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Abstract
Early detection of the COVID-19 virus is an important task for controlling the spread of the pandemic. Imaging techniques

such as chest X-ray are relatively inexpensive and accessible, but its interpretation requires expert knowledge to evaluate

the disease severity. Several approaches for automatic COVID-19 detection using deep learning techniques have been

proposed. While most approaches show high accuracy on the COVID-19 detection task, there is not enough evidence on

external evaluation for this technique. Furthermore, data scarcity and sampling biases make difficult to properly evaluate

model predictions. In this paper, we propose stochastic gradient Langevin dynamics (SGLD) to take into account the model

uncertainty. Four different deep learning architectures are trained using SGLD and compared to their baselines using

stochastic gradient descent. The model uncertainties are also evaluated according to their convergence properties and the

leave-one-out predictive densities. The proposed approach is able to reduce overconfidence of the baseline estimators while

also retaining predictive accuracy for the best-performing cases.
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1 Introduction

Deep learning has become an essential tool for automated

decision making in several domain applications including

image classification, object detection and natural language

processing, among others [2]. However, the impressive

performance shown by this method in several large-scale

benchmarks contrasts with its application to machine-as-

sisted clinical decision making. There are several reasons

for this reluctance, therefore, giving an artificial intelli-

gence technique the power to take life-critical decision is

still challenging [5].

Uncertainty refers to the lack of certainty due to

imperfect or unknown information. In particular, aleatoric

uncertainty is related to the notion of randomness itself and

can be identified by running several experiments and

observing their outcomes. Epistemic uncertainty in the

other hand is related to the lack of knowledge and can only

be reduced by introducing new observations or background

knowledge [19]. Bayesian inference is a popular technique

for incorporating domain knowledge into the model and

evaluating both, the aleatoric and epistemic uncertainties.

For deep learning models, the aleatoric uncertainty part can

be well captured by fusing the standard neural network

architecture with a probability distribution. Instead, for the

epistemic uncertainty part, we must treat the model

parameters as random variables and the predictive uncer-

tainty is obtained by marginalizing the posterior distribu-

tion over the parameters [1]. Building predictive models for

the COVID-19 pandemic is one such example of this lack

of certainty. In particular, the detection of positive cases is

usually performed using reverse transcription polymerase

chain reaction (RT-PCR) tests. This technique is precise

but costly in terms of human resources and infrastructure.

Therefore, there have been significant efforts to develop

COVID-19 detection procedures that can be used to com-

plement or to provide faster and accurate alternatives.

Computer tomography can be considered as being both fast
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and accurate; however, it is expensive and its evaluation

requires domain experts that can assess the disease onset.

In the other hand, chest radiography (X-ray) uses lower

radiation doses than computer tomography. Conversely, X-

ray imaging is inexpensive and readily available in many

hospitals and primary care health centers [23]. Several

approaches for automatic COVID-19 detection using chest

X-ray images have been published [3, 22]. These studies

make use of different strategies for data handling and dif-

ferent neural network architectures. While most studies

report classification accuracies above 90%, it is still unclear

how the training data and the modeling assumptions affect

the final results or the capability of the model to produce

reliable predictions [21]. Narin et al. [24] used five pre-

trained convolutional neural networks (ResNet50,

ResNet101, ResNet152, InceptionV3 and Inception-

ResNetV2) for the detection of COVID-19 infected

patients from chest X-ray images. The authors performed

three binary classifications with four classes (COVID-19,

normal (healthy), viral pneumonia and bacterial pneumo-

nia) and achieved the best accuracy (98%) for ResNet50.

Also, Wang et al. proposed a tailored deep convolutional

neural network [27]. The COVID-Net model was trained

using publicly available data composed of 13975 X-ray

images across 13870 patient cases. The authors reported

93:3% accuracy for the three class database using the

COVID-Net model whose weights were pre-trained using

the ImageNet database [9]. It is also important to notice

that most models are trained using imbalanced databases.

Conversely, data augmentation and oversampling play an

important role on the final results. Chowdhury et al. eval-

uated different architectures and data augmentation

schemes for binary and multi-class classification [6]. A

variant of the DenseNet architecture named CheXNet that

was previously trained on chest X-ray images outper-

formed other neural network models when no data aug-

mentation was used. Nevertheless, the authors shown that a

deeper neural network improved the classification results

from CheXNet when using data augmentation techniques

for training. Data imbalance is pervasive among most

medical datasets [20]. Most of the research been done on

automatic COVID-19 detection using data collected from

multiple sources. Garcia et al. shown that this procedure

cannot guarantee that a model can be built with low risk of

bias [12]. Also, there are confidentiality issues and small

number of labeled examples, which causes the number of

positive cases being smaller than the number of control

cases. A summary of deep learning-based COVID-19

detection from X-ray can be found in Ref. [17].

2 Related work

Dropout is a popular regularization technique for deep

learning that randomly removes units from any base

architecture. [11] demonstrated that using Monte Carlo

sampling with dropout activations during test time pro-

duces samples from the posterior distribution. In Ref. [7],

the authors proposed dropout and data augmentation

schemes at test time in order to estimate aleatoric uncer-

tainty for dermoscopic image classification. Reference [14]

developed an uncertainty estimation framework for

reporting confidence in medical image segmentation and

diseases detection using deep learning. The authors used an

ensemble of models trained with dropout at test time (MC-

Dropout) to approximate the posterior distribution. This

approach is not intended for producing state-of-the-art

accuracy results, but for evaluating the usefulness of the

predictive uncertainty to avoid overconfident predictions.

Closely related to our approach, Gour and Jain used MC-

Dropout with the EfficientNet-B3 architecture to evaluate

predictive accuracy for detecting COVID-19 from chest

X-ray images [15]. In order to evaluate predictive uncer-

tainty, their model performs several forward passes using

dropout activations and the mean entropy captures the

model uncertainty. Reference [13] developed a cost-sen-

sitive calibrated uncertainty estimation framework for

COVID-19 detection. The model uses a variational poste-

rior approximation with Monte Carlo drop-weights. Vari-

ational inference is a well-known technique for sampling

from a posterior distribution; however, it suffers from

mode collapse. Therefore, the authors also propose Jack-

knife resampling techniques to correct for sample bias.

More recently, [4] evaluated three uncertainty quantifica-

tion techniques for COVID-19 detection from X-ray ima-

ges. The authors evaluated MC-Dropout, ensemble

methods and a combination of ensembles a MC-Dropout.

Their findings indicate that network pre-training using a

chest X-ray dataset yields improved results when compared

to the standard fine-tuning using ImageNet as a base model.

Also, ensemble techniques were found to improve quan-

tification of the predictive uncertainty. In Ref. [16], the

author describes human-in-the-loop techniques for building

trustworthy artificial intelligence. These methods are

potentially capable to describe causal relationships that

cannot be achieved with just supervised learning. In par-

ticular, most state-of-the-art deep learning architectures are

prone to provide wrong outputs with high confidence when

the input contains small perturbations.
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2.1 Contributions

Most studies have used either one of MC-Dropout,

ensembles, variational inference techniques or a combina-

tion of them for estimating the uncertainty of deep learning

predictions for COVID-19 detection. However, Stochastic-

Gradient Markov Chain Monte Carlo (SG-MCMC) sam-

pling techniques have received less attention. As opposed

to MC-Dropout and variational inference, SG-MCMC

produces samples from the posterior distribution. However,

due to the sequential nature of the sampling mechanism,

the samples are correlated and diagnosing convergence is

notoriously difficult [25]. The main contribution of this

paper can be summarized as:

• Baseline performance was obtained using four different

convolutional neural networks that were fine-tuned

using Bayesian optimization to detect COVID-19 from

chest X-ray images.

• Stochastic-Gradient MCMC is used to obtain posterior

samples from each one of the base architectures, and

their convergence is diagnosed and evaluated.

• Predictive uncertainty is evaluated using a scoring

function using Pareto-Smoothed Importance Sampling

leave-one-out Cross-Validation (PSIS-LOO). The

FLOO metric is based on the leave-one-out predictive

density and is compared to the predictive uncertainty

obtained with an ensemble technique.

Figure 1 shows and schematic diagram of the proposed

approach.

3 Materials and methods

Bayesian neural networks replace deterministic weights h
from standard neural networks with random variables.

Conversely, deep learning architectures using stochastic

weights can be used to quantify the uncertainty pðyjX; hÞ in
regression and classification for a given dataset D ¼
fðxi; yiÞg for i ¼ 1; . . .;N.

Given a joint density in the form pðD; hÞ, Bayesian

inference aims to compute the posterior distribution

pðhÞ ¼ pðDjhÞðhÞ
pðDÞ . However, this requires a prior distribution

pðhÞ and a normalizing constant pðDÞ, which is usually

intractable.

The choice of the prior for Bayesian deep learning

models usually follows some eliciting mechanism that

provides information about the neural network parameters.

Such knowledge is usually vague or incomplete, so prac-

titioners would normally select a convenient distribution

(such as the isotropic Gaussian) that facilitates inference. In

the Bayesian framework, the unknown parameter h is

considered as a random variable. The stochastic gradient

Langevin Monte Carlo (SGLD) algorithm uses a stochastic

gradient r̂f ðhÞ approximation to generate samples from

the posterior distribution. The SGLD algorithm generates

proposals using the following update rule:

hk ¼ hk�1 � gk
2
r̂f ðhk�1Þ þ mk ð1Þ

where gk is a time-decaying learning rate, mk �N ð0; gkÞ
and f ðhÞ ¼ � 1

B logpð ~DjhÞ � logpðhÞ.

Fig. 1 Schematic diagram of the proposed approach. A base architecture trained on the ImageNet dataset is selected, and the top layer is

replaced. SG-MCMC is used to obtain posterior samples that provides predictive uncertainty
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3.1 Convergence diagnostics

The SGLD update rule in Eq. 1 is a discrete-time repre-

sentation of a continuous-time stochastic process. SGLD

has been successfully used to quantify uncertainty in

Bayesian deep learning models for several problems such

as age/gender estimation from facial images and plant

diseases recognition. However, due to the discretization

error, the algorithm converges weakly to the posterior

distribution and can produce biased estimates depending on

the specific choice of the learning rate gk and the size of the
mini-batch B. Given the output of SGLD for a fixed

number of iterations, we would like to assess the efficiency

and accuracy of the samples to represent the posterior

distribution. Given the sequential nature of MCMC meth-

ods, non-convergence of the sampler can be estimated from

several parallel chains where the variance across the dif-

ferent simulations is higher than the variance of each one of

the single chains. Let M be the number of chains and N the

total number of samples. We can estimate the between B

and within-chain W variances using Eqs. 2a and 2b.

B ¼ N

M � 1

XM

m¼1

ð�hm � �hÞ ð2aÞ

W ¼ 1

M

XM

m¼1

s2m ð2bÞ

where �hm ¼ 1=N
P

n hnm,
�h ¼ 1=M

P
m
�hm and

s2m ¼ 1
N�1

P
nðhnm � hmÞ2. Using the between and within-

chain variances we can estimate the potential scale

reduction factor R̂, which can be thought as the overesti-

mation of variance due to the finite number of samples. The

R̂ (see Eq. 3) diagnostic evaluates the benefit of sampling

longer chains and R̂ � 1 indicates that increasing the

number of samples will not reduce the variance of the

estimator.

R̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 1
þM þ 1

MN

B

W

r
ð3Þ

Apart from the variances, we can also take a look at the

auto-correlation qðlÞ for different lags l and estimate the

amount of information contained in that sample. The

effective sample size N̂eff use variograms to extend the

auto-correlation from a single chain to several chains using

Eq. 4.

N̂eff ¼
NM

1þ 2
P

l q̂ðlÞ
ð4Þ

In Ref. [18], the authors evaluated Bayesian deep learning

models using full-batch Hamiltonian Monte Carlo (HMC).

The R̂ diagnostic was calculated for both the model

parameters h (weight space) and the model outputs f ðhÞ
(function space). Since there is no indication of poor

mixing (large R̂ values) in function space, full-batch HMC

is able to produce unbiased estimates from the posterior

distribution. Moreover, the posterior estimates obtained

with HMC are compared to the SG-MCMC counterpart and

the authors report agreement and total variation metrics.

Convergence in weight space in the other hand tends to be

more elusive with differing values for the different

parameters.

3.2 Leave-one-out predictive densities

Now, we would like to evaluate the different models based

on predictive performance. A common approach would

rely on posterior quantiles to deliver different point esti-

mates such as the accuracy or the F score using leave-one-

out (LOO) cross-validation. This method is computation-

ally inefficient since it requires storing the model param-

eters h from the NM simulations and then compute the

required accuracy score for each on of the hold-out data

point d 2 D�. In order to alleviate the computational

complexity of performing LOO cross-validation, [26]

proposed PSIS to estimate the predictive performance. For

each one of the test examples ðxi; yiÞ 2 D�, PSIS computes

a smoothed importance sampling estimate from the exist-

ing posterior samples and fits a generalized Pareto

distribution.

pðyijxi;DÞ �
P

k pðykjh
kÞwk

iP
k w

k
i

ð5Þ

where wk
i ¼ 1

pðyijhkÞ
/ pðhk jy�iÞ

pðhk jyiÞ
.

In general, the importance weights wk
i tend to have large

or infinite variance. Therefore, the PSIS diagnostic com-

putes a shape parameter k̂ that regularizes the raw ratios.

For Pareto values k̂\0:5, the predictive performance is

guaranteed to be highly accurate. The values 0:5� k̂\0:7

represent numerically stable, but inaccurate predictions and

Pareto shape values 0:7� k̂ imply infinite variance. Here,

we propose a simple diagnostic tool to correct the over-

optimistic performance of the point estimates.

The area under the receiver operating characteristic

curve (AUC) is a common performance measure for

diagnosing performance of binary classifiers. However, its

evaluation includes every possible decision threshold,

including unrealistic ones. This choice makes the AUC too

general and less informative. In the other hand, the F1 score

corresponds to the harmonic mean of precision and recall.

Precision is a measure of the fraction of the detections ŷ

that are positive pðy ¼ 1jŷ ¼ 1Þ and recall measures the

proportion of positive labels that were detected
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pðŷ ¼ 1jy ¼ 1Þ. As opposed to the AUC score, the

dependence of the F1 score on a single threshold makes it

too specific.

Now, we derive Floo as a weighted alternative to the F1

score. Unlike the F1 measure, the Floo threshold is derived

from a set of samples and automatically avoids unreliable

test examples.

Floo �
2
P

i k̂looyiŷiP
i ŷi þ

P
i ŷi

ð6Þ

where k̂loo ¼ 1�MAXðMINðk̂i; 1Þ; 0Þ
For multi-class problems, the proposed Floo measure can

be generalized using macro- and micro-averages for each

one of the class instances.

4 Results and discussion

The experiments consider two deep learning models eval-

uated on a COVID-19 X-ray dataset.

4.1 Data

The dataset consists of X-ray images collected for COVID-

19 positive along with normal, lung opacity and viral

pneumonia cases and made publicly available from Kag-

gle.1 The data examples were collected from multiple

online sources and were made freely available for research

purposes. Figure 2 shows one example per category from

the database.

All images are grayscale, 299	 299 pixels and stored

using the PNG format. The dataset was collected from

multiple online sources and may contain duplicated

examples due to data augmentation or simple replication.

There is no clear indication on whether any two particular

examples come from the same person, which potentially

makes the data non-independent nor identically distributed.

Figure 3 shows the number of examples per category

(COVID, lung opacity, normal and viral pneumonia) from

the Kaggle dataset.

The dataset is randomly split using 80% of the data for

training and =20% for testing purposes.

4.2 Deep learning models

Deep convolutional architectures are neural networks

whose hidden layers apply convolution transformations to

their inputs. In the case for 2D convolutions, these trans-

formations have been successfully used to extract high and

low-level features from images. Therefore, convolutional

neural networks can be used to train image classification

models.

In this paper, we consider two different convolutional

architectures and two different variants for each one of

them. The first one is the ResNet architecture, which is a

deep convolutional neural network that contains residual

connections to avoid the gradient to vanish. Residual

connections propagate noiseless versions of the data before

applying any transformation and therefore enable more

stable gradient computations. Figure 4 shows and sche-

matic of the residual block model behind the ResNet

architecture.

Another popular technique that has shown good per-

formance in deep neural networks is batch normalization.

Standard data normalization is used to transform the orig-

inal data to improve the model accuracy. Conversely, batch

normalization is applied to the weights of the hidden layers

and has shown to improve the model generalization. Batch

normalization computes a running mean and variance of

the current batch, which is used to normalize samples.

Both, residual blocks and batch normalization have been

successfully used to train the ResNet architecture for large-

scale problems such as the ImageNet challenge. Batch

normalization introduces data leakage that makes the

likelihood principle difficult to interpret. Separable blocks

are other type of operator that apply independent spatial

(2D) (depthwise) convolutions to each one of the channels,

before applying a pointwise convolution over all inputs. In

practice, depth separable convolutions have fewer param-

eters than their plain convolutional counterpart and have

also been successfully implemented for large-scale image

classification tasks where the goal is also to perform

inference in edge devices. MobileNet is a deep learning

architecture that employs depthwise and pointwise sepa-

rable convolutions. The MobileNet architecture is usually

implemented using several depthwise separable convolu-

tional blocks using a multiplier parameter that controls the

actual number of channels per layer and batch normaliza-

tion. In this case, fine-tuning is also implemented using

pre-trained models from the ImageNet database. Figure 5

shows the depthwise separable block used in the MobileNet

architecture.

In our experiments, we use pre-trained variants of

ResNet with 18 and 50 layers (ResNet18v2 and

ResNet50v2). For MobileNet, we also consider two vari-

ants of pre-trained models with multiplier parameter a ¼
f0:25; 1:0g (MobileNetV2_0.25 and MobileNetV2_1.0).

1 https://www.kaggle.com/tawsifurrahman/covid19-radiography-

database.
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5 Baseline performance

In order to estimate the predictive uncertainty, pre-trained

versions of the ResNet and MobileNet models are fine-

tuned using transfer learning. In all cases, the output layer

is replaced to classify test images into the four new cate-

gories (COVID, lung opacity, normal and viral pneumo-

nia). The fine-tuned models are trained using the stochastic

gradient descent (SGD) where the learning rates are

obtained using the hyper-parameter optimization (HPO)

tuning found in AutoGluon. The entire training and

pipelines were implemented as Python scripts executed in a

Fig. 2 Chest X-ray images from

the Kaggle COVID-19 database

Fig. 3 Class distribution from the Kaggle COVID-19 database

Convolution Activation +

Identity

x f(x)

Fig. 4 Residual block from the ResNet architecture
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Linux machine with a Intel Core I7-5930K CPU and an

NVIDIA RTX 3080 GPU. Each one of the deep learning

models is tuned with AutoGluon with a limited budget,

measured in wall clock time. The search presets can be

seen in Table 1.

Having obtained the hyper-parameters for each one of

the models, SGD optimization is run for a fixed number of

epochs (nepochs ¼ 100) and batch-size B ¼ 16. Data aug-

mentation is also used to increase the dataset size. The

image pre-processing steps during training include, data

normalization, random resize (256	 256) pixels and crop

to 224	 224 pixels and random left/right flips. For testing,

data augmentation only includes center crop (224	 224)

and normalization. After training, performance is measured

in the test dataset using the precision P ¼ TP
TPþFP

, recall R ¼
TP

TPþFN
and F1 ¼ 2 P	R

PþR metrics, where TP is the number of

true positives, FP is the number of false positives, and FN

is the number of false negatives.

ResNet18_v2 achieves the lowest performance for the

COVID class (0.62 precision), which is improved when

increasing the number of layers in the ResNet50_v2 layer

(0.90 precision). Therefore, when the number of layers is

increased, the false negatives and false positives rates are

also reduced for this class. However, the number of false

positives is increased for the viral pneumonia class in the

larger ResNet50_v2 model, whose precision drops from

0.92 to 0.89 (Table 2).

The MobileNetv2_1.0 architecture achieves the highest

performance on the precision metric but also a higher

number of false negatives. The smaller-sized Mobile-

Netv2_0.25 model achieves a good balance between pre-

cision and recall (as seen in the F1 metric) along all four

different classes. Now, we focus on the uncertainty quan-

tification task. As already mentioned, data augmentation

introduces a data leakage that cannot be interpreted using

the likelihood function f ðhÞ (see Eq. 1).

The performance of the SGLD algorithm for each one of

the models is lower than their SGD counterpart. Instead of

estimating predictive accuracy from a single point estimate

(such as the maximum a posteriori estimate), the Bayesian

approach uses an approximate posterior density pðhjDÞ
from the SGLD samples. However, the posterior predictive

accuracy tends to be lower than the point estimates [28].

Table 3 reports the predictive accuracy of SGLD for all

deep learning models considered.

The prior for all models was an isotropic Gaussian

N ð0; a2IÞ, and the scale parameter was set to a2 ¼ 100.

This particular choice has been criticized in the literature as

being inadequate and Wenzel et al. [28] proposed a pos-

terior tempering technique [10]. In [18], the authors shown

that vague priors (such as a2 ¼ 100) lead to useful uncer-

tainty estimates in function-space as measured with the R̂

statistic. The potential scale reduction factor is a measure

for the ratio of the average variance of samples to the

pooled samples across different MCMC chains. Figure 6

shows the R̂ statistic for the output layer (function-space)

and the internal layers (weight-space) for all different

models.

Now, we focus on the effective sample sizes for each

one of the runs. Figure 7 shows the N̂eff statistic for each

one of the model runs. As opposed to the R̂ statistic, we

now see most of the MCMC runs having small sample

sizes. Both ResNet models (ResNet50_v2 and

ResNet18_v2 in Fig. 7a and b, respectively) show larger

samples sizes in their internal layers when compared to the

MobileNet models.

Split

ConvolutionConvolution Convolution

Concatenate

Pointwise Convolution

x

[c1(x), c2(x), c3(x)]

Fig. 5 Separable block from the MobileNet architecture

Table 1 AutoML hyper-parameter optimization settings

Model name Learning rate (logarithmic)

ResNet18v2 [1e-5,1e-2]

ResNet50v2 [1e-5,1e-2]

MobileNetV2_0.25 [1e-5,1e-2]

MobileNetV2_1.0 [1e-5,1e-2]
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5.1 Evaluating predictive accuracy

Traditionally, the performance of a model is measured

using the out-of-sample predictive accuracy. This metric is

useful when there is enough labeled data, so we can

approximate the true data-generating process. This pre-

dictive distribution is not known, and therefore, we must

approximate techniques to provide an estimate of the

model accuracy.

X

i

log

Z
pðyijhÞpðhjDÞdh ð7Þ

With SGLD, we obtained a finite set of samples whose

effective sample size is usually smaller than the actual

number of samples. Nevertheless, the actual out-of-sample

predictions on unseen data ðX�Þ can use the full posterior

distribution.

pðy�jX�Þ ¼
Z

pðy�jx�; hÞpðhjDÞdh ð8Þ

These predictions can take into account the log-scoring rule

(marginal likelihood of the model), although they could be

biased toward the maximum aposteriori estimate. There-

fore, different scoring weights wi to evaluate predictive

accuracy can be extracted from the existing posterior

samples.

Table 2 Baseline performance

for the X-ray COVID prediction

dataset

Model name Class Precision Recall F1 Score Support

ResNet50_v2 COVID 0.90 0.95 0.92 724

Lung opacity 0.93 0.93 0.93 1203

Normal 0.95 0.92 0.93 2039

Viral pneumonia 0.89 0.97 0.93 269

ResNet18_v2 COVID 0.62 0.86 0.72 724

Lung opacity 0.89 0.83 0.86 1203

Normal 0.90 0.81 0.85 2039

Viral pneumonia 0.92 0.91 0.92 269

MobileNetv2_1.0 COVID 0.98 0.86 0.92 724

Lung opacity 0.92 0.97 0.89 1203

Normal 0.95 0.89 0.93 2039

Viral pneumonia 0.96 0.91 0.94 269

MobileNetv2_0.25 COVID 0.95 0.97 0.96 724

Lung opacity 0.92 0.91 0.92 1203

Normal 0.95 0.94 0.94 2039

Viral pneumonia 0.96 0.96 0.96 269

Table 3 SGLD performance for

the X-ray COVID prediction

dataset

Model name Class Precision Recall F1 Score Support

ResNet50_v2 COVID 0.29 0.95 0.45 724

Lung opacity 0.59 0.45 0.51 1203

Normal 0.96 0.26 0.41 2039

Viral pneumonia 0.39 0.62 0.48 269

ResNet18_v2 COVID 0.20 0.97 0.33 724

Lung opacity 0.66 0.11 0.19 1203

Normal 0.77 0.02 0.03 2039

Viral pneumonia 0.36 0.66 0.47 269

MobileNetv2_1.0 COVID 0.98 0.97 0.98 724

Lung opacity 0.92 0.90 0.92 1203

Normal 0.93 0.96 0.94 2039

Viral pneumonia 0.98 0.95 0.97 269

MobileNetv2_0.25 COVID 0.99 0.98 0.98 724

Lung opacity 0.94 0.91 0.93 1203

Normal 0.94 0.97 0.95 2039

Viral pneumonia 0.99 0.97 0.98 269
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pðy�jX�Þ ¼
X

i

wipðy�jx�; hiÞ ð9Þ

Now, we compare two different scoring rules. The first

method is based on a popular ensembling technique called

stacking. This method uses hold-out data to estimate the

mixing weights w and has been successfully applied to

improve predictive accuracy when the models are mis-

specified [29].

Alternatively, we also calculate predictive accuracy

using PSIS-LOO k̂loo as a scoring rule. In this case, there is

no need for re-training the mixing weights. However, PSIS-

LOO as a scoring rule automatically discards test samples

far from the full distribution. As already mentioned,

stacking is able to improve the model accuracy when the

models are poorly specified (e.g., ResNet50_V2 and

ResNet18_V2) and even improve the best-performing

models (such as MobileNet_1.0 and MobileNet_0.25).

PSIS-LOO in the other produces less confident predictive

accuracy, decreasing the F-measure to zero for the COVID

and viral pneumonia classes. Table 4 shows the predictive

accuracy for both scoring functions.

Stacking is able to improve the precision and recall of

the SGLD output. The ensemble technique requires an

additional training step that takes a subset of the testing

dataset and learns the mixing weights. Instead, the Floo
metric heavily penalizes both ResNet18_V2 and

ResNet50_V2 architectures. Floo based on PSIS-LOO

does not perform re-training, so it can be seen as being

more data efficient.

Also, while stacking improves the precision and recall

across all classes, Floo does not show any improvement

and even worsens confidence on certain classes. The

decrease in performance can be seen for the COVID-19

and viral pneumonia classes predicted with both ResNet

models. The same effect is also achieved for lung opacity

and viral pneumonia classes being predicted with Mobile-

Net. The observed drop in performance is consistent with

(a) RestNet50 V2 (b) RestNet18 V2

(c) MobileNet 1.0 (d) MobileNet 0.25

Fig. 6 R̂ estimates from SGLD samples. The weights from the output layer tend to obtain smaller
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the results obtained by DeGrave et al. [8] who reported an

area under the curve (AUC) of 0.76 and 0.70 when the

model is tested using an external COVID-19 X-ray dataset.

The authors argue that poor performance and the general-

ization gap can be attributed to models learning spurious

correlations. By contrast, the Floo metric accounts for such

lack of certainty for predicting specific classes without the

need of re-training or testing with another dataset.

6 Conclusion

Ensemble techniques allow to estimate model uncertainty,

but there are no guarantees about the quality of the pre-

dictive distribution. Therefore, in this paper, we presented a

novel method to quantify predictive uncertainty for

COVID-19 detection from X-ray images. Stochastic-

gradient MCMC techniques using the Floo metric allow to

estimate overconfidence on the model predictions. The

method is able to evaluate models without re-training or

testing with an additional dataset.

The results show a significant gap in accuracy from

training and testing from fine-tuning a pre-trained image

classifier to deliver reliable predictions for COVID-19.

Firstly, it is difficult to obtain a large number of posterior

samples with low auto-correlation. Secondly, it is also hard

to evaluate predictive performance when the samples are

biased and the predictions being overconfident.

In this study, a single dataset was used for model

training and validation. Stacking posterior samples were

shown to improve predictive accuracy and were then

compared to Floo. Future work will consider external

validation with related datasets. Also, additional evaluation

metrics could also be considered in order to gain a better

(a) RestNet50 V2 (b) RestNet18 V2

(c) MobileNet 1.0 (d) MobileNet 0.25

Fig. 7 Effective sample size from SGLD
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perspective of the quality of the posterior samples and the

model ability to generalize.

Data Availability The dataset analyzed during the current study is

available in the COVID-19 Radiography Database repository, https://

www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-

database.
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