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An organism’s body condition describes its mass given its length and is often positively associated with fitness. The condition of Atlantic 
cod ( Gadus morhua ) in the Baltic Sea has declined dramatically since the early 1990s, possibly due to increased competition for food and 
h ypo xia. Ho w e v er, the effects of biotic and abiotic variables on body condition ha v e not been e v aluated at local scales, which is important given 
spatial heterogeneity. We e v aluate changes in distribution, experienced environmental conditions, and individual-level condition of cod in relation 
to co v ariates at dif ferent spatial scales using geostatistical models with spatial and spatiotemporal random ef fects. Sprat, Saduria entomon , 
temperature and o xy gen w ere positiv ely associated with condition, and depth w as negativ ely associated. Ho w e v er, the effects of e xplanatory 
v ariables w ere small—spatial and spatiotemporal latent v ariables e xplained 5.7 times more v ariation than all co v ariates together (y ear e x cluded). 
Weighting environmental oxygen with local biomass densities revealed steeper declining trends compared to the unweighted oxygen in the 
environment, while the effect of weighting was less clear for condition. Understanding the drivers of spatiotemporal variation in body condition 
is critical for predicting responses to environmental change and to effective fishery management; y et lo w e xplanatory po w er of co v ariates on 
individual condition constitutes a major challenge. 
Keywords: density dependence, deoxygenation, Le Cren’s condition factor, spatial analysis, spatio-temporal models, species distribution models. 

 

 

 

 

d
i
t  

b  

2  

M
i  

c  

g
g
d  

v  

i
a

d
(  

(  

b  

i  

T
t  

i  

2  

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/5/1539/7186976 by guest on 18 Septem
ber 2023
Introduction 

Body condition is a morphometric index that describes the 
“plumpness”of an organism, or its weight relative to its length 

(Nash et al., 2006 ; Lloret et al., 2014 ). It is related to food in- 
take rates and metabolic activity and is often positively asso- 
ciated with fitness (Bolger and Connolly, 1989 ; Morgan et al.,
2010 ). In fishes, individuals with high condition have greater 
reproductive potential and success (Hislop et al., 1978 ; Mar- 
shall and Frank, 1999 ), and poor condition increases the likeli- 
hood of skipped spawning (Jørgensen et al., 2006 ; Mion et al.,
2018 ) and can lower chances of survival (Dutil and Lambert,
2000 ; Casini et al., 2016b ). Hence, body condition constitutes 
a valuable index for evaluating changes in productivity of fish 

stocks from ecosystem changes (Thorson, 2015 ; Grüss et al.,
2020 ). 

Because of the link to food consumption, interannual vari- 
ation in condition is often associated with changes in the 
strength of competition for food, via changes in density of 
the population, competitors, or prey species (Cardinale and 

Arrhenius, 2000 ; Casini et al., 2006 ; Thorson, 2015 ; Grüss 
et al., 2020 ). Condition has also been linked to abiotic envi- 
ronmental variables (e.g. temperature and salinity) affecting 
ecosystem productivity and local habitat quality (Möllmann 

et al., 2003 ; Morgan et al., 2010 ; Thorson, 2015 ; Grüss et 
al., 2020 ). More recently, studies have found a link between 
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eclining body condition and deoxygenation (often resulting 
n the expansion of “dead zones” causing habitat degrada- 
ion and compression) (Casini et al., 2016a , 2021 ), fueled
y warming and nutrient enrichment (Diaz, 2001 ; Breitburg,
002 ; Diaz and Rosenberg, 2008 ; Carstensen et al., 2014 ).
oreover, laboratory experiments have shown that warming 

s associated with lower condition unless fish have food in ex-
ess (Cui and Wootton, 1988 ). This suggests effects of deoxy-
enation and warming could be synergistic, as reduced oxy- 
en concentrations also cause lower food intake rates, even 

uring milder hypoxia (Chabot and Dutil, 1999 ). As both en-
ironmental and biological variables can affect condition, it is
mportant to study their relative contribution to condition in 

 common framework. 
The Baltic Sea constitutes an interesting case study for 

isentangling ecosystem drivers affecting body condition 

Reusch et al., 2018 ). First, in the eastern Baltic Sea cod stock
hereafter referred to as cod), the average body growth and
ody condition have declined since the collapse of the stock
n the early 1990s (Casini et al., 2016a ; Mion et al., 2021 ).
his has compromised the stock’s productivity to the extent 

hat population biomass is expected to remain below safe lim-
ts despite the ban of targeted cod fisheries in 2019 (ICES,
021a , 2021b ). Second, the Baltic Sea ecosystem has seen a
ajor change in the abundance and distribution of both cod
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nd its potential competitors for the benthic prey Saduria
ntomon (Haase et al., 2020 ; Neuenfeldt et al., 2020 )—the
ounder species complex (European flounder Platichthys fle-
us and Baltic Flounder Platichthys solemdali ) (Orio et al.,
017 ) and the main pelagic prey of cod (sprat Sprattus sprat-
us and herring Clupea harengus ) (Casini et al., 2011 ; Eero
t al., 2012 ; ICES, 2021a ). Also increased intraspecific com-
etition has been linked to the low growth rates of the stock
Svedäng and Hornborg, 2014 ). Lastly, the irregular inflows
f saline and oxygenated water from the North Sea together
ombined with a slow water exchange (a residence time of
5–30 years) are features that have contributed to making
he Baltic Sea the largest anthropogenically induced hypoxic
rea in the world (Carstensen et al., 2014 ). It is also one of
he fastest warming regional seas (Belkin, 2009 ; Reusch et al.,
018 ). Previous studies have linked changes in mean condi-
ion of cod over large spatial scales to single or some combi-
ation of ecosystem drivers (Casini et al., 2016a , 2021 ; Orio
t al., 2020 ). However, in previous studies, within-population
ariability in condition has been neglected, and the effects of
nvironmental and biotic covariates have not been studied on
ocal scales. Moreover, the effect of all the above-mentioned
ovariates on cod condition has not been analysed in a com-
on framework. 
In this study, we apply geostatistical models to characterize

he spatiotemporal variation in individual-level body condi-
ion and distribution of cod in the south-eastern Baltic Sea.

e use data from scientific surveys between 1993 and 2019,
hich corresponds to a period of initially high but then deteri-
rating cod condition (Casini et al., 2016a ). We then address
hree aims: (1) identify which covariates [biomass densities
f flounder and cod (representing competition), S. entomon
benthic prey), biomass of sprat and herring (pelagic prey), as
ell as depth, oxygen concentration and temperature], at dif-

erent spatial scales (from haul-location to ices rectangle and
or pelagic fishes, also basin-level), can explain observed vari-
tion in condition; (2) develop a spatiotemporally standard-
zed, biomass-weighted condition index for cod that takes into
ccount the heterogeneous and temporally varying distribu-
ion of cod; and (3) explore how the spatiotemporal distribu-
ion of cod impacts the environmental conditions experienced
nd the implications of it for body condition trends. 

aterials and methods 

ata 

o model the spatiotemporal development of cod condition
nd distribution, we acquired weight and length data for
4295 individual cod, as well as catch per unit effort data
CPUE, numbers/hour) of cod by 10-mm length class from the
altic International Trawl Survey (BITS) between the years
993 and 2019 in the International Council for the Explo-
ation of the Sea (ICES) subdivisions 24–28 ( SI Appendix ,
igure S1). CPUE data were standardized based on gear di-
ensions and towing speed (TVL trawl with 75 m sweeps

t 3 knots) to catch per swept area of 0.45 km 

2 , following
rio et al. (2017) , which we then expressed in units kg/km 

2 .
bundance density was converted to biomass density by fit-

ing annual weight-length regressions ( SI Appendix , Figure
2). We used only data from the fourth quarter (mid-October
o mid-December), which corresponds to the main growing
nd feeding season of cod (Aro, 1989 ) and also the quarter
n which the Baltic International Acoustic Survey (BIAS) is
onducted, meaning sprat and herring biomass can be used
s covariates. The BITS data can be downloaded from https:
/ www.ices.dk/ data/data-portals/ Pages/ DATRAS.aspx . 

stimating spatiotemporal development of body 

ondition and biomass density 

ondition model 
e modelled cod condition using a spatiotemporal version of

e Cren’s relative condition factor ( K rel ) (note we reserve the
erm “condition index” for the annual, model-based index,
ee Spatiotemporal predictions below). This factor is defined
s the ratio between the observed weight for individual fish i ,
aught in time t at space s , and the predicted weight. The pre-
icted weight was given by the relationship w̄ = al b , where
arameters a and b were estimated in a non-spatial model with
ll years pooled, to represent the average weight prediction, w̄
ased on observed lengths l . An individual cod with a K rel = 1
hus has the average condition across years and space in the
omain. Unlike Fulton’s K, Le Cren’s relative condition fac-
or does not rely on the assumption that growth is isometric
 b = 3 ), which, if violated, leads to bias when comparing
ondition of different lengths as the condition factor scales in
roportion to l b−3 (Le Cren, 1951 ). Spatially correlated resid-
al variation was accounted for with spatial random effects
hrough Gaussian random fields. This approach to modelling
patiotemporal data is an increasingly popular method for ex-
licitly accounting for spatial and spatiotemporal variation
ue to its ability to improve predictions of fish density (Thor-
on et al., 2015a ) and range shifts (Thorson et al., 2015b ) and
ts availability in open source software such as the R package
INLA” (Rue et al., 2009 ; Lindgren et al., 2011 ). 
To assess the ability of covariates (see the section Covari-

tes ) to explain variation in condition, we fit a geostatistical
eneralized linear mixed-effects model (GLMM) to the natu-
al log of the Le Cren condition factor (in location s and time
), assuming Student - t distributed residuals with the degrees of
reedom parameter (υ ) set to 5 due to the presence of extreme
alues: 

log ( K rel ) ∼ Student −t ( μs ,t , φ, υ ) , (1)

μs ,t = X s ,t β + ω s + εs ,t , (2)

ω ∼ MVNormal ( 0 , �ω ) , (3)

εt ∼ MVNormal ( 0 , �ε ) , (4)

here K rel represents the Le Cren condition factor at space s
a vector of two UTM zone 33 coordinates) and time t, μ rep-
esents the mean weight, and φ represents the scale parameter.
 s ,t is the design matrix, with the following covariates: year

as a factor), biomass densities of flounder and cod, biomass of
prat, herring and S. entomon , depth, oxygen concentration,
nd temperature) at different scales (from local to large scale),
nd β is a vector of fixed effect coefficients. The parameters ω s 
nd εs ,t (Equations 3–4 ) represent spatial and spatiotemporal
andom effects, respectively. Spatial and spatiotemporal ran-
om effects were assumed to be drawn from Gaussian random
elds (Lindgren et al., 2011 ; Cressie and Wikle, 2011 ) with
ovariance matrices �ω and �ε . We chose to model the spa-
iotemporal random fields as independent for each year given
he correlation when estimated as first-order autoregressive

https://www.ices.dk/data/data-portals/Pages/DATRAS.aspx
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was near zero and had confidence intervals overlapping 0. The 
covariance ( �( s j , s k ) ) between spatial points s j and s k in all 
random fields is given by a Matérn function. 

Density models 
We fit spatiotemporal GLMMs to biomass density data in a 
similar fashion as for condition to (1) use predicted local den- 
sities of cod and flounder as covariates in the condition model,
(2) acquire local biomass weights to weight the spatiotempo- 
ral predictions of condition with local biomass density when 

calculating the annual condition index (see the section Spa- 
tiotemporal predictions ), and (3) evaluate how the depth dis- 
tribution of cod, as well as oxygen and temperature conditions 
experienced by cod, have changed. For the third task, we used 

the predicted density at space s and time t as weights when 

calculating the annual median (and interquartile range) depth,
oxygen concentration, and temperature. 

We modelled densities using a Tweedie distribution with 

a log link function, as density is positive, continuous, and 

contains zeros (Tweedie, 1984 ; Shono, 2008 ; Anderson et al.,
2019 ): 

y s ,t ∼ Tweedie ( μs ,t , p, φ) , 1 < p < 2 , (5) 

μs ,t = exp ( X s ,t β + ω s + δs ,t ) , (6) 

δt = 1 ∼ MVNormal ( 0 , �ε ) , (7) 

δt> 1 = ρδt−1 + 

√ 

1 − ρ2 εt , εt ∼ MVNormal ( 0 , �ε ) , (8) 

where y s ,t represents density (kg/km 

2 ) at space s and time 
t, μ is the mean density, and p and φ represent power and 

dispersion parameters, respectively. We use year as a factor,
and the remaining covariates (see the section Covariates ) were 
modelled with smooth functions, implemented as penalized 

splines. The parameters ω s have the same definition as in the 
condition model (Equation 3 ), but the spatiotemporal random 

effects are here assumed to follow a stationary AR1-process 
where ρ represents the correlation between subsequent spa- 
tiotemporal random fields. 

Covariates 
For both models (condition and density), covariates were cho- 
sen to reflect hypothesized drivers based on published litera- 
ture. For the condition model, we included covariates at spa- 
tial scales that roughly reflect the habitats cod would have 
been exposed to during the seasonal build-up of energy re- 
serves. Recent tagging studies suggest cod are either station- 
ary or mobile over the course of a year moving between 

feeding and spawning habitats (Mion et al., 2022 ). However,
within the feeding season, stationary cod move roughly over 
an area corresponding to an ICES rectangle (1 × 0.5 degree 
cells, SI Appendix , Figure S1) (Hüssy et al., 2020 ). Recent 
tagging studies, however, show that some cod are more mo- 
bile throughout the year (Hüssy et al., 2020 ). Therefore, we 
included environmental and biological covariates [sea bot- 
tom temperature ( ◦C), sea bottom oxygen (ml/l), depth (m),
and biomass density of S. entomon (mg/m 

2 ), cod and floun- 
der (kg/km 

2 )] at the haul level and the median over the ICES 
rectangle-level. We also explored the effect of lagging oxygen 

and temperature covariates at the ICES rectangle-level with 

1 quarter (which was not possible for biotic data), to reflect 
that these large-scale variables are introduced to capture past 
exposure affecting current condition ( SI Appendix , Table S1).
elagic fish covariates were included at the ICES rectangle- 
nd subdivision-level (as pelagic species are highly mobile) 
see SI Appendix , Figure S1 for the spatial units ICES rect-
ngle and subdivision). 

Monthly predictions for sea bottom temperature and sea 
ottom concentration of dissolved oxygen were extracted at 
he haul locations from the ocean model NEMO-Nordic- 
COBI (Eilola et al., 2009 ; Almroth-Rosell et al., 2011 ; Hor-
oir et al., 2019 ) and averaged for October–December ( ∼14,
6, and 10% of the BITS hauls were conducted in October,
ovember , and December , respectively). We also conducted 

reliminary analysis to determine if oxygen should be mod- 
lled with a linear, or a linear threshold effect, as suggested in
xperimental studies (Chabot and Dutil, 1999 ; Hrycik et al.,
017 ). This showed that the model with a linear effect was
avoured in terms of Akaike Information Criterion (AIC) ( SI
ppendix , Table S2). Depth raster files were made available
y the EMODnet Bathymetry project, https://www.emodnet. 
u/en/bathymetry , funded by the European Commission Di- 
ectorate General for Maritime Affairs and Fisheries. Biomass 
ensity of S. entomon was extracted from a habitat distribu-
ion model coupled with modelled hydrographical data from 

he regional coupled ocean biogeochemical model ERGOM 

Gogina et al., 2020 ; Neumann et al., 2021 ). The model was
rained to the time period 1981–2019 and predicted for the
ime period 1993–2019 to match the condition data (but note
hat this prediction is constant over time and therefore better
epresents S. entomon habitats and not temporal variation in 

iomass density). 
All raster-derived covariates (oxygen, temperature, depth,

nd S. entomon ) were linked to spatial points using bilinear
nterpolation (values for a spatial point interpolated from the 
our nearest raster cells). We used predicted densities of cod
nd flounder (kg/km 

2 ) from GLMMs (described above) as co-
ariates, since not all hauls in the CPUE (density) data could
e standardized and joined with the condition data. For the
od and flounder density models that were used to provide
ovariates for the cod condition model and weights to the
ody condition predictions, the only fixed effects were year 
s a factor and a smooth effect of depth. For the cod den-
ity models used to evaluate effects of changes in the aver-
ge depth, oxygen concentration, and temperature, we also 

ncluded smooth effects of temperature and oxygen as covari- 
tes. Biomass of sprat and herring (tonnes) was extracted from
he ICES WGBIFS database for the BIAS survey data ( https:
/ www.ices.dk/ community/ groups/pages/WGBIFS.aspx ). 

Following Thorson (2015) and Grüss et al. (2020) , we
escaled all covariates to have a mean of 0 and a standard
eviation of 1. This facilitates comparison between covariates 
f different units and allows for comparison between the es-
imated coefficients and the marginal standard deviation of 
patial ( σO 

) and spatiotemporal ( σE ) variation. We did not
onduct any model selection after our a priori selection of co-
ariates to avoid statistical issues with inference from stepwise 
election (e.g. Whittingham et al., 2006 ), and because initial
nalyses suggested the model was not overfit (see also SI Ap-
endix , Figure S3 for Pearson correlation coefficients across 
ariables). 

odel fitting 
or computational efficiency, we fit all models in a “predic-
ive process” modelling framework (Latimer et al., 2009 ; An- 
erson and Ward, 2019 ), where spatial and spatiotemporal 

https://www.emodnet.eu/en/bathymetry
https://www.ices.dk/community/groups/pages/WGBIFS.aspx
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andom fields are approximated using a triangulated mesh
nd the SPDE approximation (Lindgren et al., 2011 ) ( SI Ap-
endix , Figures S5 and S17), with the mesh created using
he R-package “R-INLA” (Rue et al., 2009 ). The random ef-
ects were estimated at the vertices (“knots”) of this mesh
nd bilinearly interpolated to the data locations. The loca-
ions of the knots were chosen using a k -means clustering
lgorithm, which minimizes the total distance between data
oints and knots. As the knot random effects are projected
o the locations of the observations, more knots generally in-
rease accuracy at the cost of computational time. After ini-
ial exploration, we chose 100 knots for the condition model
nd 200 knots for the density models. We fit the models us-
ng “TMB” (Kristensen et al., 2016 ) via “sdmTMB” (version
.3.0.9001) (Anderson et al., 2022 ) with maximum marginal
ikelihood and the Laplace approximation to integrate over
andom effects. We assessed convergence by confirming that
he maximum absolute gradient with respect to all fixed ef-
ects was < 0.001 and that the Hessian matrix was positive-
efinite. Model residuals are shown the SI Appendix , Figures
6–S8 and S18–S19, conditional effects are shown in SI Ap-
endix , Figures S13 and S23, and spatial and spatiotemporal
andom effects are shown in SI Appendix , Figures S9 and S10
nd S20 and S21. We used packages in the “tidyverse” (Wick-
am et al., 2019 ) for data processing and plotting. 

patiotemporal predictions 
e predicted body condition and biomass density of cod onto

 4 × 4 km prediction grid with covariates to visualize spa-
iotemporal variation and to calculate random-field model-
ased indices of condition and relative biomass (Shelton et al.,
014 ; Thorson et al., 2015a ). Annual condition and biomass
ndices were calculated from 500 draws from the joint preci-
ion matrix and model predictions on the grid. Only grid cells
ith depths between 10 and 110 m were included in these

nalyses to use only the depths covered by the survey. Pre-
icted condition in each grid cell was weighted with the pre-
icted biomass density of cod in the same grid cell to account
or the heterogeneous and temporally varying distribution of
iomass in the domain ( SI Appendix , Figure S4) (Grüss et al.,
020 ; Indivero et al., 2023 ). The final annual condition index
as acquired by dividing the index by the sum of weights (cod
iomass densities) by year. To illustrate the effects of biotitc
nd abiotic covariates on the condition trends over time, we
epeated the index calculation based on grid-level condition
redicted with the year omitted (set to the initial year, 1993). 

esults 

he condition model revealed a mean decline in the spatiotem-
oral biomass-weighted Le Cren condition index of 15%
12%, 19%] from ∼1.14 [1.1, 1.20] to 0.97 [0.96, 0.98], be-
ween 1993 and 2019 (the decline levelled off around 2008)
 Figure 1 a). The values are medians of 500 draws from the
oint precision matrix, and values in brackets are in 2.5 and
7.5% quantiles. The year effect is important for the decline
n condition index over time; the index based on predictions
nly including biotic and abiotic covariates over space and
ime (omitting the year-specific intercepts) shows a very weak
ecline initially, only to increase again to levels in the early
990s ( Figure 1 a). The condition factor declined in synchrony
cross subdivisions and in space ( SI Appendix , Figure S12),
ut the condition index plateaued at a slightly higher value in
ubdivision 24 ( Figure 1 b). There was in general high agree-
ent between the simple empirical mean condition and the

patiotemporally standardized and biomass-weighted (as well
s unweighted) condition index, but in some years the empir-
cal mean was outside the confidence interval of the model-
ased index ( Figure 1 ). The spatial predictions from the condi-
ion model illustrate the presence of consistent “low spots” of
ody condition. These largely occur in the deep, low-oxygen
reas (see e.g. Figure 2 and Figure 5 a–b), creating a horizon-
al dumbbell shape of low-condition spots in the centre of the
tudy area ( Figure 2 ). 

The covariates with the largest positive standardized effect
izes on the condition factor were biomass of sprat at the ICES
ubdivision level [0.008 (0.002, 0.013)] (values in brackets
ndicate 95% confidence interval), biomass density of S. en-
omon at the rectangle level [0.007 (0.002, 0.012)], tempera-
ure at the haul and rectangle level [0.007 (0.0025, 0.01) and
.007 (0.0018, 0.011), respectively], and oxygen concentra-
ion at haul-level [0.004 (0.001, 0.007)] ( Figure 3 ). The ef-
ects of median depth, median oxygen, and herring biomass
t the rectangle-level, and flounder and cod biomass density
t the haul-level were positive but with confidence intervals
verlapping 0. The covariates with the largest negative effects
ere depth at the haul-level [ −0.021 ( −0.024, −0.018)], sub-
ivision level biomass of herring [ −0.005 ( −0.01, −0.001)],
nd biomass of sprat at the ICES rectangle level [ −0.04
 −0.006, −0.001)]. Haul-level biomass density of S. en-
omon and rectangle-level median biomass density of cod
nd flounder were also negatively associated with condition,
ut with confidence intervals overlapping 0. See also SI Ap-
endix , Figure S13 for conditional effects plots of selected
ariables. 

The effect sizes of fixed effects were several times smaller
han the magnitude of latent spatiotemporal and spatial vari-
tion ( Figure 3 ). The average random effect magnitude was
0 times larger than the average magnitude of individual fixed
ffects (excluding the year effects) ( Figure 3 ). To address the
ollective explanatory power of many but small individual
xed effects, we used the approach proposed in Nakagawa
nd Schielzeth (2013) to calculate marginal R 

2 for fixed and
andom effects. We found that fixed effects had a marginal
 

2 of 0.14, while random effects had a marginal R 

2 of 0.22
0.07 for spatial random effects and 0.15 for spatiotempo-
al random effects). When omitting the fixed year effects, the
arginal R 

2 for the fixed effects declined to 0.043, and the
atio of R 

2 for spatial and spatiotemporal random effects to
iotic and abiotic covariates was 5.7 (marginal random R 

2 

as adjusted to 0.24). 
We conducted several sensitivity analyses with respect to

he fixed effects. First, we refit the condition model to dif-
erent parts of the data. The different models were only cod
bove 30 cm, only cod below 30 cm, omitting subdivision 24
the mixing zone with western Baltic cod (Mion et al., 2022 )],
nd including only grid-points with cod densities above a cer-
ain threshold when calculating median variables across the
CES rectangle. We also explored alternative ways to define
he raster-derived large-scale variables. Specifically, instead of
sing the rectangle averages, we aggregated the raster file to
esolutions approximate to the area of an ICES rectangle and
hen extracted the aggregated value with bilinear interpola-
ion. We also explored different lags for the abiotic covariates
 SI Appendix , Table S1; Figure S16). However, across all ad-
itional models, model coefficients were similar and so was
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the ratio of spatiotemporal variation and coefficients ( SI Ap- 
pendix , Figures S14 and S15). 

The median depth and oxygen experienced by cod (depth 

and oxygen weighted by the predicted biomass density of cod 

at location, respectively, Figure 4 c) got deeper and declined,
respectively, throughout the time period ( Figure 5 ). However,
the population again occupied slightly shallower waters in the 
last 3 years of the time series ( Figure 5 d; see SI Appendix ,
Figure S25 for results split by subdivision). The trends in ex- 
perienced oxygen were steeper than the average oxygen in 

the environment at depths corresponding to the interquartile 
range of cod ( Figure 5 b–e). The average oxygen concentra- 
ion in the environment declined by ∼0.5 ml/l between 1993
nd 2019, while the biomass-weighted oxygen concentration 

eclined more steadily ( ∼1 ml/l between 1993 and 2019) ( SI
ppendix , Figure S23 for estimates split by subdivision). The

ower quartile of weighted oxygen plateaued around the year 
010. However, while the biomass-weighted oxygen concen- 
ration declined between 1993 and 2019 ( Figure 5 e), the cor-
esponding effect on condition given the effect size of oxygen
t the haul was small ( SI Appendix , Figure S13). The standard-
zed effect size for oxygen (haul-level) of 0.004 means that for
ach unit increase in the variable (i.e. 1 standard deviation or
.8 ml/l), the Le Cren condition factor increases by 0.4%. This
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an be compared to the 1 ml/l decline in the experienced oxy-
en concentration and the 15% decline in the condition factor
etween 1993 and 2019. 

iscussion 

he body condition of fish depends on previous energy accu-
ulation and is therefore largely shaped by the quality of the
abitat the fish has occupied. By using a spatially explicit con-
ition model, we can link the condition of eastern Baltic cod
o covariates at different ecologically relevant spatial scales.
ur model reveals that the Le Cren condition factor declined
n average by 15% in 1993–2019, with most of this decline
ccurring in 1993–2008. Moreover, while there are persistent
ow-spots of body condition (in the deep and low-oxygen ar-
as), the condition declined in the whole area, which suggests
hat there are drivers acting on large spatial scales. We identify
hifts in the spatiotemporal distribution of cod that could have
ontributed to a decline in cod condition [deeper areas with
ess oxygen, as in also Casini et al . (2021) ]. However, effect
izes of single covariates were overall small, and latent spa-
ial and spatiotemporal variation was several times larger in
agnitude and explained more variation in condition, a pat-

ern also found in California’s Current groundfishes (Thorson,
015 ). The magnitude of spatial and spatiotemporal variation
uggests that other factors, not explicitly included in our anal-
ses, may have also played an important role in the decline of
ondition. 
Previous studies have suggested both direct (Limburg and
asini, 2019 ; Brander, 2020 ) and indirect (Brander, 2020 ,
022 ; Neuenfeldt et al., 2020 ; Orio et al., 2020 ) effects of
xygen as a cause for the declining body condition of cod in
he past three decades. Direct effects here refer to mild hy-
oxia reducing the appetite and food consumption (Chabot
nd Dutil, 1999 ) and, by extension, also their condition, as
heir ability to accumulate energy reserves declines. Indirect
ffects refer to increased competition for benthic prey, as both
abitat area and quality are reduced with de-oxygenation. We
ound that Baltic cod experienced oxygen concentrations at
round 7.3 [6–7.6] in 1993 (interquartile range in brackets)
l/l (biomass-weighted median) and are currently (in 2019)

xperiencing oxygen concentrations at around 6.3 [4.8–7.3]
l/l. In subdivision 25 (the core area of cod, currently), we

stimate it to be around 6.4 [4.9–7.3] ml/l between the years
015 and 2019 ( SI Appendix , Figure S24). This is higher than
ecent estimates of an average oxygen concentration of 4–
.5 ml/l, based on oxygen levels at the mean depth of the cod
opulation in recent years (Brander, 2020 ; Casini et al., 2021 ).
One reason for the difference in our estimate compared

o previous studies is because instead of calculating aver-
ge oxygen at the mean depth of cod, we weighted the sea
ottom oxygen in the environment (from the ocean model
EMO-Nordic-SCOBI) by the predicted densities from the

od density model. This approach overcomes the issue that
xygen concentrations span a large range for any given depth
nd avoids the assumption that cod depth occupancy is in-
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dependent of oxygen concentration. Our finding that trends 
in weighted and unweighted oxygen differ suggests that it is 
important to account for species’ heterogeneous distribution.
This is evident in subdivisions 25 and 27. In subdivision 25,
the oxygen trends in the environment have been stable since 
2005, as in Svedäng et al. (2022) , but the experienced oxy- 
gen by cod continued to decline. In subdivision 27, the pat- 
tern is the opposite with the weighted median being more sta- 
ble over time than the unweighted mean ( SI Appendix , Figure 
S24). Another reason for differences between previous esti- 
mates of experienced oxygen could be due to different oxy- 
gen models being used. For example, the model developed by 
Lehmann et al. ( 2002 , 2014 ) (the “GEOMAR” model) and 

used in Casini et al. ( 2021 ) and Orio et al. ( 2019 ), results 
in, on average, 0.5–1 ml/l lower weighted oxygen concentra- 
tions, but also in a less steep decline than the NEMO-Nordic- 
SCOBI model between 1993 and 2016 in subdivision 25 ( SI 
Appendix , Figure S28). Also, the unweighted estimates differ 
∼0.5–1 ml/l between the models at depths between 29 and 

61 m. Although explaining the differences between the mod- 
els is outside the scope of this paper, care should be taken 

when interpreting absolute values of oxygen concentrations 
from models. 

In an experiment by Chabot and Dutil (1999) , 5 ml/l (con- 
verted from 73% O 2 saturation at 10 

◦C, 28 ‰ salinity, and 

1013.25 hPa) was estimated to be a critical value, below which 

negative effects on cod growth and condition were observed.
This value is higher than a meta-analytic threshold estimated 

across fishes of 3.15 ml/l, below which negative effects on fish 

growth occur (Hrycik et al., 2017 ). However, despite our data 
spanning oxygen levels above and below these values, we do 
ot find support for a threshold in the relationship between
ondition and oxygen. This is in contrast to what was found
n Casini et al. (2021) for large cod (small cod showed in-
tead a linear relationships between experienced oxygen and 

opulation-level condition). That oxygen is positively associ- 
ted with condition is in line with both Limburg and Casini
2019) and Casini et al. (2021) , despite differences in method-
logical approaches. However, we can only speculate if the 
ositive association is due to higher oxygen being correlated 

ith richer habitats that feature higher food availability, if 
here are direct physiological impacts at a higher threshold in
he wild, or if behavioural responses (e.g. movement between 

igh and low oxygen areas) essentially remove any measurable 
hresholds in natural systems. 

An indirect effect of declining oxygen on condition is the
otential amplification of intra- and interspecific competition 

ith flounder for shared benthic prey species, such as the iso-
od S. entomon , due to habitat contraction of cod caused by
he expansion of “dead zones” (Casini et al., 2016a , 2021 ;
rio et al., 2019 ; Haase et al., 2020 ). To address the potential

ffects of changes in intra- and inter-specific competition, we 
sed predicted density of flounder and cod at the haul- and at
he ICES rectangle-level, as well as S. entomon densities as co-
ariates. We did not detect a negative effect of cod density on
od condition, in contrast to previous studies that suggested 

ensity-dependent effects on growth (Svedäng and Hornborg,
014 ). Flounder density was also not clearly linked to con-
ition at any scale; however, biomass density is not a direct
easure of competition—areas with higher densities of cod 

nd flounder could simply also have more food. It could also
e because the biomass of both cod and flounder has been
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t relatively low levels during the past three decades from a
istorical perspective (Tomczak et al., 2022 ). We do find sta-
istically clear positive effects of S. entomon biomass density
n condition at the rectangle level. This is interesting because
euenfeldt et al. (2020) found that cod had more S. entomon

n stomachs in the years 1963–1988 compared to 1994–2014
but note that the time period 1963–1988 contains years with
oth low and high body growth and condition in cod) (Casini
t al., 2016a ; Mion et al., 2021 ). Unfortunately, we are not
ble to resolve temporal trends in S. entomon over the spatial
omain. However, Svedäng et al. (2022) recently showed that
enthic food availability has not changed dramatically over
he time period in the southern Baltic Sea. Therefore, more
tudies are needed to determine why cod seem to feed less on
. entomon , if it is related to competition or shifts in distribu-
ion, and how diets rich in S. entomon are linked to condition.

A reduced availability of sprat (either changes in their size-
istribution or distribution and spatial overlap) has also been
inked to poor growth and condition at the population level
Gårdmark et al., 2015 ; Casini et al., 2016a ; Neuenfeldt et
l., 2020 ). In our study, using spatially resolved data, we also
ound positive effects of sprat biomass on cod condition at
he ICES subdivision level (but a negative association on finer
cales, possibly because it is too fine a scale for a pelagic
nd mobile species). The biomass of sprat generally declined
rom the levels in the early 90s, and this decline is more ac-
entuated in the northern subdivisions analysed, where cod
re relatively scarce ( SI Appendix , Figures S26 and S27). In
he main distribution area of cod (subdivisions 24–26), sprat
iomass declined from 1993 until around 2010 (where condi-
ion plateaued at low values), but after that it increased again
o levels close to those in the early 2000s. However, condi-
ion did not, and future analyses should therefore further in-
estigate the link between the biomass of pelagic fish and the
ondition of cod, possibly accounting for condition and size-
tructure of pelagic species. 

Although some were statistically significant, environmental
ovaraites explained little variation in condition, compared
o previous studies using yearly population-level averages of
ody condition as the response variable (e.g. Casini et al.,
016a ). A few, non-mutually exclusive, explanations could be
ypothesized for this. The use of data with high spatial reso-
ution allows us to use coavariates at different scales and with
arger contrasts, but it also necessitates accounting for auto-
orrelation (which we do by including spatial and spatiotem-
oral latent variables), else a false sense of confidence could
e introduced. Such latent variables can affect fixed effect esti-
ates under some conditions (Hodges and Reich, 2010 ). An-
ther potential explanation is that predictor variables could
ave non-linear effects on condition instead of linear effects as
e assume. However, supplementary analysis showed that, for

xample, oxygen was not a more parsimonius predictor when
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modelled as a breakpoint function. We also assume that effects 
are constant over time, while in reality they could be time- 
varying. As an example, liver parasites are numerous now that 
cod are in poor condition, but likely did not cause the decline 
as cod in good condition are not as susceptible to parasite in- 
fection (Ryberg et al., 2020 ). Coliniarity between predictors 
could also make single effects unreliable; however, the pre- 
dicted condition index over time with all covaraites included 

still shows little ability to capture the decline in condition over 
time. Hence, in our view, mainly two non-mutually exclusive 
explanations remain: the chosen variables have a small effect 
on condition, or the variables have an effect, but our covari- 
ates do not capture that. The latter could be due to condition 

being a trait that is shaped over a long time period, while it gets 
progressively more difficult to match the experienced environ- 
ment of cod the further back in time one goes because Baltic 
cod are partly mobile species with large individual variation in 
ovement behaviour (Hüssy et al., 2020 ). To further increase
ur understanding of how the environment shapes spatiotem- 
oral variation in body condition, we suggest that analysis
f condition data from surveys conducted with low temporal 
esolution should be complemented with tagging studies [as 
uggested by Thorson (2015) ] or using “life-time recorders”
uch as otoliths as done in Limburg and Casini (Limburg and
asini, 2019 ). 
In conclusion, the low explanatory and predictive power 

f single covariates and the similar biomass-weighted aver- 
ge condition estimated across basins (subdivisions) despite 
ifferences in environmental conditions, analysed for the first 
ime in a common framework, suggest that multiple factors 
re responsible for the observed spatiotemporal changes in 

od condition during the past 26 years. The synchrony in
emporal trends of condition across basins also suggests that 
actors acting on large spatial scales have been involved. The
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act that the condition of both herring and sprat also started
o decline in the late 1980s and early 1990s (Casini et al.,
011 ) suggests there could be ecosystem-level drivers, possi-
ly related to productivity. Moreover, in line with Thorson
t al. (2017) , this study shows that it is important to con-
ider the variance explained by covariates for understand-
ng how ecosystem changes and management interventions
Bryhn et al., 2022 ) that aim to improve habitat quality may
ffect the productivity of fish stocks via condition. Lastly,
ince overall stock productivity—of which body condition is
 critical component—is so low that the stock is not pre-
icted to grow even in the absence of fishing mortality (ICES,
021a ), it is crucial to gain a deeper understanding of both
he past and current drivers of the condition of eastern Baltic
od. 
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