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Evaluating Gaussian Process Metamodels and Sequential Designs

for Noisy Level Set Estimation

Xiong Lyu∗ Mickaël Binois† Michael Ludkovski‡

March 3, 2020

Abstract

We consider the problem of learning the level set for which a noisy black-box function exceeds a

given threshold. To efficiently reconstruct the level set, we investigate Gaussian process (GP) meta-

models. Our focus is on strongly stochastic samplers, in particular with heavy-tailed simulation noise

and low signal-to-noise ratio. To guard against noise misspecification, we assess the performance of

three variants: (i) GPs with Student-t observations; (ii) Student-t processes (TPs); and (iii) classifica-

tion GPs modeling the sign of the response. In conjunction with these metamodels, we analyze several

acquisition functions for guiding the sequential experimental designs, extending existing stepwise uncer-

tainty reduction criteria to the stochastic contour-finding context. This also motivates our development

of (approximate) updating formulas to efficiently compute such acquisition functions. Our schemes

are benchmarked by using a variety of synthetic experiments in 1–6 dimensions. We also consider an

application of level set estimation for determining the optimal exercise policy of Bermudan options in

finance.

1 Introduction

1.1 Statement of Problem

Metamodeling has become widespread for approximating expensive black-box functions that arise in appli-

cations ranging from engineering to environmental science and finance (Santner et al., 2013). Rather than

aiming to capture the precise shape of the function over the entire region, in this article we are interested in

estimating the level set where the function exceeds some particular threshold. Such problems are common

in cases where we need to quantify the reliability of a system or its performance relative to a benchmark. It

also arises intrinsically in control frameworks where one wishes to rank the pay-off from several available

actions (Hu and Ludkovski, 2017).

We consider a setup where the latent f : D → R is a continuous function over a d-dimensional input

space D ⊆ R
d. The level-set estimation problem consists in classifying every input x ∈ D = S ∪ N
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according to

S = {x ∈ D : f(x) ≥ 0}, N = {x ∈ D : f(x) < 0}. (1.1)

Without loss of generality the threshold is taken to be zero, so that the level set estimation is equivalent to

learning the sign of the response function f . For later use we also define the corresponding zero-contour of

f , namely the partition boundary ∂S = ∂N = {x ∈ D : f(x) = 0}.

For any x ∈ D, we have access to a simulator Y (x) that generates noisy samples of f(x):

Y (x) = f(x) + ǫ(x), (1.2)

where ǫ(x) are realizations of independent, mean zero random variables with variance τ2(x).

To assess a level-set estimation algorithm, we compare the resulting estimate Ŝ with the true S in terms

of their symmetric difference. Let µ be a probability measure on the Borel σ-algebra B(D) (e.g., µ = LebD).

Then our loss function is

L(S, Ŝ) = µ(S∆Ŝ), (1.3)

where S1∆S2 := (S1 ∩ SC
2 )

⋃

(SC
1 ∩ S2). Frequently, the inference is carried out by first producing an

estimate f̂ of the response function; in that case we take Ŝ = {x ∈ D : f̂(x) ≥ 0}) and rewrite the loss as

L(f, f̂) =

∫

x∈D
I(sign f̂(x) 6= sign f(x))µ(dx), (1.4)

where I(·) is the indicator function.

1.2 Motivation

As a concrete example of level set estimation, consider the problem of evaluating the probability of fail-

ure, determined via the limit state S of a performance function f(·) (Picheny and Ginsbourger, 2013). The

system is safe when f(x) ≤ h, and fails otherwise. In the context where the performance function can be

evaluated via deterministic experiments, the estimation of the safe zone (more precisely its volume µ(S))

was carried out in Bect et al. (2012) and Mukhopadhyay et al. (2005) employing a Gaussian Process ap-

proach with a sequential design. A related example dealing with the probability of failure in a nuclear fissile

chain reaction appeared in Chevalier et al. (2014a).

Another application, which motivated this present investigation, comes from simulation-based algo-

rithms for valuation of Bermudan options (Gramacy and Ludkovski, 2015; Ludkovski, 2018). This problem

consists of maximizing the expected reward h(τ,Xτ ) over all stopping times τ ∈ {0,∆t, 2∆t, . . . , T}
bounded by the specified horizon T :

V (t, x) = supτ≥t,τ∈SE[h(τ,Xτ )|Xt = x], (1.5)

where (Xt) is the underlying asset price at time t, typically satisfying a stochastic differential equation

and ∆t is the frequency of exercising. The approach in the so-called Regression Monte Carlo methods

(Longstaff and Schwartz, 2001; Tsitsiklis and Van Roy, 2001) is to convert the decision of whether to

exercise the option τ(t, x) = t or continue τ(t, x) > t when Xt = x at intermediate step t, into comparing

the immediate reward h(t, x) vis à vis the reward-to-go C(t, x). In turn this is equivalent to determining

the zero level set (known as the continuation region) St = {x ∈ D : f(x; t) ≥ 0} of the timing value
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f(x; t) := C(t, x) − h(t, x). The stopping problem (1.5) is now solved recursively by backward induction

over t = T − ∆t, T − 2∆t, . . ., which allows noisy samples of f(x; t) to be generated by simulating a

trajectory Xx
t:T emanating from x and evaluating the respective pathwise reward-to-go. Probabilistically,

this means that we are interested in (1.2) where f corresponds to a conditional expectation related to a

path-dependent functional of the Markov process X·; the loss function (1.3) arises naturally as a metric

regarding the quality of the estimated stopping rule in terms of the underlying distribution µ(·; t) of Xt. We

refer to Ludkovski (2018) for a summary of existing state of the art and the connection to employing a GP

metamodel for learning the timing value T (·; t).

1.3 Design of Experiments for Contour Finding

Reconstructing S via a metamodel can be divided into two steps: the construction of the response model

and the development of methods for efficiently selecting the simulation inputs x1:N , known as design of

experiments (DoE). Since the level set is intrinsically defined in terms of the unknown f , an adaptive DoE

approach is needed that selects xn’s sequentially.

For the response modeling aspect, GP regression, or kriging, has emerged as the most popular nonpara-

metric approach for both deterministic and stochastic black-box functions (Bect et al., 2012; Gramacy and

Lee, 2009; Picheny et al., 2013a; Jalali et al., 2017). GPs have also been widely used for the level-set esti-

mation problem; see Bryan and Schneider (2008); Gotovos et al. (2013); Hu and Ludkovski (2017); Picheny

et al. (2010) and Ranjan et al. (2008). In a nutshell, at step n the GP paradigm constructs a metamodel f̂ (n)

that is then used to guide the selection of xn+1 and also to construct the estimate Ŝ(n). To this end, GPs

are well suited for sequential design by offering a rich uncertainty quantification aspect that can be (analyt-

ically) exploited to construct information-theoretic DoE heuristics. The standard framework is to develop

an acquisition function In(x) that quantifies the value of information from taking a new sample at input x

conditional on an existing dataset (x1:n, y1:n) and then to myopically maximize In:

xn+1 = argmax
x∈D

In(x). (1.6)

Early level-set sampling criteria were proposed by Bichon et al. (2008), Picheny et al. (2010), and Ranjan

et al. (2008) based on modifications to the Expected Improvement criterion (Jones et al., 1998) for response

function optimization. A criterion more targeted to reduce the uncertainty about S itself was first developed

by Bect et al. (2012) using the concept of stepwise uncertainty reduction (SUR). Specifically, the SUR

strategy aims to myopically maximize the global learning rate about S; see also Chevalier et al. (2014a) for

related computational details. Recently, further criteria using tools from random set theory were developed

in Chevalier et al. (2013); Azzimonti et al. (2016). Specifically, those works use the notions of Vorob’ev

expectation and Vorob’ev deviation to choose inputs that minimize the posterior expected distance in mea-

sure between the level set S and its estimate Ŝ. This approach is computationally expensive however, and

requires conditional simulations of the posterior Gaussian field. Other works dealing with more conserva-

tive estimates are Bolin and Lindgren (2015); Azzimonti et al. (2019). Clear analysis comparing all these

choices in the stochastic setting is currently lacking.

1.4 Summary of Contributions

Most of the cited papers consider only the deterministic setting without any simulation noise. The main

goal of this article is to present a comprehensive assessment of GP-based surrogates for stochastic contour-

finding. In that sense, our analysis complements the work of Picheny et al. (2013b) and Jalali et al.
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(2017), who benchmarked GP metamodels for Bayesian optimization (BO) where the objective is to evaluate

maxx f(x).

While simple versions (with constant or prespecified Gaussian noise) are easily handled, the literature

on GP surrogates for complex stochastic simulators remains incomplete. Recently, several works focused

on heteroskedastic simulation variance; see the Stochastic Kriging approach of Ankenman et al. (2010) and

the earlier works by two of the authors (Binois et al., 2018, 2019). In the present article we instead target the

non-Gaussian aspects, in particular the likely heavy-tailed property. This issue is fundamental to any realistic

stochastic simulator where there is no justification for assuming Gaussian-distributed ǫ(x) (as opposed to

the physical experimental setup where ǫ represents observation noise and is expected to be Gaussian thanks

to the central limit theorem). This motivates us to study alternative GP-based metamodels for learning Ŝ

that are more robust to non-Gaussian ǫ in (1.2). In parallel, we investigate which of the contour-finding

heuristics outlined above perform best in such setups.

To stay within the sequential design paradigm, we continue to work with a GP-based setup but investi-

gate several modifications that are relevant for learning Ŝ.

• To relax the Gaussian noise assumption, we investigate t-observation GPs (Williams and Rasmussen,

2006; Jylänki et al., 2011); the use of the Student-t likelihood nests both the heavy-tailed and Gaussian

cases.

• As another non-Gaussian specification we consider Student-t processes (TPs) (Shah et al., 2014; Wang

et al., 2017), as one replacement of GPs, that are also resistant to observation outliers.

• To target the classification-like objective underlying (1.3), we consider the use of classification GPs

that model the sign of the response Y (x) via a probit logistic model driven by a latent GP Z(·):
P(Y (x) > 0|x) = probit(Z(x)). Deployment of the logistic regression is expected to “wash out”

non-Gaussian features in ǫ(x) beyond its effect on the sign of the observations.

• In a different vein, to exploit a structure commonly encountered in applications where the level set

S is connected, we study the performance of monotone GP regression/classification metamodels (Ri-

ihimäki and Vehtari, 2010) that force f (or Z) to be monotone in the specified coordinates.

Our analysis is driven by the primal effect of noise on contour-finding algorithms. This effect was al-

ready documented in related studies, such as that of Jalali et al. (2017) who observed the strong impact of

ǫ(·) on performance of BO. Consequently, specialized metamodeling frameworks and acquisition functions

are needed that can best handle the stochasticity for the given loss specification. Thus, the combination of

the above tools with the GP framework aims to strike the best balance in carrying out uncertainty quan-

tification and constructing a robust surrogate that is not too swayed by the simulation noise structure. In

the context of GPs, this means accurate inference of the mean response and sampling noise that in turn

drive the posterior mean f̂ and the posterior GP variance s(x)2. Both of the latter ingredients are needed to

blend the exploitation objective to locally learn the contour ∂S and to explore less-sampled regions. These

issues drive our choices of the metamodels and also factor in developing the respective acquisition func-

tions In(x); see cf. Section 3. On the latter front we consider four choices (MCU, cSUR, tMSE, ICU),

including heuristics that depend only on the posterior standard deviation s(n)(·), as well as those that an-

ticipate information gain from sampling at xn+1 via the look-ahead standard deviation s(n+1)(·). Because

in the non-Gaussian GPs s(n+1) depends on Y (xn+1), we develop tractable approximations ŝ(n+1) for that

purpose, see Propositions 4.2-4.3-4.4.
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To recap, our contributions can be traced along five directions. First, we investigate two ways to handle

heavy-tailed simulation noise via a GP with t-observations and via TP. As far as we are aware, this is the first

application of either tool in sequential design and contour-finding contexts. Second, we present an original

use of monotonic GP metamodels for level set estimation. This idea is related to a gray-box approach that

aims to exploit known structural properties of f (or S) so as to improve on the agnostic black-box strate-

gies. Third, we analyze the performance of classification GP metamodels for contour-finding. This context

offers an interesting and novel comparison between regression and classification approaches benchmarked

against a shared loss function. Fourth, we develop and implement approximate look-ahead formulas for all

our metamodels that are used for the evaluation of acquisition functions. To our knowledge, this is the first

presentation of such formulas for non-Gaussian GPs, as well as TPs. Fifth, beyond the metamodels them-

selves, we also provide a detailed comparison among the proposed acquisition functions, identifying the

best-performing combinations of I(·) and metamodel f̂ and documenting the complex interplay between

design geometry and surrogate architecture.

The rest of the article is organized as follows. Section 2 describes the metamodels we employ. Section 3

develops the sequential designs for the level-set estimation problem, and Section 4 discusses the look-ahead

variance formulas for non-Gaussian GPs. Section 5 compares the models using synthetic data where ground

truth is known. Two case studies from derivative pricing are investigated in Section 6. In Section 7 we

summarize our conclusions.

2 Statistical Model

2.1 Gaussian Process Regression with Gaussian Noise

We begin by discussing regression frameworks for contour finding that target learning the latent f(·) based

on the loss (1.4). The Gaussian process paradigm treats f as a random function whose posterior distribution

is determined from its prior and the collected samples An ≡ {(xi, yi), 1 ≤ i ≤ n}. We view f(·) ∼
GP (m(·),K(·, ·)), a priori, as a realization of a Gaussian process completely specified by its mean function

m(x) := E[f(x)] and covariance function K(x, x′) := E[(f(x)−m(x))(f(x′)−m(x′))].

In the classical case (Williams and Rasmussen, 2006), the noise distribution is homoskedastic Gaussian

ǫ(x) ∼ N (0, τ2), and the prior mean is zero, m(x) = 0. Given observations y1:n = [y1, . . . , yn]
T at inputs

x1:n = [x1, . . . , xn]
T , the conditional distribution f |An is then another Gaussian process, with posterior

marginal mean f̂
(n)
Gsn(x∗) and covariance v

(n)
Gsn(x∗, x

′
∗) given by (throughout we use subscripts to indicate the

metamodel type, e.g., Gsn for Gaussian noise)

f̂
(n)
Gsn(x∗) = k(x∗)[K+ τ2I]−1y1:n, (2.1)

v
(n)
Gsn(x∗, x

′
∗) = K(x∗, x

′
∗)− k(x∗)[K+ τ2I]−1k(x′∗)

T , (2.2)

with the 1×n vector k(x∗) and n×n matrix K defined by k(x∗) := K(x∗,x1:n) = [K(x∗, x1), ...,K(x∗, xn)],

and Ki,j := K(xi, xj).

The posterior mean f̂
(n)
Gsn(x∗) is treated as a point estimate of f(x∗) and the posterior standard deviation

s
(n)
Gsn(x∗)

2 = v
(n)
Gsn(x∗, x∗) as the uncertainty of this estimate. We use f to denote the random posterior

vector f(x1:n)|An.

Model Fitting: In this article, we model the covariance between the values of f at two inputs x and x′
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with the squared exponential (SE) function:

Kse(x, x
′) := σ2

se exp

(

−
d

∑

i=1

(xi − x′i)2

2θ2i

)

, (2.3)

defined in terms of the hyperparameters ϑ = {σse, θ1, ..., θd, τ} known as the process variance and length-

scales, respectively. Simulation variance τ is also treated as unknown and part of ϑ. Several common ways

exist for estimating ϑ. Within a Bayesian approach we integrate against the prior p(ϑ) using

p(f |y1:n,x1:n,ϑ) =
p(y1:n|x1:n, f)p(f |ϑ)

p(y1:n|x1:n,ϑ)
, (2.4)

where p(y1:n|x1:n, f) is the likelihood and p(f |ϑ) is the latent function prior. Notice that following the

Gaussian noise assumption, the likelihood p(y1:n|x1:n, f) is Gaussian. With a Gaussian prior p(f |ϑ), the

posterior p(f |y1:n,x1:n,ϑ) is tractable and also follows a Gaussian distribution. The normalizing constant in

the denominator p(y1:n|x1:n,ϑ) is independent of the latent function and is called the marginal likelihood,

given by

p(y1:n|x1:n,ϑ) =

∫

p(y1:n|x1:n, f)p(f |ϑ)df . (2.5)

One may similarly express the posterior over the hyperparameters ϑ, where p(y1:n|x1:n,ϑ) plays the role

of the likelihood. To avoid expensive MCMC integration, we use the Maximum Likelihood (ML) estimate

ϑ̂ which maximizes the likelihood (2.5). Given the estimated hyperparameters ϑ̂, we take the posterior of f

as p(f |y1:n,x1:n, ϑ̂).

2.2 Gaussian Process Regression with Student t-Noise

Taking the noise term ǫ(x) as Gaussian is widely used since the marginal likelihood is then analytically

tractable. In a stochastic simulation setting however, the exact distribution of the outputs relative to their

mean is unknown and often is clearly non-Gaussian. A more robust choice is to assume that ǫ(x) has a

Student-t distribution (Jylänki et al., 2011). In particular, this may work better when the noise is heavy-

tailed by making inference more resistant to outliers (O’Hagan, 1979). In the resulting t-GP formulation

ǫ(x) is assumed to be t-distributed with variance τ2 and ν > 2 degrees of freedom (the latter is treated as

another hyperparameter). The marginal likelihood of observing y1:n can be written as

ptGP(y1:n|x1:n, f) =

n
∏

i=1

Γ((ν + 1)/2)

Γ(ν/2)
√
νπσn

(

1 +
(yi − fi)

2

νσ2
n

)−(ν+1)/2

, (2.6)

where Γ(·) is the incomplete Gamma function. The likelihood ptGP(y1:n|x1:n, f) in (2.4) is no longer

Gaussian, and integrating (2.6) against the Gaussian prior p(f |ϑ) is intractable; we therefore use the Laplace

approximation (LP) method (Williams and Barber, 1998) to calculate the posterior. A second-order Taylor

expansion of log ptGP(f |x1:n,y1:n) around its mode, f̃
(n)
tGP := argmaxf ptGP(f |x1:n,y1:n), gives a Gaussian

approximation

ptGP(f |x1:n,y1:n) ≈ qtGP(f |x1:n,y1:n) = N
(

f̃
(n)
tGP,Σ

−1
tGP

)

, (2.7)
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where Σ−1
tGP is the Hessian of the negative conditional log posterior density at f̃

(n)
tGP:

ΣtGP = −∇2 log ptGP(f |x1:n,y1:n)|
f=f̃

(n)
tGP

= K−1 +WtGP, (2.8)

and WtGP = −∇2 log ptGP(y1:n|f ,x1:n)|
f=f̃

(n)
tGP

is diagonal, since the likelihood factorizes over observa-

tions.

Using (2.7), the approximate posterior distribution is also Gaussian f(x∗)|An ∼
N (f̂

(n)
tGP(x∗), s

2
tGP(x∗)), defined by its mean f̂

(n)
t (x∗) and covariance v

(n)
tGP(x∗, x

′
∗):

f̂
(n)
tGP(x∗) = k(x∗)K

−1f̃
(n)
tGP, (2.9)

v
(n)
t (x∗, x

′
∗) = K(x∗, x

′
∗)− k(x∗)[K+W−1

tGP]
−1k(x′∗). (2.10)

Note the similarity to (2.1)–(2.2): with Student-t likelihood the mode f̃
(n)
tGP plays the role of y1:n and W−1

tGP

replaces the noise matrix τ2I. Critically, the latter implies that the posterior variance is a function of both

designs x1:n and observations y1:n.

2.3 Gaussian Process Classification

Our target in (1.1) is to learn where the mean response is positive, which is equivalent to classifying each

x ∈ D as belonging either to S or to N . Assuming that ǫ(x) is symmetric, {x ∈ S} = {f(x) ≥ 0} =

{P(Y (x) > 0) > 0.5}. This motivates us to consider the alternative of directly modeling the response sign

(rather than overall magnitude) via a classification GP model (Cl-GP) (Williams and Barber, 1998; Williams

and Rasmussen, 2006). The idea is to model the probability of a positive observation Y (x) by using a probit

logistic regression: P(Y (x) > 0|x) = Φ(Z(x)), with Φ(·) the standard normal cdf. The latent classifier

function is taken as the GP Z ∼ GP (0,K(·, ·)). After learning Z we then set Ŝ = {x ∈ D : Ẑ(x) > 0}.

To compute the posterior distribution of Z conditional on An, we use the fact that for an observation

(xi, yi) and conditional on zi = Z(xi) the likelihood of yi > 0 is Φ(zi)1{yi≥0} + (1 − Φ(zi))1{yi<0}. To

simplify notation we use Y̌ (x) = signY (x) ∈ {−1, 1} to represent the signed responses driving Cl-GP,

leading to pCl(y̌1:n|z,x1:n) =
∏n

i=1Φ(y̌izi). The posterior of the latent z = Z(x1:n) is therefore

pCl(z|x1:n, y̌1:n) =
p(z|x1:n)

∏n
i=1Φ(y̌izi)

p(y̌1:n|x1:n)
. (2.11)

Similar to t-GP, we use a Laplace approximation for the non-Gaussian pCl(z|x1:n, y̌1:n) in Eq. (2.11)

(details to be found in Appendix B). The posterior mean for Z(·) at x∗ is then expressed by using the GP

predictive mean equation (2.1) and LP approximation (B.1):

ẑ(n)(x∗) = k(x∗)K
−1z̃(n), (2.12)

v
(n)
Cl (x∗, x

′
∗) = K(x∗, x

′
∗)− k(x∗)[K+V−1]−1k(x′∗)

T . (2.13)

We again see the same algebraic structure, with z̃(n) a stand-in for y1:n in (2.1) and V−1 a stand-in for τ2I

in (2.2). Also note that we may formally link the Z of the Cl-GP metamodel to the GP f used previously

via the posterior probability that x ∈ S:

P(f(x) ≥ 0|An) = P(Y (x) > 0|An) =

∫

R

Φ(z)pZ(x)(z|An)dz

=

∫

Φ(z)φ

(

z − ẑ(n)(x)

s
(n)
Cl (x)

)

dz = Φ

(

ẑ(n)(x)
√

1 + s
(n)
Cl (x)

2

)

.
(2.14)
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2.4 Student-t Process Regression with Student-t Noise

Instead of just adding Student-t likelihood to the observations, Shah et al. (2014) proposed t-processes

(TPs) as an alternative to GPs, deriving closed-form expressions for the marginal likelihood and posterior

distribution of the t-process by imposing an inverse Wishart process prior over the covariance matrix of a

GP model. They found the t-process to be more robust to model misspecification and to be particularly

promising for BO. Moreover, Shah et al. (2014) showed that TPs retain most of the appealing properties of

GPs, including analytical expressions, with increased flexibility.

As noticed for example in Williams and Rasmussen (2006), dealing with noisy observations is less

straightforward with TPs, since the sum of two independent Student-t distributions has no closed form.

Still, this drawback can be circumvented by incorporating the noise directly in the kernel. The cor-

responding data-generating mechanism is taken to be multivariate-t y1:n ∼ T
(

ν,m(x1:n),K+ τ2I
)

,

where the degrees of freedom are ν ∈ (2,∞). The posterior predictive distribution is then f(x∗)|An ∼
T
(

ν + n, f̂
(n)
TP (x∗), v

(n)
TP(x∗, x∗)

)

, where (Shah et al., 2014)

f̂
(n)
TP (x∗) =k(x∗)[K+ τ2I]−1y1:n, (2.15)

v
(n)
TP(x∗, x

′
∗) =

ν + β(n) − 2

ν + n− 2

{

K(x∗, x
′
∗)− k(x∗)[K+ τ2I]−1k(x′∗)

T
}

, (2.16)

with

β(n) := y⊤
1:n[K+ τ2I]−1y1:n.

Comparing with the regular GPs, we have the same posterior mean f̂
(n)
TP (x∗) = f̂

(n)
Gsn(x∗), but the pos-

terior covariance now depends on observations y1:n and is inflated: v
(n)
TP(x∗, x

′
∗) =

ν+β(n)−2
ν+n−2 v

(n)
Gsn(x∗, x

′
∗).

Moreover, the latent function f and the noise are uncorrelated but not independent. As noticed in Shah et al.

(2014), assuming the same hyperparameters, as n goes to infinity, the above predictive distribution becomes

Gaussian.

Inference of TPs can be performed similarly as for a GP, for instance based on the marginal likelihood:

pTP(y1:n|x1:n,ϑ) =
Γ(ν+n

2 )

((ν − 2)π)
n
2 Γ(ν2 )

|K|−1/2

(

1 +
y⊤
1:nK

−1y1:n

ν − 2

)− ν+n
2

. (2.17)

One issue is estimation of ν, which plays a central role in the TP predictions. We find that restricting ν to

be small is important in order to avoid degenerating to the plain Gaussian GP setup.

2.5 Metamodel Performance for Level Set Inference

To evaluate the performance of different metamodels, we consider several metrics. The first statistic is the

error rate ER based on the loss function L defined in Eq. (1.3), measuring the distance between the level set

S and its estimate Ŝ:

ER := µ(S∆Ŝ) =

∫

x∈D
I

[

sign f(x) 6= sign f̂(x)
]

µ(dx). (2.18)

For Cl-GP, we replace f(x) with z(x) in the above, namely, use µ(S∆Ŝ) = µ{x ∈ D : ẑ(x) < 0 <

z(x) ∪ ẑ(x) > 0 > z(x)}. A related statistic is the bias B, which is based on the signed (µ-weighted)

difference between S and Ŝ:

B =µ(S\Ŝ)− µ(Ŝ\S) =
∫

x∈D

{

I[f̂(x) < 0 < f(x)]− I[f̂(x) > 0 > f(x)]
}

µ(dx). (2.19)
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The error rate ER and bias B evaluate the accuracy of the point estimate Ŝ when the ground truth is

known. In a realistic case study when the latter is unavailable, we replace R by its empirical counterpart,

based on quantifying the uncertainty in Ŝ through the associated uncertainty of f̂ . Following Azzimonti

et al. (2016), we define the empirical error E as the expected distance in measure between the random set

S|A and its estimate Ŝ:

E := E

[

µ(S∆Ŝ)| A
]

=

∫

x∈D
Ē(x)µ(dx), (2.20)

with Ē(x) calculated by using (2.1) and (2.2):

Ē(x) := E

[

I[sign f(x) 6= sign f̂(x)]|A
]

=

∫

R

I[sign f(x) 6= sign f̂(x)]p(f(x)|A)df(x) = Φ

(−|f̂(x)|
s(x)

)

.

The local empirical error Ē(x) is the posterior probability of wrongly classifying x conditional on the

training dataset A. It is intrinsically tied to the point estimate f̂(x) and the associated posterior variance

s(x)2 through the Gaussian uncertainty quantification. For the TPs, the predictive distribution is Student-t,

so that the Gaussian cdf Φ is replaced with the respective survival function.

Uncertainty Quantification: To quantify the overall uncertainty about S (rather than local uncertainty

about f(x)), a natural criterion is the volume of the credible band CI∂S that captures inputs x whose sign

classification remains ambiguous given A. A simple definition at a credibility level α (e.g., α = 0.05) would

be

CI
(n)
∂S =

{

x ∈ D :
(

f̂ (n)(x) + z1−α
2
s(n)(x)

)(

f̂ (n)(x)− z1−α
2
s(n)(x)

)

< 0
}

, (2.21)

where z1−α
2

is the appropriate Gaussian/Student-t α-quantile. Thus (2.21) evaluates the region where the

sign of f is nonconstant over the posterior α-CI of f . Heuristically however, CI∂S ≃ {x ∈ D : Ē(x) >

α} is effectively equivalent to empirical error Ē(x) exceeding α, so that the volume of CI∂S is roughly

proportional to the integrated empirical error E .

In a more sophisticated approach based on random set theory, Chevalier et al. (2013) used the Vorob’ev

deviation to define the uncertainty measure Vα(Ŝ):

Vα(Ŝ) :=E

[

µ(Ŝα∆S)| A
]

=

∫

x∈Ŝα

P(x /∈ S|A)µ(dx) +

∫

x∈(Ŝα)C
P(x ∈ S|A)µ(dx)

=

∫

x∈Ŝα

(1− pV (x))µ(dx) +

∫

x∈(Ŝα)C
pV (x)µ(dx), (2.22)

where

Ŝα :=
{

x ∈ D : f̂(x)− z1−α
2
s(x) ≥ 0

}

and

pV (x) = P(x ∈ S|A) = Φ

(

f̂(x)

s(x)

)

.

An α satisfying the unbiasedness condition

∫

x∈D
pV (x)µ(dx) = E[µ(S)|A] = µ(Ŝα)

9



is referred to as the Vorob’ev threshold and can be determined through dichotomy (Chevalier et al., 2013).

If the Vorob’ev threshold is picked to be zero, then the Vorob’ev deviation is reduced to the empirical error

E . Because of the computational overhead of working with (2.22), we restrict attention to the credible bands

defined through Ŝα, which correspond to local uncertainty about f (or Z) as in (2.21).

3 Sequential Design

We estimate the level set S in a sequential design setting that assumes that f is expensive to evaluate, for

example because of the complexity of the underlying stochastic simulator. Therefore efficient selection of

the inputs x1:n is important. In sequential design, at each step the next sampling location xn+1 is selected

given all previous measurements. The Bayesian approach to sequential design is based on greedily optimiz-

ing an acquisition function as in (1.6). These strategies got popularized thanks to the success of the expected

improvement (EI) criterion and the associated efficient global optimization (EGO) algorithm (Jones et al.,

1998). The basic loop for sequential design is as following:

• Initialize An0 = {(xi, yi), 1 ≤ i ≤ n0}.

• Loop for n = n0+1, . . . N .

– Choose the next input xn+1 = argmaxx∈M In(x), and sample yn+1 = Y (xn+1).

– Augment An+1 = An
⋃{(xn+1, yn+1)}.

– Update Ŝ(n+1) with An+1.

We now propose several metrics for the acquisition function In(x) in Eq. (1.6). The key plan is to target

regions close to the boundary ∂Ŝ. A second strategy is to use the look-ahead posterior standard deviation

s(n+1) conditional on sampling at x, in order to assess the corresponding information gain. This links

the constructed design to the metamodel for f , since different surrogate architectures quantify uncertainty

differently.

The first metric, dubbed Maximum Contour Uncertainty (MCU), stems from the Upper Confidence

Bound (UCB) strategies proposed by Srinivas et al. (2012) for Bayesian optimization. The idea of UCB is to

express the exploitation-exploration trade-off through the posterior mean f̂(x) and standard deviation s(x).

Following the spirit of UCB, MCU blends the minimization of |f̂ (n)(x)| (exploitation) with maximization

of the posterior uncertainty s(n)(x) (exploration):

IMCU
n (x) := −|f̂ (n)(x)|+ γ(n)s(n)(x), (3.1)

where γ(n) is a step-dependent sequence of weights. Thus, MCU targets inputs with high uncertainty (large

s(n)(x)) and close to the boundary ∂Ŝ (small |f̂ (n)| ). Small γ(n) leads to aggressive sampling concentrated

along the estimated ∂Ŝ; large γ(n) leads to space-filling sampling that effectively minimizes the integrated

mean-squared error. Thus, the choice of γ’s is critical for the performance; in particular γ(n) should be

increasing to avoid being trapped in local minima of |f̂ (n)(x)|. In the original application to BO (Srinivas

et al., 2012) it is proved that with γ(n) = (2 log
( |D|π2n2

6δ

)

)1/2, the regret (a metric measuring the distance

between estimated optima and the trueth in BO) of the estimate is guaranteed to converge. Further recipes for

(3.1) for level set estimation were proposed in Gotovos et al. (2013) and Bogunovic et al. (2016); both papers

mention that the above recommendation is too conservative and tends to over-explore. A constant choice of

γ(n) = 1.96 corresponds to the Straddle scheme in Bryan et al. (2006) and leads to In(x) ≥ 0 ⇔ x ∈ (95%
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CI band of ∂S). Similarly, Gotovos et al. (2013) employed γ(n) = 3 and Bogunovic et al. (2016) suggested

to use γ(n) =
√

log(|D|n2). Based on our experiments (see Appendix A), we find that a constant value

of γ(n) may be problematic and recommend to adapt γ(n) to the relative ratio between f(x) (for steeper

response surfaces γ should be larger) and s(x) (γ needs to rise as posterior uncertainty decreases). One

recipe is to use γ(n) = IQR(f̂ (n))\3Ave(s(n)) (Ave(s(n)) denotes the average of standard deviation and

IQR the inter-quantile range) which keeps both terms in (3.1) approximately comparable as n changes.

Remark 3.1. The local empirical error Ē(x) as defined in Eq. (??) could be directly used as an acquisition

function, i.e.,

IMEE
n (x) ≡ Ē(x) = Φ

(

− |f̂ (n)(x)|
s(n)(x)

)

. (3.2)

This Maximal Empirical Error (MEE) acquisition function measures the local probability of misclassifica-

tion and is similar to the sequential criteria in Bect et al. (2012); Echard et al. (2010); Ranjan et al. (2008);

Bichon et al. (2008), all based on the idea of sampling at x where the event {f(x) ≥ 0}|An is most un-

certain. However, (3.2) is not suitable for our purposes since it is maximized across the entire ∂Ŝ (namely

IMEE
n (x) = 0.5 for any x where f̂ (n)(x) = 0), so does not possess a unique maximizer as soon as ∂Ŝ is

non-trivial. One potential solution could be to maximize (3.2) over a finite candidate set, which however

requires significant fine-tuning.

Our second strategy focuses on quickly reducing Ē by comparing the current Ē(x) given An and the ex-

pected Ē(x) conditional on the one-step-ahead sample, An ∪{xn+1, yn+1}. This is achieved by integrating

out the effect of Y (xn+1) on Ē(xn+1):

IcSUR
n (x) =IMEE

n (x)− EY (x)

[

IMEE
n+1 (x)

]

=Φ

(

− |f̂ (n)(x)|
s(n)(x)

)

− EY (x)

[

Φ

(

− |f̂ (n+1)(x)|
s(n+1)(x)

)]

.
(3.3)

The name cSUR is because (3.3) is directly related to the SUR strategy (Bect et al., 2012), modified to target

contour-finding. Crucially, IcSUR ties the selection of xn+1 to the look-ahead mean f̂ (n+1)(xn+1) and look-

ahead standard deviation s(n+1)(xn+1) that appear on the right-hand side of (3.3). To compute the integral

over Y (x), we replace f̂ (n+1)(x) with its average f̂ (n)(x) = En[f(x)] = En[En+1[f(x)]] = En[f̂
(n+1)(x)].

Similarly, we plug in the approximate one-step-ahead standard deviation ŝ(n+1) discussed in Section 4

(especially Equations (4.4), (C.4), and (C.6)) for s(n+1)(x):

ÎcSUR
n (x) =Φ

(

− |f̂ (n)(x)|
s(n)(x)

)

− Φ

(

− |f̂ (n)(x)|
ŝ(n+1)(x)|xn+1=x

)

. (3.4)

Note that if x is such that f̂ (n)(x) = 0 then both terms above are 1/2 and IcSUR
n (x) = 0. Thus, the cSUR

criterion will not place samples directly on ∂Ŝ, but will aim to bracket the zero-contour.

In (3.4) cSUR only measures the local improvement in Ē(xn+1) at the sampling location xn+1 and

consequently might be overly aggressive in targeting ∂Ŝ. This motivates us to target the global reduction in

the uncertainty of Ŝ, so as to take into account the spatial structure of D. The resulting Integrated Contour

Uncertainty (ICU) is linked to the already defined empirical error E from Section 2.5:

I ICU
n (x) := E(n) − EY (x)[E(n+1)|xn+1 = x]

= E(n) − EY (x)

[
∫

u∈D
Φ

( −|f̂ (n+1)(u)|
s(n+1)(u)|xn+1=x

)

µ(du)

]

.
(3.5)
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We apply the same approximation as for cSUR to simplify the expectation over Y (x) and replace the integral

over D with a sum over a finite subset D of size M :

Î ICU
n (x) = −

∑

xm∈D

Φ

( −|f̂ (n)(xm)|
ŝ(n+1)(xm)|xn+1=x

)

µ(xm). (3.6)

Then IICU (x) can be viewed as measuring the overall information gain about S from sampling at x. The

motivation behind ICU is to myopically minimize the expected one-step-ahead empirical error E , which

would correspond to 1-step Bayes-optimal design.

As a last alternative, we utilize the targeted mean squared error (tMSE) criterion, a localized form of

targeted IMSE criterion in Picheny et al. (2010):

I tMSE
n (x) := s(n)(x)2 ·W tMSE

n (x), (3.7)

where

W tMSE
n (x) :=

1√
2πs(n)(x)

exp

(

− f̂n(x)
2

2s(n)(x)2

)

. (3.8)

The tMSE criterion upweighs regions close to the zero contour through the weight function W tMSE
n (x)

which measures the distance of x to ∂Ŝ(n) using the Gaussian posterior density N (f̂ (n), s(n)(x)2). Like

MCU, tMSE is based only on the posterior at step n and does not integrate over future Y (x)’s.

Remark 3.2. In Picheny et al. (2010) an additional parameter σǫ was added to the definition of W tMSE
n (x)

by replacing s(n)(x) everywhere with
√

s(n)(x)2 + σ2
ǫ . Larger σǫ yields more space-filling as W tMSE

n (x)

becomes flatter. Since Picheny et al. (2010) dealt with deterministic experiments, σǫ was necessary to ensure

that W tMSE
n (x) is well defined at existing x1:n and the recommendation was for σǫ to be 5% of the range

of f . In our case s(n)(x) is intrinsically bounded away from zero and (3.8) works well as is. Additional

experiments (available upon request) indicate that the performance of (3.7) is not sensitive to σǫ, so to

minimize the number of tuning parameters we stick to σǫ = 0 in (3.8).

In the TP case, for MCU, cSUR, and ICU, we replace the standard normal cdf Φ(·) appearing in the

formulas by its Student-t counterpart (with the estimated degrees of freedom νn). For tMSE, to maintain

tractability, we keep the same expression (3.8) for the weights W tMSE.

Illustration

For instructive purposes, we consider a one-dimensional case where we use the Gaussian observation GP to

learn the sign of the quadratic f(x) = x2 − 0.752 on D = [0, 1], where S = [0, 0.75] and with the unique

zero contour at ∂S = 0.75. The initial design x1:10 consists of n = 10 inputs drawn according to Latin

hypercube sampling (LHS). The observations are Y (x) = f(x) + ǫ, where ǫ ∼ t3(0, 0.1
2). In the top plot

in Figure 1, we plot the true f(·), the posterior mean f̂ (100)(·), and associated 95%-CI. We also show the

credible band for ∂Ŝ; in the respective bottom panel, we plot the acquisition functions IMCU
n (·), IcSUR

n (·),
I ICU
n (·) and I tMSE

n (·) as defined in Equations (3.1), (3.4), (3.6), and (3.7).

Comparing the acquisition functions of the four criteria, we find that, besides ICU, all of the others

have maxima within the shaded credible interval of the boundary CI∂S . In practice, we care only about

the maximizer of the acquisition function, rather than its full shape, since the former drives the selection of

the next sample xn+1. The xn+1’s selected by MCU and tMSE criteria are close. For the cSUR criterion,
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Figure 1: Comparison of acquisition functions. Upper panel: true function f = (x+0.75)(x−0.75) (black

solid line), the posterior mean f̂(·) (dashed line) and 95% CIf (shaded area) based on observed samples

(x1:100,y1:100) (blue dots). Along the x-axis we also show the credible interval of the partition boundary

CI∂S (grey solid line) relative the true zero level set S = [0, 0.75] (red triangle). Lower panel: acquisition

functions In(·) for MCU, cSUR, ICU, and tMSE criteria, with vertical lines marking the respective maxima

argmaxx In(x).

because IcSUR
n (x) = 0 at ∂Ŝ, there are two local maxima with a “valley” between them. The interval

between the two local maxima is roughly the confidence interval CI∂S for the boundary (2.21). Both

MCU and tMSE select a location very close to the boundary f̂ (n)(xn+1) ≃ 0. We note that MCU has a

flatter acquisition function, i.e., tMSE is more aggressive. In contrast, the ICU and cSUR criteria are more

“global”; in particular, ICU is the flattest among all the criteria.

After using the various acquisition functions to select xn+1 at n = 11, . . . , 100, we show in Figure 2 the

resulting designs x1:n and the final estimate f̂ (100) with a Gaussian observation GP metamodel. As desired,

all methods target the true zero-contour at ∂S = 0.75. As a result, the posterior variance s(n)(x)2 is much

lower in this neighborhood; in contrast, especially for tMSE and MCU, few samples are taken far from

x = 0.75, and the posterior uncertainty there remains high. The true zero contour is within the estimated

posterior CI for all the criteria. However, the CIs for MCU and tMSE are much wider than those for the

others.

The bottom row in Figure 2 shows the sampled location xn as a function of step n. We observe that

MCU and tMSE heavily concentrate their search around the zero contour, leading to few samples (and con-

sequently relatively large empirical errors E(n)) in other areas, although the overall error rate R is compara-

ble. The ICU and cSUR criteria exhibit an “edge” effect; that is, besides the desired zero contour x = 0.75,

multiple samples are taken close to the edges of the input space at x = 0 and x = 1. This occurs due to the

relatively large posterior variance s2(·) in those regions (which arises intrinsically with any spatial-based

metamodel) that in turn strongly influences IcSUR in (3.4) and I ICU in (3.6). Inputs sampled by the cSUR

criterion bracket the contour ∂S from both directions, matching the two-hill-and-a-valley shape of IcSUR in

Figure 1. We note that the two sampling “curves” get closer as n grows, indicating a gradual convergence of

the estimated zero contour ∂Ŝ(n), akin to a shrinking credible interval of Ŝ(n). The ICU criterion generates

a much more diffuse design: it engages in more exploration and is less dependent on the current levels of

the empirical error E . This eventually creates a flatter profile for Ē(x).
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Figure 2: Top row: Fitted metamodel f̂ (100) (dashed red line) and its 95%-CI (shaded region) versus the true

f = (x + 0.75)(x − 0.75) (solid black), for each of the four design strategies. The estimated 95% CI for

the zero-contour ∂S is marked on the x-axis with a grey interval; red triangle indicates the true zero-contour

∂S = 0.75. Bottom row: sampled inputs xn (on the x-axis to match the top row) as a function of step

n = 1, . . . , 100 (on the y-axis, moving from top to bottom) for MCU, tMSE, cSUR, and ICU criteria. The

rug plots at the bottom visualize the overall distribution of x1:n at n = 100. The first ten inputs are selected

using a (fixed-across schemes) LHS design on D = [0, 1].

The preceding discussion considered a single metamodel choice for f . Other metamodels will generate

different design features; in particular, sensitivity to ǫ(x) will lead to a different mix of exploration (xn’s far

from the zero-contour) and exploitation even for the same choice of a In criterion. Figures 6 and 7, as well

as Table 3, emphasize our message that one must jointly investigate the combinations of I(·) and f̂ when

benchmarking the ultimate performance of the algorithm.

4 Look-Ahead Variance

The cSUR and ICU acquisition functions In require estimates of the look-ahead standard deviation

s(n+1)(x∗) conditional on sampling at xn+1 = x. A related computation is also important for efficient

updating of the GP/TP metamodels during sequential design, assimilating the observation (xn+1, yn+1) into

An. As is well known, usage of GP necessitates inverting the covariance matrix K−1 which presents a com-

putational bottleneck as n grows. Updating hinges on computing [K(n+1)]−1 via applying the Woodbury

identities to the current [K(n)]−1.

A major advantage of the classical GP paradigm is that the posterior variance s(n)(x)2 is a function

only of the design x1:n; that is, it is independent of the observations y1:n. This allows an exact analytic

expression for s(n+1)(x)
∣

∣

xn+1=x
in terms of xn+1. Recall that for an existing design x1:n, after adding a

new (xn+1, yn+1), the mean and variance at location x∗ are updated via (Chevalier et al., 2014b)

f̂
(n+1)
Gsn (x∗) =f̂

(n)
Gsn(x∗) + λ(n)(x∗, xn+1)(y

n+1 − f̂
(n)
Gsn(xn+1)), (4.1)

s
(n+1)
Gsn (x∗)

2 =s
(n)
Gsn(x∗)

2 − λ(n)(x∗, xn+1)
2(τ2 + s

(n)
Gsn(xn+1)

2), (4.2)
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where λ(n)(x∗, xn+1) is a weight function that measures the influence of the new sample at xn+1 on x∗
conditioned on the existing inputs x1:n.

Lemma 4.1 (Woodbury formula). Assume b is a n× 1 vector, A is a n×n matrix, and d and c are nonzero

scalars; then we have

[bT d]

[

A b

bT c

]−1 [
b

d

]

= bTA−1b− 1

c− bTA−1b
(d− bTA−1b)2. (4.3)

Using Lemma 4.1, we obtain the one-step-ahead variance at x∗:

Proposition 4.1. For any x∗,

λ(n)(x∗, xn+1) =
v
(n)
Gsn(x∗, xn+1)

τ2 + s
(n)
Gsn(xn+1)2

⇒ s
(n+1)
Gsn (x∗)

2 = s
(n)
Gsn(x∗)

2 − v
(n)
Gsn(x∗, xn+1)

2

τ2 + s
(n)
Gsn(xn+1)2

.

(4.4)

In particular, after sampling at xn+1 the local updated posterior variance is proportional to the current

s
(n)
Gsn(xn+1)

2 with a proportionality factor (Hu and Ludkovski, 2017):

s
(n+1)
Gsn (xn+1)

2

s
(n)
Gsn(xn+1)2

=
τ2

τ2 + s
(n)
Gsn(xn+1)2

. (4.5)

The above lemma is our basis for calculating the acquisition function for the cSUR criterion (3.4) that

requires only (4.5) and the ICU criterion (3.6). As we see below, because (4.4) holds only in the Gaussian

prior/Gaussian likelihood setting, further approximations are required to apply (4.1)–(4.5) for the alterna-

tive metamodels. Such look-ahead variance expressions are of independent interest, applicable beyond the

context of level set estimation.

A limitation of using a non-Gaussian observation or classification likelihood is that, unlike for Gaus-

sian observation GP, there are no exact variance look-ahead formulas for the resulting t-GP, Cl-GP and TP

metamodels. There are two main reasons for this. First, both the posterior mean f̂ (n+1)(x∗) in (2.9) and

(2.12) and the posterior variance s(n+1)(x∗)
2 in (2.10) and (2.13) for t-GP and Cl-GP depend on the pos-

terior mode f̃
(n+1)
tGP or z̃

(n+1)
Cl , which changes every step. Therefore, they cannot be accessed in advance.

Furthermore, for t-GP and Cl-GP s(n+1)(x∗) depends on the next-step Hessian W (namely on w
(n+1)
n+1 ), and

for TP s(n+1)(x∗) depends on β(n+1). Both of these again depend on yn+1. To overcome this challenge,

we develop an approximation ŝ(n+1)(·) for each metamodel. Our strategy is to replace each inaccessible

term with its expected value from the point of view of step n. For example, we calculate the expectation

of f̃
(n+1)
tGP , z̃

(n+1)
Cl and β(n+1) with respect to An. Propositions 4.2-4.3-4.4 provide the resulting look-ahead

formulas for t-GP, Cl-GP and TP respectively, with derivation details in Appendix C.

Proposition 4.2. For any x∗, the formula for the look-ahead variance for t-GP is

ŝ
(n+1)
tGP (x∗)

2 := s
(n)
tGP(x∗)

2 − v
(n)
tGP(x∗, xn+1)

2

(τ2 ν+1
ν−1) + s

(n)
tGP(xn+1)2

. (4.6)
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Proposition 4.3. Let v̌n+1 = v+n+1p+ + v−n+1p−, where

v+n+1 =
φ(ẑ

(n)
Cl (xn+1))

2

Φ(ẑ
(n)
Cl (xn+1))2

+
ẑ
(n)
Cl (xn+1)φ(ẑ

(n)
Cl (xn+1))

Φ(ẑ
(n)
Cl (xn+1))

, (4.7)

p+ = Φ

(

ẑ(n)(xn+1)
√

1 + s
(n)
C (xn+1)2

)

, (4.8)

and

v−n+1 =
φ(ẑ

(n)
Cl (xn+1))

2

Φ(−ẑ
(n)
Cl (xn+1))2

− ẑ
(n)
Cl (xn+1)φ(ẑ

(n)
Cl (xn+1))

Φ(−ẑ
(n)
Cl (xn+1))

, (4.9)

p− = 1− p+. (4.10)

For any x∗, the formula for the look-ahead variance for Cl-GP is

ŝ
(n+1)
Cl (x∗)

2 := s
(n)
Cl (x∗)

2 − v
(n)
Cl (x∗, xn+1)

2

(v̌n+1)−1 + s
(n)
Cl (xn+1)2

. (4.11)

Proposition 4.4. For any x∗, the formula for the look-ahead variance for TP is

s
(n+1)
TP (x∗)

2 =
ν + β̌(n+1) − 2

ν + n− 1
s
(n+1)
Gsn (x∗)

2, (4.12)

where β̌(n+1) = β(n) + ν
ν−2 .

We note that in our experiments we only use the above to evaluate In, and directly re-estimate f̃ (n+1) at

each step of the sequential design.

5 Synthetic Experiments

5.1 Benchmark Construction

As synthetic experiments, we consider three benchmark problems in dimension d = 1, 2, and 6. For the latter

two we employ the widely used Branin-Hoo 2-D and Hartman 6-D functions; see, for example, Picheny et al.

(2013b). The original functions have been rescaled to map their sample space D onto [0, 1]d; see Table 1.

The latent functions are chosen to cover a variety of problem properties. The quadratic f in 1-D is strictly

monotonically increasing, yielding a single boundary ∂S. The original Branin-Hoo function (Picheny et al.,

2013b) is modified so that f is increasing in x1 and the zero-level set has a non-trivial shape in x2. The

Hartman is a multimodal function with a complex zero contour. The parameters in the original Hartman

function described in Picheny et al. (2013b) are adjusted to reduce the "bumps" in the zero contour and make

the problem more appropriate for the sign classification task.

A large number of factors can influence the performance of metamodels and designs. In line with the

stochastic simulation perspective, we concentrate on the impact of the simulation noise and consider four

observation setups. These cover a variety of noise distributions and signal-to-noise ratio, measured through

the proportion of standard deviation στ to the range Rf of the response. The first two settings use Student-t

distributed noise, with (i) low στ and (ii) high στ . The third setting uses (iii) Gaussian mixture noise to
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Table 1: Response surfaces x 7→ f(x) for synthetic experiments.

Quadratic (1-D) f(x) = (x+ 0.75)(x− 0.75) with x ∈ [0, 1]

Branin-Hoo (2-D) f(x) = 1
178

[(

x̄1 − 5.1(x̄2)2

4π2 + 5x̄2

π − 20
)2

+ (10− 10
8π ) cos(x̄

1)− 181.47
]

with: x̄1 = 15x1, x̄2 = 15x2 − 5, x1, x2 ∈ [0, 1]

Hartman6 (6-D) f(x) = −1
0.1

[
∑4

i=1Ci exp
(

−∑6
j=1 aji(x

j − pji)
2
)

− 0.1
]

with: C = [0.2, 0.22, 0.28, 0.3]

a =



















8.00 0.50 3.00 10.00

3.00 8.00 3.50 6.00

10.00 10.00 1.70 0.50

3.50 1.00 8.00 8.00

1.70 6.00 10.00 1.00

6.00 9.00 6.00 9.00
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104



















1312 2329 2348 4047
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further test misspecification of ǫ. The fourth setting considers the challenging case of (iv) a heteroscedastic

Student-t noise with state-dependent degrees of freedom. In total we have 3×4×4×6 experiments (indexed

by their dimensionality, noise setting, design heuristic, and metamodel type).

Besides the noise distribution, we fix all other metamodeling aspects. All schemes are initialized with

n0 = 10d inputs drawn from an LHS design on [0, 1]d and use the SE kernel (2.3) for the covariance

matrix K. To analyze for the variability due to the initial design and the noise realizations, we perform 100

macroruns of each design/acquisition function combination. For each run, the same initial inputs are used

across all GP metamodels and designs, but otherwise the initial x1:n0 vary across runs.

Table 2: Stochastic simulation setup for synthetic experiments. (Rf ≡ maxx f(x)−minx f(x) = 1)

Initial design Latin hypercube sampling of size n0 = 10d

Total budget n d = 1, n = 100; d = 2, n = 150; d = 6, n = 1000

Test set size M = |D| d = 1,M = 1000; d = 2,M = 500; d = 6,M = 1000

Noise setting for ǫ(x) (i) t/small : t3(0, (0.1Rf )
2)

(ii) t/large : t3(0, (0.5Rf )
2)

(iii) Gsn/mix: 50/50 mix of N (0, (0.5Rf )
2) and N (0, R2

f )

(iv) t/hetero : t6−4x1(0, (0.4(4x1 + 1))2)

Optimization of the Improvement Metric: We employed the MCU, ICU, tMSE and cSUR criteria to

maximize the improvement metric I and select the next input xn+1. This maximization task is nontrivial in

higher dimensions because I is frequently multimodal and can be flat around its local maxima. We use a

genetic optimization approach as implemented in the ga function in MATLAB, with tolerance of 10−3 and

200 generations. This is a global, gradient-free optimizer that uses an evolutionary algorithm to explore the

input space D.

Evaluation of Performance Metrics: Recall that evaluating the quality of ∂Ŝ is based on R and E from

(2.18) and (2.20) that require integration over D. In practice, these are computed based on a weighted sum

over a finite D, Ê :=
∑M

m=1Φ
(−|f̂(xm)|

s(xm)

)

µ(xm) for a space-filling sequence D ≡ x1:M ∈ D of test points.

In 1-D experiments D was an equispaced grid of size M = 1000. In higher dimensions, to avoid the use of
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a lot of test points that are required to ensure an accurate approximation, we adaptively pick D that targets

the critical region close to the zero contour. To do so, we replace the integral with a weighted sum:

R ≃ pc
M1

∑

x1:M1
∈D1

I(sign f(xm) 6= sign f̂(xm)) +
(1− pc)

M2

∑

x1:M2
∈D2

I(sign f(xm) 6= sign f̂(xm)), (5.1)

where M = M1 + M2 and the test locations x1:M1 and x1:M2 are subsampled from a large space-filling

(scrambled Sobol) sequence on D. The weight pc determines the relative volume of D1 and D2 = D\D1,

where on D1 = {x : f(x) ≃ 0} we are close to the zero contour. In the experiments below we use

M1 = 0.8M,M2 = 0.2M , and pc = 0.4, so that the density of test points close to ∂S is double relative to

those far from the zero contour. We employ the same strategy for speeding the evaluation of the empirical

error E .

Surrogate Inference: Values of hyperparameters ϑ are crucial for good performance of GP metamod-

els. We estimate ϑ using maximum likelihood. Except for TP, all models are fitted with the open source

package GPstuff (Vanhatalo et al., 2013) in MATLAB. TPs are fitted with the hetGP (Binois et al., 2018)

package in R. Auxiliary tests did not reveal any significant effects from using other available tools for plain

GPs and t-GP, such as GPML (Rasmussen and Nickisch, 2010).

In principle, the hyperparameters ϑ change at every step of the sequential design, in other words, when-

ever An is augmented with (xn+1, yn+1). To save time however, we do not update ϑ at each step. Instead,

we first estimate the hyperparameters ϑ based on the initial design An0 and then freeze them, updating their

values only every few steps. Specifically, ϑ is re-estimated at steps n0+1, n0+2, n0+4, n0+8, n0+16, . . .

(as the sample size becomes large, the inference of hyperparameters becomes more stable).

The lengthscales θi are the most significant for surrogate goodness of fit. A too-small lengthscale will

make the estimated f̂ look “wiggly” and might lead to overfitting, while θi too large will fail to capture

an informative shape of the true f and hence S. Since our input domain is always [0, 1]d, we restrict

θi ∈ [0.3, 2] ∀i to be on the order of the length of the sample space D.

Computational Overhead: All the considered metamodels are computationally more demanding than

the baseline Gaussian GP. For t-GP and Cl-GP, additional cost arises due to the Laplace approximation.

TP necessitates estimation of the parameter ν and also the computation of β in (2.16). In the experiments

considered, the respective computation times were roughly double to triple relative to the Gaussian GP. In

terms of sequential design, MCU, tMSE, and cSUR have approximately equal overhead; ICU is significantly

more expensive because it requires evaluating the sum in (3.6). Note that all heuristics include two expensive

steps: optimization for xn+1 and computation of f̂ (n) and s(n) (and/or ŝ(n+1)).

Overall timing of the schemes is complicated because of the combined effects of n (design budget),

M (size of test set), and the use of different software (some schemes run in R and others in Matlab). Most

important, the ultimate computation time is driven by the simulation cost of generating Y (x)-samples, which

is trivial in the synthetic experiments but assumed to be large in the motivating context.

5.2 Comparison of GP Metamodels

Figure 3 shows the boxplots of the error rate ER of Ŝ(N) at the final design (N = 100 in 1-D; N = 150 in

2-D; N = 1000 in 6-D). The plots are sorted by noise settings and design strategies, facilitating comparison

between the discussed metamodels. In Table 3, we list the best metamodel and design combination in each

case. Several high-level observations can be made. First, we observe the limitations of the baseline Gaussian

GP metamodel, which cannot tolerate too much model misspecification. As the noise structure gets more

complex, the classical GP surrogate begins to show increasing strain; in the last t/hetero setup, it is both
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unstable (widely varying performance across runs) and inaccurate, with error rates upward of 30% on “bad”

runs. In addition, according to results shown in Table 3, across all of the twelve cases, besides 1d example

with t/small noise, the Gaussian GP never performs as the best model. This result is not surprising but

confirms that the noise distribution is key for the contour-finding task and illustrates the nonrobustness of

the Gaussian observation model, due to which outliers strongly influence the inference.

Second, we document that the simple adjustment of using Student-t observations significantly mitigates

the above issue. t-GP performs consistently and significantly better than Gaussian GP in essentially all

settings. This result is true even when both models are misspecified (the Gsn/mix and t/hetero cases).

The performance of t-GP was still better (though not statistically significantly so) when we tested it in the

setting of homoscedastic Gaussian noise (not shown in the plots). The latter fact is not surprising—t-GP

adaptively learns the degrees-of-freedom parameter ν and hence can “detect” Gaussian noise by setting ν

to be large. Conversely, in heavy-tailed noise cases, the use of t samples will effectively ignore outliers

(O’Hagan, 1979) and thus produce more accurate predictions than working with a Gaussian observation

assumption. We find that t-GP can handle complex noise structures and offers a good choice for all-around

performance, making it a good default selection for applications. It brings smaller error rate ER, more stable

hyperparameter estimation, less contour bias, and tighter contour CI. Moreover t-GP is significantly better

than all the other GPs in eight of the twelve setups, indicating that t-GP is essentially the best out of all GP

metamodels in most cases.

Third, we also inspect the performance of the TP metamodel. As shown in Table 3, TP is the best in two

cases out of the twelve, both of which are with the t/small noise. We note that TP works worst in t/hetero

cases, having both large error rate ER and empirical error E . Therefore, TP does not work well in cases

with low signal-to-noise ratio or greatly misspecified noise. This may be related to the parameterization of

TPs, with noise handled in the kernel, which seems less robust to misspecification. Also, since TPs revert to

GPs as n increases, the advantage of flexibility offered by the modeling decreases as iterations goes and thus

may not last enough for low signal-to-noise ratios, which require more samples. It is apparent for instance

in Figure 5, where the error at step 0 is lower than for its counterparts.

Fourth, Cl-GP is also better than Gaussian GP in some cases with tMSE and MCU designs (except for

the 6-D cases, where the error rate ER of MCU is not significantly different from that of ICU, although

mean of ICU is slightly smaller). There is significant improvement for models with low signal-to-noise

ratio; the only exception is for the low-noise setup where Cl-GP underperforms classical GP. This matches

the intuition that employing classification “flattens” the signal by removing outliers. By considering only

the sign of the response, the classification model disregards its magnitude, simplifying the noise structure

at the cost of some information loss. The net effect is helpful when the noise is mis-specified or too strong

so as to interfere with learning the mean response. It is detrimental if the above gain is outweighed by

the information loss, as apparently happens in the 6-D experiments. Of note, Cl-GP with MCU design has

the smallest error rate among all models in one (t/hetero in 1-D) out of 12 cases shown in Table 3. We

also observe, however, that the stability of Cl-GP is highly dependent on the design: some designs create

large across-run variations in performance. We hypothesize that this is due to a more complex procedure

for learning the hyperparameters of Cl-GP; therefore, designs that are not aggressive enough to explore the

zero contour region (such as cSUR) face difficulties in estimating ϑ. As a result, relative to t-GP, Cl-GP has

larger sampling variances.
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Figure 3: Boxplots of final error rate ER(n) from (2.18) across designs (rows) and noise setups (columns).

Colors correspond to different GP metamodels. Note that x-axis limits are different across columns. Top row

is for the 1-D experiment and design size n = 100; middle row: 2-D Branin-Hoo function with n = 150;

bottom row: 6-D Hartman6 function with n = 1000.

5.3 Empirical Errors and Uncertainty Quantification

Figure 4 shows the empirical errors E that are supposed to proxy the true error rates ER. Overall, we

find that MCU tends to produce the largest E , and ICU the smallest. These results are consistent with

their design construction and local behavior: MCU heavily concentrates around ∂Ŝ, which leads to little

information collected about other regions, especially around the boundaries of sample space D and hence

relatively large Ē(x) there, inflating E . Conversely, the objective function of ICU is precisely the myopic

minimization of En+1. The other two designs are intermediate versions in terms of minimizing E . The

tMSE heuristic tends to target the zero contour plus the edges of D, while cSUR tends to broadly target

a “credible band” around ∂Ŝ. Both approaches are better at reducing E compared with MCU but are not

directly aimed at this. This logic is less consistent for the classification models, where tMSE often yields the

lowest E . This result echoes Section 5.2, namely, that classification GPs tend to perform better with MCU

and tMSE designs in lower dimensional cases. TPs tend to have a greater empirical error E when the noise

is misspecified or in higher dimensional experiments, consistent with the conclusions obtained regarding the

error rate ER.

As a further visualization, Figure 5 shows the median error rate ER (2.18) and empirical error E in

Eq. (2.20) as a function of step n in the 2-D Gsn/mix experiments. This illustrates the learning rates of

different schemes as data is collected and offers a further comparison between the true ER and the self-

reported E of the same scheme. We observe that some metamodels underperform for very low n, even if

they eventually “catch up” after sufficiently large simulation budget. This is especially pronounced for the
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Table 3: Mean (w/standard deviation) error rate R and corresponding best-performing sequential design

heuristic for the 1-D, 2-D, and 6-D synthetic case studies. Results are based on 100 macroreplications of

each scheme.

Model t/small t/large Gsn/mix t/hetero

1-D Quadratic

GP tMSE 0.73% (0.60%) tMSE 3.24% (2.79%) MCU 3.87% (3.17%) cSUR 15.68% (12.15%)

t-GP tMSE 0.80% (0.93%) tMSE 3.15% (1.83%) cSUR 3.28% (3.74%) cSUR 12.50% (9.05%)

TP MCU 0.97% (0.84%) MCU 5.93% (5.60%) tMSE 5.09% (4.40%) ICU 16.44% (10.14%)

Cl-GP tMSE 0.87% (0.64%) tMSE 3.39% (4.16%) MCU 4.99% (3.77%) MCU 8.83% (7.35%)

2-D Branin-Hoo

GP MCU 1.78% (0.57%) cSUR 4.75% (1.95%) ICU 4.92% (1.86%) MCU 10.36 % (3.94%)

t-GP MCU 1.70% (0.29%) tMSE 3.95% (1.47%) ICU 4.10% (2.07%) tMSE 9.00% (8.66%)

TP tMSE 1.27% (0.41%) MCU 4.79% (1.84%) ICU 5.19% (1.68%) MCU 12.75 % (9.02%)

Cl-GP MCU 1.56% (0.51%) MCU 4.27% (1.59%) MCU 5.71% (1.85%) tMSE 13.23% (7.74%)

6-D Hartman6

GP ICU 3.81% (0.34%) ICU 5.33% (0.54%) ICU 5.19% (0.70%) MCU 11.67% (2.89%)

t-GP ICU 3.75% (0.40%) ICU 3.98% (0.47%) ICU 4.86% (0.67%) ICU 8.25% (1.60%)

TP ICU 1.25% (0.20%) MCU 5.66% (1.98%) MCU 4.88% (0.88%) MCU 10.69% (2.34%)

Cl-GP MCU 7.99% (4.69%) ICU 7.20% (0.66%) ICU 8.31% (2.44%) ICU 11.11% (2.20%)

classification Cl-GP metamodel, which yields very high ER(n) (which is also much higher than the self-

reported E) for n small. We also note that Cl-GP appears to enjoy faster reduction in ER(n) compared with

the baseline Gaussian GP, which we conjecture is due to better resistance against Y -outliers that distract

plain GP’s inference of S. Comparing the two rows of the figure, we note that discrepancies between

ER and E correlate with degraded performance, namely, the metamodel being unable to properly learn the

response surface is reflected in poor uncertainty quantification. Moreover, the results suggest that the wedge

in performance of different design criteria tends to persist; for example MCU and ICU frequently have not

only the highest/lowest E(n) but also the slowest/fastest rate of reduction in E(n) as n grows. Consistent with

results in Section 5.2, Cl-GP with ICU criterion yields both greater error rate ER and empirical error E in

2-D experiments.

5.4 Designs for Contour Finding

A key goal of our study is qualitative insights about experimental designs most appropriate for noisy level

set estimation. Through identifying the best-performing heuristics we get an inkling regarding the structure

of near-optimal designs for (1.1). In this section we illustrate the latter within a 2-D setup that can be

conveniently visualized. Taking the t/large experiment as an example, in Figure 6 we plot the fitted zero

contour ∂Ŝ at N = 150 together with the chosen inputs x1:150 across the six metamodels and the four I
heuristics. As expected, most of the designs are around the contour ∂S, which is the intuitive approach to

minimize the error ER. Nevertheless, we observe significant differences in designs produced by different

I’s. The MCU criterion places most of the samples close to the estimated zero contour ∂Ŝ, reflecting its

aggressive exploitation nature. For tMSE, the samples tend to cluster at several subregions of ∂Ŝ and on

the edges of D. For cSUR, x1:n cover a band along ∂Ŝ, resembling the shape of the MCU design but more
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Figure 4: Empirical error E(n) in Eq. (2.19) for GP, t-GP, TP, Cl- GP, and MCl-GP metamodels (colors),

using MCU, tMSE, cSUR and ICU-based designs (sub rows) with n = 100 in 1-D, n = 150 in 2-D, and

n = 1000 in the 6-D experiments (rows).

dispersed. For ICU the design is much more exploratory, covering a large swath of D. All these findings

echo the 1-D setting in Figure 2.

One feature we observe is a so-called edge effect, that is, designs that focus on the edges of the input

space. This effect arises due to the intrinsically high posterior uncertainty s(x) for x around ∂D. It features

strongly in tMSE and cSUR (which have about 45% of the inputs along the edge) and to some extent in ICU

(about 30% of inputs in this example). In contrast, MCU strongly discounts any region that is far from ∂Ŝ.

In the given 2-D experiment, we obtain some inputs directly on the boundary ∂D = {x1 ∈ {0, 1} ∪ {x2 ∈
{0, 1}}, that is, the constraint x ∈ D is binding and the maximizer of In(·) lies at its upper/lower bound. A

related phenomenon is the concentration of inputs in the top/left and bottom/right corners of D, which are

associated with the highest uncertainty about the level set due to the confluence of the zero contour passing

there and reduced spatial information from being on the edge of D.

Another noteworthy feature is replication of some inputs, that is, repeated selection of the same x sites.

This does not occur for MCU, but happens for ICU, tMSE and cSUR that frequently (across algorithm

runs) sample repeatedly at the vertices of D (indicated by the size of the corresponding marker in Figure 6).

The replication is typically mild (we observe 145+ unique designs among a total of 150 xn’s). This finding

echoes Binois et al. (2019) the importance for the metamodel to distinguish between signal and noise, which

is a key distinction with the noise-free setting ǫ(x) ≡ 0.

Given the above discussion and the relative overhead of the different heuristics, we conclude that in

lower dimensional problems, there is little benefit to using the more sophisticated ICU criterion, while

for higher dimensional problems, ICU criterion is significantly better than the others. Beyond that, tMSE

appears to be an adequate and cheaper choice. However, as the input space becomes more complicated, we
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Figure 5: Error rate R(n) (2.18) and surrogate-based uncertainty measure E(n) (2.20) as a function of step n

in the 2-D Gsn/mix setting. We compare six metamodels (columns) and four DoE’s (colors). The y-axis

limits differ across rows. We plot median results across 20 macroreplications of each scheme.

need more exploration over the input space and the explorative criteria like ICU start to shine.

The performance of designs differs when combined with different GP metamodels. Table 3 shows that

there is no one overall “best" design for all metamodels across all cases. However, it does suggest some

design/metamodel “combos" that work better than others, especially in the 1-D and 2-D experiments. The

classification GPs seem to prefer more aggressive designs, such as MCU, while the regression GPs prefer

more exploratory designs, such as ICU. In higher dimensions, ICU usually wins across all metamodels in

accuracy; see the results of 6-D experiments in Table 3.

6 Application to Optimal Stopping Problems in Finance

In our next case study we consider contour finding for determining the optimal exercise policy of a Bermu-

dan financial derivative, cf. Section 1.2. The underlying simulator is based on a d-dimensional geometric

Brownian motion (Xt) that represents prices of d assets and follows the log-normal dynamics

Xt+∆t = Xt exp

(

(r − 1

2
σ2)∆t+Σ∆Wt

)

, ∆Wt ∼ N (0,∆tI), (6.1)

where I is the d × d identity matrix. Let h(t, x) be the option payoff from exercising when Xt = x ∈
R
d. Exercising is allowed every ∆t time units, up to the option maturity T , so that we wish to determine

the collection {St : t ∈ {∆t, 2∆t, . . . , T − ∆t}}, which are the zero level sets of the timing function

x 7→ T (t, x). During the backward dynamic programming, we iterate over t = T, T −∆t, . . . , 0, and the
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Figure 6: Estimates of the zero contour ∂Ŝ for the 2-D Branin-Hoo example with t/large noise setting. We

show ∂Ŝ(n) (red solid line) at step n = 150, with its 95% credible band (red dashed lines), the true zero

contour ∂S (black solid line) and the sampled inputs x1:n (replicates indicated with larger symbols). We

compare across the six metamodels (rows) and four DoE heuristics (columns).

simulator of T (t, x) returns the difference between the pathwise payoff along a trajectory of (Xt:T ) that is

based on the forward exercise strategy summarized by the forward-looking {Ŝs, s > t}, and h(t, x).

As discussed in Ludkovski (2018), this setting implies a skewed, non-Gaussian, heteroskedastic distri-

bution of the simulation noise and is a challenging stochastic contour-finding problem. Note that in order

to reflect the underlying distribution of Xt at time t (conditional on the given initial value X0 = x0) the

weighting measure µ(x) = pXt(x|x0) is used. Thus, µ(·) is log-normal based on (6.1) and is multiplied

by the respective In criteria when selecting xn+1 = argmaxx∈D In(x)µ(x). In line with the problem con-

text, we no longer directly measure the accuracy of learning {St} but instead focus on the ultimate output

of RMC, which is the estimated option value in (1.5). The latter must itself be numerically evaluated via

an out-of-sample Monte Carlo simulation that averages realized payoffs along a large database of M paths

x1:M0:T :

V̂ (0, x0) =
1

M

M
∑

m=1

h(τm, x
(m)
τm ), τm = inf{t : x(m)

t ∈ Ŝt}. (6.2)

Since our goal is to find the best exercise value, higher V̂ ’s indicate a better approximation of {St}.

To allow a direct comparison, we set parameters matching the test cases in Ludkovski (2018), consider-

ing a 2-D and 3-D example. In both cases the volatility matrix Σ = σI in (6.1) is diagonal with constant

terms; that is, the coordinates X1
1:n, . . . ,X

d
1:n are independently and identically distributed. As a first exam-

ple, we consider a 2-D basket Put option with parameters r = 0.06, σ = 0.2,∆t = 0.04,K = 40, T = 1.
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The payoff is h(t, x) = e−rt(K − x1+x2

2 )+ with K = 40. Here it is known that stopping becomes opti-

mal once both asset prices x1 and x2 become sufficiently low, so the level set St is toward the bottom-left

of D; see Fig 7. In contrast, stopping is definitely suboptimal when h(t, x) = 0 ⇔ (x1 + x2)/2 > K.

Consequently, the input sample space is taken to be D = [25, 55]× [25, 55] ∩ {x1 + x2 ≤ 80}.

In this first case study, the timing value h(t, x) is known to be monotonically increasing in the asset price

x. To incorporate this constraint, we augment the four main metamodels (GP, t-GP, Cl-GP and TP) with

two monotonic versions, M-GP and MCl-GP. By constraining the fitted f̂ to be monotone, we incorporate

structural knowledge about the ground truth, which in turn reduces posterior uncertainty and thus might

produce more accurate estimates of S. Monotonicity of the metamodel for f is also one sufficient way to

guarantee that the outputted level set Ŝ is a connected subset of D.

Our monotone GPs are based on Riihimäki and Vehtari (2010). In general, any infinite-dimensional

Gaussian process is intrinsically non monotone, since the multivariate Gaussian distribution is always sup-

ported on the entire R
d, rather than an orthant. Nevertheless, local monotonicity in f̂ can be enforced by

considering the gradient ∇f of f which is also a Gaussian process. Specifically, Riihimäki and Vehtari

(2010) proposed to adaptively add virtual observations for ∇f ; we employ the resulting implementation in

the public GPstuff library (Vanhatalo et al., 2013) to build our own version dubbed M-GP. We employ the

same strategy to restrict the coordinates zj of the latent logistic GP Z to be increasing (decreasing) across

D. Implementation details are included in Appendix D.

As a second example, we consider a 3-D max-Call x ∈ R
3 with payoff h(t, x) =

e−rt(max(x1, x2, x3) − K)+. The parameters are r = 0.05, δ = 0.1, σ = 0.2, X0 = (90, 90, 90),K =

100, T = 3 and ∆t = 1/3. Since stopping is ruled out when h(t, x) = 0 ⇔ max(x1, x2, x3) < K, the

sample space is taken to be D = [50, 150]3 ∪ {max(x1, x2, x3) > K}. In this case, stopping is optimal

if one of the coordinates xi is significantly higher than the other two, so St consists of three disconnected

components. In this problem there is no monotonicity, so we employ only the GP, t-GP, Cl-GP, and TP

metamodels.

Because of the iterative construction of the simulator, the signal-to-noise ratio gets low for small t’s. The

variance τ2(x) is also highly state-dependent, tending to be smaller for sites further from the zero-contour.

To alleviate this misspecification and reduce metamodel overhead, we employ batched designs (Ludkovski,

2018; Ankenman et al., 2010), reusing x ∈ D for r replications to collect observations y(1)(x), . . . , y(r)(x)

from the corresponding simulator Y (x). Then, we treat the mean of the r observations,

ȳ(x) =
1

r

r
∑

i=1

y(i)(x), (6.3)

as the response for input x and use (x, ȳ(x)) as a single design entry. The statistical properties of ȳ are

improved compared with the raw observations y: it is more consistent with the Gaussian assumption thanks

to the Central Limit Theorem (CLT), and its noise variance τ̄2(x) = τ2(x)/r is much smaller. Since the

expense of sequential design of GP metamodels comes mainly from choosing the new input at each step, the

reduction in budget n = N/r by a factor of r significantly speeds their fitting and updating, with n for the

number of unique inputs.

For the 2-D Put case study, we then test a total of three budget settings: (i) r = 3, n = 80 (low budget

of N = 240 simulations); (ii) r = 15, n = 80 (high budget N = 800 with moderate replication); (iii)

r = 48, n = 25 (high N = 800 with high replication). Comparing (ii) and (iii) shows the competing

effects of having non-Gaussian noise (for lower r) and small design size (low n). The initial design size

n0 = 10. In this example, taking n ≫ 80 gives only marginally better performance but significantly
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raises the computation time and hence is ruled out as impractical. Three setups are investigated for the 3-D

example: r = 3, n = 100 (low-budget of N = 300), r = 20, n = 100 (moderate-budget of N = 2000) and

r = 20, n = 200 (high budget N = 4000), both with n0 = 30. In all examples, the results are based on

25 runs of each scheme and are evaluated through the resulting expected reward V̂ (0, x0) (6.2) on a fixed

out-of-sample testing set of M = 160, 000 paths of X0:T .

Table 4: Performance of different designs and models on the 2-D Bermudan Put option in Section 6. Results

are the mean (standard deviation) payoff of 25 runs of experiments evaluating on the same out-of-sample

testing set of M = 160000X0:T -paths at each run.

LHS MCU tMSE cSUR ICU

R = 3,n∗ = 80

GP 1.211(0.120) 1.425(0.008) 1.427(0.007) 1.431(0.009) 1.431(0.007)

t-GP 1.125(0.113) 1.409(0.013) 1.417(0.008) 1.409(0.010) 1.406(0.013)

TP 1.179 (0.133) 1.408 (0.022) 1.414 (0.008) 1.378 (0.044) 1.316 (0.037)

M-GP 1.403(0.014) 1.438(0.007) 1.440(0.006) 1.442(0.009) 1.433(0.005)

Cl-GP 1.111(0.121) 1.395(0.015) 1.402 (0.013) 1.393(0.013) 1.391(0.013)

MCl-GP 1.407(0.008) 1.429(0.010) 1.429(0.013) 1.431(0.007) 1.396(0.019)

R = 15,n∗ = 80

GP 1.425 (0.017) 1.448 (0.003) 1.450 (0.002) 1.450 (0.003) 1.449 (0.003)

t-GP 1.406 (0.033) 1.445 (0.003) 1.447 (0.002) 1.444 (0.005) 1.446 (0.004)

TP 1.414 (0.023) 1.443 (0.003) 1.443 (0.004) 1.441 (0.004) 1.430 (0.006)

M-GP 1.407 (0.008) 1.449 (0.003) 1.451 (0.002) 1.454 (0.002) 1.451 (0.003)

Cl-GP 1.353 (0.050) 1.441 (0.004) 1.440 (0.003) 1.435 (0.004) 1.436 (0.005)

MCl-GP 1.416 (0.010) 1.448 (0.004) 1.449 (0.003) 1.443 (0.003) 1.418 (0.008)

R = 48,n∗ = 25

GP 1.341 (0.068) 1.450 (0.003) 1.449 (0.003) 1.443 (0.004) 1.448 (0.003)

t-GP 1.336 (0.126) 1.449 (0.003) 1.452 (0.003) 1.442 (0.004) 1.449 (0.003)

TP 1.367 (0.063) 1.433 (0.006) 1.430 (0.011) 1.421 (0.039) 1.423 (0.023)

M-GP 1.415 (0.007) 1.446 (0.002) 1.444 (0.002) 1.445 (0.004) 1.442 (0.004)

Cl-GP 1.110 (0.144) 1.430 (0.010) 1.434 (0.005) 1.409 (0.008) 1.388 (0.016)

MCl-GP 1.423 (0.015) 1.446 (0.004) 1.448 (0.003) 1.413 (0.024) 1.414 (0.024)

6.1 Results

Tables 4 and 5 compare the different designs and metamodels. To assess the sequential design gains, we

also report the results from using a baseline nonadaptive LHS design on D. At low budget, we observe

the dramatic gains of using adaptive designs for level set estimation, which allow us to obtain the same

performance with an order-of-magnitude smaller simulation budget. The tMSE and cSUR criteria work best

for the 2-D Put, while ICU is the best for the 3-D max-Call, indicating that the exploratory designs start to

win out in more complex settings with higher d.

Regarding the metamodels, in the low-budget setups, the monotonic GP metamodel works best for
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the 2-D Put and t-GP for the 3-D max-Call. For the higher budget, which also coincides with higher

r ∈ {10, 50}, the metamodel performance is similar, with t-GP slightly better than the other GP variants.

In particular, once the SNR is high, classical Gaussian GP is effectively as good as any alternative. In both

examples, TP and classification metamodels do not work well, possibly because of being more sensitive to

the heteroscedastic aspect. We note that TP as well as the classification metamodels suffer from instability,

so that lower V̂ (0, x0) is matched with a high sampling standard deviation. Another observation is that

Cl-GP and MCl-GP perform badly with exploratory heuristic like ICU, especially with high budget.

(a) GP with tMSE (b) t-GP with tMSE (c) Cl-GP with MCU

(d) M-GP with cSUR (e) TP with cSUR (f) MCl-GP with tMSE

Figure 7: The estimated exercise boundary ∂Ŝ (solid line with 95% CI as dashed lines) at t = 0.6 for 2-D

Bermudan Put from Section 6. Shading, which varies panel to panel, indicates the point estimate for the

latent f̂(x) or ẑ(x). We also show the design (x1:n,y1:n) with positive yn’s marked by × and negative yn’s

by ◦. All schemes used R = 15, n∗ = 80.

Figure 7 shows the estimated exercise boundary ∂Ŝt with its 95% CI at t = 0.4 for the 2-D Put, for

each of the five metamodels, each with the design yielding the highest payoff. We observe that all the best-

performing designs look similar, placing about a dozen xn’s (some of which are from the initial design x1:n0)

throughout D and the rest tightly along the zero contour. The results suggest that the criteria are largely

interchangeable and that simpler In heuristics are able to reproduce the features of the more sophisticated

or expensive ICU. The heuristics do differ in their uncertainty quantification; t-GP and GP generate tightest

CI bands, while those of classification GPs and TP are too wide, indicating lack of confidence in the estimate.

Of note, the regression GP metamodels (GP, t-GP and M-GP) also generate the lowest sampling variance

for V̂ (0, x0).

Based on these results, our take-aways are threefold. First, similar to Ludkovski (2018) we document

significant gains from sequential design.Second, we find that while using ICU is helpful for more com-

plicated settings with higher dimension d and larger budget, tMSE is the recommended DoE heuristic for

lower dimensional cases, achieving excellent results with minimal overhead (in particular without requir-
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ing look-ahead variance). Third, we find that for applications with thousands of simulations, the Gaussian

observation model is sufficient, since the underlying design needs to be replicated r ≫ 1 in order to avoid

excessively large K-matrices. Therefore, there is little need for more sophisticated metamodels, although

useful gains can be realized from enforcing the monotonic structure, if available.

Table 5: Performance of different designs and models on the 3-D Bermudan max-Call in Section 6. Results

are the mean (w/standard deviation) payoff of 25 macroreplications evaluating on the same out-of-sample

testing set of M = 160000X0:T -paths at each run.

LHS MCU tMSE cSUR ICU

R = 3,n∗ = 100

GP 10.036 (0.331) 10.725 (0.095) 10.773 (0.071) 10.711 (0.086) 10.753 (0.072)

t-GP 9.894 (0.447) 10.736 (0.088) 10.747 (0.087) 10.720 (0.104) 10.782 (0.076)

TP 9.169 (0.354) 10.101 (0.218) 9.872 (0.102) 8.867 (0.357) 10.482 (0.156)

Cl-GP 9.552 (0.567) 10.566 (0.084) 10.657 (0.097) 10.586 (0.099) 10.604 (0.119)

R = 20,n∗ = 100

GP 10.924 (0.076) 11.078 (0.029) 11.072 (0.028) 11.055 (0.032) 11.101 (0.023)

t-GP 10.923 (0.071) 11.061 (0.039) 11.055 (0.027) 11.044 (0.029) 11.100 (0.027)

TP 10.385 (0.178) 10.815 (0.039) 10.745 (0.045) 10.620 (0.087) 10.507 (0.087)

Cl-GP 10.761 (0.112) 11.026 (0.032) 10.991 (0.037) 10.901 (0.049) 10.937 (0.041)

R = 20,n∗ = 200

GP 11.105(0.036) 11.147(0.021) 11.119(0.022) 11.131(0.018) 11.178(0.020)

t-GP 11.090(0.034) 11.141(0.019) 11.126(0.020) 11.115(0.027) 11.175(0.021)

TP 10.585 (0.118) 10.896 (0.030) 10.811 (0.035) 10.764 (0.041) 10.638 (0.038)

Cl-GP 10.995(0.059) 11.109(0.025) 11.056(0.040) 10.985(0.027) 11.010(0.029)

7 Conclusion

We have carried a comprehensive comparison of five metamodels and four design heuristics on 18 case

studies (4 × 3 synthetic, plus six real-world). In sum, the considered alternatives to standard Gaussian-

observation GP do perform somewhat better. In particular, t-GP directly nests plain GP and hence essentially

always matches or exceeds the performance of the latter. We also observe gains from using Cl-GP when

SNR is low and from monotonic surrogates when the underlying response is monotone. That being said, final

recommendation regarding the associated benefit depends on computational considerations, as the respective

overhead becomes larger (and exact updating of the metamodel no longer possible).

In terms of design, we advocate the benefits of tMSE in low dimensional simulations, which generates

high-performing experimental designs without requiring expensive acquisition function (or even look-ahead

variance). The tMSE criterion does sometimes suffer from the tendency to put many designs at the edge of

the input space but otherwise tends to match the performance of more complex and computationally inten-

sive In’s. For complex simulations, ICU is probably still the best choice (although in that case, random-set-

based heuristics should also be considered). Especially in higher dimensions with misspecified noise, ICU
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is the best choice among all designs. We also stress that the user ought to thoughtfully pick the combination

of sequential design and metamodel, since cross-dependencies are involved (e.g., classification metamodels

generally do not work well with the ICU criterion in lower dimension).
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A Choice of γ(n) for MCU

Following up on the discussion in Section 3, we investigate the role of γ(n) in the performance of MCU.

Table 6 shows the error rate R for GP and t-GP metamodels with MCU acquisition function in the 2D

synthetic experiments across three constant values of γ(n) (constant γ(n) was also employed in Gotovos

et al. (2013) and Bryan et al. (2006)). We observe that generally the impact of γ(n) is secondary (with

Gaussian GP being more sensitive), and moreover there is no single choice that works the best across all
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cases. As illustrated in Figure 8, large γ(n) favors space-filling, while small γ(n) favors exploitation in

regions close to the boundary ∂S.

Generally, smaller γ(n)’s work better in cases with less noise (e.g. γ(n) = 10 is worst in the t/small

noise scenario). This validates our recommendation that γ(n) should be adaptive to the signal-to-noise ratio

of f̂ (n)(x) and s(n)(x). Clearly s(n)(x) depends strongly on the original noise specification which is another

reason why a fixed “universal” γ(n) is inappropriate (unlike in deterministic experiments, there is no simple

way to normalize the variance of ǫ). Note that since s(n) decreases in n, the signal-to-noise ratio increases

over time, which is consistent with the theoretical results that γ(n) should increase with n.

Model γ(n) = 0.5 γ(n) = 1.96 γ(n) = 10

t/small

GP 1.87% (0.36%) 1.82% ( 0.51%) 2.09% (0.54%)

t-GP 1.80% (0.52%) 1.73% (0.22%) 1.84% (0.42%)

t/large

GP 5.20% (2.33%) 5.59% ( 2.22%) 4.94% (1.79%)

t-GP 3.80% (1.25%) 4.24% (2.12%) 4.01% ( 1.43%)

Gsn/mix

GP 5.10% ( 2.36%) 5.53% ( 1.79%) 6.01% ( 3.08%)

t-GP 4.63% (1.74%) 3.92% (1.26%) 4.39% ( 1.40%)

t/hetero

GP 11.23% ( 5.08%) 10.52 % (7.05%) 13.63% (6.32%)

t-GP 7.34% (3.96%) 10.58% ( 8.25%) 7.77% ( 3.55%)

Table 6: Mean (w/standard deviation) error rate R for MCU in 2D synthetic experiments. Results are based

on 20 macro-replications of each scheme.

(a) γ(n) = 0.5 (b) γ(n) = 1.96 (c) γ(n) = 10

Figure 8: The estimated boundary ∂Ŝ (dashed line with 95% CI as dotted lines). Blue dots are samples

selected by MCU with γ(n) = 0.5, γ(n) = 1.96, and γ(n) = 10.
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B Gaussian Process Classification

Similar to the t-GP, we use a Laplace approximation for the non-Gaussian pCl(z|x1:n, y̌1:n) in Eq. (2.11),

pCl(z|x1:n, y̌1:n) ≈ qCl(z|x1:n, y̌1:n) = N (z̃(n),Σ−1
Cl ), (B.1)

where we again use the mode z̃(n) := argmaxz p(z|An) and ΣCl is the Hessian of the negative log posterior

at z̃(n):

ΣCl = −∇2 log pCl(z|An)
∣

∣

z=z̃(n) = K−1 +V, (B.2)

and V = −∇2 log p(y̌1:n|z)|z=z̃(n) is diagonal with elements

vi = Vii = − ∂2

∂z2i
log p(y̌i|zi)

∣

∣

zi=z̃
(n)
i

=
φ(z̃

(n)
i )2

Φ(y̌iz̃
(n)
i )2

+
y̌iz̃

(n)
i φ(z̃

(n)
i )

Φ(y̌iz̃
(n)
i )

, (B.3)

for i = 1, . . . , n, φ(·) denoting the density of the standard normal distribution.

C Computation Details for Look-Ahead Variance

t-GP: To approximate f̃
(n+1)
tGP in t-GP, we recall that the posterior mode and the posterior mean coincide:

f̂
(n)
tGP(x1:n) = KK−1f̃

(n)
tGP = f̃

(n)
tGP. (C.1)

Hence we can compute the expected value of f̃
(n+1)
tGP using the tower property:

E[f̃
(n+1)
tGP |x1:n,y1:n] = E[f̂

(n+1)
tGP (x1:n+1)|x1:n,y1:n]

=E [E[f(x1:n+1)|x1:n+1,y1:n+1]|x1:n,y1:n]

=E[f(x1:n+1)|x1:n,y1:n] = [f̂
(n)
tGP(x1:n), f̂

(n)
tGP(xn+1)] = [f̃

(n)
tGP, f̂

(n)
tGP(xn+1)],

(C.2)

where the last equality follows from the BLUP property of GP estimates. Therefore, we approximate the

(n + 1)-dimensional vector f̃
(n+1)
tGP with f̌

(n+1)
tGP = [f̃

(n)
tGP, f̂

(n)
tGP(xn+1)], where the first component is n-

dimensional and the second component is a scalar. In turn, this step allows us to update the matrices W
(n)
tGP

and K(n) assuming a new input xn+1 is added. Specifically, the new entry in W
(n+1)
tGP is

w
(n+1)
n+1 = (ν + 1)

ντ2 − (yn+1 − f̃
(n+1)
tGP (xn+1))

2

(

(yn+1 − f̃
(n+1)
tGP (xn+1))2 + ντ2

)2

≃ (ν + 1)
ντ2 − (yn+1 − f̂

(n)
tGP(xn+1))

2

(

(yn+1 − f̂
(n)
tGP(xn+1))2 + ντ2

)2 . (C.3)

Matching terms with the Gaussian observation GP, the updated variance s
(n+1)
tGP (xn+1)

2 is then approxi-

mately proportional to the current variance:

s
(n+1)
tGP (xn+1)

2

s
(n)
tGP(xn+1)2

≃ (w
(n+1)
n+1 )−1

(w
(n+1)
n+1 )−1 + s

(n)
tGP(xn+1)2

. (C.4)
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To make this implementable at step n, we need to remove the inaccessible yn+1 term in both the numerator

and denominator of (C.3). In principle, we could attempt to (numerically) integrate the predictive distribu-

tion Y (xn+1) ∼ tν(f
(n)
t (xn+1), τ

2) against f
(n)
t (xn+1) ∼ N (f̂

(n)
t (xn+1), s

(n)
t (xn+1)

2); for simplicity we

instead replace (yn+1−f̂
(n)
tGP(xn+1))

2 with its expectation: E[(yn+1−f̂
(n)
tGP(xn+1))

2] = Var[yn+1] = τ2 and

therefore obtain the approximation w
(n+1)
n+1 ≃ (ν +1) (ν−1)τ2

(ν+1)2τ4
= ν−1

(ν+1)τ2
. This leads to the final look-ahead

variance formula (cf. (4.4)):

ŝ
(n+1)
tGP (x∗;xn+1)

2 := s
(n)
tGP(x∗)

2 − v
(n)
tGP(x∗, xn+1)

2

(τ2 ν+1
ν−1) + s

(n)
tGP(xn+1)2

. (C.5)

Cl-GP: Similar to the t-GP, the look-ahead variance for the classification GP is intractable since s
(n+1)
Cl

is based on the mode z̃
(n+1)
Cl of the posterior pCl(z|x1:n,y1:n, xn+1, yn+1). Similar to (C.2) we use the

approximation z̃
(n+1)
Cl ≃ ž

(n+1)
Cl := [z̃

(n)
Cl , ẑ

(n)
Cl (xn+1)]. In that case we obtain an expression similar to (C.4),

with w
(n+1)
n+1 replaced by v

(n+1)
n+1 from Eq. (B.3):

s
(n+1)
Cl (xn+1)

2

s
(n)
Cl (xn+1)2

≃ (v
(n+1)
n+1 )−1

(v
(n+1)
n+1 )−1 + s

(n)
Cl (xn+1)2

. (C.6)

The Hessian element v
(n+1)
n+1 is given by

v
(n+1)
n+1 =

φ(z̃
(n+1)
n+1 )2

Φ(y̌n+1z̃
(n+1)
n+1 )2

+
y̌n+1z̃

(n+1)
n+1 φ(z̃

(n+1)
n+1 )

Φ(y̌n+1z̃
(n+1)
n+1 )

,

which depends on the next-step signed response y̌n+1. To develop an approximation in terms of step-n

values, we once more replace z̃
(n+1)
n+1 with the current mean ẑ

(n)
Cl (xn+1). Moreover, the next response y̌n+1

will take only two values, so v
(n+1)
n+1 will take on just two values v±n+1. Hence, we can compute the “expected

value”

v̌n+1 := v+n+1p+ + v−n+1p−, (C.7)

where v+n+1 =
φ(ẑ

(n)
Cl (xn+1))

2

Φ(ẑ
(n)
Cl (xn+1))2

+
ẑ
(n)
Cl (xn+1)φ(ẑ

(n)
Cl (xn+1))

Φ(ẑ
(n)
Cl (xn+1))

, (C.8)

and v−n+1 =
φ(ẑ

(n)
Cl (xn+1))

2

Φ(−ẑ
(n)
Cl (xn+1))2

− ẑ
(n)
Cl (xn+1)φ(ẑ

(n)
Cl (xn+1))

Φ(−ẑ
(n)
Cl (xn+1))

, (C.9)

with p+ := P(Y (xn+1) > 0|An) =
∫

R
Φ(z)pZ(xn+1)(z|An)dz = Φ

(

ẑ(n)(xn+1)
√

1+s
(n)
C

(xn+1)2

)

, and p− = 1− p+.

The final formula for the look-ahead variance becomes

ŝ
(n+1)
Cl (xn+1)

2 := s
(n)
Cl (xn+1)

2 · (v̌n+1)
−1

(v̌n+1)−1 + s
(n)
Cl (xn+1)2

.

TP: In terms of update formulas, TPs are in between GPs and t-GPs, with closed-form expressions

available but depending on yn+1. Specifically, the effect of adding a new observation (xn+1, yn+1) can be

highlighted in closed form, since f(x∗)|y1:n, yn+1 ∼ T
(

ν + n+ 1, f̂
(n+1)
TP (x∗), s

(n+1)
TP (x∗)

)

, where

f̂
(n+1)
TP (x∗) = f̂

(n+1)
Gsn (x∗) (C.10)

s
(n+1)
TP (x∗)

2 =
ν + β(n+1) − 2

ν + n− 1
s
(n+1)
Gsn (x∗)

2. (C.11)
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The effect of yn+1 is inside β(n+1) = y⊤
1:n+1[K

(n+1)]−1y1:n+1 = β(n) +

s
(n)
Gsn(xn+1)

−1
(

h(n)(xn+1)
2 + 2yn+1h

(n)(xn+1) + y2n+1

)

using the partition inverse equation, with

h(n)(x) := −y⊤
1:n[K

(n)]−1k(x) = −f̂Gsn(x). Since yn+1 is unknown beforehand, we use a plugin value

β̌(n+1) for β(n+1), relying again on the tower property:

β̌(n+1) =E[β(n+1)|x1:n,y1:n]

=E

[

E[β(n+1)|x1:n+1,y1:n+1]|x1:n,y1:n

]

=β(n) + s
(n)
Gsn(xn+1)

−2

(

h(n)(xn+1)
2 + 2f̂

(n)
Gsn(xn+1)h

(n)(xn+1) + f̂
(n)
Gsn(xn+1)

2 +
ν

ν − 2
s
(n)
Gsn(xn+1)

2

)

=β(n) +
ν

ν − 2
. (C.12)

D Gaussian Process with Monotonicity Constraint

Recall that since differentiation is a linear operator, the derivative of a GP f is another GP. Using f ′ as a

shorthand notation for the gradient ∇f at locations x1:n, we have

E[∂xjf(x∗)|A] =
∂E[f(x∗)|A]

∂xj∗
=

∂f̂(x∗)

∂xj∗
; (D.1)

Cov(∂xjf(x∗), f(x
′
∗)|A) = Kf ′,f (x∗, x

′
∗) =

∂

∂xj∗
K(x∗, x

′
∗) (D.2)

and Cov(∂xjf(x∗, ∂xj′f(x
′
∗)|A) = Kf ′,f ′(x∗, x

′
∗) =

∂2

∂xj∗∂(x′∗)
j′
K(x∗, x

′
∗). (D.3)

In addition to the data set (x1:n,y1:n), we now introduce virtual observations (xv,yv) with the dummy

responses yv,i ∈ {−1, 1} × {1, . . . , d} set according to whether f is required to be decreasing (yv,i =

(−1, j)) or increasing (yv,i = (+1, j)) with respect to the jth input dimension at input xv,i. The key “trick”

is to use a probit likelihood p(yv,i = (+1, j)|x1:n,xv) = Φ( 1η∂xjf(xv,i)), where the small parameter η

controls the strictness of the monotonicity constraint (Riihimäki and Vehtari, 2010). The probit function

approaches the Heaviside step function when η → 0 and forces the fitted ∂xj f̂(xv,i) (computed via (D.1)) to

match during likelihood maximization the predetermined sign of yv,i. An adaptive method to sequentially

add the virtual inputs xv is suggested in Riihimäki and Vehtari (2010). Note that if there are multiple

monotonic dimensions, then the same xv,i might be reused multiple times to satisfy the constraints on ∂xj f̂

across different j-coordinates, leading to a replicated design. We also remark that monotonic metamodels

are more expensive to run, since they require the use of virtual observations that increase the effective sample

size to (x1:n,xv) and hence require inversion of larger K-matrices.

The joint prior for f and its gradient f ′ is given by

pMon

([

f

f ′

]

∣

∣x1:n,xv

)

= N (0,Kjoint), (D.4)

where Kjoint =

[

Kf ,f (x1:n,x1:n) Kf ,f ′(x1:n,xv)

Kf ′,f (xv,x1:n) Kf ′,f ′(xv,xv)

]

.

Using Bayes rule, the joint posterior is then

pMon(f , f
′|x1:n,y1:n,xv,yv) =

pMon(f , f
′|x1:n,xv)p(y1:n|f)

∏

iΦ
(

yv,i∂xj
f(xv,i)

1
η

)

p(y1:n,yv|x1:n,xv)
. (D.5)
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Like for the classification GP to handle the non-Gaussian terms p(yv,i| ∂xj
f(xv,i)) we approximate them

with a local Gaussian likelihood

p(yv|f ′) ≈ q(yv|f ′) = N (µ̃Mon, Σ̃Mon). (D.6)

We use the Expectation Propagation (EP) algorithm Minka (2001) to determine the vector of local means

µ̃i
Mon, and the diagonal EP variance matrix Σ̃Mon, with local variances (σ̃i

Mon)
2. Details about the com-

putation can be found in Riihimäki and Vehtari (2010). The approximate posterior to (D.5) is a product of

Gaussian distributions and is simplified to

pMon(f , f
′|x1:n,xv,y1:n,yv) ≈ qMon(f , f

′|x1:n,xv,y1:n,yv) = N (µjoint,Σjoint).

The covariance matrix is Σ−1
joint = K−1

joint + Σ̃−1
joint, with Σ̃joint =

[

σ2I 0

0 Σ̃Mon

]

, and the posterior mean is

µjoint = ΣjointΣ̃
−1
jointµ̃joint, with µ̃joint =

[

y1:n

µ̃Mon

]

.

The posterior mean f̂Mon(x∗) and posterior covariance vMon(x∗, x
′
∗) for the M-GP metamodel are

f̂
(n)
Mon(x∗) =[k(x∗),Kf ,f ′(x∗,xv)]K

−1
jointµjoint, (D.7)

v
(n)
Mon(x∗, x

′
∗) =Kf ,f (x∗, x

′
∗)− [k(x∗),Kf ,f ′(x∗,xv)]× [Kjoint + Σ̃joint]

−1

[

k(x∗)

Kf ′,f (xv, x∗)

]

, (D.8)

analogously to the standard GP prediction equations (2.1) and (2.2).

In M-GP, replacing f with z and again applying the EP algorithm, we reach similar expressions for

posterior mean/variance as in (D.7) and (D.8).

Similar to the t-GP and Cl-GP, look-ahead variance is intractable for the monotonic GP, since the EP

mean µ̃Mon and variance Σ̃Mon are changing as the designs are augmented. Rewriting (D.8), we obtain

ṽ
(n)
Mon(x∗, x

′
∗) =Kf ,f (x∗, x

′
∗)− [K

(n)
f ,f ′(x∗,xv), k(x∗)][K̃

(n)
joint +

˜̃
Σ

(n)
joint]

−1

[

K
(n)
f ′,f (xv, x∗)

k(x∗)

]

, (D.9)

where K̃
(n)
joint =

[

K
(n)
f ′,f ′(xv,xv) K

(n)
f ′,f (xv,x1:n)

K
(n)
f ,f ′(x1:n,xv) K

(n)
f ,f (x1:n,x1:n)

]

and
˜̃
Σ

(n)
joint =

[

Σ̃
(n)
Mon 0

0 σ2In×n

]

.

K
(n)
f ′,f ′(xv,xv) is the step-n covariance matrix for the gradient of virtual observations, and Σ̃

(n)
Mon is

the approximate covariance matrix for pMon(yv|f ′). When calculating the one-step-ahead variance for

monotonic GP, we freeze the virtual observations and their gradient, which in consequence freezes the

K
(n)
f ′,f ′(xv,xv), K

(n)
f ′,f (xv,x1:n), K

(n)
f ,f ′(x1:n,xv), and Σ̃

(n)
Mon matrices. Therefore, the virtual observations are

treated as fixed inputs. Then, as a new observation is added, only the last row and column of the covariance

matrix are updated, while the other parts remain unchanged. This approach transforms computing the look-

ahead standard deviation s
(n+1)
Mon into the classical Gaussian observation GP as in (4.5). Therefore, following

exactly the same procedures discussed in Section 4, similar to equations (4.4) and (4.5), we obtain the local

updated variance s
(n+1)
Mon (xn+1)

2 at xn+1, and the step-ahead variance s
(n+1)
Mon (x∗)

2 at any input x∗:

s
(n+1)
Mon (xn+1)

2

s
(n)
Mon(xn+1)2

=
τ2

τ2 + s
(n)
Mon(xn+1)2

, (D.10)

s
(n+1)
Mon (x∗)

2 = s
(n)
Mon(x∗)

2 − v
(n)
Mon(x∗, xn+1)

2

τ2 + s
(n)
Mon(xn+1)2

. (D.11)
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