
EURASIP Journal on Image
and Video Processing

Li et al. EURASIP Journal on Image and Video Processing          (2021) 2021:9 

https://doi.org/10.1186/s13640-021-00549-3

REVIEW Open Access

Evaluating effects of focal length and
viewing angle in a comparison of recent face
landmark and alignment methods
Xiang Li1* , Jianzheng Liu2, Jessica Baron1, Khoa Luu3 and Eric Patterson1

*Correspondence:

xiang5@clemson.edu
1School of Computing, Clemson

University, 304 McAdams Hall,

29630 Clemson, SC, USA
Full list of author information is

available at the end of the article

Abstract

Recent attention to facial alignment and landmark detection methods, particularly with

application of deep convolutional neural networks, have yielded notable

improvements. Neither these neural-network nor more traditional methods, though,

have been tested directly regarding performance differences due to camera-lens focal

length nor camera viewing angle of subjects systematically across the viewing

hemisphere. This work uses photo-realistic, synthesized facial images with varying

parameters and corresponding ground-truth landmarks to enable comparison of

alignment and landmark detection techniques relative to general performance,

performance across focal length, and performance across viewing angle. Recently

published high-performing methods along with traditional techniques are compared

in regards to these aspects.

Keywords: Facial alignment and landmarking, Convolutional neural networks, Focal

length, View angle, Comparison, Evaluation, Review

1 Introduction

Face detection, tracking, and recognition continue to be employed in a variety of ever

more common-place biometric applications, particularly with recent integrations in

mobile-device security and communication. Most of these applications, such as identity

verification, pose tracking, expression analysis, and age or gender estimation, make use

of landmark points around facial components. Correctly locating these key points is cru-

cial as they often are used to abstract main features such as the jaw, eye-brows, eyes,

nose shape, nostrils, and mouth [1]. Due to the complexity of head gestures , automatic

localizing of canonical landmarks usually first involves face alignment to account for rota-

tion, translation, and scale due to pose or view-direction differences [2–5]. Furthermore,

2D images photographically captured by cameras are affected by perspective and lens

distortion, an important aspect considered in this work.

This review aims to compare performance of five notable facial landmark and alignment

methods under the effects of different camera focal lengths and positions, particularly

under conditions that have been ignored or difficult to test. Previously, Çeliktutan et
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al. completed a thorough survey of facial landmark detection algorithms and compara-

tive performance in 2013, which at the time primarily focused on 2D techniques such as

Active Shape Model (ASM) and Active Appearance Model (AAM) variations [6]. In 2018,

Johnston and Chazal published work that built on the earlier survey, noting the shift of

interest to deep-learning methods due to potential performance increases as well as tech-

niques that also perform 3D alignment [7]. Several strong-performing neural-network

methods have been published since; however, and in general, no performance compar-

isons have included lens-perspective effects nor systematic evaluation across the range of

viewing angles. This study is not an exhaustive survey of recent methods but rather an

investigation in the effects of focal length and viewing angle on both traditional and more

recent neural methods (published after the 2018 article). Focal-length-based perspective

and viewing angle are both important considerations if designing a biometric or other

system in order to account for the lens chosen, viewing angle, and proximity necessary

for the system.

The effects a lens imparts on acquisition have often been ignored in face-related

research. A fundamental technique in computer vision is estimating a camera projection

matrix and has been regarded inmany studies; however, the datasets used to train and test

landmark detection do not usually include camera meta-data (particularly large datasets

gleaned from the Internet for deep-learning approaches), or datasets have been captured

in very controlled situations with a single lens. Themost widely used databases in training

recent deep networks are 300W [8], COFW [3], WFLW [9], and AFLW [10]. Those cover

large variation over age, ethnicity, skin color, expression, and pose and have been used

by top-performing deep neural networks [11–15]. None of them explicitly note focal-

length as a parameter. In short, there is no dataset published online that has considered

focal length/field of view versus proximity for training alignment or landmark detection

methods. We assume perspective distortions caused by focal length will likely affect the

final annotation results. If so, training sets including camera and lens parameters could

increase accuracy of a system or at least aid in designing systems.

A few researchers have considered aspects of image distortions relative to face images

for particular applications, but not what we present here. Damer et al. investigated state-

of-the-art deep neural networks for facial landmark detection, but their main focus was

perspective distortion due to distances between cameras and captured faces and did

not consider the effects due to lenses and associated field of view [16]. Valente et al.

investigated basic lens effects; however, they only analyzed these relative to simple math-

ematical algorithms for facial recognition (EIGENDETECT and SRC) and not those for

facial alignment nor their effects on facial landmark detection [17]. Flores et al. also

focused on perspective distortion caused by distance [18]. They estimated camera pose

from facial images using Efficient Perspective n-Point(EPnP) rather than evaluating land-

mark location. In this work, we consider the effects of lens focal length and viewing

angle in regards to some of the highest performing recent facial-landmarking techniques.

Although the method of evaluation uses synthetic images, the question of performance

relative to lens and viewing angle is also relative, and the goal is to demonstrate that all

methods are affected to varying degree. Studying such effects without large datasets that

include camera and lens meta-data would not currently be possible without either col-

lecting such a dataset or creating test images synthetically as we have done. Future work

could include design of a dataset, although it could be prohibitive to collect data on the
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size order of Internet-driven datasets used for deep-learning training. Furture work also

could consider improving synthetically rendered images for higher fidelity, style-transfer,

or in-environment placement, etc.

The contributions of this work include evaluation of five different facial landmark detec-

tion methods in regards to varying lens choice and viewing angle. Three of them are from

recently published deep-learning 3D facial annotating methods, and the remaining two

are AAM implementations. We evaluate the performance of these methods across view

angles and focal lengths by using face images synthesized from detailed 3D scans of indi-

viduals.We demonstrate that all are subject to particular performance degradation with

lens-perspective distortion and viewing angle. This information may be used to guide

design choices in biometric or other imaging systems as well as develop on methods that

are more robust to lens choice and angle.

2 Method of comparison

2.1 Landmark schemes

There have been a variety of landmark schemes used in related projects, but a few have

been most used in recent work and make a logical choice for comparative evaluation.

Following the categories in [6], there are two major groups of facial landmarks schemes:

primary landmarks and secondary landmarks. Primary landmarks usually define the eye

corners, the mouth corners, and the nose tip. Those landmarks are located at “T” sections

between boundaries or at high curvatures on a face which may be detected by image

processing algorithms, e.g., multi-resolution shape models [19], Harris Corner Detection

model [20], or Image Gradient Orientation (IGO) model [21]. Secondary landmarks out-

line the contour of main features that are guided by primary landmarks, such as the jaw

line, eyebrows, and nostrils. Wu et al. [1] provide a thorough survey on facial landmark

databases and their corresponding landmark schemes. A common 68-point landmark is

supported by many face databases, e.g., AFLW [10], BU-4DFE [22], Helen [8, 23], etc. For

easiest consistency, the 68-point scheme fromMulti-PIE [24], and further popularized by

iBUG’s 300W [8], was chosen for this study.

Sagonas et al. and Johnston et al. [7, 8] state that primary landmarks are more easily

detected than secondary landmarks while annotating the ground-truth reference. The

“m7 landmarks” including the 4 eye corners, 1 nose tip, and 2 mouth corners are also

included here in some comparisons with the idea that they provide higher importance

information. Figure 1 shows the two landmarks schemes used in this paper.

In order to generate face images at controlled focal lengths and precise angle selec-

tions, we synthesized photo-realistic images using detailed 3D meshes captured from a

structured-light 3dMD system. Our facial capture participants were asked to make dif-

ferent expressions following the Facial Action Coding System (FACS). FACS was created

by the anatomist Carl-Herman Hjortsjö [25] and further developed by Ekman etc. [26]

It provides a coding system which describes how to categorize facial expressions into

Action Units (AUs) with muscle movements. We manually annotated the ground-truth

landmarks in 3D for 84 faces from our participants, 64 from a set of FACS-capture expres-

sions of two individuals and 20 of unique individuals with a range of ethnicity, age, and

gender where the pose was neutral or a slight smile. Figure 2 shows an example of FACS

and neutral faces in our dataset. Landmark variation often occurs between in datasets,

particularly for areas such as the jawline or eyebrows. For consistency, we keep jawline
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Fig. 1 Two different landmarks schemes. a iBUG-68 . bM7

points evenly distributed along the chin. In some projects, eyebrow points are placed at

the center, bottom, or top of brow arcs. Good choices for landmarks points include those

near high curvature or boundaries on objects. Here, eyebrows are marked anatomically

at the supraorbital ridge or eyebrow ridge.

2.2 Evaluation metrics

We use ground-truth based localization error to evaluate performance in each case via

root mean squared error (RMSE). Accurate landmarks are generated for each synthetic

image by projecting manual 3D landmarks to match the rendered angle and field of view.

We use the method proposed by Johnston et al. [7] for calculating the RMSE:

Fig. 2 FACS and NFACS faces. a It is a lip pucker expression and its corresponding action unit is 18 [26]. b The

participant provides a neutral expression
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where xk , yk denote each of the K predicted landmark k in an image, and x̃k , ỹk indicate

the corresponding ground-truth landmark. Normalizing for face size in pixels is useful

due to the variance across images. Previously, RMSE is normalized by the ground-truth

outer corners of the left eye and right eye landmarks(Eq. 3)[8]. The error per landmark in

image i is given as:
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where (x̃le, ỹle) and (x̃re, ỹre) are the ground-truth outer corners of the left eye and right

eye in the image i. In our case, however, our synthetic images vary with camera positions.

The distances of outer-eye corners may have small impacts at side angles due to perspec-

tive projection. Hence, we calculate Normalized Root Mean Squared Error (NRMSE) by

normalizing per width of the head bounding box.We calculate the percentage of accepted

points among all points to show the performance for each algorithm:

P(k) = 100
1

I

I
∑

i=1

[

i : ǫki < Th
]

(4)

where [ i : ǫki < Th] is a mask function that if the normalized distance ǫ is less than Th,

it is acceptable, and i is set to 1. Otherwise, the result is not acceptable, and i’s value is set

to 0. So, the overall performance over K landmarks in each image for I image set is:

P = 100
1

K × I

K
∑

k=1

I
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i=1

[

i : ǫki < Th
]

(5)

2.3 Camera position and focal length

Our coordinate system follows the typical computer-graphics right-handed coordinate

system convention, where the X-axis points to horizontal right, Y -axis points to vertical

up, and Z-axis perpendicular to both X and Y points outward from the screen. In order

to track the camera around each face, we use spherical coordinates to represent camera

positions. Our interests are analyzing multiple viewing angles at a wide range of specific

viewing angles. We define camera positions in spherical coordinates at (r,φ, θ), where

φ is the polar angle (also known as zenith angle) from the positive Y -axis with 45◦ ≤

φ ≤ 135◦, at 15◦ each. We define θ to be the azimuthal angle in the xy-plane from the

positive X-axis with 180◦ ≤ θ ≤ 0◦ at intervals 30◦. Lastly, r varies for simulated focal

length. Overall, we have 49 camera positions so that various front views of the face and

some extreme camera positions could be tested. Figure 3 shows the position of spherical

coordinates and samples of face images with different viewing angles.

Focal length, relative to the dimensions of the film or digital sensor, determines the field

of view on a physical camera, and there are also radial distortion issues relative to physi-

cal lenses and typical of certain optical designs such as pincushion and barrel distortion

(these are not specifically included here but could warrant a follow-up study). In photog-

raphy, a common standard of comparison of focal length to express field of view is relative

to the standard of the 35-mm-film frame size used for much of the twentieth century and
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Fig. 3 Camera positions. a Right-handed system spherical coordinates. φ is the polar angle and θ is the

azimuthal angle. b Samples for real face images taken from different viewing angles

carried forward into digital sensors. This “35-mm” frame size of 36 mm across by 24 mm

down came to be a standard for still photography when Oskar Barnack doubled the indi-

vidual frame from motion-picture film (standardized by Thomas Edison) to use in still

cameras. The relation between angle of view and focal length is given by:

α = 2 arctan
d

2f
(6)

where α is the angle of view, d denotes the size of film, and f is the focal length t. As can

be seen by the relationship, shorter focal lengths widen the field of view and vice-versa. To

maintain a face of a relative size in images captured with different focal lengths, the dis-

tance to the camera needs to be changed. Perspective effects are modified as this occurs,

as can be noted in Fig. 4. Short focal lengths (wide-angle lenses) introduce a fair amount

of facial distortion whereas longer lengths begin to approximate an orthographic projec-

tion that maintains relative distances among landmarks better. Although not tested here,

these effects can be more pronounced near the edges of a capture frame. As mobile phone

photography increases, some of the most common focal lengths relative to the standard

of comparison noted would equate to the 28-mm to 35-mm range of focal lengths, or a

relatively wide field of view. Interchangeable lens cameras or cameras with zoom lenses

can vary the focal length. As can be seen from formula 6, a larger focal length lens has

a narrower angle of view at the same camera-to-object distance which offers magnified,

detailed photos. Focal lengths greater than 50 mm are often used in longer range pho-

tography, long range biometric acquisition, and especially in head-and-shoulder portrait

photography. For this study, common focal lengths of prime lenses used in still photogra-

phy were chosen as the range, from 24 mm (wide-angle on a 35-mm system) to 135-mm

(slight telephoto on a 35-mm system), with the range covering typical focal lengths used in

photography and not including extreme wide-angle lenses nor extreme telephoto lenses.

We choose six different types of common lens focal lengths (24 mm, 28 mm, 35 mm,

50 mm, 85 mm, and 135 mm) as our test domains for comparison.
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Fig. 4 Camera focal lengths: First row from left to right: 24 mm, 28 mm, and 35 mm; second row from left to

right: 50 mm, 85 mm, and 135 mm

2.4 Face landmark and alignment methods

Wu et al.[1] mention classifying technology as holistic methods, constrained local model

methods, and regression-basedmethods. Holistic methods treat a whole face image as the

entire appearance and shape to train models. Constrained local models locate landmarks

based on the global face but emphasizing local features around landmarks. Regression-

based methods mostly are adopted for deep-learning, using regression analysis to map

landmarks to images directly. Johnston et al. [7] believe that facial landmark detection

methods can be divided into generative methods, discriminate methods, and statistical

methods. Generative methods minimize the error between models and facial recon-

structions. Discriminate methods use a dataset to train the regression models. Statistical

models are a combination of generative methods and discriminate methods. Çeliktutan et

al. classify facial landmark detection into model-based (using the entire face region) and

texture-based (matching landmarks to local features) [6]. Here we consider landmark-

ing algorithms based on either statistical methods or deep-learning methods. Statistical

methods calculate the positions of landmarks using mathematical algorithms. Most of the

traditional methods(e.g., AAM and ASM) can fall into this group. Deep learning methods

feed facial images to train deep neural networks to locate landmarks.

ASM and AAM models have performed among some of the best landmark-detection

algorithms for nearly two decades. ASM, first introduced by Cootes et al., attempts to

detect and measure the expected shape of a target in an image. ASM requires a set of

landmarked images for training the model. The first step is using Procrustes Analysis

to align all object images. A mean shape is calculated by Principle Component Analysis



Li et al. EURASIP Journal on Image and Video Processing          (2021) 2021:9 Page 8 of 18

(PCA) which applied to find eigen vectors and eigen values [27]. All the objects’ shapes

can be approximated as:

x = x̄ + Pb (7)

where x̄ is the mean shape calculated over all overall training data. P is a set of eigen

vectors derived from the covariance matrix calculated via PCA, and b is a set of shape

parameters given by:

b = PT (x − x̄) (8)

As an improvement of ASM, an active appearance model matches both shape and tex-

ture simultaneously and gives an optimal parameterized model. PCA is also applied for

texture and once again for finding combined appearance parameters and vectors. Menpo

provides five different AAM versions with two main groups: Holistic AAM (HAAM)

and Patch AAM (PAAM) [28]. HAAM warps appearance information using a nonlin-

ear function, such as Thin Plate Spline (TPS), and takes the whole texture into account

when fitting, while the PAAM uses rectangular patches around each landmark as tex-

ture appearance. We test both HAAM and PAAM as separate techniques for comparison

here. For building the AAM, we chose the widely used Helen Dataset which provides a

high-resolution set of annotated facial images containing different ethnicities, ages, gen-

ders, head poses, facial expressions, and skin colors, similarly used by Johnston et al. [7].

In order to reduce error caused by facial detection, we extract faces from image using

bounding boxes calculated from ground-truth landmarks and dilated by 5%.

In the past few years, deep-learning based neural-network methods have leveraged very

large datasets for training and recently outperformed statistical shape and appearance

models in many areas. We gathered three recent high-performing methods where imple-

mentations were available to compare in our various cases. The first method is called

the Position Map Regression Network [29]. The main idea of PRNet is creating a 2D UV

Position Map which contains the shape of an entire face to predict 3D positions. PRNet

employs a convolutional neural network (CNN) trained 2D images along with ground

truth 3D dense position clouds created via 3D morphable model (3DMM). 3D positions

are projected to the UV texture-map format and used in training the CNN. The UV

texture map preserves 3D information, even posed with occlusions.

The second method is the 3D Face Alignment Network (3D-FAN). Bulat and

Tzimiropoulos use a 2D-to-3D Face Alignment Network combined with a stacked

heat-map sub-network to predict Z coordinates along with 2D landmarks[30].

The third method from Bahagavatula et al. uses a 3D Spatial Transformer Network

(3DSTN) to estimate a camera projection matrix in order to reconstruct 3D facial geom-

etry. The method forms occluded faces with 2D landmark regression and predicts 3D

landmark locations[31].

These methods were trained on 300W-LP except for 3D-FAN which was trained on

the 230,000 + 300W-LP. It would be prohibitive to attempt to include all recent deep-

learningmethods in this comparison, but these were chosen based on strong performance

in recent publications, and we believe other recent methods would very likely perform

similarly based on similar overall performance on the same datasets.
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Fig. 5 Flow chart of the main process for measurement

3 Procedure

Figure 5 illustrates the main work flow of our approach to evaluate facial landmark and

alignment algorithms.

To calculate the RMSE (1) and NRMSE (2), (3) on landmarks, all measurements require

ground-truth as references. All facial meshes with texture were manually marked using

landmarker.io to create these ground-truth landmarks. Figure 6 shows an example of 3D

facial annotation in landmarker.io as performed on our dataset [28].

Using our own Python-, Qt-, and OpenGL-based lab application, Countenance Tool,

we render 3D facial positions given varying angles and focal lengths. Since we compare

how view angles and focal lengths affect landmark methods, we move the virtual camera

to 49 different locations shown in Fig. 3. At each location, we rasterize faces with 6 dif-

ferent synthesized focal lengths (24 mm, 28 mm, 35 mm, 50 mm, 85 mm, and 135 mm)

by changing the focal length parameter shown in equation 6 before rendering. Overall,

there are images at 49 angles and 6 focal lengths for each face. At the same time, we use

the same camera matrices (varying with view of angles and focal length parameters) to

project the 3D ground-truth landmarks to yield the ground-truth 2D landmarks at image

coordinates. Figure 7 shows a set of images with ground-truth landmarks of different

focal lengths and viewing angles.

To summarize the workflow demonstrated in Fig. 5, we first performed facial geometry

capture with a 3dMD system. The 3dMD system provided 3D meshes along with texture

information. We then imported those into landmarker.io to annotate each face manually

to generate 3D ground-truth landmarks. After getting the ground-truth, we rasterized

each face at 49 angles and 6 focal lengths and calculated the ground-truth 2D landmark

locations. Finally, we analyzed performance of each method by calculating NRMSE error

between a method’s predicted landmarks and the 2D ground-truth locations.

Fig. 6 3D ground-truth landmarking using landmarker.io
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Fig. 7 Converted 2D ground-truth on images. a and b are ground-truth landmarks with 24 mm and 135 mm

focal length at the center view, respectively. c and d are rendered landmarks from top view and down view

with 135 mm focal length

4 Results and discussion

In this section, we compare the RMSE performance of the five methods with the full

68-points scheme and the reduced m7 scheme against 6 threshold levels. Figure 8 plots

the percentage correctly accepted for each facial landmark and alignment method with

both schemes. Generally speaking, as expected, the overall acceptance performance for

each algorithm increases as the threshold widens. The m7 landmarking scheme tends

to show better performance as a smaller set located at distinct “corners.” In general, the

CNN methods perform better, but all are still subject to performance effects due to focal

lengths and viewing angles. It would be remiss to declare one method particularly better

than another here, particularly since 3D-FANwas trained on an augmented dataset versus

the others; we used the publicly available pre-trained networks. Compared to the neural-

network techniques, the performance of traditional statistical methods is typically lower.

As Cootes explains [32], the performance of ASM and AAM is dependent on the starting
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Fig. 8 Results with M7 (left) and iBUG (right) landmarks are both plotted for comparison. Performance

respect to thresholds using 68 pts

position of landmark displacement. Higher accuracy of face detection tends to improve

landmark detection.

One of the main contributions of this paper is demonstrating the effect of focal length

on landmarking accuracy. Figure 9 demonstrates lower performance with a wider field-

of-view, associated with strong perspective effects, and better performance as focal length

increases. There is expected leveling in performance with focal length increase.

In order to visualize effects on specific landmarks at different focal lengths, we drew

the 68-point landmarks located by each method and the average of the frontal view for

the extremes (135 mm lens in blue circles based on RMSE and 24mm in red). This shows

which landmarks are most affected by the focal-length perspective warping. Figure 10

also reflects the data depicted in the Fig. 9. The radius of the RMSE presents how far each

predicted landmark is from the ground-truth. The result shows that all of the landmarks

that are close to the center of faces havemore accurate predictions, while landmarks along

facial edges have lower accuracy predictions due to projective distortions; particularly,

corners of eyes and lips seem affected.

The last consideration for this paper is systematic adjustment of the camera’s viewing

angle across the viewing hemisphere. We place the camera at 49 different positions with

extreme poses included. When the camera views from the center ( θ ∼= 90◦ and φ ∼=

90◦), the performance results are better than when the camera view from the sides. The

landmark predictions at φ around 45◦ and 135◦ have the lowest performances due to

extreme viewing angles. As expected, performance drops as the view moves to the more

extreme angles, and the rate of effect for each method are shown in Figs. 11, 12, 13, 14,

and 15.

Fig. 9 Focal Length Varying: Left half of the chart uses M7, right half uses 68 points
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Fig. 10 RNSE distance. Blue circles are RMSE at 135 mm, red circles are 24 mm. a HAAM, b PAAM, c PRNet, d

3DSTN, e 3D-Fan, and f average result for all algorithms

Most of the facial landmark and alignment algorithms perform well at frontal views,

and the detection precision relies on the training set variability. Attempting to delineate

prediction differences between extreme-view cases and center view cases, we chose the

most centered view image (φ = 90◦ and θ = 90◦), as well as 8 images surrounding by

it, to be the frontal group (Fig. 16). The rest of the images are the outer group (Fig. 17).

Front view detection can approach almost 100% accuracy especially at center view for

deep neural networking methods. The precision rate drops more than 50% approaching

extreme angles (θ = 0◦ and θ = 180◦).

Part of the set of the images used were also based on 3D captures of action units

from FACS which taxonomizes individual physical expression of emotions. The results

shown in Fig. 18 illustrate that in general the landmark-prediction methods work better

on neutral faces due to FACS faces having more facial expressions which increase pre-

diction difficulties. Performance decreases across wide field of view and view angle are

consistent.

Fig. 11 PRNet: camera position varying across φ (from 45◦ to 135◦) and θ (from 0◦ to 180◦)
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Fig. 12 3DFan: camera position varying across φ (from 45◦ to 135◦) and θ (from 0◦ to 180◦)

Fig. 13 3DSTN: camera position varying across φ (from 45◦ to 135◦) and θ (from 0◦ to 180◦)

Fig. 14 HAAM: camera position varying across φ (from 45◦ to 135◦) and θ (from 0◦ to 180◦)

Fig. 15 PAAM: camera position varying across φ (from 45◦ to 135◦) and θ (from 0◦ to 180◦)
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Fig. 16 Camera position with group of frontal view. The frontal view positions where φ = 75◦ , 90◦ , and 105◦ ;

θ = 60◦ , 90◦ , and 120◦

5 Conclusion

In conclusion 3DSTN, PRNet, and 3D-FAN methods generally work better than tradi-

tional statistical methods. Deep-learning methods have become the prevalent research

direction for the time being, but they are still subject to viewing angles and also, particu-

larly, lens effects that have rarely been considered during any performance evaluations.

Increasing focal length tends to improve the landmark and alignment performances due

to less projection distortion. This could inform design decisions for camera system and

lens chosen for a biometric system, or it could be used to inform future algorithm design.

Given experimental results, all methods, as expected, work best from frontal-viewing

angles. It is also interesting to note that the slope of fall-off for the performance decrease

introduced by shorter focal lengths (wider field of view) is less for the AAM based

methods and the 3DSTN approach. This is likely due to the AAM methods being based

on image features, and the PAAM more specifically emphasizing local image features.
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Fig. 17 Camera position with group of outer view. The outer view position where φ = 45◦ , 60◦ , 120◦ , and

135◦ ; θ = 0◦ , 30◦ , 150◦ , and 180◦

Fig. 18 FACS and non-FACS comparison. a FACS NRMSE and non-FACS NRMSE with M7 and b is iBUG-68

landmark schemes
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3DSTN likely does well as part of the method specifically estimates a camera projection

matrix, which in some sense should help counteract some of the focal length introduced

perspective issues. PRNET and 3D-FAN methods using more general 3D data are likely

more affected, and the larger training set for 3D-FAN likely assists its performance here.

One limitation of statistical algorithms is the landmark detection performance is tied to

the head pose variation in the training set. When applying PCA, the first N eigen vectors

are chosen as the main components. Typically, these are chosen based on representing

± 3 standard deviations from the mean value. Based on this limitation, the landmarking

performance for extreme view angles, as often shown, drops. However, the CNNmethods

that all incorporate some system of 3D reference tend to do better as viewing angles move

from the center; however, they still suffer performance drops and are still affected by

shorter focal lengths.

Since focal length variance does affect final face landmark and alignment performance,

future work could include use of this to augment training data. This could be done

through data collection or use of synthetic data.

Meta-data from capture lenses stored in digital photographs is often removed by the

time images reach large datasets, but it would be interesting to note such effects from

in-the-wild photographs. In the meantime, training with synthetic data that includes

controlled variance of viewing angle ranges as well as varying focal length, added to

photographic datasets, should likely improve results.

In the future, image acquisition should not only cover pose, illumination, expression,

ethnicity, skin color, etc., but also include consideration of full camera and lens parameters

when possible.
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