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Abstract. The high degree of parallelism of today’s computing systems
often requires executing applications and their tasks in parallel due to
a limited scaling capability of individual applications. In such scenar-
ios, considering the differing importance of applications while scheduling
tasks is done by assigning priorities to the tasks. However, priorities may
lead to starvation in highly utilized systems. A solution is offered by
aging mechanisms that raise the priority of long waiting tasks. As mod-
ern systems are often dynamic in nature, we developed a two-level aging
mechanism and analyzed its effect in the context of 6 dynamic scheduling
algorithms for heterogeneous systems. In the context of task scheduling,
aging refers to a method that increases the priority of a task over its life-
time. We used a task-based runtime system to evaluate the mechanism
on a real system in two scenarios. The results show a speed up of the
average total makespan in 9 out of 12 conducted experiments when aging
is used with the cost of additional waiting time for the applications/jobs
with higher priority. However, the job/application with the highest pri-
ority is still finished first in all cases. Considering the scheduling algo-
rithms, Minimum Completion Time, Sufferage, and Relative Cost benefit
in both experiments by the aging mechanism. Additionally, no algorithm
significantly dominates all other algorithms when total makespans are
compared.

Keywords: Dynamic task scheduling · Task priorities · Heterogeneous
architectures

1 Motivation

Modern computing systems used in fields like embedded and high performance
computing feature a high degree of parallelism and are often equipped with addi-
tional accelerators, e.g. GPUs. This parallelism can be used to execute different
functionality or applications in parallel as not all applications are able to exploit
the available computational power due to a lack of scaling capability. However,
executing multiple applications and their corresponding tasks in parallel can be
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problematic if a certain quality of service is required or expected for a subset of
the applications. A common way to express differing importance of applications
or functionality in non-safety-critical systems is to assign priorities accordingly.
In highly utilized systems though, static task priorities can lead to the starva-
tion of certain tasks. Starvation can be avoided by applying aging mechanisms.
Aging refers to the technique of raising the priority of tasks that have waited a
certain amount of time in the system for execution. This is not to be confused
with hardware aging, where the fault rate of a hardware component increases
over its lifetime.

Today’s computing systems are often dynamic in nature, which means that
the set of tasks to be executed does not remain static, and tasks’ start times may
be unknown as they may be triggered by signals or user interactions. Therefore,
we focus on dynamic scheduling algorithms and add an adaptive aging mecha-
nism that considers the current system state and load.

Generally, heterogeneous architectures present many challenges to applica-
tion developers. A state-of-the-art solution is offered by task-based runtime sys-
tems that abstract from the underlying system and provide helpful functionality
for developers. To utilize these features, we integrate our work into an existing
task-based runtime system, the Embedded Multicore Building Blocks (EMB2),
an open-source runtime system and library developed by Siemens. In summary,
we make the following contributions:

– We integrate 6 dynamic scheduling algorithms into a task-based runtime sys-
tem and add the ability to consider task priorities.

– We develop a two-level adaptive aging mechanism to extend the scheduling
module.

– We evaluate the algorithms without and with aging on a real system and
investigate their behavior in terms of different metrics.

– We analyze the effect of aging in these experiments.

The remainder of this paper is structured as follows: In Sect. 2 we briefly discuss
the problem statement and the necessary fundamentals of our work. EMB2 is
shortly introduced in Sect. 3. Section 4 presents the extensions made to EMB2

and the scheduling algorithms we implemented. The experimental setup and the
obtained results are presented in Sect. 5. Finally, we discuss related work (Sect. 6)
and conclude with directions for future work (Sect. 7).

2 Fundamentals and Problem Statement

The basic scheduling problem comprises a set of n tasks T := {t1, . . . , tn} that
has to be assigned to a set of m processing units P := {p1, . . . , pm}. Next to
mapping a task ti to a processing unit pj , scheduling also includes the assign-
ment of an ordering and time slices. In the case of heterogeneous systems, the
processing units pj may have different characteristics, which can lead to varying
executions times for a single task on different units [22]. Scheduling problems
are generally considered to be NP-hard [10].
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As there is no algorithm that can solve all scheduling problems efficiently,
there exist many heuristics. Generally, these can be classified into static and
dynamic algorithms [20]. The main difference is that static algorithms make all
decisions before a single task is executed, whereas dynamic algorithms schedule
tasks at runtime. Hence, static algorithms have to know all relevant task infor-
mation beforehand, while dynamic ones do not need full information and are
able to adapt their behavior.

This work targets tasks that may potentially create infinite task instances
for execution and whose start times may be unknown. Therefore, we focus on
dynamic scheduling algorithms. Additionally, we allow adding priorities to tasks.
In general, task priorities can be set before runtime for every instance of this
task and remain static over its lifecycle, or they are dynamically set for every
task instance at runtime and may change over time [5]. The earliest deadline first
(EDF) algorithm [9] is a well-known example with dynamic task priorities. Each
task instance is assigned the priority p = 1

d when it arrives in the system, where
d is the deadline of this instance. Contrary to EDF, rate-monotonic scheduling
[16] assigns static priorities. Each task is assigned the priority p = 1

ri
, where

ri is the period of task ti. In this work, an application developer is allowed to
assign a static priority to a task, which is then used for all instances of this
task. However, we also utilize an aging mechanism that is allowed to increase
the priority of a single task instance in order to improve fairness if the waiting
time of an instance is considered too long. In addition, it has to be noted that
we do not support task preemption.

3 Embedded Multicore Building Blocks

EMB2 [21] is a C/C++ library and runtime system for parallel programming of
embedded systems.1 One of the challenges EMB2 aims to solve is to reduce the
complexity of heterogeneous and parallel architectures for application develop-
ers. EMB2 builds on MTAPI, a task model that allows several implementation
variants for a user-defined task. An application developer defines a specific func-
tionality (kernel), e.g., a matrix multiplication, and is then allowed to provide
one or multiple implementations for this task. Thereby, the application devel-
opment can be separated from implementing specific kernels and the underlying
hardware. These kernels targeting specific accelerators can then be optimized by
hardware experts.

MTAPI additionally allows a developer to start tasks and to synchronize
on their completion, where the actual execution is controlled by the runtime
system. Thereby, the developer has to guarantee that only tasks that are ready to
execute and have their dependencies fulfilled are started. MTAPI’s tasks are more
light-weight than a thread and distributed among worker threads for execution.
Execution takes place concurrently to other tasks that have been started and it
is allowed to start new tasks within a task.

1 https://embb.io/.

https://embb.io/
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In previous work, we already extended EMB2 to support sophisticated
scheduling on heterogeneous architectures [2]. For this purpose, we added a gen-
eral processing unit abstraction that allows grouping identical units into groups.
All processing units are represented by an OS-level worker thread that is used
to execute the tasks mapped to this processing unit. Furthermore, we added a
monitoring component to EMB2 that monitors task execution. In the current
version, the component measures task execution times including potentially nec-
essary data transfers. The measurements are stored within a history database
with the task’s problem size as key. The stored data is then used to predict
execution times of upcoming tasks to improve scheduling decisions. Finally, we
added an abstract scheduler module and six dynamic scheduling heuristics for
heterogeneous architectures to EMB2.

As of yet, necessary data transfers for the execution on accelerators are not
considered separately. This means that a task executed on an accelerator always
transfers its data on and off the accelerator regardless of its predecessor and
successor tasks. The high-level architecture of EMB2 can be seen in Fig. 1.

Fig. 1. High-level architecture of EMB2 [21]

4 Dynamic Scheduling Algorithms

This section presents the extensions added to EMB2 to support task priorities,
the algorithms that have been integrated into EMB2, and the adaptive aging
mechanism used to increase fairness.

We selected the algorithms on the basis of their runtime overhead, since
scheduling decisions have to be made as fast as possible in dynamic systems, their
implementation complexity, and their ability to work with limited knowledge
about the set of tasks to be executed. The selected heuristics can be classified
into immediate and batch mode. Immediate mode considers tasks in a fixed
order, only moving on to the next task after making a scheduling decision. In
contrast, batch mode considers tasks out-of-order and so delays task scheduling
decisions as long as possible, thereby increasing the pool of potential tasks to
choose from.
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4.1 EMB2 Extensions

Both the abstract scheduler module and each processing unit abstraction created
for [2] comprise queues to store tasks. The scheduler queue stores all tasks ready
to execute, while the processing unit queues store all tasks assigned to this
specific unit. For EMB2 to be able to support different task priorities, each
queue was replaced by a set of queues with one queue for every priority level.
Assigned tasks and tasks ready to execute are then stored in queues according
to their current priority.

4.2 Immediate Mode Heuristics

Minimum Completion Time (MCT). [1] combines the execution time of a
task ti with the estimated completion time ct of the already assigned tasks of a
processing unit pj . In total, MCT predicts the completion time ct of a task ti
and assigns ti to the processing unit pj that minimizes ct of ti.

4.3 Batch Mode Heuristics

Min-Min. [12] extends the idea of MCT by considering the complete set of
currently ready-to-execute tasks. The heuristic then assigns the task ti that
has the earliest completion time to the processing unit pj that minimizes the
completion time of ti ct(ti). In general, the core idea is to schedule shorter tasks
first to encumber the system for as short a time as possible. This can lead to
starvation of larger tasks if steadily new shorter tasks arrive in the system.

Max-Min. [15] is a variant of Min-Min and based on the observation that Min-
Min often leads to large tasks getting postponed to the end of an execution
cycle, needlessly increasing the total makespan because the remaining tasks are
too coarse-granular to partition equally. So, Max-Min schedules the tasks with
the latest minimum completion time first, leaving small tasks to pad out any
load imbalance in the end. However, this can lead to starvation of small tasks if
steadily new longer tasks arrive.

RASA. [18] is a combination of both Min-Min and Max-Min. It uses them
alternatively for each iteration, starting with Min-Min if the number of resources
is odd, and Max-Min otherwise.

Sufferage. [15] ranks all tasks ready-to-execute according to their urgency
based on how much time the task stands to lose if it does not get mapped
to its preferred resource. The ranking is given by the difference between the
task’s minimum completion time and the minimum completion time the task
would achieve if the fastest processing unit would not be available.
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Relative Cost (RC). [17] uses the new metric rc, which divides ct of a task
ti by its average ct over all processing units, to rank tasks. RC both uses a
static and a dynamic variant of the relative cost metric to compute the final
metric. The static variant is defined as γs(ti, pj) = et(ti,pj)

etavg(ti)
, where et(ti, pj) is

the execution time of task ti on processing unit pj , and etavg(ti) is the average
execution time of ti over all processing units. γd(ti, pj), the dynamic variant is
defined as γd(ti, pj) = ct(ti,pj)

ctavg(ti)
, where ct(ti, pj) is the completion time of ti on pj ,

and ctavg(ti) is the average ct of ti over all processing units. The second variant
is dynamic as ct is updated after each time a task is mapped to a processing unit.
The variants are then combined into rc = γs(ti, pj)α · γd(ti, pj), where α ∈ [0, 1]
determines the effect of the static costs. In this work, we use α = 0.5. RC then
maps the task with minimum rc to pj that minimizes ct(ti).

4.4 Aging Mechanism

We added a two-level aging mechanism to the scheduling module of EMB2 to
avoid starvation of tasks. The first level was integrated directly into the scheduler
module. Tasks ready to execute are stored into priority-specific ready-queues.
Therefore, if there are n distinct priority levels, n separate ready-queues are
created. Each time the scheduler is activated, each non-empty queue with a
priority lower than the set maximum priority is checked for potential aging
candidates if at least two times the amount of active processing units of tasks
are currently ready to execute. So, the aging mechanism is only activated if
at least 2 · p tasks are currently enqueued with p being the number of active
processing units. A task in a ready-queue is selected for priority promotion if
the task is older than the average task waiting time multiplied with a threshold
factor αprom. After a task is promoted to a new priority queue by increasing its
priority, the task is pushed to the back of the queue and its waiting time reset.

The second level of the aging mechanism targets the processing units’ waiting
queues. Each processing unit possesses priority-specific queues, where assigned
tasks are stored. Again, if there are n distinct priority levels, each processing
unit possesses n separate waiting queues. A task is assigned to the priority level,
which it last had in the scheduler. As long as a processing unit is active, i.e.
at least one waiting queue is non-empty, each non-empty queue with a priority
lower than the set maximum priority is checked for potential aging candidates.
Again, a task in a waiting queue is selected for priority promotion if the task
is older than the average queue waiting time multiplied with a threshold factor
αprom. Actually, different threshold factors αprom can be used. However in this
work, we use αprom = 1.7 for both levels. This value was determined empirically
as a compromise to reduce overall priority promotion while still enabling the
promotion for long-waiting tasks. Again, the waiting time of a task is reset after
a promotion and it is pushed to the back of the new queue.
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5 Experiments

As benchmarks we considered two different scenarios with all benchmark tasks
providing both a CPU and a GPU OpenCL implementation. The first sce-
nario consists of three independent heterogeneous tasks with differing priorities
and has already been used in our previous work [2]. This benchmark resembles
dynamic systems as the task instances are started sporadically, thereby adding
a random component to the starting point of a task instance.

For the second scenario, we execute two benchmarks of the Rodinia bench-
mark suite [4], hotspot3D and particlefilter, in parallel with different priorities.
Both benchmarks distribute their work over several parallel tasks.

All experiments were conducted ten times with and without aging. For each
experiment, we measured the makespan of each application or job, and the total
makespan of all tasks. We then computed the average, the minimum, and the
maximum. The makespan is defined as the time from start to finish of an appli-
cation or task. Additionally, we measured the flow time of each task and again
computed the average, the minimum, and the maximum. The flow time of ti is
defined as ti,flow = ti,finish− ti,release, where ti,release is the release time or system
arrival time of ti and ti,finish is the finish time of ti. So, ti,flow is basically the
time ti spends in the system. It has to be noted that the flow time is usually
dominated by a task’s waiting time. This potentially leads to large differences
between minimum, average, and maximum values.

5.1 Experimental Setup

The experiments were performed on a server with two Intel Xeon E5-2650 v4
CPUs with 12 cores at 2.2 GHz each and dynamic voltage and frequency scal-
ing enabled, an NVIDIA Tesla K80, and 128 GB of 2.4 GHz DDR4 SDRAM
DIMM (PC4-19200). The software environment includes Ubuntu 18.04.3, the
Linux 4.15.0-74.84-generic kernel, glibc 2.27, and the nvidia-410.48 driver. EMB2

was compiled with the GCC 7.4.0 compiler. We limited EMB2 to 16 CPU cores
for the experiments in order to increase the system load and simulate a highly
utilized system.

The scheduling algorithms presented in Sect. 4 operate in the so-called pull
mode. In pull mode, the scheduler gets triggered iff at least one processing unit
is idle. We chose this mode because it allows the scheduler to collect a set of
tasks, which is needed to benefit from the batch mode heuristics.

5.2 Independent Heterogeneous Jobs

We chose three video-processing tasks that have both an OpenCL and a CPU
implementation for the first scenario:
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– J1 (Mean): A 3 × 3 box blur.
– J2 (Cartoonify): Performs a Sobel operator with a threshold selecting black

pixels for edge regions and discretized RGB values for the interior. The Sobel
operator consists of two convolutions with different 3 × 3 kernels followed by
the computation of an Euclidean norm.

– J3 (Black-and-White (BW)): A simple filter which replaces (R,G,B) values
with their greyscale version (R+G+B

3 , R+G+B
3 , R+G+B

3 ).

All operations were applied to the kodim23.png test image. The three operations
execute for 72.8 ms, 165.97 ms, and 11.4 ms on the CPU and 3.4 ms, 3.1 ms, and
3.1 ms on the GPU. We assigned Mean the priority 1, Cartoonify the priority
2, and Black-and-White the priority 0 with 2 being the highest and maximum
priority in the system. A sporadic profile was used to create task instances of
these three jobs. New task instances were released with a minimum interarrival
time of 1

k s, where k is the parameter to control the load, plus a random delay
drawn from an exponential distribution with parameter λ = k. By varying k,
we can generate a range of different loads. The evaluation workload consists of

Table 1. Makespan results of the independent heterogeneous jobs experiment

MCT Min-Min Max-Min Suff RASA RC

Cartoonify min w/o aging 1.43 s 1.46 s 1.45 s 1.46 s 1.42 s 1.44 s

min w/ aging 1.68 s 1.64 s 1.79 s 1.51 s 1.79 s 1.59 s

avg w/o aging 1.49 s 1.56 s 1.54 s 1.53 s 1.59 s 1.52 s

avg w/aging 1.88 s 1.87 s 2.22 s 1.68 s 2.25 s 1.82 s

max w/o aging 1.64 s 1.70 s 1.65 s 1.74 s 1.78 s 1.65 s

max w/ aging 2.38 s 2.24 s 3.67 s 2.23 s 3.71 s 2.69 s

Mean min w/o aging 2.17 s 2.31 s 2.35 s 2.36 s 2.29 s 2.35 s

min w/ aging 2.20 s 2.69 s 2.46 s 2.48 s 2.43 s 2.70 s

avg w/o aging 2.29 s 2.45 s 2.49 s 2.48 s 2.51 s 2.46 s

avg w/ aging 2.37 s 2.86 s 2.71 s 2.60 s 2.62 s 2.85 s

max w/o aging 2.55 s 2.82 s 2.70 s 2.86 s 2.93 s 2.70 s

max w/ aging 2.57 s 3.08 s 3.23 s 2.68 s 3.14 s 3.06 s

BW min w/o aging 2.38 s 2.75 s 2.79 s 2.83 s 2.68 s 2.85 s

min w/ aging 2.28 s 2.42 s 2.72 s 2.52 s 2.35 s 2.56 s

avg w/o aging 2.51 s 2.92 s 2.98 s 2.95 s 2.96 s 2.97 s

avg w/ aging 2.46 s 2.57 s 2.98 s 2.74 s 2.58 s 2.80 s

max w/o aging 2.77 s 3.27 s 3.23 s 3.32 s 3.38 s 3.27 s

max w/ aging 2.70 s 2.74 s 3.23 s 2.84 s 2.75 s 2.99 s

Total min w/o aging 2.38 s 2.75 s 2.79 s 2.83 s 2.68 s 2.85 s

min w/ aging 2.31 s 2.69 s 2.72 s 2.62 s 2.52 s 2.70 s

avg w/o aging 2.51 s 2.92 s 2.98 s 2.95 s 2.96 s 2.97 s

avg w/ aging 2.47 s 2.86 s 3.03 s 2.74 s 2.82 s 2.90 s

max w/o aging 2.77 s 3.27 s 3.23 s 3.32 s 3.38 s 3.27 s

max w/ aging 2.70 s 3.08 s 3.67 s 2.82 s 3.71 s 3.06 s
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3000 tasks corresponding in equal proportions to instances of all three jobs. We
conducted the experiment for k = 2000 to simulate a heavily utilized system.
The results of the makespan measurements can be seen in Table 1.

They show that for 5 out of 6 algorithms the average total makespan is
improved by adding the aging mechanism, with Max-Min being the only algo-
rithm where the makespan increases by 1.6%. On average over all algorithms,
the average makespan is improved by about 3.75%. Sufferage profits the most
with an improvement of about 7.5%. Considering the single applications, aging
increases the average makespan for Cartoonify by about 26.9% and for Mean by
about 8.9% compared to a decrease of 6.7% for Black-and-White. Especially for
Max-Min and RASA, which uses Max-Min, the average makespan of Cartoonify
suffers from an increase of over 40%. Other noteworthy results are an increase of
over 13.7% for the maximum measured total makespan for Max-Min and of over
9.5% for RASA, which correlates with an increase of 123.1% and 108% respec-
tively for Cartoonify. Comparing the algorithms, MCT achieves the best average
total makespan with and without aging while Max-Min achieves the worst result
in both cases. Sufferage gets the second best results in both cases.

Further, we obtained results for the flow time ti,flow of each task instance ti
and then computed the minimum, average and maximum flow time for all three
jobs. Table 2 lists the results.

The results show a significant increase, by 95.2% on average, in the average
flow time for Cartoonify in 5 out of 6 experiments, with RC being the exception.
For Cartoonify, this correlates with an increase in the maximum flow time for
each algorithm. In contrast, the average flow time for both Mean and Black-and-
White decreases for each algorithm by 13.1% on average and 25.67% on average,

Table 2. Flow time results of the independent heterogeneous jobs experiment

MCT Min-Min Max-Min Suff RASA RC

Cartoonify min w/o aging 1.54ms 1.61ms 1.46ms 1.49ms 1.46ms 1.48ms

min w/ aging 1.77ms 2.00ms 1.47ms 1.56ms 1.51ms 1.61ms

avg w/o aging 214.01ms 239.59ms 222.93ms 229.04ms 233.67ms 220.88ms

avg w/ aging 477.43ms 355.65ms 427.44ms 230.28ms 730.11ms 202.69ms

max w/o aging 1047.54ms 948.90ms 1500.34ms 1137.52ms 1000.74 ms 1124.99ms

max w/ aging 1306.71ms 1553.85ms 3624.45ms 1454.86ms 3313.17 ms 1838.82ms

Mean min w/o aging 1.81ms 1.72ms 1.62ms 1.72ms 1.64ms 1.64ms

min w/ aging 2.99ms 6.05ms 1.65ms 1.81ms 1.66ms 1.79ms

avg w/o aging 1073.45ms 1208.23ms 1206.62ms 1261.46ms 1145.06 ms 1226.23ms

avg w/ aging 904.87ms 1092.57ms 1030.84ms 1073.86ms 886.34ms 1213.63ms

max w/o aging 1498.08ms 2570.64ms 2708.11ms 2513.19ms 2180.18 ms 2605.41ms

max w/ aging 1459.64ms 26617.62ms 3196.53ms 1904.88ms 2830.09 ms 2883.13ms

BW min w/o aging 1.41ms 1.69ms 1.33ms 1.41ms 1.44ms 1.57ms

min w/ aging 1.76ms 1.76ms 1.49ms 1.37ms 1.48ms 1.73ms

avg w/o aging 1744.71ms 2085.71ms 2085.25ms 2142.52ms 2016.48 ms 2123.33ms

avg w/ aging 1400.28ms 1333.99ms 1946.73ms 1587.36ms 1263.95 ms 1517.70ms

max w/o aging 2365.10ms 2823.32ms 3116.59ms 2914.91ms 2817.72 ms 3026.06ms

max w/ aging 2089.93ms 2161.86ms 3210.39ms 2321.71ms 2402.84 ms 2666.41ms
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respectively. This shows the effect of the aging mechanism as the waiting time for
task instances of both jobs is reduced by increasing their priority. For Black-and-
White, this also correlates with a decrease in the maximum flow time measured.

5.3 Parallel Applications

The second scenario consists of two Rodinia benchmark applications, Hotspot3D
and Particlefilter, executed in parallel. Hotspot3D iteratively computes the
heat distribution of a 3D chip represented by a grid. In every iteration, a new
temperature value depending on the last value, the surrounding values, and a
power value is computed for each element. We chose this computation as kernel
function for a parallelization with EMB2 and parallelized it over the z-axis.
The CPU implementation then further splits its task into smaller CPU specific
subtasks. This is done manually and statically by the programmer to use the
underlying parallelism of the multicore CPU and still have a single original CPU
task that handles the same workload as the GPU task. For the evaluation, we
used a 512 × 512 × 8 grid with the start values for temperature and power
included in the benchmark, and 1000 iterations. The average runtime on the
CPU is 5.03 ms and 7.36 ms on the GPU.

Particlefilter is a statistical estimator of the locations of target objects
given noisy measurements. Profiling showed that findIndex() is the best candi-
date for a parallelization. findIndex() computes the first index in the cumulative
distribution function array with a value greater than or equal to a given value.
As findIndex() is called for every particle, we parallelized the computation by
dividing the particles into work groups. The CPU implementation again fur-
ther divides those groups into subtasks. We used the standard parameters 128
for both matrix dimensions, 100 for the number of frames, and 50000 for the
number of particles for the evaluation. The average task runtime on the CPU
is 17.8 ms and 6.5 ms on the GPU. Table 3 shows the makespan results without
and with aging respectively for this experiment.

Overall, the average total makespan is improved by a speed up of about
3.16% when aging is used and the average total makespan improves for 4 out
of 6 algorithms, with Min-Min and RASA being the exceptions. In this scenario
Max-Min improves most by using aging with a speed up of about 4.5%. The
individual average makespans decrease by 0.6% for Particlefilter and by 1.6%
for Hotspot3D. It is also noteworthy that the minimum obtained makespan of
Hotspot3D decreases by over 13% for both Max-Min and Sufferage. When the
algorithms are compared, Min-Min achieves the best average total makespan
without aging and Max-Min the best result with aging, with Min-Min getting
the second best result.

Again, we additionally monitored the flow time ti,flow for all task instances ti
and computed the minimum, average, and maximum over all instances for both
applications. The results are shown in Table 4.
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Table 3. Makespan results of the Rodinia benchmarks experiment

MCT Min-Min Max-Min Suff RASA RC

Particlefilter min w/o aging 26.46 s 26.52 s 25.97 s 26.57 s 26.62 s 25.61 s

min w/ aging 27.25 s 25.96 s 26.37 s 26.82 s 26.23 s 26.42 s

avg w/o aging 27.61 s 27.73 s 27.82 s 27.72 s 27.56 s 27.85 s

avg w/ aging 27.76 s 27.17 s 27.49 s 27.61 s 27.62 s 27.67 s

max w/o aging 28.79 s 27.92 s 28.83 s 28.54 s 28.79 s 29.56 s

max w/ aging 28.62 s 28.37 s 28.55 s 28.97 s 29.15 s 29.47 s

Hotspot3D min w/o aging 26.84 s 27.82 s 29.91 s 30.52 s 26.63 s 30.22 s

min w/ aging 26.27 s 25.37 s 26.02 s 25.93 s 25.33 s 27.82 s

avg w/o aging 30.93 s 30.59 s 31.44 s 31.38 s 30.71 s 31.78 s

avg w/ aging 30.70 s 30.59 s 30.03 s 30.96 s 30.64 s 30.93 s

max w/o aging 32.60 s 32.18 s 32.02 s 32.28 s 32.09 s 33.46 s

max w/ aging 31.81 s 31.91 s 31.71 s 32.47 s 31.83 s 33.16 s

Total min w/o aging 26.84 s 27.82 s 29.91 s 30.52 s 26.63 s 30.22 s

min w/ aging 27.42 s 26.68 s 26.62 s 26.82 s 26.48 s 27.82 s

avg w/o aging 30.93 s 30.59 s 31.44 s 31.38 s 30.71 s 31.78 s

avg w/ aging 30.81 s 30.72 s 30.09 s 31.05 s 30.76 s 30.93 s

max w/o aging 32.60 s 32.18 s 32.02 s 32.28 s 32.09 s 33.46 s

max w/ aging 31.81 s 31.91 s 31.71 s 32.47 s 31.83 s 33.16 s

The results show a decrease in the minimum and maximum flow time of
Hotspot3D for 5 and 4 algorithms, respectively. This correlates with shorter
waiting times caused by a priority raise. The averages roughly remain unchanged.
This can be explained by the much larger number of tasks for Hotspot3D, which
are executed after Particlefilter is finished and thereby dominate the average for
Hotspot3D.

Table 4. Flow time results of the Rodinia benchmarks experiment

MCT Min-Min Max-Min Suff RASA RC

Particlefilter min w/o aging 4.58 ms 4.56 ms 4.52 ms 4.92 ms 4.59 ms 4.34 ms

min w/ aging 4.29 ms 4.37 ms 4.68 ms 4.65 ms 4.18 ms 4.45 ms

avg w/o aging 42.16 ms 42.10 ms 43.93 ms 43.61 ms 42.19 ms 42.21 ms

avg w/ aging 43.35 ms 41.98 ms 43.46 ms 41.69 ms 42.66 ms 43.47 ms

max w/o aging 564.30 ms 568.94 ms 606.79 ms 663.52 ms 528.12 ms 723.96 ms

max w/ aging 636.67 ms 506.50 ms 490.95 ms 639.28 ms 651.32 ms 543.53 ms

Hotspot3D min w/o aging 2.34 ms 1.96 ms 2.15 ms 1.92 ms 1.94 ms 1.67 ms

min w/ aging 1.63 ms 1.65 ms 1.62 ms 1.63 ms 2.33 ms 1.62 ms

avg w/o aging 13.33 ms 13.06 ms 13.27 ms 13.16 ms 13.25 ms 13.49 ms

avg w/ aging 13.31 ms 13.28 ms 13.16 ms 13.31 ms 13.17 ms 13.37 ms

max w/o aging 932.72 ms 801.60 ms 838.39 ms 686.93 ms 648.79 ms 819.58 ms

max w/ aging 709.43 ms 674.13 ms 656.37 ms 938.87 ms 664.43 ms 735.07 ms
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6 Related Work

Known existing task-based runtime systems such as HALadapt [14], the TANGO
framework [8], and HPX [11] do not employ task priorities to distinguish applica-
tion importance. StarPU [3], though, supports assigning a priority per processing
unit type to a task. Compared to our work, StarPU does not adapt priorities at
runtime.

Task or job scheduling algorithms with priorities are usually employed in
the context of real-time systems, especially hard real-time systems with strict
deadlines. These algorithms can be classified by the way they assign priorities [5].
Algorithms like EDF [9] or least laxity first (LLF) [6] assign each task instance
a different priority. Thereby, EDF assigns each instance an individual static
priority based on its deadline (see Sect. 2), whereas the priorities assigned by
LLF are dynamically adapted as the laxity, the remaining time until a task has
to be started to fulfill its deadline, decreases over time [5]. Contrary to this,
algorithms like RMS [16] set a static priority that applies to each instance. The
work of this paper differs from these algorithms as our tasks do not possess
deadlines. In our work, an application developer is allowed to set a priority for a
task that then applies to each instance. However, we additionally utilize an aging
mechanism to increase fairness, i.e. priorities may be dynamically adapted.

Similarly to EDF, list scheduling algorithms [22–24] prioritize and then order
individual task instances by computing metrics like the upward rank used by the
heterogeneous earliest finish time (HEFT) heuristic.

Kim et al. [15] consider task priorities and deadlines in the context of dynamic
systems, where the arrival of tasks is unknown. The paper uses three priority
levels, high, medium, low, that can be assigned to task instances. The priorities
are combined with the tasks’ deadlines to compute the worth of executing a task.
Thereby, a scheduling order is created. In contrast to our approach, priorities
are not dynamically adapted to avoid starvation.

Aging mechanisms have been employed in several other works. Kannan
et al. [13] implemented three priority queues and task instances get promoted to
a higher priority level after a fixed time interval. Similarly, the priority of a task
also gets promoted at fixed time intervalls in [19]. In [7], a counter is decreased
after high priority tasks are executed. If a threshold is reached, a low priority
task is executed next.

7 Conclusion and Future Work

In this work, we developed an adaptive aging mechanism and integrated it in
combination with six different dynamic scheduling algorithms into the task-based
runtime system EMB2. We evaluated the scheduling algorithms in two scenarios
with task priorities, a benchmark consisting of three independent heterogeneous
jobs with a sporadic profile, and two Rodinia benchmarks executed in parallel.
Thereby, the experiments were conducted without and with the developed aging
mechanism to examine its effects.
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The results show a slight improvement in total average makespan (average
speed up of 3.75% and 3.16% ) for 5 out of 6 algorithms in the first and for
4 out of 6 algorithms in the second scenario. As expected, this correlates with
an increase in the average makespan for the applications with higher priorities
caused by additional waiting time (the total time spent in queues in the scheduler
and processing unit). This is also reflected in the flow time measurements. The
average increase of 95.2% for the average flow time of the Cartoonify benchmark
is exemplary for this statement. However, the average flowtime and the average
makespan of the application/job with the highest priority remain lowest over all
applications/jobs in all experiments. In return, the aging mechanism reduces the
waiting time which is reflected by improvements of the average makespan and the
average flow time of the job/application with the lowest priority (25% decrease
in average flowtime for black-and-white). A comparison between the scheduling
algorithms shows that no algorithm dominates the other ones considering the
average total makespan. MCT, Sufferage, and RC, though, are able to profit in
all experiments by using aging.

In summary, our adaptive aging mechanism slightly improves the overall
makespan in most experiments while reducing the time a low priority task has to
wait for its execution, thereby increasing fairness, and still securing the fastest
execution and shortest time spent in the system for the job with the highest
priority. In the future, supplemental evaluations are necessary to further solidify
these conclusions. Furthermore, additional optimization goals next to fairness
and makespan, like energy consumption, have to be considered.
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