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ABSTRACT

Energy-e�ciency remains a critical design consideration for mo-

bile and wearable systems, particularly those operating continuous

sensing. Energy footprint of these systems has traditionally been

measured using hardware power monitors (such as Monsoon power

meter) which tend to provide the most accurate and holistic view

of instantaneous power use. Unfortunately applicability of this ap-

proach is diminishing due to lack of detachable batteries in modern

devices. In this paper, we propose an innovative and novel approach

for assessing energy footprint of mobile andwearable systems using

thermal imaging. In our approach, an o�-the-shelf thermal camera

is used to monitor thermal radiation of a device while it is operating

an application. We develop the general theory of thermal energy-

e�ciency, and demonstrate its feasibility through experimental

benchmarks where we compare energy estimates obtained through

thermal imaging against a hardware power monitor.
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1 INTRODUCTION

Computing and sensing capabilities of smartphones, wearables and

other Internet of Things (IoT) devices are continually increasing.

Indeed, most contemporary smartphones are equipped with pow-

erful CPUs and wide range of sensors such as GPS or heart rate

sensors – with new sensing modalities regularly emerging. As an
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example, the Caterpillar CAT S61 smartphone1 integrates built-in

thermal imaging and air quality sensors. These advances in sensing,

however, have only been followed by moderate improvements in

battery technology, making it di�cult to fully take advantage of

the available sensing capabilities. Indeed, energy-e�ciency remains

a critical design goal.

Despite the importance of energy, assessing the energy footprint

of mobile and wearable solutions has become increasingly di�cult

in recent years. The most widely accepted solution has been to

use a hardware power monitor (such as Monsoon power meter) to

measure energy footprint while the device is being operated. This

method generally provides the most accurate and holistic view of

instantaneous power usage. Unfortunately, power meters need to

be connected between the device being measured and its battery

(or other power source). Hence, this approach only works on de-

vices that have a detachable battery. While common in the past,

detachable batteries are becoming infrequent on latest generations

of smartphones and wearables. Furthermore, as computing and

sensing capabilities are integrated into small-scale a�ordable IoT

devices, a method for measuring power without access to the device

battery is needed. Indeed, rather than consuming power, devices

may even generate it, e.g., energy harvesting [10] or fuel cells [4].

While some alternatives to hardware monitors have been devel-

oped, such as energy pro�les or software based measurements (see

section 2), these solutions also are insu�cient as they are sensitive

to platform and test-bed con�guration. Moreover, in the case of

software measurements, the energy measurements are a�ected by

the software mechanism gathering them. Novel solutions that are

capable of overcoming these limitations of current techniques are

thus needed for assessing energy footprint of emerging mobile,

wearable, and IoT solutions.

In this paper, we contribute by proposing thermal imaging as

an innovative and novel way to estimate power drain of emerging

mobile, wearable and IoT devices. In our approach, an o�-the-shelf

thermal camera is used to monitor thermal radiation emitted by a

device while it is operating an application whose energy footprint

is being measured. By capturing changes in thermal footprint of

the device, di�erences in energy consumption can be identi�ed. We

contribute by developing the general theory behind thermal energy-

e�ciency, and demonstrating its feasibility through benchmark

experiments conducted on two di�erent devices and using three

di�erent applications. We demonstrate that, while not su�cient for

deriving absolute estimates of energy consumption, our approach

1https://www.catphones.com/
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is capable of capturing relative di�erences in energy footprints of

di�erent applications.

2 RELATED RESEARCH

Energy Measurement: For devices with detachable batteries, it is

possible to measure the energy drained by the device, by replacing

the battery with a laboratory power source. In this case voltage and

current can be captured by typical multimeters. For smart TVs and

smart refrigerators, we can connect multimeters directly between

the wall socket and the appliance. A more advanced alternative

for multimeters is a combined power source and measurement de-

vice, such as the Monsoon Power Monitor2. However, for newer

smartphones and IoT devices, batteries are not detachable, making

measurement di�cult. For some devices, with partial disassembly

we can gain access to the battery and measure energy consump-

tion. For others, the battery may be soldered to other components,

making measurement impossible.

Power Pro�ling:Measurements collected with the above methods

can be either used directly or they can be used to create a power

pro�le that gives approximate estimates during runtime use [11].

While this approach can be highly accurate, particularly when esti-

mating instantaneous power drain, it is only applicable to devices

with detachable batteries as capturing measurements requires using

a controlled power source instead of the battery.

Energy modelling: Energy modeling attempts to construct math-

ematical models that help to explain energy consumption from

computational operations of devices. While models can be used,

e.g., to understand long-term e�ects of sensors on battery life [8]

and to develop new mechanisms to mitigate energy consumption

issues [13], they are usually limited by factors such as the method

used to sample energy use [15], characteristics of the devices or

contexts of usage [14]. Embedded software sampling [2] overcomes

some of these issues, but the sampling of energy on the device

increases power consumption of the device. On the other hand,

models that pro�le energy through hardware measurements by

dedicated instruments [1, 9, 12] are not intrusive, but they o�er

poor generality as the measurements are sensitive to platforms and

test-beds used for measurements. Another possibility is to use col-

laborative large-scale data collection [6, 16] to characterize energy

consumption. While these crowd-based approaches can charac-

terize energy usage across a wide range of contexts, they tend to

have coarse granularity and only be suitable for aggregate level

information.

Mobile thermal sensing: The energy that is periodically radiated

by mobile devices makes them heat sources. Several studies have

used thermal readings to illustrate the heating behaviour of com-

ponents in smartphones. Xie et al. [18] recognize the CPU, GPU

and battery as the principal heat generators. Therminator [17] sim-

ulates how the temperature of parts of the device is linked with

its layers. Paterna et al. [7] models the thermal patterns at circuit

board-level considering the variations in ambient condition. While

several work o�ers insights about hot-energy metrics in mobile

devices, most of it requires intrusive methods of instrumentation. In

this work, we mitigate this issue by modelling the energy pro�le of

2https://www.msoon.com/online-store

devices using thermal images. Unlike existing work, our approach

does not require devices to be instrumented with mechanisms to

measure energy consumption.

3 THERMAL ENERGY-EFFICIENCY

Our proposed method for energy footprint estimation relies on

common o�-the-shelf thermal camera that is used to monitor how

the thermal radiation of a device changes as it is being used. In

this section we detail the general theory of thermal estimation,

and give details of a prototype system that we have developed as a

proof-of-concept.

Theoretical Background: In practice, a sensing device always

absorbs some of the thermal energy conducted by its heat gen-

erating components such as the CPU and battery. Assuming the

device is in thermal equilibrium with its environment before any

thermal energy is generated, any operations of the device cause

heat conduction to the outermost parts of the device, eventually

warming up its casing. The casing then radiates thermal power

proportional to the fourth power of its temperature, as described

by the Stefan-Boltzmann law: P = AϵσT 4, where A is the surface

area, ϵ is the emissivity of the casing material, σ is the constant

of proportionality3, and T is the observed surface temperature in

degrees Kelvin.

Surface Area Estimation: To estimate size of the surface area A,

we can either conduct a manual measurement to get the dimen-

sions or estimate them programmatically from a cropped thermal

image of the surface if distance between camera and target device is

known. There are standard approaches for detecting and cropping

to a Region Of Interest (ROI) in thermal images, such as the seg-

mentation algorithms presented by Duarte et al. [3]. For calculating

the distance, we can either use an inbuilt depth sensor (CAT S61)

or exploit the availability of separate RGB and thermal cameras to

perform stereo imaging. Another option would be to use a multi-

device setup where 2-4 thermal cameras monitor the device being

evaluated from di�erent vantage points. By establishing visual cor-

respondence between multiple ROI, the surface area of the object

can be estimate when the size of the imaging sensor is known.

Emissivity: Another challenge for thermal imaging is related to

emissivity of objects. Emissivity ϵ is the ratio in which the target

emits its energy as radiation compared to an ideal black surface, or

blackbody (which has ϵ = 1.0). Di�erent materials have di�erent

emissivity values, e.g., black plastic has ϵ ≈ 0.95 while emissivity

of glass ranges from ϵ ≈ 0.70 to 0.97 depending on production

process4. On contemporary smartphones, the cover is typically

designed from polycarbonate, which is capable of absorbing a sig-

ni�cant portion of the thermal radiation emitted by the device.

However, even with these devices, it is possible to capture thermal

radiation through the camera aperture which has better thermal

re�ectivity. Emissivity of the target surface can also be estimated by

comparing it against an object with well-known emissivity value,

such as a glass of water. For this, both objects need to have a uni-

form temperature (e.g. room temperature) after which we can set

P1 = P2 and solve for ϵ1 =
ϵ1A1

A2
since we know both temperatures.

3Also known as the Stefan-Boltzmann constant, σ = 5.670367 · 10
−8

4https://www.thermoworks.com/emissivity_table
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This procedure takes some time, but only needs to be performed

once for each measured device and its surface materials.

Mobile Thermal Imaging: To estimate the power drain of a de-

vice, we measure its thermal radiation using a forward looking

infrared (FLIR) camera. In our feasibility evaluation, described in

the section 4, we build a prototype based on an integrated FLIR cam-

era of a Caterpillar S61 device as the sensor. Besides thermal cam-

eras becoming highly available and integrated into smartphones,

a�ordable USB connected cameras (such as FLIR One) are also in-

creasingly available. The alternative to a smart phone sensor would

be using a standalone thermal camera (e.g. FLIR TG167). These,

however, usually lack the capabilities for automatic capturing –

convenient for measuring continuous changes in thermal radiation

over time.

4 FEASIBILITY EVALUATION

We next demonstrate feasibility of thermal energy-e�ciency as-

sessment through proof-of-concept benchmarks conducted using

three computationally intensive applications and smartphone mod-

els. As reference we consider energy measurements obtained on a

Monsoon power monitor.

4.1 Experimental Setup

Devices:We consider S5 (i9505) and Nexus (i9250) smartphones as

we need models that can be instrumented with the power meter

to obtain ground truth energy measurements. We used a thermal

camera of the smartphone CAT S60 for capturing the thermal foot-

print of these devices while running the applications. We used the

pre-installed software of S60 to take thermal images.

Applications: We consider three apps downloaded from Google

Play store and chosen as representative examples of apps with high

resource consumption. To generalize our results, the apps were

chosen from di�erent categories. Only apps compatible with both

devices were chosen.

Augment:5 is an augmented reality application where one can

manipulate and view virtual objects in the physical environment.

We used the app to display a virtual chair for 5minutes, and repeated

the experiment 5 times. The average time and power were stable,

t = 303.24 s and p = 3138.92 mW, respectively.

Chess:6 is a puzzle game that implements a minimax algorithm

to challenge users. We ran the application with a new game of

Chess each time, keeping the game running for 5 minutes at a

time. The average time and power were stable, t = 304.11 s and

p = 2067.49 mW, respectively.

Face recognition:7 is an application that allows the device to iden-

tify a registered person based on their facial features. We ran the

face detection feature of the application for roughly 5 minutes and

repeated the experiment 5 times. The average time and power were

stable, t = 297.55 s and p = 2509.736 mW, respectively.

(a) 100 (b) 50 (c) 10

(d) 100 (e) 50 (f) 10

Figure 1: Thermal radiation at di�erent battery levels, S5

(a,b,c) and Nexus (d,e,f)

4.2 Battery thermal footprint

As battery life is critical to primary operations of most mobile, wear-

able and IoT devices, the devices typically employ power saving

techniques that can in�uence the energy usage. These can poten-

tially in�uence energy estimates even if the device load remains

approximately constant over time. Before using thermal images

for evaluating energy of apps, we �rst analyze the di�erences in

thermal footprint when the battery is charged at di�erent levels.

To achieve this, we analyze the overall discharging of a battery

from 100% to 0%. We took thermal images from the backside of

both smartphones. Images are captured each time in intervals of 10,

e.g., when battery level is 100%, 90% until 10%. In the last interval,

the battery of both devices is drained until reaching 2%. Lastly, a

thermal image is taken when the device was completely depleted

(o�). The draining of the battery between intervals is induced by

running a separate resource intensive application (Youtube) on the

phone. Right before approaching an interval, each phone is left to

cool down for 10 minutes before taking the thermal image for the

interval.

Results:We �nd that thermal radiation captured by the images is

similar at di�erent battery levels with an average error in tempera-

ture (Celsius) of ±0.77 (Figure 1), i.e., the thermal images correctly

suggest that device load remains stable over time. However, this

is more di�cult to observe in power meter measurements since

noti�cations, background services, and other operations of the de-

vice cause spikes in instantaneous energy footprint. To highlight

5https://play.google.com/store/apps/details?id=com.ar.augment
6https://github.com/huber�ores/CodeO�oadingChess
7https://play.google.com/store/apps/details?id=ch.zhaw.facerecognition



Figure 2: Experimental setup. The FLIR camera of a CAT

S60 smartphone is used for taking thermal images of devices

running di�erent applications.

this, we measure the average time and power when the device does

not have any application in the foreground and just the screen is

on, we perform each experiment 5 times, for S5; t = 301.60 s and

p = 1167.30 mW ; and Nexus; t = 310.28 s and p = 2038.21 mW,

respectively. When the device is completely idle and screen is o�,

we have, for S5; t = 306.78 s and p = 27.98 mW ; and Nexus;

t = 308.09 s and p = 87.938 mW, respectively. Despite devices

activating internal operations in the background, or even going to

idle mode, thermal imaging can identify resource usage footprints

that depict the normal operations of the device.

4.3 App usage thermal footprint

We then proceed to capture the thermal footprint during application

usage. Our experimental setup is illustrated in Figure 2. The goal of

this experiment is to identify how a thermal image translates into

energy footprint for a particular application. In this experiment, we

execute three test applications for 5 minutes each, and took thermal

images at minute 1, minute 3 and minute 5. We then place the phone

into a refrigerator for 5 minutes to cool down the thermal camera

before carrying out the next set of measurements. This ensures that

the thermal image is representative of the load experienced by the

CPU of devices. Cooling down the thermal camera is essential to

correctly identify the unique thermal footprint of each application.

Five thermal images are taken each time, we use the di�erence

of the temperature between the �ve consecutive thermal images

and take the mean value of them at each time slot as the delta to

indicate the energy footprint. In addition, the cooling down period

helps to preserve the accuracy of thermal imaging, which otherwise

requires continuous re-calibration of the camera [5].

Results: The thermal footprint of applications used in the study is

shown in Figure 3 for one minute of execution. We can observe that

the thermal radiation emitted by the device intensi�es based on the

resource intensiveness of the app. For instance, for S5 (top row), we

can observe the thermal footprint to be larger for the Augmented

app and smaller for the Chess app. Moreover,we can observe a

similar pattern for the Nexus device (bottom row). This matches

the relative ordering of energy footprint given by our baseline mea-

surements obtained with the Monsoon power meter appliance (see

Figure 4 and 5), which suggests that it is possible to estimate - at

(a) Chess (b) Face (c) Augment

(d) Chess (e) Face (f) Augment

Figure 3: Thermal footprint of di�erent applications run-

ning in devices, S5 (a,b,c) and Nexus (d,e,f). We can observe

that each application has its own thermal footprint during

runtime.

least on a relative level - variations in the expected energy con-

sumption of an app from its thermal footprint. In addition, when

we proceed to estimate energy consumption from thermal imag-

ing (Table 1), we can still observe that same relative estimations

between both remain.

4.4 Limitations

While visual inspection of thermal regions indeed correlates well

with energy estimates obtained using the power monitor, several

considerations need to be taken into account before automatic

estimates of energy can be obtained. First, the thermal radiation area

needs to be accurately pointed by the camera, otherwise estimates

are misleading as radiation is not uniform due to it being absorbed

by the device material. As a result, the leaking of radiation is slow

and di�cult to spot. For instance, Figure 3 shows for Nexus (d,e,f)

that the relative temperature measurements do not match the size

of the thermal area that is estimated by the camera. Since we used

a single value in our experiments to take thermal measurements,

the energy estimates drawn from temperature values are not as

accurate as what we can observe visually. For instance, Figure 6

shows di�erences in temperature as given by our estimates. From

the �gure we can observe that the results are sensitive to how well

we are able to associate the thermal values with the appropriate

regions where thermal radiation occurs. The best result is obtained

for the augment application, in which case the thermal radiation is

re�ected throughout the backside of the device. This issue can be

mitigated through careful segmentation of the thermal image.



Augment Face Chess

Monsoon S5 3138.93 2509.74 2067.50

Thermal S5 15544.51 14654.03 14917.53

Table 1: Temperature to energy estimation using thermal

sensing: Conversion from Celsius degrees to micro watts us-

ing a standard coe�cient of 1.8991. Total energy consump-

tion is estimated in the interval of 1−5min using an integral

of 30 s periods.

Figure 4: Energy pro�le of di�erent applications running in

S5 device. Energy estimation is obtained by using Monsoon

measurements (baseline).

Figure 5: Energy pro�le of di�erent applications running in

Nexus device. Energy estimation is obtained by using Mon-

soon measurements (baseline).

5 DISCUSSION

Naturally, there is room for further research and improvements.

We discuss the most relevant points here.

Accuracy:While we show that it is possible to relate thermal radia-

tion to application usage, many further details need to be addressed

to reach a higher level of accuracy. In our experiments, we took

thermal images from the back cover of a device. However, di�erent

application heat up di�erent components of the device which can-

not be solely captured by a backside picture, e.g., the front screen

when using a camera app such as augment. One way in which

this can be overcome is by taking multiple pictures from di�erent

angles of the device, such that the overall estimation of energy is

Figure 6: Di�erence in estimated temperatures for di�erent

applications running on S5 device. Energy pro�le obtained

from thermal imaging.

aggregated from several images. Other anomalies such as hardware

failures, sub-optimal settings of devices, and environmental fac-

tors can cause overheating that can in�uence the accuracy of the

thermal imaging estimations.

Sealed devices: Increasingly many devices do not have a detach-

able battery and cannot be disassembled to gain access to the in-

ternal battery. Indeed, devices with sealed batteries are more con-

venient for device manufactures to provide better designs, e.g.,

thinner and smaller devices; and enhanced features, e.g., water re-

sistance. As a result, accessing the battery of devices will require a

higher cost of instrumentation. Our method works with all devices,

without the need to access the battery. Moreover, it also reduces

signi�cantly the cost of examining energy of devices. This is very

relevant for large-scale deployments of devices in the wild8.

Older vs newer devices: Since the computational capabilities of

devices are increasing constantly, the cost of executing an app

di�ers between older and newer devices. This suggest that ther-

mal footprint of applications varies between devices. Thus, before

estimating energy consumption via thermal imaging, the character-

istics of devices need to considered for tailoring thermal imaging

for a particular device. We rely on older devices as they provide bet-

ter visualization of thermal footprint to distinguish easily di�erent

applications.

Multiple contexts: With a charging measurement device such as

the Charger Doctor9, we can measure the charging voltage and

current when a battery-powered device is being charged via a USB

cable. Other traditional measurement tools also work in this type

of scenario. However, when we take the device o� the charger,

we can no longer use such a device. The method presented in this

paper is independent of the power source and charging/discharging

state of the device. Activity that results in high energy drain on the

device will generate heat, and the resulting thermal radiation can

be captured with our method, and energy drain estimated.

Heat conduction: In our method, we need to consider other ef-

fects, such as external and internal heat conduction. External heat

8http://mitsloan.mit.edu/ideas-made-to-matter/energy-e�ciency-new-mit-company-
tests-thermal-imaging-and-analytics-drone
9https://www.adafruit.com/product/1852
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conduction only becomes evident when both the measured device

casing and the testbed are coated with highly conductive materials,

e.g., aluminum, and they share the surface area. Fortunately, this

type of interference is easily corrected by securing the device on

a tripod or any weakly conductive platform. Internal heat conduc-

tion is observed as thermal energy being transferred through the

wires, components, and soldering of the device — especially its

copper elements. Non-conducting components shield heat from

the thermal camera, slowing its progress to the case. The thermal

energy originating from a CPU or the battery also spread over a

wide area or conduct to a whole di�erent part of the casing, making

component-wise measurement di�cult. Another source of heat

that can be transferred to devices, it is the one produce when the

device enters in contact with the user, e.g., hand holding the device.

Surface emissivity: The emissivity of the casing a�ects howmuch

of the thermal output can be measured. Measuring the thermal

radiation of surface materials with a very low emissivity value

(e.g. polished aluminium, ϵ ≈ 0.05) may not be possible because of

software and hardware limitations. However, this is limitation can

be overcome by attaching any highly conductive material with a

known emissivity value to the surface, e.g., adhesive copper tape.

It should be noted that when attempting to measuring speci�c

components or other areas, only those should be covered with the

emissive material to prevent heat distribution. In practice, most

devices are made of materials suitable for using our approach.

Additional considerations:While our preliminary results demon-

strate relative matching between estimated energy appliance and

thermal imaging, additional considerations such as ambient tem-

perature, thermal estimation duration period, proximity to target

(device) estimation, and thermal imaging quality/resolution, among

others; are factors to be taken into consideration to further tune

our approach. For instance, thermal imaging may need calibration

to work in a cold outdoor environment to provide accurate energy

estimations. Another example, a drone �ying over an IoT deploy-

ment needs to get close enough to devices to correctly monitor

their energy consumption.

Other applications: While our study focuses on estimating en-

ergy consumption of devices, the thermal footprint can be used

also to identify heating patterns of individual components and get

insights about the relationship between their location and energy

e�ciency within the structure of devices. In addition, our approach

can be utilized to identify anomalies in components, e.g., battery,

by distinguishing abnormal behaviors; and to detect energy bugs

and computationally heavy applications.

6 SUMMARY AND CONCLUSION

We contributed by developing a novel approach for measuring en-

ergy footprint of mobile and wearable systems through thermal

sensing, and demonstrated the feasibility of our idea through con-

trolled benchmarks. Our initial results suggest that thermal imaging

can indeed be used to assess relative di�erences in energy across

applications run on the same device, even if their absolute energy

footprint cannot be estimated. Our approach is useful for emerging

sensing solutions running on devices lacking detachable batteries,

such as recent smartphones (latest Apple or Samsung phones have

non detachable batteries), smartwatches and �tness trackers.
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