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27 Abstract

28 DNA methylation age (DNAm age) has become a widely utilized epigenetic biomarker 

29 for the aging process. The Horvath method for determining DNAm age is perhaps the most 

30 widely utilized and validated DNA methylation age assessment measure. Horvath DNAm age is 

31 calculated based on methylation measurements at 353 loci which were present on Illumina’s 

32 450k and 27k DNA methylation microarrays. With the increasing use of the more recently 

33 developed Illumina MethylationEPIC (850k) microarray, it is worth revisiting this widely used 

34 aging measure to evaluate differences in DNA methylation age estimation based on array design. 

35 Of the requisite 353 loci, 17 are missing from the current 850k microarray. Using 17 datasets 

36 with 27k, 450k, and/or 850k methylation data, we calculated and compared each sample’s 

37 epigenetic age estimated from all 353 loci required from the Horvath DNAm age calculator 

38 (full), and using only the 336 loci present on the 27k, 450k, and 850k arrays (reduced). In 

39 450k/27k data, missing loci caused underestimation of epigenetic age when compared with the 

40 full clock. Underestimation of full epigenetic age grew from ages 0 to ~20, remaining stable 

41 thereafter (mean= -3.46 y, SD=1.13) years for individuals ≥20 years. Underestimation of DNAm 

42 age by the reduced 450k/27k data was similar to the underestimation observed in the 850k data 

43 indicating that array differences in DNAm age estimation are primarily driven by missing 

44 probes. Correlations between age and DNAm age were not dependent on missing probes or on 

45 array designs and consequently associations between DNAm age and outcomes such as sex 

46 remained the same independent of missing probes and probe design. In conclusion, DNAm age 

47 estimations are array dependent driven by missing probes between arrays. Though correlations 

48 and associations with DNAm age may remain the same, researchers should exercise caution 

49 when interpreting results based on absolute differences in DNAm age or when mixing samples 

50 assayed on different arrays. 
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51 Introduction 

52 DNA methylation has recently shown promise as a potentially clinically useful biomarker 

53 of aging. A recent “epigenetic clock” developed by Horvath (1) has been shown to be an 

54 accurate estimator of age across multiple tissues and populations, and differences between DNA 

55 methylation age and chronological age are associated with pathophysiological biomarkers and 

56 incident disease (2). 

57 The method developed by developed by Horvath (1) is perhaps the most widely used and 

58 validated epigenetic age estimation method; it relies on measurement of percent methylation at 

59 353 loci (CpGs) on either the Illumina 450k  (450k) or Illumina 27k (27k) microarray chips. 

60 Recently, Illumina released the Infinium MethylationEPIC Bead Chip (850k), which uses the 

61 same technology as the Illumina 450K microarray to assay 866,836 CpGs (3). Though the 850k 

62 microarray assays more loci, 8.9% of CpGs included on 450K microarray were omitted from the 

63 850k microarray. In particular, 17 of the 353 CpGs (4.8%) necessary to calculate epigenetic age 

64 via the Horvath method are missing. While missing CpGs are imputed in the online calculator (4) 

65 to allow for estimation of epigenetic age, these missing probes may systematically bias the 

66 estimation of DNA methylation age and consequently alter the detection or interpretation of 

67 associations with health outcomes and inhibit cross-platform comparisons and analyses. 

68 To evaluate the impact of microarray design changes on the estimation of DNA 

69 methylation age, we compared the Horvath DNA methylation age (DNAm age) calculated using 

70 all 353 CpGs (full DNAm age) to estimates obtained from using either the 27k or 450k platform 

71 while restricting to the 336 CpGs available on the 850k platform. We used 15 publicly available 

72 non-cancer blood tissue datasets (available in the Gene Expression Omnibus(GEO), 

73 https://www.ncbi.nlm.nih.gov/geo/), as well as blood samples from a cardiac catheterization 

74 cohort (CATHeterization GENetics; CATHGEN) where DNA methylation was assessed on both 

75 the 450k and 850k arrays.

76 Methods 

77 Missing loci and datasets 

78 To determine which loci in Horvath’s original epigenetic clock loci are missing from the 

79 850k platform we compared the 850k manifest of probe loci and the list of loci required for 

80 Horvath’s estimation of epigenetic age (available in Additional File 3 of  (1)).
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81 From the 81 datasets used to develop the Horvath epigenetic clock, we selected those 15 

82 datasets (detailed in Supp. Table 1) whose non-cancerous samples were drawn from blood 

83 (excluding cord blood), were publicly available on the Gene Expression Omnibus (GEO; 

84 https://www.ncbi.nlm.nih.gov/geo/) and whose methylation beta values were readily available on 

85 GEO. Though chronological age was not available in GSE42865 and GSE35069, and sex was 

86 not available in GSE30870 and GSE 42865, these datasets were also included in analyses that 

87 did not require age or sex. 

88 Samples (N = 3,672) in the 15 eligible GEO datasets (summarized in Table S1) were 

89 drawn from people ages 0 to 101, and included whole blood, peripheral blood monocytes 

90 (PBMC) and single leukocyte cell types. GSE 19711 was divided into two datasets (controls and 

91 ovarian cancer cases) for consistency with the Horvath epigenetic clock manuscript (1). Though 

92 a few of these datasets include samples from cancer patients, the tissue obtained was non-

93 cancerous, and their methylation age had previously shown no association to cancer (1). Further 

94 information about these datasets may be found on GEO, and in Additional file 2 of Horvath’s 

95 manuscript which describes these datasets and their rationale for inclusion in the development of 

96 his epigenetic clock (1). 

97 In addition to the GEO datasets, two datasets from the Catheterization Genetics cohort 

98 (CATHGEN) were employed to compare the 450k and 850k platforms. CATHGEN participants 

99 were recruited from subjects undergoing an outpatient cardiac catheterization at Duke University 

100 from 2001-2011 (5). Ethics approval was administered by the Duke Institutional Review Board 

101 for CATHGEN.

102 The samples were processed by reading in the idat files using minfi v1.21.1, examining 

103 samples for exclusion based on Illumina’s default quality control (QC) procedures, background 

104 correction via minfi’s ssNoob, and extracting the un-normalized beta values. The CATHGEN 

105 samples processed on the 450k and 850k microarrays were not obtained from the same 

106 individuals, and no samples were excluded based on QC for the 450k microarray, while two 

107 samples from the 850k microarray were excluded. This left 205 CATHGEN samples for the 

108 450k microarray (ages 23-91 y) and 568 samples available from the 850k microarray (ages 33-87 

109 y). 
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110 DNAm age processing

111 Methylation beta values were extracted from the downloaded GEO datasets, and were not 

112 further normalized before uploading to the (online) DNA Methylation Age Calculator as 

113 recommended (https://dnamage.genetics.ucla.edu/). Where GEO datasets were previously 

114 normalized, we deselected the normalize data option during processing in the DNA methylation 

115 calculator; otherwise, the normalize data option was selected for unnormalized data. 

116 All samples were included from the publicly available data. Sex, age, sample id and 

117 blood type were extracted from the downloaded GEO datasets. The online DNA methylation age 

118 calculator automatically imputes any missing probes 

119 (https://labs.genetics.ucla.edu/horvath/dnamage/). 

120 The epigenetic clock across the age ranges in 450k/27k data

121 To ascertain how the 17 missing loci might systematically misestimate epigenetic age via 

122 Horvath’s 353-probe DNA methylation clock, we calculated DNA methylation age in 27k and 

123 450k datasets (GEO & CATHGEN 450K datasets) with and without the 17 probes unavailable 

124 on the 850k microarray. For each GEO dataset, as well as the CATHGEN 450k datasets, DNAm 

125 age calculated using the reduced 450k data were compared to DNAm age calculated using the 

126 full 450k data, graphically and using summary statistics. The comparisons were repeated in 

127 subjects chronologically aged 20 y or less, and in ages > 20 y, a cutoff selected based on the 

128 observed inflection point in the plot of age vs the difference in DNA methylation age estimated 

129 using the full and reduced 450k data. 

130 We hypothesized that the relationship of DNA methylation age to chronological age 

131 differed in the full and reduced 450k/27k datasets and that the difference varied by chronological 

132 age group (>20 years and ≤ 20 years). Using all samples within each age group, we separately 

133 regressed full 450k DNAm age and the reduced 450k DNAm age on chronological age, and 

134 compared resulting the intercepts and chronological age slopes estimates. This analysis excluded 

135 the GSE42865 and GSE35069 datasets as chronological age was not publicly available. 

136 Within each age group, we also assessed the possibility that the relationship between 

137 DNA methylation age, and thus age acceleration, and a clinical or other variable of interest could 

138 be modified by the loss of 17 missing loci from the dataset. As sex was the only widely available 
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139 variable in the public data, we separately regressed age acceleration estimated based on the full 

140 and reduced 450k data on sex (ref. = Male), using all available samples within each age group. 

141 We repeated these analyses in each individual dataset, without regard to the chronological age of 

142 samples. We then statistically compared the slope obtained when using full 450k data age 

143 acceleration to that obtained via reduced 450k data age acceleration for models of the association 

144 of sex with age acceleration. Additionally, we compared residual plots of full and reduced 450k 

145 data DNAm age acceleration regressed on chronological age for all GEO datasets where age was 

146 available in the CATHGEN 450k dataset. 

147 Comparison of DNA methylation age in 450k and 850k datasets 

148 The CATHGEN data were used to ascertain if technological changes in the 850k 

149 platform as compared to the 450k or 27k platforms contribute to mis-estimation of epigenetic 

150 age. To that end, full and reduced datasets for the samples processed on the 450k, as well as a 

151 dataset for the samples processed on the 850k were created for CATHGEN. Linear fits of the 

152 epigenetic age by chronological age for each of the 3 CATHGEN datasets were produced. The 

153 intercept and slopes of these linear fits were compared, to ascertain if the 850k platform impacts 

154 the methylation measurement such that it would impact the calculation of epigenetic age, in a 

155 manner separate from the effect of the 17 missing probes. 

156 The CATHGEN dataset affords the ability to quantify any deviation of 850k DNAm ages 

157 from expected values. As no ‘correct’ estimate of DNAm age on the 850k is available, we chose 

158 regressed DNAm age on categorical variables for dataset types (full 450k and 850k in one model 

159 and reduced 450k and 850k in the second model) while controlling for age. In both models, the 

160 450k DNAm age, either full or reduced” was the referent category.

161 Software and statistical analyses

162 All work to determine the lost loci, to prepare data for the online DNA Methylation Age 

163 Calculator (https://dnamage.genetics.ucla.edu/) and to subsequently compare epigenetic age 

164 estimates with chronological age were performed in R (version 3.4.0) (6). 

165 Terminology 

166 Three categories of DNA methylation data were used in this analysis: 1) data from the Illumina 

167 450k array or the 27k array (“full 450k data”); 2) data from the Illumina 450k or 27k arrays with 
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168 the 17 probes not on the Illumina 850k array removed (“reduced 450k data); and 3) data from the 

169 Illumina 850k array (“850k data”). “Reduced 450k DNAm age” and “full 450k DNAm age” 

170 refer to the application of the Horvath epigenetic clock to reduced and full 450k data, 

171 respectively. 

172 Results

173 Missing probes & descriptions of the datasets

174 The 17 required DNA methylation age loci that are not included in the 850k manifest are 

175 listed in Table 1. The GEO and CATHGEN 450k datasets together encompass 3,973 individuals 

176 (52% female, among those reporting sex) whose ages range from 0 (i.e., newborn) to 101 years 

177 (Table 2). In addition, we had 568 independent CATHGEN samples that were processed on the 

178 850k platform.

179 Table 1. Missing probes, SNP presence, and symbol. 

CpG SNP? Symbol

cg19945840 no B3GALT6

cg02972551 no JMJD1A

cg02654291 yes C9orf64

cg13682722 yes C14orf102

cg09869858 yes P11

cg06117855 yes CLEC3B

cg05590257 yes LOC201164

cg27016307 yes HRC

cg24471894 yes KIAA0020

cg04431054 no LOC133619

cg16494477 no FGF18

cg19046959 no COL8A2

cg17408647 yes FLJ10803

cg27319898 no FLJ32110

cg19569684 no PACAP

cg19273182 no PAPOLG

cg09785172 no WFS1

180

181

182

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 8, 2018. ; https://doi.org/10.1101/466045doi: bioRxiv preprint 

https://doi.org/10.1101/466045


8

183 Table 2. Comparison of DNA methylation age (DNAm age) estimation from full 450k data, reduced 450k data, and 850k data in GEO 

184 and CATHGEN datasets. The mean, standard deviations and correlation with chronological age (Age corr.) of DNAm age are 

185 provided for each dataset.

(Full) 450k data

(353 loci)

Reduced 450k or 850k data

(336 loci)

Comparison

Chronological age DNA methylation age DNA methylation age (450k data DNAm age) - 

(red. 450k data DNAm age)

GEO Series no.

Plat-

form

N (prop.

female) Median (range) Mean (SD) Mean (SD) Age corr. Mean (SD) Age corr. Mean (SD)

GSE19711cases (7,8) 27K 266 (1.0) 67 (49, 91) 66.42 (9.35) 62.5 (11.47) 0.55 58.43 (11.02) 0.56 4.11 (0.81)

GSE19711controls (7,8) 27K 274 (1.0) 64 (52, 78) 64.89 (6.74) 62.57 (7.65) 0.66 58.56 (7.52) 0.66 4.01 (0.68)

GSE20067 (7,9) 27K 192 (0.51) 43 (24,74) 43.9 (9.8) 43.45 (9.27) 0.81 38.55 (9.2) 0.81 4.85 (0.95)

GSE20236 (10) 27K 93 (1.0) 63 (49,74) 62.86 (6.33) 53.79 (6.51) 0.69 49.92 (6.32) 0.68 3.87 (0.58)

GSE20242 (10) 27K 50 (0.74) 34 (16,69) 35.86 (13.89) 45.02 (27.45) 0.55 41.49 (27.71) 0.53 2.30 (0.84)

GSE27097 (11) 27K 398 (0.0) 9.3 (3.6, 17.8) 9.89 (3.63) 9.6 (4.41) 0.75 8.14 (3.88) 0.72 1.46 (0.69)

GSE30870 (12)** 450K 38 (0.74) 44.5 (0, 100) 46.32 (47.01) 41.06 (42.02) 0.99 38.93 (39.95) 0.99 2.14 (2.13)

GSE32149 (13) 450K 48 (0.52) 15 (3.5,76) 22.15 (18.43) 22.3 (15.13) 0.96 19.96 (14.34) 0.97 2.34 (0.92)

GSE35069 (14)* 450K 60 (0.0) NA NA 41.74 (12.75) - 39.15 (12.84) - 2.59 (0.56)

GSE36064 (11) 450K 78 (0.0) 3.1 (1.0, 16.1) 4.58 (4.11) 4.38 (3.92) 0.93 3.62 (3.27) 0.93 0.76 (0.66)

GSE40279 (15) 450K 656 (0.52) 65 (19, 101) 64.04 (14.74) 63.08 (11.53) 0.91 60.67 (11.66) 0.92 2.41 (0.70)

GSE41037 (16) 27K 720 (0.38) 33 (16, 88) 37.4 (15.72) 36.85 (15.38) 0.95 33.07 (15.07) 0.96 3.81 (0.79)

GSE41169 (16) 450K 95 (0.29) 29 (18, 65) 31.57 (10.28) 31.23 (11.01) 0.94 27.67 (10.69) 0.94 3.55 (0.60)

GSE42861 (17) 450K 689 (0.71) 54 (18, 70) 51.93 (11.8) 53.38 (11.09) 0.90 50.22 (11.01) 0.90 3.16 (0.58)

GSE42865 (18)* ** 450K 15 (0.62) NA NA 38.19 (9.45) - 35.68 (9.68) - 2.40 (1.10)

CATHGEN 450k ˚ 450k 206 (0.37) 64 (33,87) 63.41 (11.85) 64.58 (10.50) 0.88 60.73 (10.23) 0.87 3.85 (0.72)

CATHGEN 850k † ˚ 850k 568 (0.41)  59 (23, 91) 60.11 (12.44) - - 58.16 (10.51) 0.86 -

* As chronological age was missing for these datasets, correlation with age and age acceleration could not be determined. 

** Proportion Female was obtained from supplemental table of the original epigenetic clock manuscript (Horvath, 2013), and were not available in GEO.

† Because the 17 loci required to complete the epigenetic clock are unavailable on the 850k platform, there is not information for the full epigenetic clock

˚ CATHGEN 450k and CATHGEN 850k are not comprised of the same individuals. That is, the underlying sample population is non-overlapping.

186

187

188
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189 Comparison of DNA methylation age in 450k data and 850k data

190 DNAm age estimated separately in the CATHGEN’s full 450k, reduced 450k and 850k 

191 datasets using the epigenetic clock all showed positive correlations with chronological age 

192 (Table 2, Figure 1). For each of these three datasets, the slope between DNAm age and 

193 chronological age is nearly identical (0.73-0.78). However, in a regression of DNAm age on 

194 dataset type (full 450k vs. 850k) correcting for age, 850k DNAm ages had a mean difference of -

195 3.96 y (95%CI: -4.08, -3.12; p <0.0001) as compared to the full 450k, which is very close to the 

196 underestimation seen with the when comparing CATHGEN DNAm age estimates from the 

197 reduced 450k data with the full 450k data (paired t-test: 3.85 y, p<0.0001). There was no 

198 significant difference between the 850k DNAm age and reduced 450k DNAm age in CATHGEN 

199 (-0.14; 95%CI: -0.98, 0.70, p=0.75).

200

201 Figure 1. Epigenetic age by chronological age in combinations of CATHGEN dataset and 

202 epigenetic clock: The plot of DNA methylation by chronological age shows the impact of the 17 

203 missing probes, by applying the epigenetic clock to CATHGEN 450k ('full' and 'reduced') and 

204 850k datasets. 

205

206 Probe exclusion effects on Horvath DNAm age in 16 datasets

207 Across all 16 datasets with 450k or 27k data, reduced 450k DNAm age underestimated 

208 DNA methylation age as compared to the full 450k DNAm age (Figure S1). In peripheral blood 

209 samples from the youngest individuals (chronological age < 20 y), the individual difference 

210 between epigenetic age as estimated using the full and reduced datasets increased with age 

211 (Figure 2, Table 3). However, in samples from older individuals, (chronological age ≥ 20 y), the 

212 difference did not increase with age but we observed greater inter-individual variability in the 

213 difference between full and reduced DNAm age in older individuals (SD = 1.13) than in the 

214 younger age group (ages 0-5y: SD = 0.27; ages 5-10y: 0.35; ages 10-15y: SD= 0.54; and ages 

215 15-20y: SD=0.82). Across all datasets, the correlation between full and reduced 450k data 

216 remained high ranging from 0.989 to 0.999.

217

218 Figure 2. Difference of 'full' and 'reduced' epigenetic Age by chronological age. The 
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219 difference of ‘full and reduced’ epigenetic ages calculated in the GEO (450k and 27k) and 

220 CATHGEN 450k data are presented as (a) boxplot by 5 year chronological age categories and 

221 (b) as a scatterplot.

222

223 Table 3. Regression of DNA methylation age on chronological age, by age group, in the full 

224 and reduced 450k/27k datasets (GEO and CATHGEN).

Age < 20 years (N = 616) Age ≥ 20 years (N =2,972)

Intercept Chronological Age Intercept Chronological Age

 Data Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

'full' 450k/27k -0.28 (-1.03, 0.47) 1.02 (0.96, 1.09) 7.02 (6.25, 7.93) 0.85 (0.84, 0.87)

'reduced' 450k/27k -0.32 (-1.09, 0.45) 0.88 (0.81, 0.94) 3.18 (2.40, 3.95) 0.86 (0.85, 0.88)

225

226 Regressions of DNAm age on chronological age within the full and reduced datasets, 

227 within each age group, reveal further age-dependent differences (Table 3). Among those <20 y, 

228 the slope in the reduced datasets is shallower and significantly differ (t-test, p=0.002) when 

229 compared with the full dataset, while the intercepts do not differ (t-test, p = 0.94). Among those 

230 ≥ 20 years, the slopes do not differ significantly (t-test, p= 0.84), but the underestimation of 

231 DNA methylation age by the reduced data, as compared to the full data, is 3.84 y (t-test, 

232 p<0.001) at the intercept. 

233 Potential impact of underestimation on regression outcomes

234 If the underestimation of DNA methylation age within each dataset is systematic, 

235 associations between DNAm age and clinical variable (or other variable of interest) in the 

236 reduced and full 450k datasets should be similar. Given the differences in DNAm age estimation 

237 for individuals age <20 y vs >20 y (Table 3, Figure S1), we examined associations between age 

238 acceleration and sex, (Table 4) in both age groups. Using DNAm age acceleration, the residuals 

239 of age regressed on DNAm age, the effect estimates obtained in the full 450k data were not 

240 significantly different from those obtained in the reduced 450k data in subjects aged 20 years or 

241 more (p = 0.87) nor in subjects <20 years (p = 0.22). This finding did not differ when we used 

242 epigenetic age in place of the age acceleration measure (not shown), and did not differ depending 

243 on whether the data was derived from the 27k array or 450k array. Residual violin plots for 
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244 regressions of epigenetic age on sex (Figure S2) show no large or systematic differences in the 

245 distribution of epigenetic age residuals, further reinforcing the similarity of the regressions with 

246 and without the removal of the 17 probes missing from the 850k platform.

247

248 Table 4. Regressions of age acceleration on sex for CATHGEN450k and GEO datasets, using 

249 DNA methylation age calculated using the (full) 450k data and reduced 450k data. 

250 Regressions were conducted for each dataset individually, and then in aggregate while 

251 stratifying for chronological age (<20y and ≥20y). P-values result from a t-test to compare the 

252 slopes for regressions using the various DNAm ages.

(Full) 450k/27k data

DNAm age

Reduced 450k/27k data

DNAm age

Full vs. reduced 

450k/27k data

Dataset

N (prop. 

female) Slope Est. (95%CI) Slope Est. (95%CI) p value

Cathgen450k 205 (0.38) 0.28 (-1.31, 1.87) 0.39 (-1.24, 2.02) 0.92

GSE20067 192 (0.51) 0.03 (-1.64, 1.7) 0.12 (-1.55, 1.8) 0.94

GSE20242 50 (0.74) -3.31 (-17.88, 11.27) -1.58 (-16.68, 13.51) 0.87

GSE32149 48 (0.52) 1.89 (-1.58, 5.37) 2.25 (-1.45, 5.96) 0.89

GSE40279 656 (0.52) 1.41 (0.46, 2.36) 1.39 (0.45, 2.33) 0.98

GSE41037 720 (0.38) 1.25 (0.53, 1.97) 1.04 (0.36, 1.73) 0.68

GSE41169 95 (0.29) -0.89 (-2.57, 0.78) -1.13 (-2.72, 0.46) 0.84

GSE42861 689 (0.71) 0.17 (-0.69, 1.03) 0.01 (-0.85, 0.87) 0.80

less than 20y 662 (0.06) -0.6 (-1.52, 0.32) 0.19 (-0.69, 1.08) 0.22

20y or older 3,294 (0.60) 1.51 (1.01, 2.01) 1.57 (1.07, 2.07) 0.87

253

254 Discussion

255 Estimation of DNAm age is a methylation array dependent procedure, in so much as 

256 differing arrays may not have all probes used to develop the DNAm age estimator. Use of the 

257 epigenetic clock to estimate DNAm age from data generated from the Illumina MethylationEPIC 

258 array is likely to produce substantial underestimation of DNAm age, relative to the DNAm age 

259 estimated with the Illumina 450K array. A 3.3-year and 5-year increased DNAm age using the 

260 Horvath epigenetic clock has been associated with an increase of 10 body mass index units (19) 

261 and a 16% increase in mortality (20), respectively. Thus, observed underestimations, in the range 

262 of 4 years, could cause substantial mis-estimations of mortality and obesity risk based on the 
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263 measured DNAm age if array differences are not accounted for. Using age-adjusted residuals 

264 (DNA methylation age acceleration) or adjusting for age when using Δage (DNAm age – 

265 chronological age) as a predictor since the correlation between chronological age and DNA 

266 methylation age appears to be independent of array. Systematic differences due to array design 

267 would alter the intercept in such models but not regression coefficients. Thus, regression models 

268 will reflect highly concordant results across arrays, but this will not necessarily be reflected in 

269 comparisons of absolute epigenetic aging differences with outcomes across methylation 

270 platforms. Estimating epigenetic age on a “reduced” 450k dataset (i.e. using probes only 

271 available on the 850k array) produced similar underestimation as observed when using the 850k 

272 data, indicating that the observed underestimation is primarily driven by the missing probes 

273 (Table 1), as opposed to technological differences between the 850k and the 450k arrays. This 

274 might be expected given the fact that the probes used for the 850k array used the same chemistry 

275 and color channels as previous probes.

276 This study employed many of the same publicly available GEO datasets used to develop 

277 the 450k clock, allowing direct comparisons in datasets which have been previously shown to 

278 estimate DNAm age well (1). We focused on blood, since that is the tissue for which the Horvath 

279 epigenetic age estimator provides the most accurate and consistent associations, and in which the 

280 Horvath DNAm age estimator has been most widely applied. Because CATHGEN 450k and 

281 850k data were estimated on independent (i.e., non-overlapping) groups of individuals, direct 

282 comparison of the underestimation of DNAm age within individuals was not possible. However, 

283 the size of the CATHGEN datasets still offer the ability to compare these measures in the same 

284 source population, and both datasets were similar in age and sex makeup (Table 1).

285 The Illumina MethylationEPIC array represents a substantial step forward in the genome-

286 wide assessment of DNA methylation. As DNA methylation array technology has progressed, 

287 researchers may wish to combine epigenetic age derived from 450k/27/k and 850k data; 

288 however, the deviation in DNAm age estimates among the array platform generations may 

289 introduce error into subsequent analyses. Thus, care should be taken when using epigenetic 

290 biomarkers, such as Horvath’s clock, that were developed using 450k and 27k data, as they may 

291 not be fully optimized for the Illumina MethylationEPIC array. 
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368

369 Table S1. Summary of GEO datasets. 

370 Figure S1. Plot of reduced 450k DNA methylation age by 450k data DNA methylation age in 

371 CATHGEN 450k data and the publicly available datasets for (a) all observations, (b) those < 

372 20 years of age, and (c) those ≥ 20 years of age. As can be seen across the plots, although the 

373 slope between the full and reduced DNA methylation age differs between the two age groups the 

374 overall correlation remains high. 

375 Figure S2. Violin plots of residuals by sex, from regression of DNA methylation age 

376 acceleration on sex for 450k data, reduced 450k data, in the CATHGEN 450k and publicly 

377 available GEO datasets. The distribution of residuals from the regression of age acceleration on 

378 sex is the same even after removing the 17 probes, indicating that regressions using age 

379 acceleration from the reduced 450k data (which underestimates DNA methylation age) remain 

380 valid as the underestimation is captured as an intercept shift in the models.
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