
 1

Evaluating diagnostic tests: the area under the ROC curve and the balance of 
errors 

 
David J. Hand 

Imperial College, London 
{d.j.hand@imperial.ac.uk} 

 
Abstract: 
 
Because accurate diagnosis lies at the heart of medicine, it is important to be able to 
evaluate the effectiveness of diagnostic tests.  A variety of accuracy measures are 
used.  One particularly widely used measure is the AUC, the area under the Receiver 
Operating Characteristic (ROC) curve.  This measure has a well-understood weakness 
when comparing ROC curves which cross.  However, it also has the more 
fundamental weakness of failing to balance different kinds of misdiagnosis 
effectively.  This is not merely an aspect of the inevitable arbitrariness in choosing a 
performance measure, but is a core property of the way the AUC is defined.  This 
property is explored, and an alternative, the H measure, is described. 
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1. Introduction 
 
Diagnosis is the first step in medical care.  Correct diagnosis can lead to cure, and 
mistaken diagnosis to incorrect treatment, sometimes with serious consequences.  For 
this reason, there is now an extensive literature on the evaluation of diagnostic tests: 
that is, on methods and measures to determine how effective a given test is.  This 
literature is spread throughout the medical specialities, and also within the more 
general statistical and biostatistical literature.  There are now several books devoted 
entirely to evaluating diagnostic tests [1,2]. 
 
The need for evaluation of tests arises from the fact that diagnosis is all too often not 
perfect.  This may because accurate diagnosis is not possible at an early stage of a 
disease, or for a wide variety of other reasons.  Often speed of diagnosis is important, 
so that treatment can begin as soon as possible.  If a definitive diagnosis requires a 
lengthy procedure, then a quick and less accurate procedure may be used initially.  
Likewise, in many situations a definitive diagnosis may rely on an invasive procedure, 
and a premium is therefore placed on approximate non-invasive methods. 
 
For expositional convenience, in this paper we will assume that there is a single 
disease which we are interested in diagnosing, referring to patients with this disease as 
‘cases’, and contrasting it with others not suffering from the disease, whom we will 
refer to as ‘non-cases’ or ‘normals’.  We will label the disease class as class 1, and the 
non-disease class as class 0.  Generalisations to more elaborate situations, involving 
more than a simple case/non-case diagnosis are possible, but this is the most 
important special case and consideration of these other situations would detract from 
the essence of the discussion. 
 
Implicit in many diagnostic tests is a measurement which is compared with a 
‘classification threshold’.  If the value of the measurement exceeds the threshold, then 
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the patient is diagnosed as belonging to the disease class, and otherwise to the non-
disease class.  More elaborate statistical diagnostic procedures may derive the 
‘measurement’ as a statistical combination of a collection of other measurements - 
biological measurements, responses to items on a questionnaire, physical 
characteristics of the patient, and so on - but the result is the same: a score on a 
univariate scale, which is compared with a threshold to yield a diagnosis.  The score is 
a random variable, varying from patient to patient, which we will denote by Z, with 
particular values z.  We will denote particular values of the threshold by t.  Patients in 
the disease class will then yield a distribution of scores ( )1f z  and those in the non-

disease class a distribution ( )0f z , with respective corresponding cumulative 

distribution functions ( )1F z  and ( )0F z .  Without loss of generality, we will assume 

that diseased patients tend to have higher scores and non-diseased patients lower 
scores. 
 
The fact that diagnostic tests are generally not perfect means that they will misclassify 
some cases as non-cases and some non-cases as cases.  In particular, all diseased 
patients with scores z t≤  will be misclassified, as will all non-diseased patients with 
z t> .  These two types of misclassification, and their complements, lead to a variety 
of ways of capturing aspects of the diagnostic performance of the test.  Important 
amongst these are sensitivity and specificity: 

- the sensitivity, ( )eS t , or true positive rate, is the probability that a true case will 

be correctly classified as a case: ( ) ( )11eS t F t= − . 

- the specificity, ( )pS t , or true negative rate, is the probability that a true normal 

will be correctly classified as a normal: ( ) ( )0pS t F t= . 

To produce a single measure of performance of a diagnostic test (by means of which 
tests can be evaluated and compared), sensitivity and specificity need to be combined.  
This can be done in an unlimited number of different ways.  Since each way 
represents a different aspect of performance, it would be incorrect to assert that any 
one of these ways was ‘wrong’ and others ‘right’ - they merely measure different 
things - but, in general, one should match one’s measure of performance to what one 
is trying to achieve.  These and related issues are discussed further in [3, 4, 5, 6]. 
 
A very common approach to combining sensitivity and specificity is to add them in a 
weighted sum, so striking an appropriate balance between them - see, for example, [7, 
8].  In fact, this balance is usually described in terms of the complements of 
sensitivity and specificity, with the weights taking into account the relative sizes of 
the case and normal classes as well as the relative severities of the two types of 
misclassification.  That is, the numbers misclassified from each class are weighted 
according to the balance one wishes to strike between the two types of misdiagnosis, 
and then added together.  This yields an overall measure of the effectiveness of the 
diagnostic test: 

 ( ) ( ) ( )( ) ( )( )0 1 0 1; , 1 1 1p eQ t c c c S t c S tπ π= − − + − .   (1) 

Here π  is the prevalence of the disease (that is, the proportion in the population who 
suffer from the disease) and 0c  and 1c  are the weights, representing the importance of 
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misclassifying a class 0 and a class 1 patient respectively.  For convenience of 
exposition, we will refer to the ic  as misclassification costs and the weighted sum Q 

as a loss.  The smaller the value of, Q the better is the diagnostic test. 
 
Two versions of this measure, using default values of the ( )0 1,c c  pair, are particularly 

widely used.  Misclassification rate or error rate uses ( ) ( )0 1, 1,1c c ∝  and is reported in 

[9], in a meta-analysis of classification studies, as being used in ‘the vast majority’ of 
comparative studies of classification rules (p19).  The Kolmogorov-Smirnov statistic 
uses ( ) ( )0 1, ,1c c π π∝ −  and is especially popular in certain domains (it is, for 

example, the most popular measure for evaluating credit scorecards in the US). 
 
An alternative to explicitly balancing sensitivity and specificity against each other is 
to fix one and let the other be the measure of performance.  For example, one might 
choose to fix sensitivity at 0.80 and use the corresponding specificity as the measure 
of performance of the diagnostic test.  While this is certainly sometimes done, 
sticking rigidly to this approach can be inappropriate, since the fixed value of 
sensitivity is an explicit operational choice, not something determined by 
considerations such as the relative importance of the two kinds of misdiagnosis.  To 
see this, consider the following example. 
 
Suppose we have two diagnostic tests, T1 and T2, which give the following possible 

( ),e pS S  pairs, the first pair of which, in each case, is the pair arising when sensitivity 

is fixed at 0.80: 
 T1: ( )0.80,0.90   and   ( )0.85,0.10  

 T2: ( )0.80,0.90   and   ( )0.95,0.89 . 

Using test T1, setting the sensitivity at 0.80 seems a reasonable choice, which one 
might well make, since the alternative of setting the sensitivity at the larger value of 
0.85 incurs a dramatic reduction in specificity.  Conversely, however, with T2 it 
would seem harder to justify fixing sensitivity at 0.80, since a substantially larger 
value of 0.95 is associated with a tiny reduction in specificity.  There is an intrinsic 
arbitrariness in setting sensitivity at a particular value. 
 
The balance between sensitivity and specificity implicit in the definition of Q 
indicates what one believes are the relative misclassification severities.  In contrast, if 
one chooses the sensitivity a priori, this choice is an indication of how one wishes to 
use the diagnostic test - it is not a question of belief about what the ‘true’ value of 
sensitivity might be, since this is a meaningless concept.  The two approaches thus 
have rather different philosophical bases.  That using the cost ratio is based on a belief 
about the nature of the problem, while that using sensitivity is based on a choice of an 
operating characteristic of the problem. 
 
If the circumstances under which a diagnostic test is to be used are completely known, 
then the evaluation should take them into account.  Often, however, the circumstances 
are not known and then a more general measure, based solely on the properties of the 
diagnostic tests and the diagnostic problem is needed.  For example, one might be 
evaluating different diagnostic tests with a view to choosing one for future 
application, so that the circumstances of application are unknown, and a measure 
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which is invariant to different circumstances is preferable.  That is the perspective we 
adopt in this paper: that the measure should be based solely on information about the 
diagnostic tests themselves, and about the diagnostic problem, as reflected by the 
relative severities of the two kinds of misdiagnosis, and not on what particular 
individuals might decide to adopt as values of operating characteristics. 
 
Section 2 defines ROC curves, gives the background, and introduces our notation.  
Section 3 shows that a common measure of diagnostic performance based on the ROC 
curve, the area under the curve, or AUC, can be written as an average overall loss 
arising from misdiagnosis.  However, it also shows that this interpretation of the AUC 
implies one must hold different beliefs about the relative severities of the 
consequences of misdiagnosis for different diagnostic tests, even though they are 
choosing between the same diagnostic classes.  Section 4 presents an alternative 
measure which overcomes the problem.  Section 5 gives an example, and Section 6 
summarises the conclusions. 
 
 
2. ROC curves and the area under the curve 
 
The sensitivity and specificity of a diagnostic test are functions of the chosen 
threshold t, and, in general, changing t so as to increase the sensitivity will decrease 
the specificity, and vice versa.  A very widely used way of displaying the values of 
the sensitivity and specificity as t is varied is by means of the Receiver Operating 
Characteristic (ROC) curve.  This is a plot of sensitivity on the vertical axis and (1-
specificity) on the horizontal axis (though variants of these axes are also sometimes 
used).  ROC curves have the functional form 

 ( )1
1 01e pS F F S− = −         (2) 

or, setting ey S=  as the vertical axis and 1 px S= − , as the horizontal 

axis, ( )1
1 01 1y F F x− = − −  .  The ROC curve and its properties have been extensively 

studied and are well understood - see [10,11] for example. 
 
Although monotonically increasing, ROC curves can have convex regions.  That is, 
regions in which  
 ( )( ) ( ) ( ) ( )1 2 1 21 1e e eS t t S t S tλ λ λ λ+ − ≤ + − , 

where 1t  and 2t  represent two values of the threshold.  When such convex regions 

occur, it is possible to define a ‘randomised’ diagnostic test which yields a ROC curve 
corresponding to a dominating curve, and which has sensitivity which is always equal 
to or greater than that of the original test, for all values of specificity.  We will not go 
into details here, since it will distract us from the core of the argument.  Interested 
readers can refer to [12] (though note that, in accordance with machine learning 
conventions, that paper uses the terms ‘convex’ and ‘concave’ in the sense opposite to 
that used above - see the paper for details, and explanations).  For simplicity of 
exposition, in what follows we will assume that the ROC curve is strictly monotonic 
increasing, and that the first derivative is strictly monotonic decreasing.  We will also 
assume that the ROC curve is continuous and everywhere differentiable.  These 
simplifying assumptions do not detract from the generality of the conclusions, and the 
program described at the end of Section 4 can handle general cases. 
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The area under the ROC curve, the AUC, can be expressed in various ways, including 

 ( )( )
1 1

1
0 1

0 0

1p e e eAUC S dS F F S dS−= = −  ,   (3) 

and it is clear that this is the mean specificity value, assuming a uniform distribution 
for the sensitivity. 
 
The AUC has some attractive properties.  It lies between 0 and 1, taking the value 1 
for a perfect test and the value 0.5 for one which gives random diagnoses.  It is non-
subjective in the sense that all researchers, working with the same data, would obtain 
the same AUC measure.  Note, though, that the choice of a uniform distribution over 
sensitivity implicit in (3) is an arbitrary choice: one could choose a different 
distribution.  Indeed, one might feel that using the uniform distribution here is not just 
arbitrary, but is inappropriate, since it means one believes that the probability that 
very small values of sensitivity might be chosen is the same as the probability that 
very large values might be adopted.  The choice of this distribution is an important 
point, to which we return below.  The AUC has other attractive intuitive 
interpretations as well as being the mean specificity assuming uniform sensitivity.  
For example, it is equivalent to the Mann-Whitney-Wilcoxon test statistic, that is the 
probability that a randomly chosen member of class 0 (the healthy class) will produce 
a score lower than a randomly chosen member of class 1 (the disease class). 
 
On the other hand, by definition, all summary statistics aggregate data in some way, 
and so sacrifice details.  In particular, a well-known deficiency of the AUC arises 
when it is used to compare ROC curves which cross.  If ROC curves cross, then one 
curve has larger specificity for some choices of sensitivity, and the other has larger 
specificity for other choices of sensitivity.  Aggregating over all choices, as the AUC 
does, is all very well, but it could clearly lead to conclusions which misrepresent the 
performance of the diagnostic test as it is actually used (when some particular 
threshold value, and hence sensitivity and specificity must be chosen). 
 
Partly in an attempt to overcome this problem, and partly in recognition of the fact 
that it is likely that not all values of sensitivity or specificity will be regarded as 
relevant, various researchers have proposed the use of the partial AUC, PAUC, in 
which the integration in (3) is not over the entire range of sensitivity (or specificity), 
but over some interval [ ],a b  within [ ]0,1 , regarded as of particular relevance (see, for 

example, [13]).  Of course, this requires the user to specify a and b, which means that 
the non-subjective merit of the AUC is lost.  In any case, it is entirely possible that the 
interval [ ],a b  will include a point where the ROC curves cross.  Furthermore, the 

PAUC has the unfortunate implication that values of sensitivity just outside the 
interval are discounted, whereas those just inside are included.  An alternative 
solution would be to choose a smooth non-uniform distribution with support [ ]0,1 . 

 
3. AUC as average loss 
 
In Section 1, we described the practice of striking a balance between sensitivity and 
specificity by weighting them in terms of the relative severities of the two kinds of 
misclassification.  We supposed that misdiagnosing a sick person as healthy incurred 
a cost 1c , and that misdiagnosing a healthy person as having the disease incurred a 
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cost 0c .  Implicit in the balance between sensitivity and specificity in the definition of 

Q is that assigning either a healthy or a sick person to the correct class incurs no cost.  
One can generalise the diagonal cost matrix implied by 0c  and 1c  to include costs 

associated with making correct classifications, but it is easy to show that this can be 
simplified to the diagonal case.  It is also possible that different costs will be incurred 
when different healthy people are misdiagnosed, and that different costs will be 
incurred when different ill people are misdiagnosed.  One can thus seek to generalise 
the following exposition by modelling cost in terms of the characteristics of the 
patients (see, for example, [6]), but here we stick to the simple case.   
 
Since, for a given pair ( )0 1,c c  the choice of threshold which minimises the balanced 

misclassification loss depends only on their ratio, and not on their absolute values, we 
can simplify things by requiring 0 1 1c c+ =  and defining 0c c=  and 1 1c c= − . 

 
In the Appendix we show that 

 
( ) ( )( ) ( )

1
1

0

1

2 1
AUC Q P c w c dc

π π
−=

−   

where  

 ( ) ( ) ( )( ) ( )( ){ } ( )1
1 1

0 11
dP c

w c f P c f P c
dc

π π
−

− −= − + ,  (4) 

 ( ) ( ) ( ) ( )( ) ( )( ) ( ){ }0 11 1 1Q t P t F t P t F tπ π= − − + − , 

and the relationship between c and t is given by P, defined as 

 
( )

( ) ( ) ( ) ( )1

0 11

f t
c P t

f t f t

π
π π

=
− +

.     (5) 

As the Appendix shows, ( )1P c−  gives the value of t which minimises Q for given c.  

(The assumption that the ROC curve is concave implies that P can be inverted.) 
 
We see from this that, if we choose a distribution given by ( )w c  for the cost c, and 

then choose the threshold (and hence sensitivity and specificity) to minimise the 

overall loss ( )( )1Q P c−  for each value of c, we obtain (a measure proportional to) the 

AUC.  This is simply a mathematical fact.  It provides another way of interpreting the 
AUC. 
 
However, this way of looking at the AUC has implications.  In particular, ( )w c  in (4) 

depends on the empirical score distributions, via the mixture distribution and via the 
function P.  That is, the distribution ( )w c  will be different for different diagnostic 

tests.  Now, as we saw in Section 1, c gives us a way of striking a suitable balance 
between sensitivity and specificity.  One might therefore choose the distribution to 
reflect one’s beliefs about how likely different c values were.  But such a distribution 
cannot depend on the empirical score distributions.  Doing so would be analogous to 
saying ‘if you use test 1 to make a diagnosis then your misclassifications of the 
disease as normal are twice as serious as the reverse, while if you use test 2 they are 
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three times as serious.’  This is clearly inappropriate: misdiagnoses incur the same 
relative cost no matter by what route they are arrived at. 
 
Of course, for any given value of c it is not mandatory to choose the threshold (and 
hence sensitivity and specificity) to minimise the overall cost.  That is, one does not 
have to choose the threshold to strike a balance between the two kinds of 
misclassification: one need not relate t to c via ( )1t P c−= , and sensitivity to c via 

( )( )1
11eS F P c−= − .  For example, in a screening application in which one had limited 

resources to treat identified cases, one might want to treat only a given number of 
patients, and hence (assuming known prevalence) fix the sensitivity to be used.  In 
this example, the specificity is irrelevant, and no balance is made between the two 
kinds of misclassification.  It follows that in this example the value of c would be 
irrelevant.   
 
More generally, if one has a distribution of values for sensitivity (and hence of the 
threshold) which one feels one might choose, then this can be used, regardless of the 
distribution one feels would be appropriate for c.  As we have already noted, the AUC 
does precisely this: it takes a uniform distribution over sensitivity.  However, this 
choice hinges on considerations beyond the empirical score distributions and the 
balance between the severities of the two different kinds of misclassification.  It 
requires an explicit choice of an operating characteristic such as sensitivity, or 
distributions of such characteristics.  That is, it depends on how the diagnostic test is 
to be used.   
 
If one has sufficient detail of a particular application to be able to choose the 
operating characteristics on external grounds (for example, one knows the desired 
sensitivity or its distribution) then such measures are appropriate.  But even then note 
that, as the numerical example in Section 1 showed, the choice of operating 
characteristic might vary between diagnostic tests.  In general, when the performance 
of a test is to be evaluated out of context of a particular application (for example, 
when developing a test which might be used in future applications), then we believe it 
is preferable to adopt a performance criterion which is independent of predetermined 
choices of operating characteristics (or their distributions).  Rather, the criterion is 
better based solely on properties of the empirical score distributions and the relative 
severities of the two kinds of misdiagnosis.  That is, we believe it is better to work 
with a particular ( )w c  distribution and base the performance criterion on minimising 

the expected overall loss.  Such a criterion is described in the next section. 
 
 
4. An invariant alternative to the AUC 
 
In the preceding section we argued that, in many situations, an appropriate measure of 
diagnostic test performance should be based on one’s beliefs about the balance to be 
struck between the two different kinds of misclassification.  We defined this balance 
in terms of c, and suggested that beliefs about likely values of c could be articulated in 
terms of a distribution over values of c, ( )w c .  But we then saw that the AUC, when 

expressed as an integral of the expected minimum overall loss, averaged over the 
distribution of c, led to different ( )w c  distributions for different diagnostic tests.  We 
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pointed out that this may not be desirable, since one might argue that the belief 
distribution over c, which is measure of the relative severity of the two kinds of 
misclassification, should not depend on the diagnostic test used. 
 
This leads us to suggest an alternative performance measure, in which the ( )w c  

derived in Section 3 is replaced by a common belief distribution, ( )v c , for all 

diagnostic tests.  This leads to the measure 

 ( )( ) ( )
1

1

0

L Q P c v c dc−=  .      (6) 

For a given diagnostic problem, any particular researcher will choose the same ( )v c , 

regardless of which diagnostic test is being evaluated.  Different researchers, of 
course, may well choose different distributions for ( )v c .  L has the interpretation that 

it is the expected minimum loss if the value of c is unknown, but is to be chosen at 
random from the distribution ( )v c . 

 
We propose that two forms of ( )v c  are used.  Sometimes researchers may have 

beliefs about an appropriate shape for the distribution, and then a distribution which 
reflects these beliefs should be used.  Indeed typically, they will have some beliefs, 
which can be used to select a distribution from some family (in a way very similar to 
choosing a prior in Bayesian analysis).  For example, medical diagnostic problems 
often have a known asymmetry, in that misclassifying membership of one class is 
known to be more serious than the reverse kind of misclassification.  Misdiagnosing a 
potentially fatal but easily treatable disease is more serious than misdiagnosing a 
harmless condition.  If class 1 misdiagnoses are more serious than class 0 
misdiagnoses, then 1 2c < , and ( )v c  can be chosen to reflect this. 

 
In addition, however, it is useful also to have a universal standard form for ( )v c , 

which can be used as well as any particular chosen form.  This will result in a measure 
which has the attractive property, like the AUC, that all researchers would obtain the 
same result from the same data.  In [12] it is suggested that a beta distribution be used: 

( ) ( ) ( )11 11 1

0
1 1v c c c c c dc

β βα α− −− −= − − , with 2α β= = .  (In fact, by varying the 

parameters, the beta distribution gives a nice flexible family which may also be used 
for many situations when something is known or believed about likely values of c.)  
The choice of the beta distribution is arbitrary, but it is impossible to avoid some 
arbitrariness in the choice: different measures reflect different aspects of performance, 
and there is no absolute best choice.  The choice of α β=  is a deliberate attempt to 
avoid injecting beliefs about which of the two misdiagnoses is more serious - since 
these may differ between researchers.  The choice of 2α =  is arbitrary, but again, 
since there is no absolute way of choosing a ‘best’ value, some arbitrariness must 
remain.  However, these arbitrarinesses - the shape of the distribution and the choice 
of the value of the common parameter - are fundamentally different from the 
implications of using the AUC, with its implication of integrating over a relative cost 
distribution which varies between diagnostic tests. 
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Finally, it is convenient to standardise L, dividing it by its maximum possible value 
and subtracting it from 1.  In [12] this standardised measure is called the H measure.  
That paper discusses estimation of H and issues associated with non-concave ROC 
curves.  An R program for calculating the H measure (along with the AUC, the area 
under the concave hull, and the Kolmogorov-Smirnov measure) is given in 
http://stats.ma.ic.ac.uk/d/djhand/public_html//.  (Note that the program treats class 0 
as the ‘case’ class, with class 0 tending to take smaller values.  To use it for data in 
which class 1 represents cases, and where cases tend to take higher scores, it is 
necessary to invert the score ordering (e.g. score → max(score)-score) and to relabel 
the classes (0 → 1, 1→ 0).) 
 
 
5. Example 
 
As we have noted above, different criteria measure different aspects of performance, 
so that there is no absolutely ‘right’ one.  Since the AUC and the H measure are 
defined in different ways, it follows that they will give different results, and perhaps 
different rank orders, to different diagnostic tests.  In a sense, then, an example is 
unnecessary: it will merely show that different measures lead to different results.  
Nonetheless, for completeness, and to illustrate that the AUC and the H measure can 
indeed rank diagnostic instruments differently, hence leading to adoption of different 
methods, and thus to consequences in terms of misdiagnosis, we provide one such 
simple illustration. 
 
The data analysed here describe 846 women between the ages of 48 and 81, 65 of 
whom were suffering from osteoporosis and 781 of whom were not, according to 
lateral thoracolumbar spine radiography.  The aim was to construct a non-invasive 
screening questionnaire, for use as a preliminary diagnostic instrument.  Nine 
variables were available for this analysis, these being age, height, and the answers to 
the questions listed below 

1) age 

2) height 

3) after the age of 45 have you ever broken (excluding severe trauma) a bone in 
your back? 

4) have you lost any height over the last 20 years? 

5) were you ever given hormone replacement therapy at any time after your 
periods had stopped? 

6) how many children have you had? 

7) has your thyroid gland ever been overactive? 

8) how many pints of beer would you drink in an average week? 

9) how many cups of tea and/or coffee do you drink per day? 

Logistic regression models were fitted to all 511 possible non-null subsets of variables 
from this list of nine variables, simply using additive models and ignoring the 
possibility of predictive interactions.  The AUC and the H measure were computed for 
each of these models.  A scatterplot of the results is shown in Figure 1. 
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It is clear from this plot that, although there is correlation between the two measures, 
it is not dramatically strong - it is in fact 0.58.  It is also clear that models with a very 
large range of H values have AUC values near to the model with largest AUC. 
 
The model which leads to greatest AUC is not the same as the model which leads to 
greatest H value.  In fact, in terms of the variables given above, the best AUC and H 
models are 
  AUC ~ 1 + 2 + 4 + 5 + 6 + 7 + 8 + 9    (7a) 
  H ~ 2 + 3 + 5 + 6 + 9,      (7b) 
respectively, and their ROC curves are shown in Figure 2.  For these two models 
respectively, the AUC and H values are 

AUC = 0.694     H = 0.062 
AUC = 0.645     H = 0.084. 
 

This example is interesting because a first glance at the ROC curves for the models in 
(7), shown in Figure 2, suggest that the curve for the first model dominates the curve 
for the second model.  If one ROC curve does dominate another, then all performance 
measures give the same order of merit to the models.  However, since all ROC curves 
necessarily coincide at the points ( )0,0  and ( )1,1 , there is a good chance that they 

will cross near these points.  This is the case in Figure 2, where it can be seen that the 
two curves do cross over near the bottom left of the plot.  The crossing of the curves 
near this end point is crucial, and is sufficient for the AUC and H measure to give a 
different relative order for these two diagnostic tests.  This merits some further 
explanation. 
 
We see, from (1), that the loss for a particular eS , pS  pair and value c is given by the 

inner product of ( ) ( )( )1 , 1c cπ π− − −  and ( ) ( )( )1 , 1p eS S− − − .  If we take the top 

left corner ( )0,1  of the ROC square as the origin, then this loss is proportional to the 

length of the projection of the line from ( )0,1  to ( ) ( )( )1 , 1p eS S− − −  onto the line 

through ( )0,1  in direction ( ) ( )( )1 , 1c cπ π− − − .  This means that we can determine 

the loss (1) associated with any point on the ROC curve by the length of the 
projection of the point onto this latter line.  In particular, for any given value of c (and 
π ) we can find the score threshold - the point on the ROC curve - which minimises 
the loss.  The slope of the line we project onto is ( ) ( )1 1c cπ π− − − , and, for our 

example, 65 846 0.077π = = , so that the slope is equal to ( )0.083 1D c c= − − . 

 
The H measure and the AUC use different distributions over c when calculating an 
overall measure of performance (and, as we have seen, the AUC distribution differs 
between diagnostic tests).  The standard H measure uses the beta(2,2) distribution, 
which is symmetric, with a mode at 0.5c = .  A value of 0.5c =  corresponds to a D 
value of 0.083− , a very shallow negative slope.  The points on the ROC curves which 
minimise the length of projections onto such a line are indicated by the solid circles in 
Figure 2.  That is, threshold values in the neighbourhoods of those indicated by the 
solid circles contribute most substantially to the loss (1) when H is used. 
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The AUC on the other hand, averages over a distribution of c given by (4).  This is 
equivalent to averaging over a distribution of threshold values given by the mixture 
distribution of the scores for the two classes.  For the two models given in (7), the 
threshold values corresponding to the modes of the mixture distributions are shown by 
the solid diamonds in Figure 2.  These threshold values minimise the loss (1) for 
values of c given by 0.018 and 0.034, corresponding to D values of -4.479 and -2.332, 
respectively.  We see that the AUC and H place greatest weight on very different 
ranges of costs c (and, indeed, that the two diagnostic rules place emphasis on 
different cost ranges).  We also see from this example that the apparent dominance of 
one ROC curve can be misleading. 
 
Figure 3 shows a scatterplot of the log scores, z, for the subjects, produced by these 
two models.  If one chooses a classification threshold value for the horizontal (best 
AUC model) axis and also a classification threshold value for the vertical (best H 
model), then the scatterplot is divided into four quadrants.  Points in the upper left and 
lower right quadrants constitute what is known as the swap set.  This is the set of 
points corresponding to patients who would be assigned to different diagnoses by the 
two classifiers.  The wide dispersion of the points (with a correlation of only 0.78) 
shows that the swap sets would be quite significant, unless the thresholds were placed 
very near to the extremes.  That is, the two models would make different incorrect 
diagnoses. 
 
In this example, the AUC implicitly uses a cost ratio weight distribution which is 
heavily skewed towards weighting case misclassifications more heavily than non-case 
misclassifications.  This is not unreasonable - one would often regard misclassifying 
cases as non-cases as more serious than the reverse - and one might deliberately 
choose a distribution which would weight things in this way.  However, what may not 
be so reasonable is that the AUC uses different weight distributions for the two 
models.  This paper takes the view that, to make valid comparisons between 
diagnostic instruments, one needs to evaluate them in the same way.  We therefore 
recommend (a) using a common weight distribution which reflects one’s beliefs about 
the relative severity of the misclassifications, if one can choose a good one, and also 
(b) always including a standard distribution (the beta(2,2) distribution underlying the 
standard H measure), so that researchers have a common currency for discussion. 
 
Incidentally, it has been pointed out in [14] that estimates of the area under the ROC 
curve based on the data used to derive the score function will tend to be optimistically 
biased.  This is similar to the more well-known optimism of estimates of 
misclassification rate resulting when the same data set is used to construct a 
diagnostic rule and estimate its likely future misclassification rate.  The same effect 
will apply for the H measure. 
 
 
6. Conclusion 
 
Diagnostic tests, of the kind considered in this paper, can make two kinds of 
misclassification: they can misdiagnose cases as normals, or the reverse.  To enable 
straightforward comparisons to be made between the diagnostic effectiveness of 
different tests (and to estimate parameters when constructing diagnostic rules by 
combining symptom indicators) some way is needed to reduce things to a single 
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numerical measure of performance.  This can be done in various ways.  One way is to 
combine the two kinds of misclassification, in terms of their relative severity.  
Another is to fix one of them and let the other be the performance measure.  We have 
argued that the second method requires arbitrary choices about the value at which to 
fix the first type of misclassification, and that this can depend on the diagnostic test 
(the numerical example in Section 1) and also on external peculiarities of the 
application (the screening example).  We therefore prefer the first method - striking a 
balance between the severities of the two kinds of misdiagnosis. 
 
Often (perhaps almost always), however, deciding exactly what this balance should be 
is difficult.  We therefore suggested that, instead of picking a particular balance, one 
should take an expectation of the minimum weighted misclassification loss over a 
distribution of values of the weights defining the balance.  This is analogous to the 
AUC, which is an average of specificity over a uniform distribution of sensitivity, 
except that we take the expectation over the severity balance between the two kinds of 
misdiagnosis, instead of over sensitivity.  We then showed that the AUC itself could 
be expressed as an expectation over the minimum balanced misclassification loss.  
However, it turns out that the expectation is with respect to distributions of the 
relative severity of the two kinds of misclassification which differ between different 
diagnostic tests.  This is simply a consequence of the way the AUC is defined.  This 
seems inappropriate: one’s beliefs about the relative severity of the consequences of 
the two kinds of misclassification cannot depend on the diagnostic test one happens to 
have chosen.  It would mean that one could alleviate suffering simply by choosing a 
different diagnostic instrument.  Although the AUC has been criticised on various 
methodological grounds (see, for example, [15, 16]) this interpretation suggests that it 
also has a core theoretical weakness, at least when viewed from some perspectives. 
 
To overcome this problem with the AUC, we proposed an alternative measure, which 
fixes the distribution of the relative severity of the consequences of the two kinds of 
misdiagnosis.  In fact, we suggested that two versions were used: (i) using expert or 
specialist knowledge about the implications of the two kinds of misdiagnoses when 
this is available; (ii) a universal standard, which could be used by everyone to give 
consistent and readily interpretable non-subjective results. 
 
Although the word ‘diagnosis’ has been used throughout the discussion above, exactly 
the same issues arise in prognosis and other situations in which the aim is to assign a 
patient to one of two or more possible classes. 
 

APPENDIX 
 
We show that the AUC is a multiple (depending only on the disease prevalence and a 
constant) of the average minimum loss, for a particular distribution over the values of 
c. 
 
By definition,  

 ( ) ( )p eAUC S t dS t
∞

−∞

=  . 

This can be rewritten as 
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which can be expressed as 
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 
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Now, simply multiplying and dividing by the mixture ( ) ( ) ( ) ( )0 11W t f t f tπ π= − +  

within the integral, this is equal to 
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If we define  

 
( )

( ) ( ) ( ) ( )1

0 11

f t
P t

f t f t

π
π π− +

 

and substitute it into the above, we can express the AUC as 

  
( ) ( ) ( ) ( )( ) ( )( ) ( ){ } ( ) ( ) ( )( )0 1 0 1

1
1 1 1 1

2 1
P t F t P t F t f t f t dtπ π π π

π π

∞

−∞

− − + − − +
−  . 

 

Or, putting ( ) ( ) ( ) ( )( ) ( )( ) ( ){ }0 11 1 1Q t P t F t P t F tπ π= − − + − ,  

 
( ) ( ) ( )1

2 1
AUC Q t W t dt

π π

∞

−∞

=
−  . 

 
Now, in fact a standard result shows that, for given c, the minimum loss is given by 
choosing ( )1t P c−= . 

 
Finally, by making the change of variable from t  to c using P, we obtain 

 
( ) ( )( ) ( )

1
1

0

1

2 1
AUC Q P c w c dc

π π
−=

−   
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where ( ) ( ) ( )( ) ( )( ){ } ( )1
1 1

0 11
dP c

w c f P c f P c
dc

π π
−

− −= − +  

 
That is, the AUC is proportional to the average minimum loss, if the distribution of 
values of c is given by ( )w c . 
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Figure 1: Scatterplot of AUC by H measures for models based on all 511 non-null 
subsets of variables from the osteoporosis data. 
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Figure 2: The ROC curves from the two diagnostic models 
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Figure 3: Plot of H vs AUC scores for the models in (7). 
 

 
 
 


