 626 

of the snow mixing ratio (Fig. 14e) indicates that the upper troposphere (450 hPa) is characterized 627 

by the maximum amount of snow, with KF exhibiting a higher snow mixing ratio than BMJ and 628 

GF. It is thus assumed that the sources of systematic model errors (in Figure 14) are related to the 629 

cloud modeling in the different convective schemes, including the model vertical resolution.  630 

Overall, liquid hydrometers are formed below the freezing level where warm precipitation 631 

processes occur, and ice, graupel, and snow are distributed beyond the freezing level and are 632 

mainly related to cold precipitation processes over the AP. Therefore, an improved representation 633 

of the vertical structure of cloud hydrometeors is necessary for providing realistic model 634 

simulations of AP winter rainfall; this is not actualized in GF, which results in a poorer rainfall 635 

simulation skill than BMJ and KF.  636 

 637 
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5. Summary and Conclusions 638 

This study evaluated the performance of the WRF model and its sensitivity to three CPSs (Kain-639 

Fritsch (KF), Betts-Miller-Janjic (BMJ) and the scale-aware Grell-Freitas (GF)) for seasonal scale 640 

simulations of AP winter rainfall during the period 2001 to 2016, and then elucidated the associated 641 

regional dynamics. We used WRF model configured on two two-way nested domains with 642 

respective horizontal resolutions of 15 km and 5 km to capture the detailed rainfall distribution 643 

and associated underlying processes. The model simulated variables were validated against 644 

satellite observations and reanalysis datasets, before investigating the sensitivity of the three CPSs.  645 

Our results suggest that the model-simulated seasonal scale AP winter rainfall is sensitive 646 

to the CPSs. KF appears to produce realistic geographic distributions, and its simulated seasonal 647 

climatology of precipitation and air temperature are in good agreement with the observations 648 

compared to BMJ and GF. All CPSs exhibit, however, dry biases in rainfall and cold biases in 649 

mean, maximum, and minimum 2-m temperatures. Overall, KF depicts higher spatial correlations 650 

with less errors for temperature (including maximum and minimum) and precipitation compared 651 

to BMJ and GF. Furthermore, the standard deviation of temperature and precipitation are also 652 

better reproduced by KF; while BMJ produces better variability than GF (on par with KF) over 653 

some parts of the AP. The analysis of daily mean regional precipitation indicates that BMJ and GF 654 

fail to well reproduce the seasonal evolution of rainfall compared to the observations and KF. 655 

Precipitation over the AP is better captured by KF albeit with a slight underestimation.  656 

The Arabian anticyclone, which is one of the main characteristics of low-level circulation, 657 

is well captured by KF and BMJ, but its position is shifted in GF. Strong westerly winds passing 658 

through the Mediterranean Sea towards the NAP and the winds blowing from the Arabian Gulf to 659 

the central and NAP regions are better simulated by KF than by BMJ and GF. In the case of upper 660 
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tropospheric circulation, KF and BMJ simulate well the SWJ (in terms of location and strength) 661 

as compared to MERRA-2. The position of SWJ is important and acts as a waveguide for westerly 662 

disturbances and associated precipitation in the AP. Overall, KF is better able to represent the 663 

eastward moving storm systems (large scale synoptic transients and storm tracks ) that are guided 664 

by the SWJ. The proper representation of moisture sources in KF enables the development of moist 665 

convection and associated precipitation dynamics in the AP; both BMJ and GF generally fail to 666 

simulate these structures.  667 

The simulated vertical profiles of several atmospheric variables, such as temperature, 668 

specific humidity, zonal wind, and relative vorticity were also evaluated, suggesting that the KF 669 

exhibits higher fidelity with the observed atmospheric structures compared to BMJ and GF, which 670 

leads to better vertical thermodynamic structures and realistic convective precipitation. The 671 

discrepancies between the different schemes reveal that the proper simulation of different cloud 672 

types and associated cloud hydrometer responses enables KF to better simulate the rainfall 673 

variability over the AP.  674 

 This study examined the differences between the three CPSs in terms of simulating the AP 675 

winter rainfall, but did not attempt to determine which processes within the schemes produce the 676 

differences outlined here. Liang et al. (2004) suggested that the KF incorporates detailed cloud 677 

microphysics and entrainment and detrainment between clouds and environment, which are not 678 

described in the two other convective schemes. Moreover, sub-grid scale cloud-radiation 679 

interactions within the KF have been found to be important (Alapaty et al., 2012; Herwehe et al., 680 

2014) in the simulation of precipitation. The analysis of heat source (diabatic heating) suggests 681 

that KF more accurately simulates the thermodynamic feedback to rainfall. This further improves 682 

the representation of the vertical structure of cloud hydrometeors, which in turn better resolves the 683 
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precipitation distribution. Further, the superiority of the KF can also be explained by its appropriate 684 

treatment of convective available potential energy as a triggering function, and its treatment of 685 

deep convection with strong updrafts, downdrafts, and environmental mass fluxes that adjust 686 

precipitation. It should also be noted that the difficulties in accurately simulating AP precipitation 687 

could be caused by deficiencies in other related physical processes, such as the subtropical westerly 688 

jet, synoptic transients, and cloud microphysics (Dai and Trenberth, 2004). Based on the results of 689 

our study, GF seem to be relatively less suitable for simulation of AP rainfall with WRF.  690 

Our study investigated the sensitivity of winter rainfall over the AP with respect to the 691 

convective parametrization schemes within a high-resolution (5 km) regional modeling 692 

framework. Several other studies advocated for the use of CPSs at this resolution, suggesting 693 

improved simulations compared to fully explicit simulations (e.g. McMillen and Steenburgh, 694 

2015; Lind et al. 2016). Convective resolving models were not investigated yet for predicting the 695 

AP rainfall; this will be investigated in our future work. Note that the treatment of dust in the 696 

model may play an important role in the simulation of AP rainfall through the aerosol-radiative 697 

feedback mechanisms. The complex interaction processes between aerosols and rainfall will also 698 

be investigated in our future work.  699 
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Figure 1. Spatial distribution of mean total winter rainfall (mm; a-d) and its standard deviation (mm day-1; 

e-h) from TRMM, KF, BMJ and GF schemes. Mean rainfall biases (i-l) between model simulations and 

observations (significant at 95% confidence level). 
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Figure 2. Seasonal cycle of daily rainfall climatology over (a) AP, (b) NAP and (c) SAP 

sub-regions from TRMM, KF, BMJ and GF cumulus parameterization schemes.   
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Figure 3. Verification skill scores for the simulated rainfall from KF, BMJ and GF at 

different rainfall thresholds over the NAP.  
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Figure 4. Spatial distribution of winter season mean surface temperature (K; a-b), maximum 

temperature (K; e-h) and minimum temperature (K, i-l) averaged over the period 2001-2016 from 

MERRA2, KF, BMJ and GF. 

 

 

 

 

 

 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-19-0114.1.



 

 

 

 
Figure 5. Seasonal cycle of daily mean surface temperature (K), maximum temperature (K) and 

minimum temperature climatology over (a) AP, (b) NAP and (c) SAP sub-regions from MERRA2, 

KF, BMJ and GF cumulus parameterization schemes averaged over the period 2001-2016.   
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Figure 6. Sub-regional average bias of rainfall (a-c) and 2 meter air temperature (d-f) from 

KF, BMJ and GF over the (a) AP, (b) NAP and (c) SAP during winter. 
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Figure 7: Winter seasonal mean (left panel) low level (850 hPa) and upper level (right 

panel) wind speed (shaded; ms-1), direction (vectors) and geopotential height (m) from 

MERRA2 (a,e), KF(b,f), BMJ (c,g) and GF (d,h)  averaged over 2001-2016. 
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Figure 8: Spatial distribution of winter mean upper tropospheric (200 hPa) synoptic 

transients in the zonal (shaded) and meridional wind components (contours) from 

MERRA2 and three different cumulus parameterization schemes. Red contour indicate the 

wind maxima (above 40 ms-1) of upper level (200 hPa) zonal winds (ms-1). 
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Figure 9: Storm tracks associated with AP winter rainfall for the period 2001-2016 from (a) 

reanalysis, (b) KF, (c) BMJ and (d) GF. Here we present the tracks cover the whole lifetime of 

the storms from their formation to dissipation. 
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Figure 10: Spatial distribution of seasonal mean low level (850 hPa), middle level (500 hPa) and upper level 

(200 hPa) specific humidity (contours; g.kg-1) during winter from MERRA2, KF, BMJ and GF. 
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Figure 11: Vertically integrated moisture transport during winter season from MERRA2, 

KF, BMJ and GF for the period 2001-2016. 
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Figure 12. Area averaged winter mean vertical profiles of (a) temperature, (b) specific 

humidity, (c) zonal wind (d) relative vorticity and (e) apparent heat source over the NAP 

sub-region from MERRA2 and model simulations for the period 2001-2016. 
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Figure 13. Spatial distribution of seasonal mean low level cloud cover (a-d), middle level cloud cover 

(e-h) and high level cloud cover (i-l) during winter from observations and model simulations for the 

period 2001-2016.   
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Figure 14. Spatial and temporal means of vertical profiles of cloud hydrometeors provided by the different 

schemes, corresponding to the winter season and computed for northern AP region: (a) cloud water, (b) 

rainwater, (c) graupel, (d) ice, (e) snow.  
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Table 1. Statistical skill scores for mean daily rainfall (mm d−1) during the winter season (DJFM) over the AP and its different sub-

regions for the period 2001–2016 from model simulations with different convection schemes and observations. 

 

 

 

 

 

 

 

 

 

Expts. 
Std. Div (mmd-1) Mean bias (mmd-1) RMSE (mmd-1) Pattern CC 

AP NAP SAP NEAP AP NAP SAP NEAP AP NAP SAP NEAP AP NAP SAP NEAP 

OBS 0.57 0.85 0.30 1.10  

KF 0.60 0.47 0.49 1.03 0.15 -0.07 0.37 -0.14 0.29 0.16 0.42 0.22 0.71 0.88 0.22 0.90 

BMJ 0.61 0.58 0.63 0.77 0.19 -0.14 0.31 -0.17 0.31 0.18 0.37 0.38 0.66 0.85 0.16 0.89 

GF 0.44 0.35 0.53 0.60 -0.30 -0.45 0.34 -0.43 0.37 0.41 0.40 0.55 0.19 0.66 0.23 0.61 
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Expts. 
Std. Div (K) Mean bias (K) RMSE (K) Pattern CC 

AP NAP SAP NEAP AP NAP SAP NEAP AP NAP SAP NEAP AP NAP SAP NEAP 

OBS 2.12 2.59 1.68 2.74  

KF 2.97 3.76 2.23 3.73 -1.4 -1.18 -1.7 -0.87 2.06 2.25 1.89 1.64 0.96 0.96 0.92 0.97 

BMJ 3.07 3.73 2.45 3.84 -2.1 -1.9 -2.43 -1.7 1.9 1.96 1.93 1.86 0.96 0.95 0.93 0.96 

GF 3.30 4.04 2.62 4.14 -3.1 -2.5 -3.6 -2.07 3.3 2.9 3.6 2.4 0.93 0.93 0.91 0.95 

 
 

 

 OBS 2.3 2.9 1.8 3.0  

KF 2.1 2.5 1.7 2.6 -2.8 -3.0 -2.6 -3.2 2.9 3.1 2.6 3.6 0.91 0.91 0.75 0.94 

BMJ 2.0 2.5 1.6 2.7 -3.5 -3.6 -3.4 -3.8 3.4 3.6 3.2 4.0 0.89 0.89 0.67 0.94 

GF 2.2 2.7 1.8 2.8 -4.1 -3.6 -4.5 -3.4 4.1 3.7 4.5 3.6 0.84 0.86 0.54 0.92 

 
 

 

OBS 1.7 2.1 1.4 2.2  

KF 1.5 1.8 1.2 1.9 -1.2 -0.6 -1.9 -0.5 1.4 1.2 1.6 1.5 0.97 0.97 0.97 0.97 

BMJ 1.5 1.7 1.2 1.9 -2.4 -1.9 -2.8 -1.8 2.2 2.0 2.5 2.1 0.97 0.93 0.97 0.95 

GF 1.6 1.8 1.3 1.9 -4.0 -3.5 -4.4 -3.2 3.8 3.5 4.1 3.3 0.96 0.95 0.97 0.6 

 

 

 

 

Table 2. Statistical skill scores for mean daily 2m mean, maximum and minimum temperatures (K) during the winter season (DJFM) 

over the AP and its different sub-regions for the period 2001–2016 from model simulations with different convection schemes and 

observations.  

Maximum Temperature 

Minimum Temperature 

Mean Temperature 
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