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Abstract—Next-generation cellular networks such as fifth-
generation (5G) will experience tremendous growth in traffic. To
accommodate such traffic demand, there is a necessity to increase
the network capacity that eventually requires the deployment of
more base stations (BSs). Nevertheless, BSs are very expensive
and consume a significant amount of energy. Meanwhile, cloud

radio access networks (C-RAN) has been proposed as an energy-
efficient architecture that leverages cloud computing technology
where baseband processing is performed in the cloud, i.e., the
computing servers or baseband processing units (BBUs) are
located in the cloud. With such an arrangement, more energy sav-
ing gains can be achieved by reducing the number of BBUs used.
This paper proposes a bin packing scheme with three variants
such as First-fit (FT), First-fit decreasing (FFD) and Next-fit (NF)
for minimizing energy consumption in 5G C-RAN. The number
of BBUs are reduced by matching the right amount of baseband
computing load with traffic load. In the proposed scheme, BS
traffic items that are mapped into processing requirements, are
to be packed into computing servers, called bins, such that the
number of bins used are minimized and idle servers can then
be switched off to save energy. Simulation results demonstrate
that the proposed bin packing scheme achieves an enhanced
energy performance compared to the existing distributed BS
architecture.

Index Terms—BBU reduction, Cloud Computing, C-RAN,
Energy-Efficiency, Virtualization.

I. INTRODUCTION

Recently, the number of connected devices has grown into

billions and today’s mobile operators are facing a serious

challenge. For example, according to Huawei Technologies,

100 billions of devices will be connected by 2020 [1]. This

will cause a surge in traffic and this traffic growth will be from

smart phones and other high-end devices like the Android,

iPad, Kindle and gaming consoles spawning a raft of data

intensive applications, Internet of Things (IoT) and machine-

to-machine connections. As a result, next-generation networks

such as fifth-generation (5G) have received unprecedented

expectations with targeting to increase 1000 times capacity,

100 times data rate, and millisecond-level delay [2]. To fulfil

these capacity demands, more base stations (BSs) with a mixer

of macro and small cells have to be deployed by operators.

Nevertheless, BSs are very expensive and consume over a

significant amount of energy [3]. This contributes to the mobile

networks Operating Expenditure (OPEX) and causes a greater

impact to the environment by emitting large amounts of CO2.

Within each BS, a large amount of power is consumed by

the power amplifier and baseband unit (BBU) or computing

servers. The energy consumption of BBU implementation is

getting more and more dominant in small cells [4] due to

gradual shrinking of cell size and the growing complexity

of signal processing. Hence, it is crucial to optimize energy-

efficiency in the BBU servers. Many energy-efficient schemes

for wireless systems have been implemented such as BS

sleeping where offloading traffic to neighbouring BSs and

then completely turning off the BS during low traffic [5],

discontinuous transmission (DTX) where a BS is temporally

switched off without offloading [6], cell zooming [7], utilizing

renewable energy sources [8]. However, research on energy-

efficient schemes for cloud BSs in centralised RANs is mostly

ignored.

Traditional distributed BSs consume a significant amount

of energy and waste a lot of computing power as the BBU

processing servers are not shared but serve each individual

cell [3], [9]. Traditionally, BSs have been preconfigured to

provide peak capacities to reduce outages. Nevertheless, the

mobile traffic varies significantly, irrespective of the either the

time of day or traffic profile and is rarely at its peak in practical

scenarios [10]. This means traffic load in a cellular network

changes gradually in a time-geometry pattern called the Tidal

Effect, which is the fluctuation of traffic load in the BS due to

the dramatic subscriber density increase in both business and

residential areas. However, current BS processing capacity is

only being used for its own coverage rather than being shared

in a large geographical area. Therefore, during the evening

BSs in residentinitiallyial areas are over-subscribed while BSs

in business areas stay under-subcribed. However, these under-

subcribed BSs still consume a significant amount of energy

even when they are not necessarily required to be kept active.

Therefore, it is imperative to solve this problem and free up

the processing capacity and save the corresponding energy.

Recently, cloud radio access networks (C-RAN) have been

proposed as a promising solution for conserving energy within

the cellular networks that leverages cloud computing technol-

ogy [3]. C-RAN comprise of three parts: (i) remote radio head

(RRH), which performs lower layer analogue radio frequency

(RF) functions, (ii) BBU for digital signal processing, and

(iii) fronthaul connection between the BBU and RRH. In

C-RAN, digital baseband processing of multiple distributed



Fig. 1. An illustration of a C-RAN Architecture.

RRH is performed in the cloud and dynamically provisioned

according to traffic demands. Furthermore, more energy sav-

ings can be gained from reduced air conditioning cost and

reduced equipment room size. This paper proposes a scheme

for evaluating the enrgy-efficiency of the C-RAN in the 5G

networks. The number of computing servers or BBUs are

reduced by matching the right amount of baseband processing

load with respect to the traffic load. This is formulated as a

bin packing problem with three variants such as First Fit (FT),

First Fit Decreasing (FFD) and Next Fit (NF) where BS traffic

items are to be packed into compute servers, called bins, such

that the number of bins used are minimized and idle servers

can then be switched off to conserve energy consumption.

The BS traffic items are mapped into the processing require-

ments. The simulations results validates the energy-efficiency

improvement of the proposed bin packing algorithms and is

compared the distributed BS architecture.

This paper is structured as follows: Section II discusses

the related works while the C-RAN architecture is described

in Section III. The proposed scheme with the system and

computational resource models are formally introduced in

Section IV. The problem formulation and heuristic algorithms

are also proposed. Section V provides the simulation results

and discussion, while providing some concluding comments.

II. RELATED WORKS

Recently, energy-efficiency of cellular networks has at-

tracted research communities both in academia and industry

due to the social, economical and environmental pressures. The

advantages of energy-efficient RANs are mainly due to the

reduction OPEX and the amount of CO2 emission. There are

a plethora of solutions towards energy-efficient BSs ranging

from energy-efficient hardware design, BS sleeping, to the

optimal deployment of BSs [5], [11].

Authors in [12] proposed a BBU-RRH switching scheme

for C-RAN that dynamically allocates BBUs to RRHs based

on the imbalance of subscribers in business and/or residential

areas. An upper limit threshold of BBU utilization is defined to

avoid overloading of the BBU. Even though the scheme in [12]

reduces the number of BBUs required, the model performs

poorly during high-traffic periods and thus still consumes a

lot of energy because more BBUs are allocated to meet traffic

demands. Authors in [13] developed a BBU pool testbed using

virtualization technology and GNU radio platform on general

purpose processors. The BBUs are dynamically provisioned

according to traffic load. However, the paper fails to show how

the number of BBUs are reduced while traffic load varies. In

addition, Linux Operating System (OS) assisted virtualization

is used, which adds more delays and jitter when performing

baseband processing on virtual BSs.

L. Jingchu et al. [14] presented a mathematical model to

quantify the statistical multiplexing gain of pooling virtual

BSs. The authors use a multi-dimensional Markov model to

evaluate pooling gain considering both compute and radio re-

sources. Nevertheless, the authors have not considered energy

consumption in the BS-Cloud. In [15], the authors proposed

an analytical energy model of a computational resource-aware

virtual BSs in a cloud-based cellular network architecture.

The authors consider the energy-delay trade-offs of a virtual

BSs considering the BS sleeping approach in general IT

platforms. The paper does not show how the energy savings

of the virtual BSs model scales with traffic load. In [16],

authors developed an OFDMA-based C-RAN test-bed with

a reconfigurable backhaul that allows four BBUs to connect

flexibly with four RHHs using radio-over-fiber technology.

The backhaul architecture allows the mapping between BBUs

and RRHs to be flexible and changed dynamically to reduce

energy consumption in the BBU pool. However, the paper

assumes static user traffic whereas in reality BS traffic is

dynamic. S. Namba et al. [17] proposed a network architecture,

called colony-RAN, which has the ability to flexibly change

cell layout by changing the connections of BBUs and RRHs in

respect to the traffic demand. However, the proposed method

has frequent reselections of RRH to BBU, i.e., ping-pong

effects.

III. C-RAN: ARCHITECTURE

The C-RAN comprises of the 4 Cs which stand for central-

ized, collaborative, cooperative and clean/green [3], [9]. The

C-RAN architecture adopted in this paper is shown in Fig. 1.

The BBUs are separated from the cell areas and centralized

in the BS-Cloud or BS Pool leaving only the RF RRH in the

cell sites. High bandwidth fiber links are then used to link

the distributed RRHs to the BS-Cloud. The BBU performs

digital baseband processing functions such as Physical (PHY)

and Media Access Control (MAC) layer. The BS-Cloud is

deployed on an open IT architecture using software-defined

radio (SDR) technology. The SDR technology involves the im-

plementation of all wireless baseband processing in software.

The main advantages of C-RAN architecture are:

• Reduction in air conditioning and other onsite power-

consuming equipment.

• A single BBU can process multiple RRH baseband sig-

nals simultaneously due to SDR technology.

• Any RRH traffic load can be processed on any BBU.

The main drawback for C-RAN is that the fronthaul links

require high bandwidth and low latency due to the transmission



of digital Inphase/Quadrature (IQ) signals. Fibre optic cables

is the most suitable fronthaul link but are costly.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The proposed system model is shown in Fig. 2. Assume

a set of RRHs R = [RRHj : j = 1, 2, ..., N ] where

N is the maximum number of RRHs serving N cell areas.

Moreover, assume a set of computing servers in the pool

M = [Si : i = 1, 2, ...,M ] where M is the number of

physical computing servers for processing baseband signals

of N cells. The baseband processing procedure of each RRH

is divided into L tasks with a set L = [Tk : k = 1, 2, ..., L]
where Tk is the kth baseband task for RRHj . The computing

processing power is measured in Giga Operations Per Second

(GOPS). Each server has maximum capacity C GOPS. The

total computing resources required by RRHj is denoted ρ
req
j

GOPS such that:

ρ
req
j =

L
∑

k=1

ρ
req
j,k ; ρ

req
j,k ǫ(0, 1] (1)

where ρ
req
j,k is the computing resource requirement for Tk from

RRHj .

Therefore, the computing resource at server Si used by

RRHj can be calculated as:

ρserver
i,j =

L
∑

k=1

ξi,j,kρ
req
j,k ; ξi,j,kǫ{0, 1} (2)

where ξi,j,k = 1 when Tk from RRHj is processed by

server Si and ξi,j,k = 0 otherwise. Tasks from RRHj can

be processed by a single server or distributed among different

serves such that the constraint below hold:

M
∑

i=1

L
∑

k=1

ξi,j,k = L (3)

And the BBU server processing is limited by server capacity

C as:

N
∑

j=1

ρserver
i,j ≤ C (4)

Even though there will be communication costs incurred

between servers’ processing tasks from the same RRH, the

ideal server inter-communication is assumed. The energy

minimization in the cloud for M BBU servers can be formu-

lated from two components [10]: dynamic and static power

consumption. The dynamic energy consumption is dependent

on the amount of processing resources on the server while the

static part comprises the energy consumption irrespective of

traffic load, but other purposes such as coolings, etc. Now, the

energy minimization problem can be formulated as:

min

ξi,j,k

M
∑

i=1



δ

N
∑

j=1

ρserver
i,j + εiPstatic



 (5)

Fig. 2. System Model.

εi =

{

0
∑N

j=1

∑L

k=1
ξi,j,k = 0

1 Otherwise
(6)

where δ is the power factor in GOPS/watts. εi shows the

status factor of server Si whether Si is ON or OFF. Pstatic

denotes the static power that is constant for every BBU server.

Constraints are from (3) and (4).

B. Computational Resource Model

The baseband tasks from cells need to be quantified, i.e.,

they need to be mapped into computing processing in GOPS.

The computing resource requirement per user per task is

calculated based on the energy consumption model in [18].

The model provides energy modelling for different types of

BSs such as macro, micro, pico and femto BSs. The micro

BSs will be selected to represent an RRH. The authors in

[18] give the power budget for BS components in the uplink

and downlink. The complexity for BS functionalities in GOPS

are defined per function block and how they scale with

transmission mode and load. The complexity values given

are used as reference cases for the baseband in downlink.

The reference case assumes 20 MHz bandwidth, which is

equivalent to 100 physical resource blocks (PRBs) in LTE

systems, single-antenna, 64-QAM, coding rate 1 and 100%

load. Note that, the load is defined as a fractional use of time

and frequency resources, i.e., load = dtxdf ). Scaling tables in

[18] contain specific scaling factors telling how each power

figure evolves with each specific parameter.

In this paper, the power equation in [18] for calculating the

computing resources required for baseband tasks is adopted.

Defining L as the set of baseband subcomponents’ tasks and

X = {BW, Ant, M, R} (see Table I) is the list of parameters

affecting the scaling of baseband processing tasks. Now, the

following expression can be written as:

Pu,t =
∑

iǫL

Pi,ref

∏

xǫX

(

xact

xref

)si,x

t

(7)

where Pu,t is processing power required by user u at time

t. Pi,ref denote the processing power of reference system.

Users that generate traffic are randomly distributed in the

cell area and the generated traffic are mapped into processing



Algorithm 1: Next Fit Algorithm

Input: a set of N RRH cells R, a set of tasks L within

RRHj , their resource requirements ρ
req
j,k , and the single

server capacity C.

Output: Number of BBUs M

for each ρ
req
j,k that arrives do

if there is a server where ρ
req
j,k will fit then

Place ρ
req
j,k into the left most server;

else

Close the server and launch a new server;

Place ρ
req
j,k into that server

end

end

end

Return M

resources as per user per task. Even though there are many

baseband tasks processed by a BS, this paper considers two

baseband tasks for simplicity, i.e., k = 2: (i) Frequency-

Domain (FD) processing for mapping/demapping and MIMO

equalization, and (ii) Forward Error Correction (FEC) denoted

by the following equations, respectively, in GOPS:

PFD
u,t =

(

30Ant + 10Ant2
) R

100
(8)

PFEC
u,t = 20

M

6
C ∗ Ant ∗

R

100
(9)

where PFD
u,t and PFEC

u,t are FD and FEC processing require-

ments, respectively, per user u per task k at time t in GOPS.

Ant is the number of antennas used per user, M is the

modulation bits, C is the coding rate used and R is the number

of PRBs used by u at time t. In the bin packing algorithm,

the tasks per cell are packed on servers hence the processing

requirements per task per cell for the two tasks is calculated

as follows:

{

ρ
req
j,1 =

∑

uǫU PFD
u,t , when k = 1

ρ
req
j,2 =

∑

uǫU PFEC
u,t , when k = 2

(10)

where U is the set of users within a cell.

C. Bin Packing Scheme

The classical bin packing problem consists of packing a

series of items with different sizes into a minimum number

of bins with capacity C. The resource allocation can be

modelled as the bin packing problem where the aim is to

pack items, called baseband tasks L, from cell areas R into

a set of servers M such that the number of servers used are

minimized and hence the energy consumption reduction. This

problem has a variety of applications ranging from traditional

stock-cutting problems, computer-disks allocation problem, to

the packing of television commercials into station breaks.

Since the problem of finding optimal packings is NP-hard,

i.e., there is no way of being guaranteed the best solution

Algorithm 2: First-Fit Algorithm

Input: a set of N RRH cells R, their resource

requirements ρ
req
j,k , and the single server capacity C.

Output: Number of BBUs M

for each ρ
req
j,k that arrives do

if there is a server where ρ
req
j,k will fit then

Place ρ
req
j,k into the left most server;

else

Launch a new server;

Place ρ
req
j,k into that server

end

end

end

Return M

Algorithm 3: First-Fit Decreasing Algorithm

Input: a set of N RRH cells R, a set of tasks L within

RRHj , their resource requirements ρ
req
j,k , and the single

server capacity C.

Output: Number of BBUs M

Sort all RRH tasks in decreasing order of ρ
req
j,k .

Launch one server of capacity .

for each ρ
req
j,k that arrives do

if there is a server where ρ
req
j,k will fit then

Place ρ
req
j,k into the left most server;

else

Launch a new server;

Place ρ
req
j,k into that server

end

end

end

Return M

without checking every possible solutions. Amongst many

other solutions, the approximation algorithm is the mostly

used because of fast heuristics that generate good but not

necessarily optimal packings. Three approximation algorithms

are considered in this paper: Next-fit (NF), First-fit (FF) and

First-fit decreasing (FFD).

The NF algorithm as illustrated in Algoirthm 1 works as

follows: Initially all bins are empty and we start with bin

j = 1 and item i = 1. If bin j has residual capacity for

item i, assign item i to bin j, i.e., a(i) = j, and repeat

the process for the next item, i + 1. Otherwise close bin j

and assign bin j + 1 for item i. Repeat until all items are

assigned. The NF algorithm never considers bins again that

have been left behind. However, the wasted capacity therein

leaves room for improvement. Therefore, the FF algorithm

illustrated in Algorithm 2 has been proposed, which is a

natural way of finding the approximation. In this algorithm, all

bins are initially empty and it starts with the current number

of bins K and item i = 1. Consider all bins j = 1, ...,K and

place item i in the first bin that has sufficient residual capacity.



TABLE I
SIMULATION PARAMETERS

Notations Descriptions Range Reference

BW Bandwidth 10 (50 PRBs) 20 (100 PRBs)

Ant Number of antennas 1, 2, 3 1

M Modulation 1, 2, 4, 6 6

C Coding rate 1/3 - 1 1

Fig. 3. Number of BBUs used in the cloud.

If there is no such bin, increment K and repeat until all items

is assigned. The FFD approximation algorithm as shown in

Algorithm 3 is the same as the FF algorithm but all items are

first sorted in descending order.

V. SIMULATION RESULTS AND DISCUSSION

A. Parameter Settings

To analyse the performance of the proposed bin packing

approximation algorithms, a simulation layout of 10 cells

comprising of a maximum of 10 BBUs was considered.

Bandwidth of 10 MHz was considered and 100 users in total

are generated within the cells. Each cell is divided into three

concentric circles, where users located at circle closer to the

cell center use high modulation order and users at the edge of

the cell use lower order modulation scheme. Other simulation

parameters are shown in Table I. All results using the three

bin packing algorithms are compared with the baseline system

which comprises of distributed BSs with 10 individual BBU

processing servers for 10 cells.

The users are allocated PRB per transmission time inter-

val (TTI), whcih is 1ms, and the scheduling scheme used

is proportional-fairness such that users are allocated equal

number of PRBs per TTI. Adaptive Modulation and Coding

scheme is used to adapt to the changing channel conditions. As

the simulation runs, the values of Ant, M , C, R were captured

and mapped into processing requirements and loaded into the

bin packing scheme to reduce the number of servers M . For

computing the power consumption, the power factor used is

δ = 40 GOPS/watt and Pstatic = 200 GOPS as in [18].

Fig. 4. Power Consumption in the cloud.

B. Results Evaluation

BBU server reduction: Fig. 3 shows the number of servers

used in the cellular network for different traffic loads. The re-

sults show that as the traffic load increases, more BBU servers

are required. When traffic load is at its peak, all BBUs are kept

in active mode to process all traffic loads in all cases. It can

be seen from the graph that the FFD approximation algorithm

outperforms compared to other schemes in minimizing the

number of servers used. This is because it first sorts items and

then packs the bigger (harder) traffic item first. The smaller

traffic items are usually packed at the last. On the other hand,

the NF algorithm performs poorly since items are not ordered

and also certain servers have closed before items are fully

packed in it. The baseline scheme is expected to use more

number of BBU servers and equals to the number of cells or

RRHs, in this case 10 servers.

Energy minimization: Fig. 4 illustrates the energy con-

sumption for each algorithm versus traffic load. The power

consumption by employing all algorihms was increased with

the traffic load. At the peak traffic load, maximum power was

consumed for all algorithms because all BBUs were utilized.

The FFD approximation algorithm consumes less power than

others due to the utilization of the fewer number of servers.

During the low-traffic periods, the FFD algorithm was able

to save power consumption up to 73%. The baseline system

consumes more power as expected because all 10 BBU servers

were always utilized.

VI. CONCLUSION

This paper presented an energy-efficient cloud radio access

networks (C-RAN) for 5G with employing three bin packing

approximation algorithms, namely Next-fit (NF), First-fit (FF)

and First-fit decreasing (FFD). The number of computing

servers are reduced by matching the right amount of baseband

processing with traffic load. For the NF algorithm, some of

bins (BBUs) are not fully utilized because those bins are

closed before they are filled up, whereas the FF algorithm



places items (processing tasks) where they fit without closing

any underutilized bins. For the FFD algorithm, items are first

sorted in descending order and then placed according to the

FF approximation algorithm. The FFD algorithm provided

the maximum energy savings among others, which is up

to 73% during low-traffic periods. In future, this energy-

efficient scheme will be extended for further conserving energy

consumption by integrating switching on/off cells.
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