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Abstract

Background: Current professional society guidelines recommend genetic carrier screening be offered on the basis
of ethnicity, or when using expanded carrier screening panels, they recommend to compute residual risk based on
ethnicity. We investigated the reliability of self-reported ethnicity in 9138 subjects referred to carrier screening. Self-
reported ethnicity gathered from test requisition forms and during post-test genetic counseling, and genetic
ancestry predicted by a statistical model, were compared for concordance.

Results: We identified several discrepancies between the two sources of self-reported ethnicity and genetic
ancestry. Only 30.3% of individuals who indicated Mediterranean ancestry during consultation self-reported this on
requisition forms. Additionally, the proportion of individuals who reported Southeast Asian but were estimated to
have a different genetic ancestry was found to depend on the source of self-report. Finally, individuals who reported
Latin American demonstrated a high degree of ancestral admixture. As a result, carrier rates and residual risks provided
for patient decision-making are impacted if using self-reported ethnicity.

Conclusion: Our analysis highlights the unreliability of ethnicity classification based on patient self-reports. We recommend
the routine use of pan-ethnic carrier screening panels in reproductive medicine. Furthermore, the use of an ancestry model
would allow better estimation of carrier rates and residual risks.
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Background
High throughput technologies like microarrays and next
generation sequencing permit the simultaneous interro-
gation of multiple disease-causing mutations in many
genes, allowing expanded carrier screening for almost
any disease to be routinely used in medical practice. In
contrast, some professional guidelines still recommend
carrier screening for certain mutations based on ethnicity
[1–3] and physicians commonly use a patient’s self-
reported ethnicity to help determine which genetic condi-
tions or mutations to test. When society guidelines
recommend expanded carrier screening, they stress that
mutation frequencies should be known in the population

being tested, so that residual risk in individuals who test
negative can be assessed accurately [4, 5].
Ethnicity is defined as the membership in a specific

group sharing cultural, religious, or racial traits [6],
while genetic ancestry refers to the variations in genomic
structure among different populations, or the genotypes
an individual may have as a result of their ancestors [7].
Because the definition of ethnicity is predicated on
shared culture, there is a level of self-identification
involved, which may obscure genetic ancestry. For
example, an individual may not know about or self-
identify with a certain group, despite having an ancestor
from it. This issue is further highlighted in admixed pop-
ulations such as Latinos or African Americans. Different
African American groups across the United States have
been found to have varying proportions of European
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contribution to their genome with estimates ranging
from 7 to 23% [8]. This genetic heterogeneity means that
self-reported ethnicity may not give a complete picture
of genetic composition [9].
The incidence of several monogenic diseases varies

widely across different populations: Asian Americans
account for over 50% of thalassemia cases in the US [10],
African Americans are more likely to develop sickle cell
anemia [11], and 10-40% of Ashkenazi Jews carry recessive
mutations for known Mendelian diseases [12]. As a result,
carrier screening programs in the past were selectively tar-
geted to certain racial or ethnic groups [13]. Beyond carrier
screening and monogenic diseases, multiple associations
between genetic ancestry and clinical outcomes have been
observed. For example, lung function in African Americans
is inversely correlated with the percentage of African ances-
try [14, 15], coronary artery calcium and carotid intima
media thickness in African Americans and Hispanics vary
depending on genetic ancestry and the percentage of
European admixture [16], and diabetes among Native
Americans is correlated with European admixture [17].
In order to determine the reliability of self-reported

ethnicity for clinical decision-making, we compared two
sources of self-reported ethnicity, written and verbal,
with genetic ancestry as estimated by a statistical model,
from a cohort of 9138 patients undergoing genetic car-
rier screening. Additionally, the relationship between
disease carrier status and genetic ancestry within self-
reported ethnic groups was studied. Our results indicate
that self-reported ethnicity is not a reliable source on
which to base clinical decisions.

Methods
Study population and self-reported ethnicity
Our study population included 9138 patients undergoing
genetic carrier screening, who were referred from fertility
specialists, obstetricians/gynecologists, and genetic coun-
selors. Eighty-six percent of the samples were from US
clinics, eighty-six percent from Spanish clinics and
the remainder from other countries. Before undergoing in
vitro fertilization, couples in fertility clinics were offered
CarrierMap (Cooper Genomics, Inc.), a genetic test that
determines carrier status for 311 autosomal recessive or
X-linked genetic diseases. Informed consent to perform
this research was obtained during sample requisition, and
confirmed during the genetic counseling session that all
patients are offered when CarrierMap results are re-
ported to them. All data presented here is de-identified
(HHS 45 CFR part 46.101(b)(4)).
Participants’ ethnicities were self-reported at two separate

points in the testing process. The initial report was gathered
on the test requisition form, where patients were asked to
select all ethnicities that apply from the following list of
options (chosen by reviewing the literature): African; East

Asian; European; French Canadian; Jewish; Latin American;
Mediterranean; Middle Eastern; Native American; South
Asian; Southeast Asian; Other (see Additional file 1: for test
requisition form). There was also space next to “Other” to
write in a response. These responses were mapped to the
appropriate category when possible (e.g. Caucasian/White
mapped to European). Any participant who selected
“Other” without writing in a clarification was excluded
from analysis.
The second self-report was made during post-test con-

sultation with a genetic counselor. Standard counseling
protocol includes the collection of a complete family his-
tory, during which participants were asked to identify
their race/ethnicity or the origin of their family. One or
more ethnicities from the aforementioned options were
then selected based upon the patient’s report. This sec-
ond source of ethnicity was included in order to deter-
mine if there is a difference in what is self-reported
depending on the collection technique.
In cases where patients opted out of counseling or

were unreachable, a “family history” ethnicity was not
generated and the patients were not considered in that
part of the analysis. These patients were, however, still
included in the comparison between “requisition form”
ethnicity and genetic ancestry.

Genotyping
DNA was extracted from blood or saliva samples, and
genomic data was analyzed via Illumina’s Infinium
CoreExome-24 v1.0 and v1.1 (catalog ID WG-330-2014
and WG-331-1111, Illumina Inc., San Diego, CA) geno-
typing platform using standard protocols recommended
by the manufacturer.

Determination of genetic ancestry
In order to estimate the genetic ancestry of our samples, we
modified the Expectation Maximization (EM) Algorithm
used in FRAPPE [18, 19]. We assumed a paradigm where
an individual’s genome is divided into segments of different
ancestral origin from a set of geographic regions. Our goal
was to estimate the proportion of ancestral origin from
each geographic region for each individual. Instead of unco-
vering the ancestral populations from our samples directly,
we chose to use an independent source of population allele
frequencies to predefine geographic regions at the contin-
ental level. It should be noted that this model of genetic
ancestry is not intended to fully describe the genetic struc-
ture of the human species, as there are significant genetic
differences within continental groups. Moreover, there are
populations that may be ill described by the geographic
groups included in the model. Despite these limitations, the
genetic ancestry model is useful as a statistical tool to inves-
tigate self-reported ethnic labels in the context of clinical
decision-making.
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Estimation of allele frequencies
We obtained allele frequencies for all populations and
SNPs in the ALFRED database [20]. This database groups
populations by the geographic region where the samples
originate. In order to ensure complete allele frequency
information, we removed any population that had allele
frequency information for fewer than 90% of the total
SNPs in the database. Next, we removed populations
known to be heterogeneous (African Americans, His-
panics, etc.) and populations that are rare or that could
not be easily classified into a single continental group
(Yakut, Hezhe). This process left us with a total of 44 pop-
ulations (Additional file 2: Table S1). These 44 populations
can be further grouped into 8 continental groups: African
(AF), Central Asian (CA), East Asian (EA), European
(EU), Middle Eastern (ME), Native American (NA), Native
Oceanian (NO), and South Asian (SA).
Next, we filtered the list of markers to include only bial-

lelic SNPs existing in Illumina’s Infinium CoreExome-24.
We also removed any SNP with a call rate lower than
99.9%. Finally, since the EM algorithm assumes independ-
ence of each locus, we used Plink’s pairwise independence
command with an R2 of 0.5 and a window size of 1000 to
get a final list of SNPs that are in linkage equilibrium [21].
The final set contained 147,550 SNPs.

Marker selection
In order to reduce the full list of SNPs to only those that
are informative of ancestry (Ancestry Informative
Markers, AIMs), we used Wright’s Fst measure [22].
Instead of considering each population separately, we
calculated allele frequencies at the continental level by
averaging across populations. Next, we used a two-stage
procedure to pick AIMs. First, in order to get a global
set of markers, we considered the eight continental
groups and picked SNPs that maximize Fst across all
groups. Next, in order to ensure a balanced set of AIMs
and to distinguish between more closely related groups,
we enriched our set with extra SNPs that can differenti-
ate specific groups. We did this by finding SNPs with
maximum pairwise Fst, considering each pair of contin-
ental groups separately. This process generated a total of
1142 AIMs (Additional file 2: Tables S2 and S3).

Genetic ancestry prediction model
The model was formalized in a similar manner to
FRAPPE and ADMIXTURE [18, 19]. For a large number
of individuals (I) and a set of six ancestral populations
(K), a vector Qi = (qi1,…, qik) is estimated for each indi-
vidual (i). Each coordinate in the vector Qi is an esti-
mate of the probability that a random allele from i
originates from population k. Our dataset contains geno-
types for all i at the 1142 AIMs we selected (M). Each
individual’s genotype is captured in a column vector gi,

where each entry gim holds the number of copies of “al-
lele 1” at marker m for individual i. The choice of which
allele is “allele 1” is arbitrary as long as it is consistent
across samples. Departing from FRAPPE, we also have a
computed matrix of allele frequencies across populations
(F). In this matrix, element fkm holds the allele frequency
of marker m in population k.
The log-likelihood of each sample’s vector Qi is inde-

pendent and equal to
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These steps are repeated until the estimation con-
verges. Namely, once:

L Qnþ1
� �

−L Qnð Þ < ε

Since we are not estimating the population allele
frequencies, we can choose strict stopping criteria (ε =
0.01) and still retain an acceptable computation time.
The set of 1142 AIMs was tested on 1000 Genomes

Project data by processing genotype data available for
2504 samples (Additional file 2: Table S4) [23] using the
algorithm described above. Genotype data for the 9138
subjects in this study is available upon request or at
dbGAP (accession number phs001482.v1.p1). Scripts
used to select the 1142 AIMs and to run the Genetic
Ancestry algorithm as well as the Supplementary Data
are available at https://github.com/P15/phosphorus-pub-
lic/releases/tag/v1.0.0.

Results
The goal of this study was to determine the utility of
self-reported ethnicity data for clinical decision-making
in the context of genetic carrier screening. In the first
step, we selected a set of SNPs that could accurately
determine continental genetic ancestry in our patient
population. We obtained SNP frequencies from the AL-
FRED database [24], and through an iterative process,
we determined a set of SNPs that could separate the
continental groups selected (Additional file 2: Tables S1
and S2). Additional file 3: Figure S1 plots the first two
principal components of the 44 subpopulations across
the 1142 selected SNPs, and shows that six of the eight
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continental groups are well separated. The Middle East-
ern and Central Asian groups are closely related to the
European and South Asian groups, respectively, and re-
quire an extra set of markers to properly estimate popu-
lation divergences [25, 26] (Additional file 3: Figure S1).
For this reason, we chose not to consider these two
groups as separate ancestral populations and removed
them from the final estimation.

Model validation
In order to validate the genetic ancestry model, we applied
it on a set of 2504 samples with known origin from the
1000 Genomes Project [23] (Fig. 1 and Additional file 2:
Table S5). The 1000 Genomes Project groups samples by
geographic origin and insures that all four grandparents of
each sample come from the same group. As expected, the
maximum ancestral component of each sample matched
the known origin. We conclude that this set of 1142 SNPs
correctly estimates continental ancestry in the included
populations. These results also validate our approach of
using pre-computed population allele frequencies.

Ethnicity reported on requisition form vs. family history
We compared self-reported ethnicity from two distinct
sources: first, from a requisition form on which patients
were asked to check all ethnicities that apply from a pro-
vided list and second, from a detailed family history in-
take performed by a certified genetic counselor. For each
ethnic group, we counted the number of patients that
selected it on the requisition form, the number of pa-
tients that identified it during consults, and the number

of patients that did both (Table 1). We excluded all
patients that selected ‘Other’ on the requisition form.
Some of the groups had very consistent patterns of

identification across both self-reported sources. For
example, 92.7% of patients that selected African on the
requisition form identified having African ancestry dur-
ing the consult, while 95.5% of patients that identified
having African ancestry during the consult also selected
African on the requisition form. Other groups showed
more complex patterns of self-identification. For ex-
ample, 89.6% of patients that selected Mediterranean on
the requisition form also identified it during the consult,
while only 30.3% of patients that reported having some
Mediterranean ancestry during the consult actually
selected it on the requisition form (p-value = 2.63E-64
using McNemar’s test). Similarly, there were significant
discrepancies in the requisition form vs. consult for
Native American, Jewish and European ethnicities.
These differences suggest that the manner in which self-
reported ethnicity is collected affects what is reported.

Self-reported ethnicity vs. genetic ancestry
In order to see the relationship between self-reported
and genetic ancestry, we first considered samples that
marked only a single ethnicity on the requisition form.
We applied our genetic ancestry prediction model to all
of these samples and noted the maximum ancestral
group (Fig. 2a and Additional file 2: Table S6). We saw a
high level of agreement among African and European
samples. Of the samples that marked African on the
requisition form, 97.2% were predicted to have majority
African ancestry by the model. Similarly, of the samples
that marked European, 99.3% were predicted to have
majority European ancestry by the model. These results
are in line with what has been previously reported [27].
The results were quite different when considering

Asian continental groups. Of patients that marked only
Southeast Asian on the requisition form, 27.5% were
predicted to have majority South Asian ancestry by the
model, instead of East Asian as expected. At the same
time, 8.7% of patients that marked only South Asian on
the requisition form were predicted to have majority
East Asian ancestry. While this result is consistent with
previously published work that shows that the self-
reported label “Asian” is concordant with some kind of
Asian genetic ancestry, it also suggests that there may be
confusion among patients about the distinction between
the South, East, and Southeast Asian sub-groups [28].
In order to determine how the source of self-

reported ethnicity impacts the genetic ancestry esti-
mate, we repeated this analysis, but this time looked
at ethnicity collected during genetic consults. Again,
we considered samples that reported only a single
ethnicity or country of origin during their consult

Fig. 1 1000 Genomes Project validation results. Each individual is
represented as a thin vertical line, where each color shows the
proportion of ancestry predicted from each continental group.
Individuals are grouped by population: African (AF), East Asian (EA),
European (EU), South Asian (SA), and Latin American (LA)
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and noted the maximum ancestral group predicted by
the model (Additional file 2: Table S6). Once again,
we saw a high level of agreement between self-
reported and predicted ancestry among European and
African samples. In contrast to the requisition form,
the self-reports from consults among Asian continen-
tal groups were mostly concordant with the genetic
ancestry estimates. Only 5.6% of patients who self-
reported Southeast Asian during the consult were
predicted to be have majority South Asian ancestry,
with the remaining 93.3% having majority East Asian
ancestry. This difference in the genetic ancestry esti-
mates between the two sources of self-reported ethni-
city suggests that people may alter what they report
depending on the manner in which the report is
collected.

Genetic ancestry prediction in admixed populations
We investigated the predicted genetic ancestry of popu-
lations with known admixture (Table 2). Patients that
marked only African on the requisition form had on
average 79.3% African ancestry and 12.4% European
ancestry. Although our samples may include individuals
who immigrated from Africa recently, this admixture
proportion is in line with previously reported estimates
of African Americans [27]. Notably, we found large
variability in the predicted proportion of African ances-
try in self-identified Africans: from a high of 99% African
ancestry to a low of just 1.5% (Fig. 2b).
The highest variability was found in patients who

marked Latin American on the requisition form. On aver-
age, these patients had 52.1% European, 24.4% Native
American, and 12.0% African ancestry. These numbers

Table 1 Self-reported ethnicity reported on requisition forms vs. family history discussion

Ethnicity Form Consult Both % form that identified during consult % consult that identified on form p-value

African 206 200 191 92.7% 95.5% 0.307

East Asian 264 260 258 97.7% 99.2% 0.289

European 1815 1854 1708 94.1% 92.1% 1.67E-02

Jewish 403 431 380 94.3% 88.2% 1.52E-03

Latin American 333 332 318 95.5% 95.8% 1

Mediterranean 134 396 120 89.6% 30.3% 2.63E-64

Native American 70 122 64 91.4% 52.5% 9.03E-12

South Asian 139 140 121 87.1% 86.4% 1

South East Asian 128 114 99 77.3% 86.8% 0.049

Each row shows counts of the number of patients that selected each ethnicity on the requisition form, reported it during consult, and did both. Additionally the
overlap proportions are shown. P-values were computed using McNemar’s test to assess if the proportions are significantly different

A B C

Fig. 2 Ancestry model results. a Each bar represents all samples within each self-reported ethnicity category. The height of each group shows the
proportion of samples that were predicted to have a majority of their ancestry from that group. b Individuals who self-reported as only African
on requisition forms. Each individual is represented as a thin vertical line, where each color shows the proportion of ancestry predicted from each
continental group. c Individuals who self-reported as Latin American on requisition forms. Each individual is represented as a thin vertical line,
where each color shows the proportion of ancestry predicted from each continental group
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varied widely among individual patients. For example, the
Native American component ranged from a high of 90%
in some samples to a low of <1% in others (Fig. 2c).
We also investigated samples that marked multiple

ethnicities on the requisition form and found a wide
range of genetic ancestry estimates (Table 2). For ex-
ample, on average, patients that marked both European
and East Asian on the form were predicted to have
41.8% European and 44.3% East Asian ancestry. Among
the individual samples however, the East Asian compo-
nent ranged from a low of 8.8% to a high of 58%. Finally,
we considered samples with at least 20% predicted
ancestry from both the European and East Asian contin-
ental groups (88 subjects). Of these samples, 29 (33%)
reported both European and Asian on the requisition
form, while 15 (17%) reported only Asian, 12 (13.6%)
reported only European, and 32 (36.4%) reported some-
thing else (Additional file 2: Table S7).

Carrier risk in admixed populations
In order to better understand how genetic ancestry esti-
mates within self-reported ethnic groups impact clinical
estimates of risk, we investigated the relationship be-
tween carrier status of cystic fibrosis, sickle cell anemia,
and GJB2-related nonsyndromic hearing loss and pre-
dicted ancestry among self-reported African and Latin
American patients. These diseases were chosen because
they are common and strongly associated with specific
ancestral groups. We found significant differences in
carrier risk based on genetic ancestry (Additional file 2:
Table S8). For example, the mean African ancestry of
Latin American patients identified as carriers of sickle
cell anemia is 30.3%, while the mean African ancestry of

non-carriers is 11.5% (P < 0.0001, Mann-Whitney’s U
test). Similarly, the mean European ancestry of Latin
American patients identified as carriers of cystic fi-
brosis is 59.4% while the mean European ancestry of
non-carriers is 51.9% (P = 0.03). Finally, the mean
European ancestry of African carriers of GJB2-
related nonsyndromic hearing loss is 23.0%, while
the mean European ancestry of non-carriers is 12.2%
(P = 0.01).
In order to see how carrier rates differ based on gen-

etic ancestry, we computed the 80th percentile of Euro-
pean and African ancestry proportion among self-
reported Latin Americans and Africans. We then com-
puted carrier rates among individuals above and below
this 80th percentile threshold and found significant dif-
ferences in carrier rates of these diseases (Table 3). For
example, the carrier rate of cystic fibrosis among Latin
Americans with less than 68.7% European ancestry is
1.6%, while the carrier rate of those with more than
68.7% European ancestry is 3.7%. To highlight the sig-
nificance of this difference, if we assume a detection rate
of 72% (based on the ACMG panel of 23 common CFTR
mutations), in the case of a negative screen, the residual
risk of actually being a carrier is 1/220 in Latin Americans
with less than 68% European ancestry and 1/94 in Latin
Americans with a higher European ancestry proportion. A
similar situation is observed for Africans with sickle cell
anemia, where the carrier rate varies from 6.7 to 15.7%,
depending on whether they have less or more than 93%
African ancestry. Finally, the carrier rate of GJB2-related
nonsyndromic hearing loss among Africans varies from
1.4 to 5.6%, depending on whether they have less or more
than 20% European Ancestry.

Table 2 Mean genetic ancestry component by self-reported ethnicity on requisition form. Each row shows samples based on self-reported
ethnicity on requisition forms. Each column shows the average plus minus two standard errors of predicted ancestry proportion across all
samples in that self-reported category

Requisition Form Ethnicity African East Asian European Native American Native Oceanian South Asian

African 79.3% + −1.5% 1.7% + −0.6% 12.4% + −1.1% 1.3% + −0.3% 1.2% + −0.2% 4.4% + −0.4%

East Asian 0.1% + −0.1% 91.7% + −1.7% 1.2% + −0.5% 1.2% + −0.2% 1.2% + −0.2% 4.9% + −1.4%

European 0.8% + −0.1% 0.8% + −0.2% 90.5% + −0.3% 1.1% + −0.1% 0.5% + −0.1% 6.7% + −0.2%

Jewish 3.0% + −0.3% 1.2% + −0.2% 79.9% + −0.7% 1.0% + −0.2% 1.0% + −0.1% 14.1% + −0.6%

Latin American 12.0% + −1.0% 3.3% + −0.4% 52.1% + −1.2% 24.4% + −1.2% 1.0% + −0.1% 7.5% + −0.3%

Mediterranean 2.6% + −0.5% 0.9% + −0.3% 86.4% + −1.0% 1.4% + −0.4% 0.7% + −0.1% 8.2% + −0.6%

Native American 7.3% + −9.2% 0.7% + −0.5% 81.4% + −10.2% 3.8% + −3.5% 0.6% + −0.4% 6.5% + −1.8%

South Asian 0.5% + −0.2% 18.8% + −2.5% 4.8% + −0.8% 2.0% + −0.3% 4.0% + −0.4% 70.2% + −2.3%

South East Asian 0.5% + −0.3% 68.3% + −4.3% 3.0% + −0.8% 1.7% + −0.3% 3.4% + −0.4% 23.4% + −3.9%

African & European 36.4% + −10.2% 1.1% + −0.6% 54.8% + −10.6% 0.8% + −0.4% 1.0% + −0.5% 6.1% + −1.5%

African & Latin American 55.0% + −12.6% 2.4% + −1.1% 26.4% + −8.0% 6.3% + −4.9% 1.5% + −0.8% 8.7% + −2.6%

East Asian & European 0.4% + −0.3% 44.3% + −4.8% 41.8% + −5.1% 3.8% + −2.0% 2.1% + −0.7% 7.9% + −2.5%

European & Latin American 4.2% + −1.3% 1.8% + −0.5% 72.7% + −2.6% 13.4% + −2.4% 0.8% + −0.3% 7.4% + −0.9%
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Discussion
We compared two sources of self-reported ethnicity to
genetic ancestry as predicted by a validated statistical
model. First we measured concordance between a writ-
ten self-report on a requisition form and a verbal report
during a genetic counseling session. While for most
ethnicities there was concordance between them, for
ethnicities like Mediterranean, Native American, and
Southeast Asian, responses on the requisition form and
during genetic counseling were different. We also ob-
served differences between self-reported ethnicity on the
requisition form and genetic ancestry in South Asians
and Southeast Asians. Notably, these differences were
mitigated when looking at self-reported ethnicity during
genetic counseling consults. The discrepancies imply
that there is confusion about the meaning of the differ-
ent labels, impacting our ability to rely on self-reported
ethnicity, which is in line with prior reports [29, 30].
In the realm of carrier screening, the main conse-

quence of inaccurate classification is miscalculation of
reproductive risk. Our results show that carrier rates
and residual risks are dependent on genetic ancestry in
admixed populations (Table 3). For example, for Latin
Americans, the carrier rate of cystic fibrosis varies from
1.6% to 3.7% depending on the percentage of European
ancestry, and the carrier rate of sickle cell anemia varies
from 1.3% to 4.6% depending on the percentage of
African ancestry. Additionally, we found that in admixed
populations, the proportion of genetic ancestry esti-
mated from each continental group as well as what eth-
nicities are self-reported, varies by individual. As such, it
is erroneous to assume that genetic disease risks affect
admixed populations in a uniform manner.
Carrier rates and residual risk estimates vary signifi-

cantly depending on which source is used to account for

population differences. Self-identification does not always
paint a complete picture, as there may be uncertainty
about family origins, confusion about labels, and identi-
fication or lack thereof with a particular group due to
personal or cultural reasons. Since mutation allele fre-
quencies are linked to genetic ancestry, using self-
identified ethnicity to select panel content or to adjust
for risk will lead to errors, which may impact clinical
decisions. Despite recommendations from professional
societies to base some carrier screening decisions on
ethnicity, this study suggests that in order to ensure
that carriers of severe genetic disorders are not missed,
expanded pan-ethnic carrier screening panels should be
utilized. Pan-ethnic panels are able to detect mutations
regardless of minor allele frequency (low or high), and
include all mutations described for a given disease,
present in different populations. Additionally, targeted
next generation sequencing can be used to detect novel
or poorly described mutations in genes of interest.
While, pan-ethnic panels have some disadvantages [31, 32],
given the unreliability of self-reported ethnicity and the goal
of providing couples with information to optimize preg-
nancy outcomes, pan-ethnic panels represent the most
comprehensive approach.
A second conclusion from this study is that, since car-

rier rates, detection rates and residual risks vary based
on ancestry, in order to accurately counsel patients
about their reproductive risks, genetic ancestry should
be determined in clinical practice. Prior reports also
describe sets of Ancestry Informative Markers (AIMs)
that could be used to determine genetic ancestry, al-
though further work is needed to ensure that allele
frequency estimates are representative of all popula-
tions and that the ancestry estimates are meaningful
for all individuals [33–38].

Table 3 Carrier rates by genetic ancestry

Sickle Cell Anemia

carrier rate < threshold carrier rate > threshold p-value African Ancestry Threshold (80th percentile)

African 6.760% 15.741% 0.00605 93.439%

Latin American 1.261% 4.587% 0.00372 18.677%

Cystic Fibrosis

carrier rate < threshold carrier rate > threshold p-value European Ancestry Threshold (80th percentile)

African 1.631% 6.482% 0.01095 19.928%

Latin American 1.606% 3.670% 0.06128 68.715%

GJB2-Related Nonsyndromic Hearing Loss

carrier rate < threshold carrier rate > threshold p-value European Ancestry Threshold (80th percentile)

African 1.399% 5.556% 0.01870 19.928%

Latin American 3.440% 3.670% 0.83750 68.715%

Differences in carrier rates of sickle sell anemia, cystic fibrosis, and GJB2-related nonsyndromic hearing loss by proportion of African and European ancestry among
self-reported Africans and Latin Americans. For each group, an ancestry threshold was chosen by computing the 80th percentile of ancestry proportion. For example
the 80th percentile of African ancestry among Latin Americans is 18.68%. Thus, the carrier rate of sickle cell anemia of Latin Americans below this threshold is 1.261%
and the carrier rate above it is 4.587%. P-values were computed using Fisher’s exact test
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Limitations of the present study include that the data
was studied retrospectively using the records of a clinical
carrier screening company. Self-reported ethnicity from
requisition forms was entered into the database during
sample accessioning on a rolling basis. It is possible that
some of the records were entered incorrectly or later
modified by genetic counselors. To ensure accurate
measurement, we manually reviewed several hundred
scanned requisition forms: both randomly and in cases
where discordance between self-reports and genetic
ancestry was found. Reviewing records randomly showed
that less than 1% of the self-reported labels were incor-
rect in the database. Another limitation is that our
genetic ancestry model is based on allele frequency esti-
mates from a limited sample size and assumes that
grouping individuals by continent provides meaningful
estimates of origin. A better way would be to account
for subtle differences in genetic ancestry among local
subpopulations, however, this would require expanded
screening platforms and increased resources. Despite
these limitations, we were able to correctly estimate the
origin of validation samples from the 1000 Genomes
Project and we found a strong relationship between
carrier rates and ancestry proportion in admixed popula-
tions. This shows that the ancestry model provides
meaningful information. Further work with larger co-
horts is needed to refine the ancestry model and to
measure the relationship between carrier rates and gen-
etic ancestry for more diseases. Additionally, in diseases
where environmental factors are known to play a part,
further work is needed to understand how much impact
ancestry has versus social and cultural influences of an
individual’s self-identified group.

Conclusions
Estimates of carrier rates and residual risks depend on
whether self-reported ethnicity or genetic ancestry is
used to account for population differences. Furthermore,
self-reports are not reliable for clinical decision-making.
In order to mitigate the risk of ordering the wrong test-
ing panel, we recommend the use of expanded pan-
ethnic carrier screening panels. Additionally, in order to
accurately estimate carrier rates and residual risks, we
recommend the use of a genetic ancestry model in clin-
ical genetic testing.
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