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Abstract 

Mental stress is a major individual and societal burden and one of the main contributing factors that lead to patholo-

gies such as depression, anxiety disorders, heart attacks, and strokes. Given that anxiety disorders are one of the most 

common comorbidities in youth with autism spectrum disorder (ASD), this population is particularly vulnerable to 

mental stress, severely limiting overall quality of life. To prevent this, early stress quantification with machine learning 

(ML) and effective anxiety mitigation with non-pharmacological interventions are essential. This study aims to investi-

gate the feasibility of exploiting electroencephalography (EEG) signals for stress assessment by comparing several ML 

classifiers, namely support vector machine (SVM) and deep learning methods. We trained a total of eleven subject-

dependent models-four with conventional brain-computer interface (BCI) methods and seven with deep learning 

approaches-on the EEG of neurotypical (n=5) and ASD (n=8) participants performing alternating blocks of mental 

arithmetic stress induction, guided and unguided breathing. Our results show that a multiclass two-layer LSTM RNN 

deep learning classifier is capable of identifying mental stress from ongoing EEG with an overall accuracy of 93.27%. 

Our study is the first to successfully apply an LSTM RNN classifier to identify stress states from EEG in both ASD and 

neurotypical adolescents, and offers promise for an EEG-based BCI for the real-time assessment and mitigation of 

mental stress through a closed-loop adaptation of respiration entrainment.
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1 Introduction

Individuals with autism spectrum disorder (ASD) often 

demonstrate deficits in social communication skills and 

restricted or stereotyped behaviors and interests [1]. �is 

causes those with ASD to experience states of cogni-

tive and emotional overload, leading to increased stress 

and ultimately anxiety symptoms [2]. Although there 

is significant overlap between stress and anxiety, stress 

is best understood as the physiological and psychologi-

cal response towards stressors; anxiety is the persistence 

of stress even in the absence of these stressors. �e 

comorbidity of anxiety disorders and ASD in children 

and adolescents has been studied extensively with 40% 

to 85% of individuals with ASD aged 6 to 18 having at 

least one form of anxiety [3–5]. Unfortunately, individu-

als with ASD are uniquely vulnerable to the deleterious 

effects of stress because of their hyper- or hyporeactiv-

ity to sensory inputs, as well as difficulties with accurate 

stress detection and coping with stressful situations [6]. 

Given the frequency in which anxiety co-occurs in ASD, 

in conjunction with the hurdles in education, long-term 

functional impairments, reduction in quality of life, and 

increased caregiver burden [7–13], a more comprehen-

sive understanding of comorbidities in ASD as well as 

personalized intervention methods to relieve clinical 
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symptoms of the disease and improve emotional and 

physical well-being for individuals with ASD is needed. 

Incidentally, anxiety and the design of appropriate inter-

vention methods have been identified by the autism com-

munity and clinicians as a key priority with researchers 

emphasizing the need for more precise measures of anxi-

ety [14]. Moreover, the lack of objective and continuous 

measurements of stress is particularly detrimental for 

a population already affected by an inability to express 

inner experiences and calls for novel methods to identify 

individualized stress markers in real-time [15]. Among 

the triggers identified, such as challenging sensory expe-

riences or social demands, anxiety related to academic 

expectations is thought to have the greatest impact on 

school performance for ASD children and adolescents 

[16, 17].

Concurrently, a growing number of studies have dem-

onstrated the efficacy of stand-alone meditation, relaxa-

tion and breathing practices for improving well-being, 

mental health and managing stress [18–20]. Although 

the underlying mechanisms are not yet fully understood, 

breathing practices such as ‘anatomically optimized res-

piration’, i.e. controlled, slow diaphragmatic breathing 

through the nose in the range of 6-10 breaths per min-

ute (brpm) or resonance frequency breathing, 4.5 to 6.5 

brpm for adults and 6.5 to 9.5 brpm for children, have 

been found to procure significant physiological benefits 

[21, 22], reduce physiological and psychological stress 

[23] and even improve sustained attention performance 

[24]. Prior studies have shown that breath-control can 

address physiological correlates of anxiety, including 

heart rate variability [22, 25], a well-validated quantita-

tive stress indicator [26]. Notably, breath-control has 

been found to significantly decrease test anxiety in stu-

dents in an educational setting [27]. Moreover, a recent 

review by Zaccaro et al. [28] found that controlled slow 

breathing (<10 brpm) had a significant impact on auto-

nomic nervous system activity, especially in the theta 

(3–7 Hz), alpha (8–14 Hz) and beta (15–30Hz) bands 

of the electroencephalogram (EEG), linked to improved 

cognitive performance during attentional and executive 

functions [29]. Although these findings, taken together, 

speak to the promise of using controlled slow breathing 

as a simple, low-cost and non-pharmacologic interven-

tion [23] to mitigate anxiety, optimized efficacy hinges on 

assessing an individual’s current level of stress and ideal 

respiration parameters in real-time.

Although cognitive or affective states such as stress are 

not directly observable externally nor reliably measurable 

through behavioral measures or subjective reports, devel-

opments in EEG-based brain-computer interfaces (BCIs) 

have increasingly permitted the continuous and real-time 

monitoring of mental states. Neuroadaptive technologies 

and passive brain-computer interfaces (pBCIs) aim at 

intelligent forms of adaptation in response to cognitive 

state assessments [30, 31]. �e field of EEG-based BCIs 

has blossomed in recent years, largely on account of 

EEG’s high temporal resolution, non-invasiveness, rela-

tively low cost, and novel advances in the effectiveness 

and usability of acquisition systems [32, 33]. While BCIs 

have historically been employed in the context of assis-

tive technologies for severely impaired individuals [34, 

35], pBCIs have mainly been aimed at developing adap-

tive automation for real-world applications [36–38]. �e 

central challenge of EEG-based pBCIs is to account for 

the high inter- and intra-individual variability of neuro-

physiological signals exhibited under particular cognitive 

states [39]. However, by averaging over a large enough 

number of samples it is possible to distill sufficiently spe-

cific brain activity patterns and train a machine learning 

classifier to learn to discern these patterns in real-time 

[40, 41]. �is approach has already been successfully 

applied to monitor several cognitive states such as work-

load [42–44], vigilance [45–47], and fatigue [48, 49].

Neurofeedback involves monitoring a user’s mental 

state with EEG and providing feedback through a vari-

ety of modalities (visual, audio, tactile, etc.) to modulate 

particular biomarkers [50]. In conjunction with breath-

control, neurofeedback training has been shown to be 

a promising mitigatory tool for anxiety. For example, 

White et  al. [51] demonstrated that breathing-based 

visual neurofeedback reduces symptoms in patients with 

anxiety and depression, while acoustically mediated deep 

breathing neurofeedback was shown by Crivelli et al. [52] 

to diminish long-term stress and anxiety levels in young 

adults. �e first step towards an EEG-based BCI able to 

monitor anxiety levels, identify an individual’s optimal 

breathing patterns, and adapt breathing entrainment 

parameters in real-time, is to determine whether mental 

stress can be classified on the basis of ongoing EEG data.

Classification algorithms are key elements of any EEG-

based BCI’s ability to recognize users’ EEG patterns and 

associated cognitive states. Among the large diversity of 

existing architectures and types of classifiers (for reviews 

see [53] and [54]), deep learning methods have recently 

emerged as methods of analysis that can consider neu-

rophysiological data in its entirety, including the time 

domain [54]. Convolutional neural networks are the 

most widely used deep learning algorithms in EEG analy-

sis [55], and have been shown to be effective in emotion 

detection [56, 57] and anxiety classification [58] in par-

ticular. Further, deep learning with convolutional neural 

networks (CNNs) have recently been shown to outper-

form the widely used filter bank common spatial pattern 

(FBCSP) algorithm [59] by extracting increasingly more 

complex features of the data [60]. Accordingly, we aimed 
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at comparing several classifiers previously used in EEG-

based BCIs for the classification of different states of anx-

iety in ASD and neurotypical adolescents. We employed 

classical machine learning methods, specifically support 

vector machines (SVMs) combined with FBCSP, which 

have been successfully applied to detect a wide range 

of covert cognitive and emotional states [53], includ-

ing mental stress detection [61–64]. Although classical 

classifiers present several drawbacks compared to deep 

learning (e.g. elaborate feature extraction and exten-

sive prior knowledge about the dataset [55, 65]), SVMs 

remain a useful benchmark against which deep learning 

methods can be evaluated.

For deep learning methods we selected EEGNet, a 

recently developed compact CNN for EEG-based BCIs 

[66], as well as the Deep ConvNet and the Shallow Con-

vNet developed by Schirrmeister et  al. [60]. Moreover, 

we also applied long short-term memory recurrent neu-

ral networks (LSTM RNNs), which are a type of neural 

net with the ability to “remember” long-term dependen-

cies far better than traditional RNNs, without the loss 

of short-term memory [67], and enable robust analysis 

of temporal trends in EEG data [68]. LSTM RNNs have 

also shown high accuracy in emotion detection [69], with 

LSTM RNN architectures performing better than CNN 

architectures on DEAP, a major EEG emotion analy-

sis dataset [55]. Hybrid deep neural networks combin-

ing both LSTM RNN and CNN architectures have also 

shown promising results on DEAP [70, 71]. Building 

upon these recent advancements, we implemented an 

LSTM RNN and a hybrid long short-term memory fully 

convolutional network (LSTM-FCN) [72] to classify 

states of mental stress from EEG.

�e primary purpose of the present study is to assess 

the feasibility of real-time anxiety detection based on 

EEG signals and the identification of a robust classifier 

for prospective use in a pBCI able to identify the opti-

mal breathing patterns and alleviate anxiety in students 

with and without ASD. To our knowledge, this is the first 

study to examine the efficacy of deep learning-based EEG 

anxiety classifiers in comparison to classical methods. In 

addition, ours is the first attempt of EEG-based anxiety 

classification for both adolescents with autism and neu-

rotypical adolescents.

2  Methods

2.1  Participants and data acquisition

Eight students (1 female M: 15.13 SD: 1.45) diagnosed 

with autism, designated as participants L1-L8, from 

Learning Farm Educational Resources based in Menlo 

Park, (California), and five students (1 female M: 16.6 

SD: 0.55) with no known mental or neurological disor-

ders, designated as participants T1-T5, from �e Nueva 

School in San Mateo, (California), voluntarily enrolled in 

the study. Participants and their parents or legal guard-

ians were informed extensively about the experiment 

and all gave written consent. �e study was approved by 

an Institutional Review Board composed of an educator 

from Learning Farm Educational Resources, an admin-

istrator from �e Nueva School, and a licensed mental 

health professional at �e Nueva School.

Participants were seated in an isolated and dimly lit 

room at a viewing distance of approximately 70 cm of a 

16” LCD monitor with a refresh rate of 60Hz. 16-channel 

EEG data were acquired at 125Hz using an OpenBCI sys-

tem (Ag/AgCl coated electrodes + Cyton Board; https:// 

openb ci. com/) placed according to the international 

10–20 system (channels: ‘Fp1’, ‘Fp2’, ‘C3’, ‘C4’, ‘P7’, ‘P8’, ‘O1’, 

‘O2’, ‘F7’, ‘F8’, ‘F3’, ‘F4’, ‘T7’, ‘T8’, ‘P3’, ‘P4’). �e 16-electrode 

OpenBCI apparatus was selected as it maximized port-

ability, affordability, signal quality, and ease of use while 

minimizing the amount of electrodes, which is ideal for 

practical use of the mental stress detection system.

Participants were fitted with passive noise-canceling 

headphones to isolate them from ambient noise and 

to interact with the stress and breath modulating inter-

face. �e audio-visual stimuli was designed in close 

collaboration with Muvik Labs (https:// muvik labs. io). 

�e stimuli featured sequential trials of stressor, guided 

breathing, and unguided breathing sections (Fig. 1). �e 

stimuli were procedurally generated by Muvik Labs’ Aug-

mented Sound TM engine to ensure timing precision and 

effectiveness through evidence-backed breathing inter-

ventions driven by principles of psychoacoustics and 

behavioral psychology [73].

Prior to the main procedure, participants were asked 

to complete the trait anxiety component of Spielberger’s 

State-Trait Anxiety Inventory for Children (STAI-C) 

[74], a well-validated state and trait anxiety screen used 

for typically developing youth that can also be accurately 

used to assess trait anxiety in children and adolescents 

with autism [75].

2.2  Stress induction and alleviation

Following an initial EEG baseline recording for 120 sec 

(‘Baseline’), participants performed a 25  min session 

featuring stress induction and breath modulation tasks 

consisting of four main blocks. Each block began with a 

stressor featuring an augmented arithmetic number task, 

intensified by bright contrasting colors displaying num-

bers appearing sequentially, coupled with audible soni-

fied timers mapped to rising pitches similar to Shepard 

tones (powered by Muvik Labs Augmented Sound TM ) 

[73], with a 90 second time constraint.

Timed mental arithmetic has been extensively used 

to induce stress [76, 77]; for our specific mental stress 

https://openbci.com/
https://openbci.com/
https://muviklabs.io
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induction paradigm, we chose a widely used mental 

arithmetic task (for an overview see [63]) and simplified 

it to minimize the possibility of overstimulating par-

ticipants with ASD. �e mental stress induction was fol-

lowed by a period of breathing for 200 seconds. �e first 

and third breathing periods had participants breathe at 

their own pace (unguided breathing) while the second 

and fourth breathing periods presented participants with 

a custom-generated breathing entrainment system, guid-

ing breath airflow in and out of lungs at a relaxing pace 

of around 6 brpm [78, 79] with both visual (i.e. growing/

shrinking circle outlining the air flow volume of target 

respiration speed) and auditory guides (musical patterns 

featuring nature sounds that mimic the sound of inhala-

tion and exhalation; Muvik Labs Augmented Sound TM ). 

Following each mental arithmetic task and breathing 

period, participants were prompted to rate their current 

stress levels on a 5-point Likert scale, with 1 indicating 

“very relaxed” and 5 indicating “very stressed”.

2.3  EEG signal processing and training data selection

MNE [80], an open-source Python tool for EEG analysis, 

was employed to filter EEG data from all 16 channels. In 

preparation for classification analysis, EEG time-courses 

were high-pass filtered at 1 Hz to remove slow trends and 

subsequently low-pass filtered at 50Hz to remove line 

noise. �e routine clinical bandwidth for EEG is from 

0.5 to 50Hz [81]. However, significant sinusoidal drift 

was observed on the 0.5Hz-1Hz interval and therefore 

the interval was excluded in the selected bandpass filter 

range.

�e data of two participants were rejected from all 

analyses due to unusually high impedances at the time of 

recording, which was confirmed offline by visual inspec-

tion: participant L1 from the ASD group, and participant 

T3 from the neurotypical group. Preprocessing of the 

EEG data was kept to a minimum to mimic online condi-

tions found in a real-time BCI scenario.

For training sample preparation, a cropped training 

strategy was employed. �e number of samples extracted 

for the different classifiers are shown in Table 1. Samples 

with a length of 1 or 5s were extracted per participant 

from the EEG recorded during the ‘Stressor’, ‘Guided 

Breathing’, ‘Unguided Breathing’, and ‘Baseline’ periods 

of the procedure and were assigned corresponding labels.

2.4  Neural signal classi�cation

We performed classification analysis on the selected EEG 

training samples using an SVM model with FBCSP, three 

CNN models, three LSTM RNN models, and a hybrid 

LSTM-FCN model. While all deep learning models were 

multiclass (‘Stressor’, ‘Baseline’, ‘Guided Breathing’ and 

‘Unguided Breathing’), the SVM classifiers were binary 

(‘Guided Breathing’ vs ‘Stressor’, ‘Unguided Breathing’ 

vs ‘Stressor’, ‘Unguided Breathing’ vs ‘Guided Breathing’, 

& ‘Baseline’ vs ‘Stressor’), as is conventional for the clas-

sification of multiple classes with SVMs [82]. We opted 

to avoid using calculated features as inputs in favor of 

an end-to-end learning method with filtered EEG signal 

value inputs from all 16 channels. In addition, as differ-

ent EEG channels represent neural signals from differ-

ent areas of the brain, we elected not to combine channel 

data to preserve spatial information.

Fig. 1 Experimental design of the procedure. Participants performed four blocks, each consisting of a mental arithmetic task followed by an anxiety 

self-report, a period of rest, either guided breathing entrainment or unguided breathing, a second anxiety self-report and lastly another rest period



Page 5 of 12Sundaresan et al. Brain Inf.            (2021) 8:13  

For the FBCSP-SVM, the EEG recording was divided 

in the time domain into samples of 1s and partitioned in 

the frequency domain using 9 filter bank band-pass fil-

ters from 4Hz to 40Hz prior to feature extraction, which 

was achieved with the common spatial pattern (CSP) 

algorithm, i.e. a linear map maximizing the variance dif-

ference between two classes [83]. �e binary SVM clas-

sifiers used a radial basis function kernel with a gamma 

value of 1/360 and a regularization parameter (C) of 1.6. 

We implemented a number of FBCSP-SVM variants, 

such as multiclass SVM (baseline, stressor, guided and 

unguided breathing) with polynomial or sigmoid kernels 

and a 5 sec EEG sample length; these models were not 

included in the comparison due to lower classification 

performance. �e FBCSP-SVMs were implemented with 

the sklearn library in Python and for validation samples 

were apportioned at a ratio of 80:20 for train and test 

dataset.

�e Deep ConvNet CNN architecture [60] is composed 

of 4 convolution-max-pooling blocks. �e first block, 

with 25 2D temporal convolutional filters of size (1, 5), 25 

2D spatial convolutional filters of size (1, 64), and a max 

pooling layer, was especially designed to process the EEG 

input. �e subsequent convolution-max-pooling blocks 

each have a 2D convolutional layer and a max pooling 

layer, with 50, 100 and 200 convolutional filters per block, 

respectively. Finally, a 4 neuron dense layer with softmax 

activation produces the output (see Fig. 2A). �e Shallow 

ConvNet CNN architecture is a modification of the Deep 

ConvNet to mimic the transformations of FBCSP. �e 

Shallow ConvNet retains the first convolution-max-pool-

ing block of the Deep ConvNet, albeit with a larger kernel 

size of 13 for the temporal convolution layer. �is block 

performs similar transformations as the bandpass filter 

and CSP spatial filtering algorithm of the FBCSP work-

flow. Following the convolution-max-pooling block, the 

architecture contains a squaring nonlinearity function, 

an average pooling layer, and a logarithm activation func-

tion [60]. A 4 neuron dense layer with softmax activation 

produces the output (see Fig. 2B).

We trained three original LSTM RNN models, with 

one, two and three LSTM layers, respectively. �e three-

layer LSTM RNN model consists of three LSTM lay-

ers, two dense hidden layers, and a dense output layer. 

�e first LSTM layer, containing 50 neurons, receives 

the input. �e second and third LSTM layers contain 

40 neurons. �e number of neurons in the LSTM lay-

ers was informed by the amount calculated and used by 

Tsiouris et al. [84] and Alhagry et al. [69], and adjusted to 

our EEG data to prevent underfitting and overfitting. Fol-

lowing the third LSTM layer, we include a dropout layer 

to reduce overfitting [85] with a dropout rate of 0.5. �e 

first dense layer contains 20 neurons and uses a sigmoid 

activation function. Following the first dense layer, we 

include another dropout layer with a dropout rate of 0.5. 

�e second dense layer consisted of 10 neurons and used 

a rectified linear unit (ReLU) as an activation function. 

�e dense output layer of 4 neurons used softmax acti-

vation. �e two-layer LSTM architecture is obtained by 

omitting one 40 neuron LSTM layer, and the one-layer 

LSTM architecture is obtained by omitting both 40 neu-

ron LSTM layers (see Fig. 2C).

�e EEGNet CNN architecture [66] used comprised 

8 2D convolutional filters of size (1, 64), a Depthwise 

Convolution layer of size (16, 1) to learn multiple spa-

tial filters for each temporal filter, a Separable Convolu-

tion layer of size (1, 16), and a 4 neuron dense layer with 

softmax activation (see Fig. 2D). In the LSTM-FCN [72] 

architecture, EEG time series input is simultaneously fed 

into an LSTM block, composed of an 8 neuron LSTM 

layer and a dropout layer with rate of 0.8, and an FCN 

block composed of 128 1D temporal convolutional layers 

of size 8, 256 1D temporal convolutional layers of size 5, 

and 128 1D temporal convolutional layers of size 3. �e 

outputs of the LSTM and FCN blocks are then concate-

nated and passed into a 4 neuron dense output layer with 

softmax activation (see Fig. 2E).

All deep learning architectures were implemented with 

the Keras machine learning library in Python, and were 

trained over 1000 EEG epochs with a batch size of 200. 

While training, we implemented the Adam optimization 

algorithm [86] with a learning rate of 0.001 in place of the 

standard stochastic gradient descent (SGD) algorithm. 

During validation, EEG samples for deep learning were 

apportioned at a ratio of 70:30 to the train dataset and 

test dataset, respectively.

3  Results

3.1  Behavioral results

On average, participants self-reported higher levels of 

mental stress on the 5-point scale following the stress 

induction periods, with average stress scores of 1.54, 

2.04, and 1.62 prior to 2nd, 3rd, and 4th stress induction 

periods, respectively, and average scores of 3.00, 2.88, and 

3.12 following the same stress induction periods. A series 

of Wilcoxon signed-rank tests were employed to compare 

the self-reported stress scores before and after each stress 

induction period across all participants; the tests indi-

cated that post-stressor stress scores were significantly 

higher than the pre-stressor scores, with Z test statistics 

of −  3.19, −  2.49, and −  2.62, and p-values of 0.00143, 

0.0127, and 0.00879, for the 2nd, 3rd, and 4th stress 

induction periods, respectively. As the participants were 

prompted for their self-reported mental stress level fol-

lowing every stressor and breathing period, stress scores 

prior to the 1st stress induction period were not collected 
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and hence the 1st stress induction period was not consid-

ered in the behavioral data analysis. Accompanied by the 

precedents in the literature, these results reinforce our 

confidence that the selected experimental paradigm can 

reliably induce mental stress in the participants.

3.2  Model performance

�e performance for the FBCSP-SVM classifiers of each 

participant are shown in Table  1. �e average classifi-

cation accuracy was highest for the binary classifica-

tion of ‘Baseline’ vs ‘Stressor’ (87.88%) and lowest for 

‘Unguided Breathing’ vs ‘Stressor’ (78.28%). �at the 

baseline and unguided breathing conditions had the 

lowest level of demands imposed on participants, and 

yet classification against the stressor condition yielded 

both the highest and lowest accuracy, suggests that 

muscle activity did not bias the classifiers significantly.

�e three CNN models, Deep ConvNet, Shallow 

ConvNet, and EEGNet, yielded average classification 

accuracies of 58.80, 62.84, and 61.18%, respectively 

(see Table 2). �e LSTM-FCN yielded an average clas-

sification accuracy of 62.97% across all four classes. 

�e two-layer LSTM RNN classifier yielded an aver-

age accuracy of 93.27% on the test data across all four 

classes, outperforming the 73.53% average accuracy of 

Fig. 2 Diagram of the model architectures for the A Deep ConvNet, B Shallow ConvNet, C LSTM RNN, D EEGNet and E LSTM-FCN. Note: the first 

grayed layer of the LSTM RNN was only implemented for the two- and three-layer LSTM while the second grayed layer is only applicable to the 

three-layer LSTM
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the one-layer LSTM RNN and the 76.06% average accu-

racy of the three-layer classifier (see Table 3).

It is important to note that due to the longer length of 

the unguided and guided breathing periods compared to 

the stressor and the baseline periods, more samples were 

extracted from the unguided and guided breathing peri-

ods, creating an unbalanced dataset. Although this can 

lead to issues since an unbalanced dataset can artificially 

inflate the accuracy metric, the two-layer LSTM RNN 

model used here demonstrated high class-wise sensitiv-

ity and specificity during validation (see Fig.  3), leading 

us to the conclusion that the unbalanced dataset was not 

a cause for concern.

3.3  LSTM RNN performance with individual variation

We were interested in investigating the relationship 

between the classification accuracy of the two-layer 

LSTM model (the best performing model) and pre-exist-

ing mental conditions. First, we wished to see if there was 

a significant difference between model accuracy for par-

ticipants with autism and neurotypical participants. On 

average, the two-layer LSTM model accuracy for a partic-

ipant with autism was 93.33%, while the model accuracy 

for a neurotypical participant was 93.15%. A Mann-

Whitney U test was conducted to compare model accu-

racy for the participants with autism and neurotypical 

participants and found no significant difference between 

model accuracy for the two groups (p=0.566), indicat-

ing that the two-layer LSTM model performed similarly 

regardless of whether the participant had autism. We also 

wished to understand whether an individual’s persistent 

(trait) anxiety can influence the performance of the two-

layer LSTM RNN. We employed Spearman correlation 

to compare model accuracy and individual STAI-C trait 

anxiety scores (see Table 4); higher STAI-C scores indi-

cate higher trait anxiety. �e analysis yielded a Spear-

man’s rho of 0.0393, indicating virtually no correlation 

between trait anxiety and the two-layer LSTM RNN 

performance.

4  Discussion

To the best of our knowledge, in this study we propose 

for the first time a deep learning-based classifier for 

decoding mental stress, a complex and covert state, from 

scalp EEG signals in youth with ASD. Our results show 

that states of mental stress can be accurately assessed in 

adolescents with and without ASD as well as in adoles-

cents with varying levels of baseline anxiety. We com-

pared classification accuracy of 4 binary FBCSP-SVM 

models and 7 multiclass deep learning models. �ese 

classifiers were employed to classify the EEG recorded 

Table 1 Classification accuracies of the FBCSP-SVM classifiers 

per participant and classification (‘Guided Breathing’ vs ‘Stressor’, 

‘Baseline’ vs ‘Stressor’, ‘Unguided Breathing’ vs ‘Guided Breathing’, 

and ‘Guided Breathing’ vs ‘Stressor’)

Participant Guided vs 
Stressor 
(%)

Baseline vs 
Stressor (%)

Unguided vs 
Guided (%)

Unguided vs 
Stressor (%)

L2 98.75 97.92 100.00 96.30

L3 80.00 95.83 75.00 80.56

L4 68.75 91.67 70.00 75.93

L5 81.25 91.67 87.50 77.78

L6 67.50 81.25 57.50 71.30

L7 87.50 81.25 97.50 90.74

L8 90.00 93.75 86.25 70.37

T1 90.00 93.75 76.25 71.30

T2 83.75 89.58 91.25 83.33

T4 72.50 79.17 73.75 69.44

T5 65.00 70.83 71.25 74.04

Average 80.45 87.88 80.57 78.28

Table 2 Class-wise and overall accuracies for the Deep ConvNet, 

Shallow ConvNet, and EEGNet CNN classifiers

Average accuracy (%) Deep 
ConvNet 
(%)

Shallow 
ConvNet (%)

EEGNet (%)

Stressor (%) 60.73 49.14 59.31

Unguided breathing (%) 59.38 56.25 60.38

Guided breathing (%) 53.76 81.07 59.99

Baseline (%) 61.34 64.90 61.18

Average (%) 58.80 62.84 60.21

Table 3 Class-wise and overall accuracies for the 1-Layer, 2-Layer, and 3-Layer LSTM RNN classifiers and the hybrid LSTM-FCN classifier

Highest classi�cation accuracy are highlighted in bold

Average accuracy (%) 1-Layer LSTM (%) 2-Layer LSTM (%) 3-Layer LSTM (%) LSTM-FCN (%)

Stressor (%) 63.95 90.82 74.75 57.19

Unguided breathing (%) 62.89 91.19 70.43 57.52

Guided breathing (%) 80.09 94.57 67.76 72.32

Baseline (%) 73.53 96.50 76.07 64.84

Average (%) 70.12 93.27 72.26 62.97
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from ASD and neurotypical adolescents performing a 

task with periods of stress induction (‘Stressor’), resting 

state (‘Baseline’), guided breathing (‘Guided Breathing’) 

and unguided breathing (‘Unguided Breathing’). �e best 

classification accuracy was achieved with the multiclass 

two-layer LSTM at 93.27%.

�e 4 binary FBCSP-SVM classifiers performed as fol-

lows: 80.45% for ‘Guided Breathing’ vs ‘Stressor’, 87.88% 

for ‘Baseline’ vs ‘Stressor’, 80.57% for ‘Unguided Breath-

ing’ vs ‘Guided Breathing’, and 78.28% for ‘Unguided 

Breathing’ vs ‘Stressor’. �e FBCSP-SVM performed best 

when classifying between the pre-task onset resting state 

epoch (‘Baseline’) and the stress induction (‘Stressor’) 

conditions, which could be due to the rest periods impos-

ing the least, and the stress condition the most, demands 

on the participants. Interestingly, the classifier performed 

relatively well for ‘Unguided Breathing’ vs ‘Guided 

Breathing’ classes, although these two conditions were 

similar in terms of stimuli and demands imposed on the 

participants. Despite our binary FBCSP-SVM classifiers 

reaching a satisfactory overall classification accuracy of 

around 82% across all 4 condition pairs, there are several 

trade-offs pertaining to the use of SVM when compared 

to deep learning. Although SVMs require less optimizing 

parameters, these learning models do not suffer from the 

problem of local minima, and are less computationally 

demanding than neural networks, they are constrained 

to a small number of features [87], even when these fea-

tures are extracted by algorithms [88]. In addition, SVMs 

cannot consider a robust set of EEG timepoints, ren-

dering them unable to examine the EEG time domain, 

which is a critical dimension for analyses [88]. Contrast-

ingly, LSTMs are well able to handle temporal informa-

tion, given their ability to choose to remember or discard 

information depending on contextual information. None-

theless, due to their low computational complexity, SVMs 

remain one of the most popular types of classifiers for 

EEG-based BCI, in particular for online scenarios. Not-

withstanding that adaptive implementations of SVM have 

been found to be superior to their static counterparts, 

they often require fully retraining the classifier with new 

incoming data, resulting in a much higher computa-

tional complexity and thus a lack of online applicability 

[53]. Conversely, with deep learning methods adaptation 

can be achieved by retraining the input layer with new 

Fig. 3 A 2-Layer LSTM RNN model confusion matrix. B 2-Layer LSTM RNN odel precision-recall curve

Table 4 2-Layer LSTM RNN classification accuracy and trait 

anxiety per participant

Participant 2-Layer LSTM RNN classi�cation 
accuracy (%)

STAI-C trait 
anxiety 
score

L2 92.83 37

L3 92.83 32

L4 93.72 24

L5 93.69 30

L6 92.57 33

L7 93.72 32

L8 93.97 46

T1 92.83 25

T2 93.08 37

T4 93.47 42

T5 93.24 28
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incoming data. LSTMs in particular are inherently adap-

tive and thus well suited for real-time scenarios, as their 

predictions are conditioned by past input. In addition, 

unlike SVMs, deep learning networks can automatically 

adjust and optimize their parameters, essentially alleviat-

ing the need for feature extraction and requiring far less 

processing and prior knowledge regarding the original 

EEG dataset [55, 65]. Lastly, while some multiclass SVMs 

have been found to outperform neural networks [89], our 

attempts with multiclass FBCSP-SVMs produced incon-

sistent results with accuracies ranging between chance-

level and 90%.

With regard to the multiclass deep learning models, the 

Deep ConvNet CNN performed with an overall accuracy 

of 58.80%, the Shallow ConvNet CNN with 62.84%, the 

EEGNet CNN with 61.18%, the LSTM-FCN with 62.97%, 

the one-layer LSTM with 73.53%, the two-layer LSTM 

with 93.27% and the three-layer LSTM with 72.26%. �e 

high classification accuracies achieved with the LSTM 

architecture presumably is a result of its ability to learn 

time dependencies within the data. Indeed, the retention 

property is useful in mental state monitoring, as con-

sidering the past activations of the EEG can drastically 

improve the prediction of target variables and the brain 

activity patterns leading up to, and associated with, spe-

cific cognitive states. �e inherent nature of deep learn-

ing models, with hidden layers obscuring intermediate 

processes occurring within the models, makes it chal-

lenging to definitively identify the exact cause for the 

reduction in performance with the addition of a third 

LSTM layer. However, it is generally understood that 

stacking LSTM layers can render the model prone to 

overfitting [90] as well as the vanishing gradient prob-

lem, in which network weights fail to update significantly 

over time and model training becomes stagnant [91, 92], 

phenomena that could explain the lower accuracy of the 

three-layer LSTM. Empirically, it has been shown that a 

second LSTM layer often provides a significant boost in 

classification accuracy over a single LSTM [84, 93, 94]; 

however, the addition of a third LSTM layer or more can 

have little to no effect on performance [55, 93, 94], and 

in some cases additional layers can hinder model training 

and convergence, and in turn degrade performance [91]. 

Consequently, our leading hypothesis finds that the mar-

ginal increase in model complexity between the two-layer 

and three-layer LSTM further complicated model train-

ing while adding comparatively limited improvements, 

leading to a net loss in model performance.

�ere are some caveats to consider in the interpreta-

tion of our results. First, given that anxiety varies signifi-

cantly with context and individual, and cannot therefore 

be induced reliably and equivalently across participants, 

we utilized mental stress induction via mental arithmetic 

as a proxy for anxiety. Second, our experiment was 

designed to induce anxiety as efficiently as possible and 

thus minimize the time under stress to avoid any undue 

strain on the participants. Conversely, more time was 

required for relaxation to set in and the breathing rate to 

normalize; as a result the time for the mental arithmetic 

task and the guided or unguided breathing differed. �us, 

learning models were trained on an unbalanced dataset, 

with more ‘Unguided Breathing’ and ‘Guided Breath-

ing’ EEG samples than ‘Stressor’ and ‘Baseline’ samples, 

with the potential of artificially inflating model accuracy. 

However, this is unlikely to be a concern for the two-layer 

LSTM RNN model, which exhibited high sensitivity and 

specificity metrics across all classes. Lastly, it should be 

noted that a potential drawback of LSTM RNNs, and 

of deep learning algorithms in general, is over-reliance 

upon large datasets. To this regard, the same classifica-

tions performed with smaller datasets including only 

2 or 3 conditions led to poorer performance (data not 

shown). However, the experimental 2-layer LSTM accu-

racy metrics were likely not impacted by a smaller sample 

size and were indicative of the model’s real-world per-

formance due to every trained model’s very high dem-

onstrated sensitivity, specificity, and predictive ability; 

we found the 2-layer LSTM models were not only suc-

cessful in identifying true positives across all classes but 

also when rejecting false positives in a statistically signifi-

cant manner in each and every one of our test subjects. 

Indeed, one major drawback of deep learning is the need 

for large amounts of data, an issue we aim to remedy in a 

future study involving a much larger set of participants, 

both neurotypical and ASD, as well as a more diverse set 

of stress induction tasks. Given that we have identified 

a viable classifier for the monitoring of cognitive states 

related to anxiety, the goal of forthcoming studies will 

be to refine and validate the two-layer LSTM RNN deep 

learning model for prospective implementation in a per-

sonalized pBCI. Such a system will be capable of moni-

toring for periods of stress and hone in on an individual’s 

optimal respiration patterns by adapting the breathing 

entrainment parameters in a closed-loop manner.

In summary, the goal of this study was to compare 

several learning models or classifiers on their abil-

ity to assess mental stress levels from EEG recordings 

performed on adolescent students to determine the 

feasibility of an EEG-based BCI capable of real-time 

identification and the mitigation of anxiety through 

optimized respiration entrainment. Of the different 

classifiers we compared, two-layer LSTM yielded the 

highest classification accuracy (93.27%), opening new 

avenues of decoding covert mental states for BCI-

based neuroadaptive applications to benefit youth with 

autism.
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