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1.  Introduction

Economic decision makers routinely rely on forecasts to assist their decisions.  Until

recently, most forecasts were provided only in the form of point forecasts, although

forecasters sometimes attached measures of uncertainty, such as standard errors or mean

absolute errors, to their forecasts.  Recently, the trend has been to accompany point forecasts

with a more complete description of the uncertainty of the forecasts, such as explicit interval

or density forecasts.  An interval forecast indicates the likely range of outcomes by specifying

the probability that the actual outcome will fall within a stated interval.  The probability may

be fixed, at say 0.95, and the associated interval may then vary over time, or the interval may

be fixed, as a closed or open interval, and the forecast probability presented, as in the

statement that “our estimate of the probability that inflation next year will be below 2.5 per

cent is p.”  A density forecast is stated explicitly as a density or probability distribution.  This

may be presented analytically, as in “we estimate that next year’s inflation rate is normally

distributed around an expected value of two per cent with a standard deviation of one per

cent,” or it may be presented numerically, as when a histogram is reported.

Density forecasts were rarely seen until recently but are becoming more common.  In

finance, practical implementation of recent theoretical developments has dramatically

increased the demand for density forecasts; the booming field of financial risk management,

for example, is effectively dedicated to providing density forecasts of changes in portfolio

value, as revealed by a broad reading of literature such as J.P. Morgan (1996).  There is also a

growing literature on extracting density forecasts from options prices, which includes Aït-

Sahalia and Lo (1998) and Söderlind and Svensson (1997).  In macroeconomics, there has
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also been increased discussion of density forecasts recently, in response to criticism of the

lack of transparency of traditional forecasting practice, and to demands for acknowledgment

of forecast uncertainty in order to better inform the discussion of economic policy. 

Macroeconomic density forecasts are the subject of this article.

In the United States the Survey of Professional Forecasters has, since its introduction

in 1968, asked respondents to provide density forecasts of inflation and growth.  In the early

days of the survey these received little attention, with the notable exception of Zarnowitz and

Lambros (1987); more recently the distributions, averaged over respondents, have featured in

the public release of survey results.  In the United Kingdom the history is much shorter.  In

November 1995 the National Institute of Economic and Social Research began to augment its

long-established macroeconomic point forecasts with estimates of the probability of the

government’s inflation target being met and of there being a fall in GDP.  This was extended

in February 1996 to a complete probability distribution of inflation and growth forecasts.  In

the same month the Bank of England launched the presentation of an estimated probability

distribution of possible outcomes surrounding its conditional projections of inflation.  In

November 1996 the Treasury’s Panel of Independent Forecasters, following repeated

suggestions by one of the present authors, reported its individual members’ density forecasts

for growth and inflation, using the same questions as the U.S. Survey of Professional

Forecasters.  Our success was short-lived, however, as the new Chancellor of the Exchequer

dissolved the panel shortly after taking office in May 1997.

The production and publication of any kind of forecast subsequently requires an

evaluation of its quality.  For point forecasts, there is a large literature on the ex-post
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evaluation of ex-ante forecasts, and a range of techniques has been developed, recently

surveyed by Wallis (1995) and Diebold and Lopez (1996).  The evaluation of interval

forecasts has a much newer literature (Christoffersen, 1998), as does the evaluation of density

forecasts.  In this article we use the methods of Diebold, Gunther and Tay (1998), augmented

with resampling procedures, to evaluate the density forecasts of inflation contained in the

Survey of Professional Forecasters.  Forecasts of inflation are of intrinsic interest, especially

in the monetary policy regime of inflation targeting that is common to many OECD

economies, and it is also of interest to demonstrate the use of new tools for forecast evaluation

and their applicability even in very small samples.  As with most of the forecast evaluation

literature we pay no attention to the construction of the forecast, and consider only the

assessment of its adequacy, after the fact.  That is, because little is known about the

construction of the density forecasts reported by the survey respondents, we concentrate on

the outputs, not the inputs.  The density forecast could be based on a formal statistical or

econometric model, an ARCH model for a single financial time series or a large-scale

macroeconometric model for aggregate macroeconomic variables, for example, or it could be

based on more subjective approaches, blending the forecaster’s judgement informally with a

model-based forecast or using expert elicitation methods.

The remainder of this article is organized as follows.  In section 2 we present a brief

description of the Survey of Professional Forecasters, its advantages and disadvantages,

leading to our selection of the series of first-quarter current-year mean density forecasts of

inflation for evaluation.  In section 3 we develop our evaluation methods, based on the series

of probability integral transforms of realized inflation with respect to the forecast densities
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and the null hypothesis that this is a series of independent uniformly distributed random

variables.  We present the results in section 4, and we conclude in section 5. 

2.  The Survey of Professional Forecasters

The Survey of Professional Forecasters (SPF) is the oldest quarterly survey of

macroeconomic forecasters in the United States.  The survey was begun in 1968 as a joint

project by the Business and Economic Statistics Section of the American Statistical

Association (ASA) and the National Bureau of Economic Research (NBER) and was

originally known as the ASA-NBER survey.  Zarnowitz (1969) describes the original

objectives of the survey, and Zarnowitz and Braun (1993) provide an assessment of its

achievements over its first twenty-two years.  In June 1990 the Federal Reserve Bank of

Philadelphia, in cooperation with the NBER, assumed responsibility for the survey, at which

time it became known as the Survey of Professional Forecasters (see Croushore, 1993).

The survey is mailed four times a year, the day after the first release of the National

Income and Product Accounts data for the preceding quarter.  Most of the questions ask for

point forecasts, for a range of variables and forecast horizons.  In addition, however, density

forecasts are requested for aggregate output and inflation.  The output question was

unfortunately switched from nominal to real in the early 1980s, thereby rendering historical

evaluation of the output forecasts more difficult, whereas the inflation question has no such

defect and provides a more homogeneous sample.  Thus we focus on the density forecasts of

inflation.  Each forecaster is asked to attach a probability to each of a number of intervals, or

bins, in which inflation might fall, in the current year and in the next year.  The definition of

inflation is annual, year over year.  The probabilities are averaged over respondents, and for



5

each bin the SPF reports the mean probability that inflation will fall in that bin, in the current

year and in the next year.  The report on the survey results that was previously published in

the NBER Reporter and the American Statistician did not always refer to the density forecasts,

and sometimes combined bins, but means for all the bins in the density forecasts have been

included in the Philadelphia Fed’s press release since 1990, and the complete results dating

from 1968 are currently available on their Web page

(http://www.phil.frb.org/econ/spf/spfpage.html).  This mean probability distribution is

typically viewed as a representative forecaster and is our own focus of attention.  The mean

forecast was the only one available to analysts and commentators in real time.

There are a number of complications, including:

(a)  The number of respondents over which the mean is taken varies over time, with a low of

14 and a high of 65.

(b)  The number of bins and their ranges have changed over time.  From 1968:4-1981:2 there

were 15 bins, from 1981:3-1991:4 there were 6 bins, and from 1992:1 onward there

are 10 bins.

(c)  The base year of the price indexes has changed.  For surveys on or before 1975:4, the

base year is 1958, from 1976:1 to 1985:4 the base year is 1972, and from 1986:1 to

1991:4 the base year is 1982.  Beginning in 1992:1, the base year is 1987.

(d)  The price index used to define inflation in the survey has changed over time.  From

1968:4 to 1991:4 the SPF asked about inflation as assessed via the implicit GNP

deflator, and from 1992:1 to 1995:4 it asked about inflation as assessed via the implicit

GDP deflator.  Presently the SPF asks about inflation as assessed via the chain-
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weighted GDP price index. 

(e)  The forecast periods to which the SPF questions refer have changed over time.  Prior to

1981:3, the SPF asked about inflation only in the current year, whereas it subsequently

asked about inflation in the current year and the following year.  Errors occurred in

1985:1, 1986:1 and 1990:1, when the first annual forecast was requested for the

previous year and the second forecast for the current year, as opposed to the current

and the following year.

Most of the complications (e.g., a, b, c and d) are minor and inconsequential. 

Complication (e), on the other hand, places very real constraints on what can be done with the

data.  It is apparent, however, that the series of first-quarter current-year forecasts represents

an unbroken sample of annual 3-quarter ahead inflation density forecasts, with non-

overlapping innovations.  (If the information set consists only of data up to the final quarter of

the preceding year, then this is a conventional annual series of one-step-ahead forecasts; it is

likely, however, that information on the current year available in its first few weeks is also

used in constructing forecasts.)  The sample runs from 1969 to 1996, for a total of 28 annual

observations (densities), which form the basis of our examination of inflation density forecast

adequacy.

3.  Evaluating Inflation Density Forecasts

We evaluate the forecasts using the methodology proposed by Diebold, Gunther and

Tay (1998), the essence of which is consideration of the series of probability integral

transforms of realized inflation  with respect to the forecast densities . 

That is, we consider the series
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Diebold, Gunther and Tay (1998) show that if the density forecasts are optimal (in a sense that

they make precise), then .  The basic idea is to check whether the

realizations y  come from the forecast densities  by using the standard statistical resultt

that, for a random sample from a given density, the probability integral transforms of the

observations with respect to the density are iid U(0,1), extended to allow for potentially time-

varying densities.  In a forecasting context, independence corresponds to the usual notion of

the efficient use of an information set, which implies the independence of a sequence of one-

step-ahead errors.  For our inflation density forecasts, an “error” is an incorrect estimate of the

probability that inflation will fall within a given bin; a correct estimate of the tail area

probability, for example, implies that we observe the same relative frequency of

correspondingly extreme forecast errors, in the usual sense of the discrepancy between point

forecast and actual outcome for inflation.

Formal tests of density forecast optimality face the difficulty that the relevant null

hypothesis -- iid uniformity of z -- is a joint hypothesis.  For example, the classical test of fit

based on Kolmogorov’s D -statistic, the maximum absolute difference between the empiricaln

cumulative density function (c.d.f.) and the hypothetical (uniform) c.d.f., rests on an

assumption of random sampling.  The test is usually referred to as the Kolmogorov-Smirnov

test, following Smirnov’s tabulation of the limiting distribution of D  and introduction of one-n

sided statistics, while other authors have provided finite-sample tables (see Stuart and Ord,

1991, §30.37).  Little is known, however, about the impact on the distribution of D  ofn
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departures from independence; thus test outcomes in either direction may be unreliable

whenever the data are not generated by random sampling.  More generally the test is not

constructive, in that if rejection occurs, the test itself provides no guidance as to why.

More revealing methods of exploratory data analysis are therefore needed to

supplement formal tests.  To assess unconditional uniformity we use the obvious graphical

tools, estimates of the density and c.d.f.  We estimate the density with a simple histogram,

which allows straightforward imposition of the constraint that z has support on the unit

interval, in contrast to more sophisticated procedures such as kernel density estimates with the

standard kernel functions.  To assess whether z is iid, we again use the obvious graphical tool,

the correlogram.  Because we are interested not only in linear dependence but also in other

forms of nonlinear dependence such as conditional heteroskedasticity, we examine both the

correlogram of  and the correlogram of .

It is useful to place confidence intervals on the estimated histogram and correlograms,

in order to help guide the assessment.  There are several complications, however.  In order to

separate fully the desired U(0,1) and iid properties of z, we would like to construct confidence

intervals for histogram bin heights that condition on uniformity but that are robust to

dependence of unknown form.  Similarly, we would like to construct confidence intervals for

the autocorrelations that condition on independence but that are robust to non-uniformity.  In

addition, the SPF sample size is small, so we would like to use methods tailored to the

specific sample size.

Unfortunately, we know of no asymptotic, let alone finite-sample, method for

constructing serial-correlation-robust confidence intervals for histogram bin heights under the
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U(0,1) hypothesis.  Thus we compute histogram bin height intervals under the stronger iid

U(0,1) assumption, in which case we can also compute the intervals tailored to the exact SPF

sample size, by exploiting the binomial structure.  For example, for a 5-bin histogram formed

from 28 observations, the number of observations falling in any bin is distributed binomial

(28, 5/28) under the iid U(0,1) hypothesis.  (This formulation relates to each individual bin

height when the other four bins are combined, and the intervals should not be interpreted

jointly.)

To assess significance of the autocorrelations, we construct finite-sample confidence

intervals that condition on independence but that are robust to deviations from uniformity by

sampling with replacement from the observed z series and building up the distribution of the

sample autocorrelations.  The sampling scheme preserves the unconditional distribution of z

while destroying any serial correlation that might be present.

Two practical issues arise in the construction of the z series.  The first concerns the

fact that the forecasts are recorded as discrete probability distributions, not continuous

densities, and so we use a piecewise linear approximation to the c.d.f.  For example, suppose

the forecast probability for  is 0.4 and the forecast probability for  is 0.3.  If the

realization of y is 4.6, then we compute z as 0.4+0.6(0.3)=0.58.  Further, the two end bins are

open; they give the probabilities of y falling above or below certain levels.  When a

realization falls in one of the end bins, to apply the piecewise linear approximation we assume

that the end bins have the same width as all the other bins.  This occurs for only three

observations, and in each case the realized inflation rate is very close to the interior boundary

of the end bin.
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The second issue is how to measure realized inflation:  whether to use real-time or

final-revised data, and for which inflation concept.  As regards the use of real-time vs. final-

revised data, we take the view that forecasters try to forecast the “true” inflation rates, the best

estimates of which are the final revised values.  Thus we use the most recently revised values

as our series for realized inflation.  Regarding the inflation concept, we noted earlier that the

price index used to define inflation in the survey has changed over time from the implicit

GNP deflator to the implicit GDP deflator to the chain-weighted price index.  Accordingly,

we measure realized inflation as the final revised value of the inflation concept about which

the survey respondents were asked.  From 1969 to 1991 we use the percent change in the

implicit GNP deflator, from 1992 to 1995 we use the percent change in the implicit GDP

deflator, and for 1996 we use the percent change in the chain-weighted price index.

Two previous studies of the SPF inflation density forecasts merit discussion. 

Zarnowitz and Lambros (1987) use the survey results to draw the important distinction

between uncertainty, as indicated by the spread of the probability distribution of possible

outcomes, and disagreement, as indicated by the dispersion of respondents’ (point) forecasts: 

consensus among forecasters need not imply a high degree of confidence about the commonly

predicted outcome.  Zarnowitz and Lambros find that the variance of the point forecasts tends

to understate uncertainty as measured by the variance of the density forecasts.  The former

varies much more over time than the latter, although the measures of consensus and certainty

(or the lack thereof) are positively correlated.  Zarnowitz and Lambros also find that

expectations of higher inflation are associated with greater uncertainty.  Throughout their

paper, however, they summarize the individual density forecasts by their means and standard
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deviations prior to averaging over respondents; thus they use only part of the information in

the density forecasts. 

McNees and Fine (1996) evaluate the individual inflation density forecasts of a sample

of 34 forecasters who responded to the survey on at least 10 occasions.  They proceed by

calculating the implied 50% and 90% prediction intervals, and test whether the actual

coverage -- the proportion of occasions on which the outcome fell within the interval --

corresponds to the claimed coverage, 50% or 90% as appropriate, using the binomial

distribution.  Again, only part of the information in the density forecasts is used.  Moreover,

even in the more limited framework of interval forecast evaluation, the McNees-Fine

procedure examines only unconditional coverage, whereas in the presence of dynamics it is

important to examine conditional coverage, as in Christoffersen (1997).  Put differently, in the

language of density forecast evaluation, McNees and Fine implicitly assume that z is iid in

order to invoke the binomial distribution; they test only whether z is unconditionally U(0,1).

4.  Results

We show the basic data on realized inflation and “box-and-whisker” plots representing

the density forecasts in Figure 1.  The bottom and top of the box are the 25% and 75% points,

the interior line is the median, the bottom whisker is the 10% point, and the top whisker is the

90% point.  The box-and-whisker plots point to a number of features of the forecasts and their

relationship to the realizations.  First, comparing forecasts and realizations, similar patterns to

those observed by Zarnowitz and Braun (1993, pp. 30-31) in the distribution of individual

point forecasts for the period 1968:4-1990:1 can be seen:  “in 1973-74, a period of supply

shocks and deepening recession, inflation rose sharply and was greatly underestimated ...  The
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same tendency to underpredict also prevailed in 1976-80, although in somewhat weaker form

...  In between, during the recovery of 1975-76, inflation decreased markedly and was mostly

overestimated.  Another, much longer disinflation occurred in 1981-85 ...  Here again most

forecasters are observed to overpredict inflation ...  Finally, in 1986-89, inflation ... was

generally well predicted ...”, and this has been maintained up to the end of our present sample,

when the errors, although persistently of the same sign, are relatively small.  There is also

evidence of adaptation:  although inflation is unexpectedly high when it initially turns high,

and unexpectedly low when it initially falls, forecasters do eventually catch up.

Second, the data seem to accord with the claim that the level and uncertainty of

inflation are positively correlated, as suggested by Friedman (1977).  Although this

hypothesis has typically been verified by relating the variability of inflation to its actual level, 

in a forecasting context the relevant hypothesis is that expectations of high inflation are

associated with increased uncertainty, and this is verified for a shorter sample of these data by

Zarnowitz and Lambros (1987), using different techniques, as noted above.  In Figure 1 the

forecasts for 1975 and 1980 immediately catch the eye, with two of the largest values of the

interdecile range -- the distance between the whiskers -- corresponding to two of the highest

median forecasts.  Overall there is a strongly significant positive association between these

measures; the coefficient in a regression of the interdecile range on the median forecast has a

p-value of 0.0198 (with allowance made for positive residual autocorrelation, discussed

below).  On the other hand the forecasts for 1986 and 1987 are outliers:  these give the two

largest values of the interdecile range, at relatively low median forecasts (and yet lower

realizations).  Perhaps this reflects genuine uncertainty about the impact of the fall in the



13

world price of oil, or simply indicates sampling problems, because the number of survey

respondents was falling through the late 1980s, prior to revival of the survey by the

Philadelphia Fed.

Third, there has been a gradual tightening of the forecast densities since the late 1980s,

perhaps due to a reduction of perceived likely supply and demand shocks, an increase in

central bank credibility, a reduction in uncertainty associated with the lower level of inflation,

or some combination of these.  The distributions nevertheless seem to be still too dispersed,

because most of the realizations over this period fall squarely in the middle of the forecast

densities. 

Next, we compute the z series by integrating the forecast densities up to the realized

inflation rate, period by period, and we plot the result in Figure 2, in which large values

correspond to unexpectedly high values of realized inflation, and conversely.  Even at this

simple graphical level, deviations of z from iid uniformity are apparent, as z appears serially

correlated.  In the first half of the sample, for example, z tends to be mostly above its average,

whereas in the second half of the sample it appears that the representative forecaster

overestimated the uncertainty of inflation, because most of the values of z cluster around 0.4 ,

and they vary little compared to the first half of the sample.  This is the counterpart to the

observation in Figure 1 that most of the recent realizations are near the middle of the forecast

densities, a result that diverges from Chatfield (1993) and the literature he cites, which often

finds that forecasters are overconfident, in that their interval forecasts are too tight, not too

wide.

To proceed more systematically, we examine the distributional and autocorrelation
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properties of z.  We show the histogram and empirical c.d.f. of z in Figure 3, together with

finite-sample 95% confidence intervals calculated by simulation under the assumption of iid

uniformity.  The unavoidably wide intervals reflect the small sample size.

The empirical c.d.f. lies within the 95% confidence interval. Kolmogorov’s D -statisticn

has a value of 0.2275, which is less than the 5% critical value of 0.24993 given for this

sample size by Miller (1956), although little is known about the impact of departures from

randomness on the performance of this test, as noted above.  In the histogram two bins lie

outside their individual 95% confidence intervals.  The chi-square goodness-of-fit statistic has

a value of 10.21, which exceeds the simulated 5% critical value for this sample size of 9.14

(the corresponding asymptotic chi-square (4) value is 9.49), although the above caveat again

applies.

Two features of the data stand out in both panels of Figure 3.  First, too few

realizations fall in the left tail of the forecast densities to accord with the probability forecasts,

resulting in an empirical c.d.f. z that lies substantially below the 45-degree line in the lower

part of its range, and a significantly small leftmost histogram bin.  This reflects the fact that

many of the inflation surprises in the sample came in the 1970s, when inflation tended to be

unexpectedly high; episodes of unexpectedly low inflation are rarer than the survey

respondents think.  Second, the middle histogram bin is significantly too high and the

empirical c.d.f. lies above the 45-degree line in this range, both indicating too many

realizations in the middle of the forecast densities, an already-noted phenomenon driven

primarily by the events of the late 1980s and 1990s.  The observations from the first half of

the sample are shaded in the histogram and are seen to be more uniformly distributed, except
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again for the lowest values, illustrating once more the different characteristics of the two sub-

periods.

 We show the correlograms of  and  in Figure 4, together with finite-

sample 95% confidence intervals for the autocorrelations computed by simulation under the

assumption that z is iid but not necessarily U(0,1).  The first correlogram clearly indicates

serial correlation in z itself.  The first sample autocorrelation, in particular, is large and highly

statistically significant, and most of the remaining sample autocorrelations are positive and

significant as well.  A Ljung-Box test on the first five sample autocorrelations of 

rejects the white noise hypothesis at the 1% level, using simulated finite-sample critical values

computed in the same way as for the correlogram confidence intervals.

Several explanations come to mind, one being the possibility that forecasters are more

adaptive than rational, noted above.  The inflation series itself is highly persistent, and the

forecast densities might not be expected to change rapidly; hence forecasters might use a

more-than-optimal amount of extrapolation.  Forecast errors are often autocorrelated due to

information lags:  if a forecast for time t+1 made at time t is based on an information set dated

t-1, then it is in effect a two-step-ahead forecast and so, even if optimal, its errors will exhibit

an MA(1) correlation structure.  The present forecasts are made at the beginning of the year,

at which time forecasters have data on the previous year, albeit liable to revision.  Because the

forecast relates to the current year it is close to a genuine one-step-ahead forecast, and the

impact of data revisions is unlikely to be sufficient to cause substantial autocorrelation in

forecast errors.  An examination of the autocorrelations of z based on preliminary inflation

figures supports the later claim; a Ljung-Box test on the first five sample autocorrelations,
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again using simulated critical values, also rejects the iid hypothesis at the 1% level.  In any

event, the autocorrelations at higher lags in Figure 4 are not suggestive of a moving average

structure.  It is not clear precisely what kinds of autocorrelation in z might be expected once

the density forecasts depart from optimality, but here also there is evidence of too much

persistence.

It is also possible that serial correlation in z may be due to the departure or inclusion

over time of forecasters who tend to be systematically optimistic or pessimistic.  There is no

way to check whether this is indeed the case without examining the survey returns of

individual respondents, but the problem is likely to be pertinent only if the number of

respondents is small.  As it turns out, the number of respondents was greater then twenty in all

years but four.  Furthermore, Figures 2 and 3 suggest that any systematic inclusion of

optimistic forecasters would have been in the early years of the sample, but that is the period

when the survey enjoyed the greatest number of respondents.

It is interesting to note that although  appears serially correlated, there is little

evidence of serial correlation in .  Serial correlation in  would suggest that

the inflation density forecasts tend to miss heteroskedasticity in realized inflation.  Hence the

serial dependence in z appears to be associated with dynamics in the conditional mean of

inflation neglected by the density forecasts, not with neglected dynamics in the conditional

variance of inflation.

5.  Conclusion

Our overall conclusion is that the density forecasts of inflation reported in the Survey

of Professional Forecasters are not optimal -- the probability integral transforms of the
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realizations with respect to the forecast densities are non-uniform and autocorrelated.  Formal

hypothesis tests more clearly support the autocorrelation part of this joint rejection, because

here our resampling procedures produce tests that are robust to non-uniformity.  The impact

of this autocorrelation on the behavior of goodness-of-fit tests is not known, and our rejection

of uniformity rests to a greater extent on descriptive methods.  In general the density forecasts

overestimate the probability that inflation will fall substantially below the point forecast,

because there are too few observations in the left tail of the z density:  negative inflation

surprises occur less often than these forecasters expect.  In the more recent data this tendency

extends to both tails of the z density, and surprises of either sign occur less often than

expected.  In the 1990s the forecasters were more uncertain than they should have been,

perhaps because they did not recognize, at least to a sufficient degree, that expectations of

lower inflation are associated with lower uncertainty.  This conclusion was already

documented by Zarnowitz and Lambros (1987), and is endorsed here.

We have treated the mean density forecast as a collective forecast, although the sample

over which the mean is taken varies in size and composition over time, and so it would be

interesting to repeat the analysis for individual forecasters.  One of the original aims of the

survey was to keep a comprehensive record of forecasts so that forecast evaluation could be

conducted on a “broader, more objective and systematic basis” (Zarnowitz, 1969), and we

have clearly benefitted from the archive that has been accumulated.  On the other hand a little

scrutiny reveals the difficulties in extending our analysis to individual forecasters, again

because the survey’s coverage varies, with high turnover of participants; hence only a

relatively short series of forecasts is available for most individuals.  The number of forecasts
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might be increased by adding the second, third and fourth quarter forecasts and even, in most

of the recent years of the survey, also including forecasts for the following year as well as the

current year.  However, the pattern of the optimal evolution of density forecasts in such

situations is not immediately apparent.  For point forecasts, tests of the optimality of a

sequence of fixed-event forecasts are based on the independence of successive forecast

revisions (Clements, 1997), and the counterpart for density forecasts awaits further research. 

In the meantime, the evaluation methods for a conventional series of density forecasts

employed in the present application are commended for wider use as such series accumulate.
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Figure 1
Inflation Forecasts and Realizations

Notes:  The density forecasts are represented by box-and-whisker plots.  The boxes represent the inter-quartile range of the
forecasts, and the inner line represents the median; the tails represent the 10  and 90  percentiles.  We represent inflationth  th

realizations with .
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Figure 2
Time Series Plot of z
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Figure 3
Histogram and Empirical Cumulative Density Function of z

Notes to top panel:  Dashed lines represent 95% confidence intervals for individual bin
heights under the hypothesis that z is iid U(0,1).  The shaded region corresponds to the first
14 z observations.
Notes to bottom panel:  We superimpose on the empirical c.d.f. a U(0,1) c.d.f., together with
95% confidence intervals under the hypothesis that z is iid U(0,1).  See text for details.
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Figure 4
Sample Autocorrelation Functions of  and  

Notes:  The dashed lines indicate 95% confidence intervals computed under the hypothesis
that .  See text for details.


