
Evaluating Database-oriented Replication Schemes in
Software Transactional Memory Systems

Roberto Palmieri and Francesco Quaglia

DIS, Sapienza University, Rome, Italy

Paolo Romano and Nuno Carvalho

INESC-ID, Lisbon, Portugal

Abstract
Software Transactional Memories (STMs) are emerging

as a highly attractive programming model, thanks to their

ability to mask concurrency management issues to the over-

lying applications. In this paper we are interested in de-

pendability of STM systems via replication. In particular

we present an extensive simulation study aimed at assessing

the efficiency of some recently proposed database-oriented

replication schemes, when employed in the context of STM

systems. Our results point out the limited efficiency and

scalability of these schemes, highlighting the need for re-

designing ad-hoc solutions well fitting the requirements of

STM environments. Possible directions for the re-design

process are also discussed and supported by some early

quantitative data.

1 Introduction
Replication is a typical mean for achieving fault-

tolerance and high availability. For transactional systems,

state of the art replication solutions [7, 8, 11] are based on

the integration of:

(i) An Atomic Broadcast (AB) service [3], ensuring repli-

cas’ agreement on a common Global Serialization Or-

der (GSO) for the transactions.

(ii) A deterministic concurrency control scheme, guaran-

teeing that, at each replica, the schedule of the lo-

cally executed transactions yields a serialization order

equivalent to the GSO defined via the AB service.

These solutions have been traditionally targeted to

database systems. However, great attention has been re-

cently devoted to Software Transactional Memories (STMs)

[2], which leverage on the proven concept of atomic and

isolated transaction to spare programmers from the pitfalls

of conventional lock-based synchronization and to simplify

the development of concurrent applications.

In this work we are interested in evaluating replication

solutions originally tailored for database systems in the con-

text of STM systems. The need for a study assessing the

efficiency on these solutions in this novel transactional con-

text is motivated by several factors.

First, transactions’ execution times in (non-replicated)

STM systems are typically orders of magnitude smaller than

in conventional database environments [14], which leads to

an amplification of the relative cost of the distributed replica

coordination scheme. This can not only have significant

negative effects on the transaction completion time, but

could also cause under-utilization of the available comput-

ing resources (due to relatively longer stall periods while

handling transaction processing activities) that could be-

come particularly manifest in modern multi-core and mas-

sively parallel architectures.

A second factor is related to the different data layouts

and conflict patterns among transactions, which, together

with the specific concurrency control scheme regulating lo-

cal processing activities, play a crucial role in determining

the actual performance of AB-based replication techniques.

Actually, advanced replication techniques for database

systems [8] rely on an optimistic variant of AB, normally

referred to as Optimistic Atomic Broadcast (OAB). The

OAB layer delivers any request to the transactional system

in an optimistic fashion, with the meaning that it is still

unknown the correct position of the corresponding trans-

action within the GSO. Successively, a final delivery oc-

curs, notifying that position. The optimistic delivery phase

allows early knowledge about the existence of the transac-

tional request. In cases where spontaneous ordering proper-

ties hold (namely the optimistic delivery order well matches

the GSO), early knowledge about request existence is used

to immediately start transaction processing activities, so to

overlap coordination and computing phases. This has been

actuated in combination with a lock-based concurrency con-

trol scheme where each optimistically delivered transaction

gets activated on the transactional system only in case it is

deterministically ensured to run to completion.

The above scheme assumes the ability for the transaction

to acquire all the locks it needs at startup, which will be

released only upon transaction commit/rollback (i.e. upon

GSO notifications by the OAB). Any other successively

delivered and conflicting transaction is activated only af-

ter the preceding transaction releases its locks. The ability

of this approach to effectively overlap communication and

processing phases results therefore dependent on the trans-

action conflict patterns exhibited by the overlying applica-

tions.

Beyond efficiency dependency on the actual transaction

conflict level, a relevant aspect for the viability of this ap-

proach is that it requires a-priori knowledge of both read

and write sets associated with transactions, in order to a-

priori identify conflicting transaction classes. As for this

aspect, the difficulty to exactly identify the data items to

be accessed by transactions before these are actually exe-

cuted, may lead to the adoption of conservative conflict as-

sumptions based on coarse data granularity, e.g. whole, or

large slices of, database tables [13]. However, unlike rela-

tional database systems, STM-based applications are char-

acterized by arbitrary memory layouts and access patterns,

which make harder, or even impossible, to a-priori iden-

tify, with a reasonable accuracy (or even a reasonable over-

estimation), the boundaries of the memory regions that will

be accessed by transactions prior to their execution. On the

other hand, large over-estimation of the actual transaction

conflicts is an additional performance adverse factor since

it can strongly hamper concurrency, leading to significant

resources’ under-utilization in (massively) parallel systems.

The aforementioned phenomena are analyzed in this pa-

per via an extensive simulation study based on data ac-

cess traces of commonly used (S)TM benchmark applica-

tions [6]. The target replication protocol is exactly the one

presented in [8]. As hinted, this is a database-oriented opti-

mized solution relying on the OAB variant of total order

group communication primitives. Our study shows that,

when employed in STM contexts, this protocol is prone to

significant CPU under-utilization in modern multi-core ar-

chitectures. We show how this phenomenon is strictly re-

lated to the significantly higher conflict rate among trans-

actions exhibited by the STM benchmarks, compared to

benchmarks for database systems [15]. Also, the perfor-

mance benefits (in terms of execution latency reduction)

achievable by overlapping communication and processing

activities is extremely limited, especially for finer grain

transactions. Successively, we show how even minor mod-

ifications of the transaction management logics (e.g. in

terms of concurrency control) can lead to significant re-

duction of transactions’ latency, motivating the need for

revisiting/re-designing replication solutions explicitly opti-

mized for STM systems. Promising directions for such a

revision/re-design process are also discussed.

The remainder of this paper is structured as follows.

In Section 2 we describe the architecture of the replicated

STM system under investigation. The simulation model,

the benchmark applications and the performance results are

provided in Section 3. Section 4 concludes the paper.

XM

Final−Delivery

[BATCHED]

Opt−delivery

[BATCHED]

TO−Broadcast

REQUEST

SERVICE

OAB

(TRANSACTION MANAGER)

TRANSACTION REQUESTS

Application Layer

Figure 1. The Architecture of a Replicated

STMP.

2 System Architecture
Our performance study is targeted to a typical system ar-

chitecture consisting of a set of replicated Software Trans-

actional Memory Processes (STMPs) relying on an OAB

service offering the following classical API:

• TO-broadcast(m), which allows broadcasting mes-

sages to all the replicated STMPs.

• Opt-deliver(m), which delivers the message m to an

STMP in a tentative, also called optimistic, order.

• TO-deliver(m), which delivers the message m to an

STMP in a so called final order, which is the same for

all the replicas.

With no loss of generality, we assume that upon the invo-

cation of TO-deliver(m), the message m is exactly the next

one finally-ordered by the OAB service, as is the case for

most implementations (see, e.g., [12]).

We consider both the case of Opt/TO delivered mes-

sages carrying a single transactional request, and the sce-

nario in which the OAB service employs batching mecha-

nisms. In the latter case, each Opt-delivered message car-

ries a batch of transactional request messages, for which

the corresponding TO-delivery defines the total order with

respect to other (batched) requests. Clearly, each batch con-

tains messages ordered according to, e.g., the correspond-

ing position within the batch. We recall that batching is

a technique very commonly employed to optimize the per-

formance of (Optimistic) Atomic Broadcast protocols [3].

By amortizing the costs associated with the (O)AB execu-

tion across a set of messages, batching schemes have been

shown to yield considerable enhancement of the maximum

throughput achievable by (O)AB protocols. The inclusion

of batching schemes in our study of OAB-based replication

protocols for transactional systems allows keeping into ac-

count optimized configurations for this important building-

block group communication primitive.

The diagram in Figure 1 shows the architecture of each

STMP. Applications generate transactions by issuing re-

quests to the local Transaction Manager (XM), specify-

ing the business logic to be executed (e.g. the name of a

method/function of a transactional memory-based applica-

tion) and the corresponding input parameters (if any). XM

is responsible of (i) propagating/collecting transactional re-

quests through the OAB service, (ii) executing the transac-

tional logic, and (iii) returning the corresponding result to

the user-level application.

We assume that XM regulates concurrency among trans-

actions by exactly employing the scheme proposed in [8].

As hinted, this scheme aims at an overlap between coordi-

nation and computing phases. In particular, upon its opti-

mistic delivery, a transaction gets immediately activated in

case it is known not to conflict with any active transaction.

In the negative case, the transaction is simply queued, and

gets activated only upon commit/rollback of the currently

active conflicting transaction(s). Transaction rollback oc-

curs in case the OAB service notifies that conflicts have not

been serialized according to the GSO. In such a case, the

rolled-back conflicting transactions are then re-executed (in

a sequential mode) and serialized according to the GSO.

This type of concurrency control actually represents a vari-

ant of locking where:

• For each transaction, there is an a-priori knowledge (or

conservative estimation) of the set of required locks,

and hence of the transaction read/write set.

• Upon startup, a transaction needs to acquire all its re-

quired locks.

• Locks are released all together upon transaction com-

mit/rollback.

In [8] it has been discussed how to simulate this type of

locking scheme on top of conventional database systems.

This has been done via a stub that performs pre-analysis of

transactions statements in order to determine the data to be

accessed, and by maintaining a so called lock-table indi-

cating whether the requested data are not currently locked

(in which case transaction execution can be started), or, in

case they are locked, the identity of both active and al-

ready queued transactions requesting access to those data

(in which case the transaction gets queued within the lock-

table). Transaction queues within the lock-table are reorga-

nized in case TO-deliveries subvert the corresponding Opt-

deliveries, which originally determined the order of trans-

actions’ enqueue.

3 Simulation Study
In this section we report the results of an extensive

simulation study aimed at assessing the performance of

the OAB-based transactional replication scheme proposed

in [8] when employed to enhance the dependability (in

terms of fault-tolerance and high availability) of applica-

tions based on replicated STM systems structured as de-

picted in the previous section.

We start by describing the simulation model and the em-

ployed benchmark applications. Then we present the re-

sults of the performance analysis, shedding light on some

significant limitations of the approach in [8] when adopted

in STM environments. Finally, we provide assessments on

possible approaches for tackling those limitations, by also

reporting quantitative data related to the performance im-

provements that could be achieved by adopting some mod-

ifications over [8] for the operating mode of the replicated

STM system.

3.1 Simulation Model
Our performance evaluation study is based on a process-

oriented simulator developed using the JavaSim simulation

package [10]. As said, the XM layer at each replicated pro-

cess collects transactional requests via the OAB layer before

activating any processing activity. The transactions’ arrival

process via Opt/TO message deliveries from the OAB layer

is modeled in our simulations via a message source that in-

jects messages having as payload a batch of β transactions

with an exponentially distributed inter-arrival rate, having

mean λ. In order to derive results representative of a wide

range of settings, we let the batching size β vary in between

1 and 8.

In order to accurately model the execution dynamics of

transactions in STM systems, we rely on a trace-based ap-

proach. Traces related to data accesses and transaction du-

ration have been collected by running a set of widely used,

standard benchmark applications for (S)TMs. The machine

used for the tracing process is equipped with an Intel Core 2

Duo 2.53 GHz processor and 4GB of RAM. The operating

system running on this machine is Mac OSX 10.6.2, and

the used STM layer is JVSTM [1]. The simulation model of

the replicated STM system comprises a set of 4 replicated

STMPs, each of which hosted by a multi-core machine with

8 cores exhibiting the same power as in the above architec-

ture.

We configured the benchmarks to run in single threaded

mode, so to filter out any potential conflict for both hard-

ware resources and data. Also, we extended JVSTM in or-

der to transparently assign a unique identifier to every object

within the STM memory layout and to log every operation

(namely, begin/commit/rollback operations, and read/write

memory-object access operations) along with its timestamp.

This allowed us to gather accurate information on the data

access patterns of the benchmark applications and on the

time required for processing each transaction (in absence of

any form of contention).

Since any tracing strategy unavoidably introduces over-

heads, especially in STM applications where transaction ex-

ecution times are often less than 1 msec, in order to ensure

the accuracy of the information concerning the duration of

transactions, we repeated each benchmark run (ensuring

the deterministic re-execution of an identical set of trans-

actions) by also disabling the logging functionality. Then

we compared the resulting mean transaction execution time

with the one obtained when logging is enabled. This al-

lowed us to compute a per-benchmark scaling factor (that,

on the average, was found to be around 15x) used to ad-

just the duration of the transaction execution, thus filtering

out the overheads associated with the logging layer, before

feeding this information to the simulator.

The traces were collected running three benchmark ap-

plications, RB-Tree, SkipList and List, that were originally

used for evaluating DSTM2 [6] and, later on, adopted in a

number of performance evaluation studies of (S)TM sys-

tems [1, 2]. These applications perform repeated insertion,

removal and search operations of a randomly chosen inte-

ger in a set of integers. The set of integers is implemented

either as a sorted single-linked list, a skip list, or a red-

black tree. We configured the benchmark to initialize the

set of integers with 128 values, and allowed it to store up

to a maximum of 256 values. Finally, we configured the

benchmark not to generate any read-only transaction (i.e.

searches). This has been done in compliance with the oper-

ating mode of the protocol in [8], where read-only trans-

actions can be executed locally at each single replicated

process, without the need for propagation via the atomic

broadcast (read-only transactions do not alter the state of

the replicated transactional memory system). By only con-

sidering update transactions in our study, we can therefore

precisely assess the impact of the atomic broadcast latency

on the performance of a replicated STM, as well as the per-

formance gains achievable by means of the optimistic ap-

proach proposed in [8]. The below table reports the aver-

age transaction execution time observed for the three bench-

marks via the aforementioned tracing scheme:

Benchmark Avg. Transaction Exec. Time

RB-Tree 77 µsec

SkipList 281 µsec

List 324 µsec

As for the delay due to the OAB layer (i.e. the delay

of the Opt-delivery and of the corresponding TO-delivery),

several studies have shown that OAB implementations typi-

cally tend to exhibit flat message delivery latency up to sat-

uration [4]. On the other hand, our study is not targeted

to explicitly assess the saturation point of the OAB group

communication subsystem. For this reason we decided to

run the simulations by assuming that the OAB layer does

not reach its saturation point. Therefore, independently of

the value of the message arrival rate λ, we use in our simu-

lations an average latency of 500 microseconds for the Opt-

delivery, and of 2 milliseconds for the TO-delivery. These

values have been selected based on experimental measures

obtained running the Appia [9] GCS Toolkit on a cluster of

4 quad core machines (2.40GHz - 8GB RAM) connected

via a switched Gigabit Ethernet.

Finally, we consider an ideal scenario with no mismatch

between the optimistic and the final message delivery order.

This is because the protocol in [8] has been explicitly tar-

geted to environments where such a spontaneous ordering

property holds (e.g. LAN based environments). This clearly

represents a best-case scenario for the protocol in [8], which

allows us to establish an upper bound on the performance

achievable by this protocol vs the behavior of the OAB layer

(in terms of actual message ordering).

3.2 Simulation Results
In Figure 2 we report response time and CPU utilization

values for the three benchmarks, while varying the arrival

rate of transactional requests λ from the OAB layer. We

plot results related to 4 different configurations for the repli-

cation protocol. Opt-Fine and Opt-Coarse refer to the val-

ues observed when employing the replication protocol in [8]

by using either the actual transaction conflicts (determined

by using the exact accesses to memory objects as logged

within the benchmark execution traces) or a coarse conser-

vative estimation where each pair of concurrent transactions

is assumed to always conflict on some object within the

STM memory layout. For these two different conflict pat-

ters we also report the performance observed via a State Ma-

chine (SM) approach relying on traditional, non-optimistic

Atomic-Broadcast, where transactions are activated only af-

ter the group communication layer has determined their cor-

rect position within the GSO.

By the results we can observe two major tendencies. For

all the benchmarks, CPU utilization at the saturation point

is always lower than 20%. Given that in our simulation

the OAB layer is configured to respond in its flat region,

this is a clear indication that data conflicts are the cause of

system saturation. The worst case for the impact of data

conflicts on the saturation point can be observed for List,

where the CPU utilization does not even reach 6%, and

the response time curves in case of actual conflicts exactly

coincide with the corresponding ones obtained via coarse

conflict estimations. The latter phenomenon is less evident

for the other benchmarks, especially RB-Tree. However, it

is a clear indication that data access patterns in STM en-

vironments may anyway exhibit actual conflict levels sig-

nificantly grater than in database applications. This moti-

vates the need for investigating optimized concurrency con-

trol schemes, especially when employed in replicated envi-

ronments where transaction blocking up to the determina-

tion of the final GSO for already active conflicting trans-

actions may have a strong negative impact on resources’

under-utilization.

The second tendency we can observe is related to limited

advantages, in terms of transaction execution latency, from

the overlap between coordination and computing phases in

the Opt scheme compared to SM. This is noted especially

for the very fine grain RB-Tree benchmark, exhibiting mean

transaction execution time significantly less than the de-

lay of TO-deliveries. Such a reduced transaction granu-

larity, in combination with non-minimal transaction con-

flict levels (observed even for the fine conflict determina-

tion approach based on actual accesses), significantly re-

duces the performance gains achievable with respect to non-

optimistic approaches. This depends on the fact that the co-

ordination phase overlaps with a very reduced amount of

fine grain computing activities, whose individual delay is

actually negligible compared to the coordination latency.

As a final observation, results with batching factor β

greater than 1 are not reported since they almost coincide

with those observed with β = 1. This indicates that, in

STM environments, the replication management scheme

in [8] does not take advantages (in terms of performance

of transaction processing) when employed in combination

with optimized group communication modules relying on

batching mechanisms.

3.3 Assessments
Based on the results in the previous section, we argue

that replication schemes originally designed for databases

need to be significantly revised in order to deliver adequate

performance in STM contexts. We envisage at least two

ways according to which the revision could be actuated:

(A) The concurrency control scheme supported by XM

should increase the overlap level between coordina-

tion and computing phases. This would entail in-

creasing the level of optimism in transaction process-

ing activities by avoiding, e.g., the block-until-GSO

phase in case of Opt-delivered transactions that con-

flict with already active ones (for which GSO deter-

mination is on-going). Such an aggressive-optimistic

approach can provide advantages in terms of response

time reduction, with the maximum benefits being ex-

pectable in those scenarios where the Opt-delivery or-

der is likely to match the final TO-delivery. This is be-

cause optimistic anticipation of the execution of chains

of conflicting transactions, before the corresponding

GSO gets determined, will not likely result in cascad-

ing rollback scenarios, otherwise caused by discrep-

ancies between Opt-delivery and TO-delivery orders

when spontaneous ordering properties do not hold.

This approach should anyway provide no advantage in

terms of CPU utilization for processing activities asso-

ciated with spontaneously ordered optimistically deliv-

ered transactions since, compared to the scheme in [8],

an increased level of optimism (combined with spon-

taneous ordering) would simply yield to anticipate the

execution of conflicting transactions before the GSO

is actually defined for the oldest transaction along the

conflict-serialized order.

(B) Amortizing response time penalties that could arise

when spontaneous ordering is not guaranteed by con-

currently exploring differentiated serialization orders

in a speculative fashion, according to the aggressive-

optimistic scheme provided in the above point. This

would lead to increasing hardware resources’ utiliza-

tion without negatively impacting response time. The

set of serialization orders to be explored while notifi-

cation of the correct one (i.e. the GSO) takes place

via the finalization of the OAB service could be de-

termined using heuristics or a clear theoretical analy-

sis, allowing the avoidance of redundant execution of

equivalent serialization orders on the basis of actual

transaction conflicts.

As for point (A), we have early results related to trans-

action response time improvements, which can be achieved

in case of a basic aggressive-optimistic scheme in which

an Opt-delivered transaction T gets activated as soon as

all the other Opt-delivered transactions preceding T in the

optimistic delivery order have completed their execution

(although they might be still unresolved in terms of com-

mit/rollback due to ongoing determination of the corre-

sponding GSO). Such a scheme would entail controlling

concurrency in a way that each transaction T , serialized af-

ter T ′ according to the optimistic delivery order, is allowed

to access to the post-image of memory objects with respect

to the execution of T ′. Similar approaches have been stud-

ied in literature in the context of Distributed Atomic Com-

mit schemes (see [5]) for affording temporal unavailability

of precommitted data by allowing (at least at a limited de-

gree) the exposition of data post-images to a subsequent

transaction.

The percentage response-time reduction via the above

aggressive-optimistic scheme over the original proposal

in [8] is reported in Figure 3 for all the three benchmark

applications already employed in the first part of this study.

By the results we observe that, as soon as the transactional

request arrival rate gets increased, the aggressive-optimistic

approach provides significant reductions of the response

time up to saturation (still reached due to data conflicts).

The peak performance gain leads to a reduction of up to

35% in the response time. Also, the reduction is observ-

able for wider workload intervals when the batching fac-

tor β at the OAB layer gets increased. In particular, batch

level β = 8 allows 35% response time reduction for both

Skip-list and List even at low message arrival rates, thus

showing how an aggressive-optimistic approach has the ca-

pability to tackle bursts of transactional requests (carried by

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000

R
es

po
ns

e
T

im
e

(µ
se

cs
)

Requests per Second (λ)

Red Black Tree (β=1)

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

%
 C

P
U

 U
til

iz
at

io
n

Requests per Second (λ)

Red Black Tree (β=1)

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

e
T

im
e

(µ
se

cs
)

Requests per Second (λ)

Skip List (β=1)

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 C

P
U

 U
til

iz
at

io
n

Requests per Second (λ)

Skip List (β=1)

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500 3000 3500

R
es

po
ns

e
T

im
e

(µ
se

cs
)

Requests per Second (λ)

List (β=1)

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500

%
 C

P
U

 U
til

iz
at

io
n

Requests per Second (λ)

List (β=1)

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

Figure 2. Performance Results for SM and Opt.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000 35000 40000

%
 R

es
po

ns
e

T
im

e
R

ed
uc

tio
n

(A
gg

ro
 v

s
O

pt
)

Requests per Second (λ)

Red Black Tree (Fine)

β=1
β=2
β=4
β=8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000

%
 R

es
po

ns
e

T
im

e
R

ed
uc

tio
n

(A
gg

ro
 v

s
O

pt
)

Requests per Second (λ)

Red Black Tree (Coarse)

β=1
β=2
β=4
β=8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 R

es
po

ns
e

T
im

e
R

ed
uc

tio
n

(A
gg

ro
 v

s
O

pt
)

Requests per Second (λ)

SkipList (Fine)

β=1
β=2
β=4
β=8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000

%
 R

es
po

ns
e

T
im

e
R

ed
uc

tio
n

(A
gg

ro
 v

s
O

pt
)

Requests per Second (λ)

SkipList (Coarse)

β=1
β=2
β=4
β=8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500

%
 R

es
po

ns
e

T
im

e
R

ed
uc

tio
n

(A
gg

ro
 v

s
O

pt
)

Requests per Second (λ)

List (Fine)

β=1
β=2
β=4
β=8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500

%
 R

es
po

ns
e

T
im

e
R

ed
uc

tio
n

(A
gg

ro
 v

s
O

pt
)

Requests per Second (λ)

List (Fine)

β=1
β=2
β=4
β=8

Figure 3. Performance Benefits by the Aggressive­Optimistic Approach.

the batched Opt-delivered message) just thanks to the in-

creased concurrency level, which in turn leads to increased

actual overlap between coordination and communication.

This phenomenon is less evident for the very fine grain RB-

Tree benchmark. However, in case of non-minimal batching

values and increased message arrival rate, such an increased

overlap definitely favor response time also for RB-Tree.

4 Conclusions
In this work we have evaluated via simulation the usage

of common database-oriented techniques for dependabil-

ity, based on group communication primitives for replica

coordination, in Software Transactional Memory systems.

The first part of the simulation provides two main out-

comes. First, both the traditional State Machine approach

and the more recent approach based on optimistic atomic

broadcast primitives lead to under-utilization of hardware

resources (CPUs). Second, the approach based on opti-

mistic atomic broadcast does not take significant advantages

from the optimistic overlap between coordination and com-

puting phases. In the second part of the simulation study, we

have presented a relatively simple variant of the optimistic

atomic broadcast based protocol, that aims at increasing the

actual level of overlap between communication and pro-

cessing. The results highlight that this approach can yield

up to 35% reduction of the transaction execution latency.

We have also discussed research lines for further improve-

ments, e.g., in the direction of speculative processing along

differentiated serialization orders.

Acknowledgments
This work was partially supported by the ARIS-

TOS (PTDC/EIA-EIA/102496/2008) project and by FCT

(INESC-ID multiannual funding) through the PIDDAC Pro-

gram funds.

References
[1] J. Cachopo and A. Rito-Silva. Versioned boxes as the

basis for memory transactions. Sci. Comput. Program.,

63(2):172–185, 2006.

[2] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues.

D2STM: Dependable Distributed Software Transactional

Memory. In Proc. International Symposium on Dependable

Computing (PRDC). IEEE Computer Society Press, 2009.

[3] X. Defago, A. Schiper, and P. Urban. Total order broad-

cast and multicast algorithms: Taxonomy and survey. ACM

Computing Surveys, 36(4):372–421, 2004.

[4] R. Ekwall and A. Schiper. Modeling and validating the

performance of atomic broadcast algorithms in high-latency

networks. In Proc. Euro-Par 2007, Parallel Process-

ing, Lecture Notes in Computer Science, pages 574–586.

Springer, 2007.

[5] J. R. Haritsa, K. Ramamritham, and R. Gupta. The

PROMPT real-time commit protocol. IEEE Transactions on

Parallel and Distributed Systems, 11:160–181, 2000.

[6] M. Herlihy, V. Luchangco, and M. Moir. A flexible frame-

work for implementing software transactional memory. SIG-

PLAN Not., 41(10):253–262, 2006.

[7] B. Kemme and G. Alonso. A suite of database replica-

tion protocols based on group communication primitives. In

Proc. of the 18th International Conference on Distributed

Computing Systems, page 156, Amsterdam, Netherlands,

1998. IEEE Computer Society.

[8] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Process-

ing transactions over optimistic atomic broadcast protocols.

In Proc. of the 19th IEEE International Conference on Dis-

tributed Computing Systems, page 424, Austin, TX, USA,

1999. IEEE Computer Society.

[9] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible

protocol kernel supporting multiple coordinated channels.

In Proc. 21st IEEE International Conference on Distributed

Computing Systems, pages 707–710, Phoenix, Arizona, Apr.

2001. IEEE.

[10] U. of Newcastle Upon Tyne. JavaSim 0.3 GA.

http://javasim.codehaus.org/, 2009.

[11] F. Pedone, R. Guerraoui, and A. Schiper. The database state

machine approach. Distributed and Parallel Databases,

14(1):71–98, 2003.

[12] F. Pedone and A. Schiper. Optimistic atomic broadcast: a

pragmatic viewpoint. Theor. Comput. Sci., 291(1):79–101,

2003.

[13] F. Perez-Sorrosal, M. Pati no-Martinez, R. Jimenez-Peris,

and B. Kemme. Consistent and scalable cache replication for

multi-tier J2EE applications. In Middleware ’07: Proceed-

ings of the International Conference on Middleware, pages

328–347, New York, NY, USA, 2007. Springer-Verlag New

York, Inc.

[14] P. Romano, N. Carvalho, and L. Rodrigues. Towards dis-

tributed software transactional memory systems. In Pro-

ceedings of the Workshop on Large-Scale Distributed Sys-

tems and Middleware (LADIS 2008), Watson Research Labs,

Yorktown Heights (NY), USA, ACM Press, Sept. 2008.

[15] Transaction Processing Performance Council. TPC

BenchmarkTM W, Standard Specification, Version 1.8.

Transaction Processing Perfomance Council, 2002.

