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ABSTRACT

EVALUATING GRAMMAR FORMALISMS FOR APPLICATIONS

TO NATURAL LANGUAGE PROCESSING

AND BIOLOGICAL SEQUENCE ANALYSIS

David Chiang

Supervisor: Aravind K. Joshi

Grammars are gaining importance in statistical natural language processing and computational

biology as a means of encoding theories and structuring algorithms. But one serious obstacle to

applications of grammars is that formal language theory traditionally classifies grammars accord-

ing to their weak generative capacity (WGC)—what sets of strings they generate—and tends to

ignore strong generative capacity (SGC)—what sets of structural descriptions they generate—even

though the latter is more relevant to applications.

This dissertation develops and demonstrates, for the first time, a framework for carrying out

rigorous comparisons of grammar formalisms in terms of their usefulness for applications. We do

so by adopting Miller’s view of SGC as pertaining not directly to structural descriptions but their

interpretations in particular domains; and, following Joshi et al., by appropriately constraining the

grammars and interpretations we consider. We then consider three areas of application.

The first area is statistical parsing. We find that, in this domain, attempts to increase the SGC

of a formalism can often be compiled back into the simpler formalism, gaining nothing. But this

suggests a new view of current parsing models as compiled versions of grammars from richer

formalisms. We discuss the implications of this view and its implementation in a probabilistic

tree-adjoining grammar model, with experimental results on English and Chinese.

For our other two applications, by contrast, we can readily increase the SGC of a formalism

without increasing its computational complexity. For natural language translation, we discuss the

formal, linguistic, and computational properties of a formalism that is more powerful than those

vii



currently proposed for statistical machine translation systems.

Finally, we explore the application of formal grammars to modeling secondary/tertiary struc-

tures of biological sequences. We show how additional SGC can be used to extend models to take

more complex structures into account, paying special attention to the technique of intersection,

which has drawn comparatively little attention in computational linguistics.

These results should pave the way for theoretical research to pursue results that are more di-

rected towards applications, and for practical research to explore the use of advanced grammar

formalisms more easily.
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Chapter 1

Introduction

Then the three young men of the bodyguard, who kept guard over the person of the
king, said to one another, Let each of us state what one thing is strongest; and to the
one whose statement seems wisest, King Darius will give rich gifts and great honors of
victory. . . The first wrote, Wine is strongest. The second wrote, The king is strongest.
The third wrote, Women are strongest, but above all things truth is victor.

—1 Esdras3.4–5, 10–12

One should realize. . . that if we consider these four, namely wine, the king, woman
and truth, in themselves they are not comparable because they do not belong to the
same genus. Nevertheless, if they are considered in relation to some effect, they coin-
cide in one aspect, and so can be compared with each other.

—St. Thomas Aquinas,Quaestiones quodlibetales, XII, q. 14, a. 1

Formal grammars, first developed as specifications of linguistic theories and programming

languages, have found a rich variety of applications in computer science, especially in natural

language processing and, more recently, biological sequence analysis. A question that naturally

arises in such applications is: What formalism should grammars be expressed in? What makes one

formalism better than another? For our purposes, we may view a grammar formalism simply as the

set of all grammars it can express; the larger this set, the better. But this only reduces the question

to another question: What makes one grammar equivalent to another?

Formal language theory has traditionally given two ways of answering this question, namely,

weak generative capacity(WGC) andstrong generative capacity(SGC). The WGC of a grammar

1



2 Chapter 1. Introduction

is the set ofstringsit generates, and its SGC is the set ofstructural descriptionsit assigns to them.

The WGC of a formalism is then the set of WGCs of its grammars, and its SGC is the set of SGCs

of its grammars. Occasionally one finds the term “strong generative capacity” misapplied to the

set of phrase-structure trees a grammar generates (which we will refer to as itstree generative

capacity). But a structural description may be any kind of structure (e.g., dependency structure,

f-structure, derivation tree, proof tree) a grammar might assign to a string.

At the time that Chomsky introduced these terms, he observed that SGC is “by far the more

interesting notion” (Chomsky and Miller, 1963, p. 297), but WGC is “the only area in which

substantial results of a mathematical character have been achieved” (Chomsky, 1963, pp. 325–

326). The reason SGC is more interesting is that it is via structural descriptions that the grammar

interfaces with higher-level modules (i.e., semantics). But the paucity of results having to do with

SGC is due, at least in part, to the difficulty of defining what it means for two structural descriptions

to be equivalent, especially when they come from different formalisms. As Aquinas might say, they

are not comparable because they do not belong to the same genus. Thus it can be extremely difficult

to say what advantage one formalism has over another.

Forty years later, Chomsky’s observation holds true. Formal language theory has produced

many significant mathematical results, but continues to focus on WGC rather than SGC. Indeed, as

more grammar formalisms are introduced, the more difficult it becomes to compare their structural

descriptions and therefore their SGC. On the other hand, the advancement of computing technology

has opened up new applications of formal grammars beyond generative syntax, and SGC is more

relevant than WGC for these applications just as it was more relevant for generative syntax. But

because results having to do with SGC are still lacking, the use of new grammar formalisms is too

often justified by intuition or examples or not at all.

The problem of SGC has been addressed previously, if infrequently, in the context of formal

linguistics (Kuroda, 1976; Kuroda, 1987; Miller, 1999), but hardly at all in the context of computer

applications. This dissertation presents for the first time a comprehensive attempt to mathemati-

cally evaluate grammar formalisms for computer applications. Our thesis is that such evaluation is



1.1. Overview 3

made possible by appropriately constrained notions of SGC and is a helpful predictor of empirical

performance.

1.1 Overview

Theoretical framework

In Sections 1.2 and 1.3 we set up the basic framework in which we will carry out our comparisons

of grammar formalisms. Our notion of SGC is based on Miller’s (1999). If the incommensurabil-

ity of structural descriptions across formalisms is analogous to the incommensurability of “wine,

the king, woman, and truth,” then Miller’s solution is analogous to Aquinas’: he proposes not to

compare structural descriptions directly, but to compare their denotations in particularinterpreta-

tion domains(corresponding to Aquinas’ “effects”). He proceeds to define various interpretation

domains and demonstrates how different formalisms can be compared within those domains.

Our adaptation of Miller’s notion of relativized SGC is more pragmatic. Whereas his interpre-

tation domains capture linguistically significant information about structural descriptions, our in-

terpretation domains are more application-driven, for example, the domain of probabilities. More-

over, because we are interested in the computation of interpretations, we constrain interpretation

functions via constrained grammar formalisms. Following the approach taken in the literature on

tree-adjoining grammars (TAGs), we consider grammars with well-defined domains oflocality,

allowing us to recursively define all interpretation functions in terms oflocal interpretation func-

tions.

This framework allows us to systematically classify a wide range of grammar formalisms ac-

cording to their power in various interpretation domains. Different interpretation domains classify

formalisms differently: some will be coarser-grained, some will be finer-grained; it can even hap-

pen that one formalism is more powerful than another in one domain, but less powerful in another

domain. We are especially interested in situations where we can “squeeze” SGC (Joshi, 2003) out
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of a formalism while preserving its computational properties. We try to capture this intuition us-

ing the notion of acover (Nijholt, 1980): a situation when one grammar is parsed using another

grammar (the cover grammar) and therefore inherits its computational properties. Formalisms that

increase SGC while preserving coverability are especially interesting. But formalisms that increase

SGC without preserving coverability are interesting as well.

In this framework we will explore three areas of application: statistical natural language pars-

ing, natural language translation, and modeling of biological macromolecules.

Statistical parsing

We first consider, in Chapter 3, the task of statistical parsing: computing the most likely structure

(standardly, the most likely phrase-structure tree) of a given string. We discuss two types of statisti-

cal models:history-based models, which are easy to estimate, andmaximum-entropy models, which

are more general but more difficult to estimate. History-based models based on formal grammars

are already well-understood; we discuss maximum-entropy models based on formal grammars and

how to estimate them using an algorithm due to Miyao and Tsujii (2002).

Both types of model are subsumed by semiring-weighted grammars (Goodman, 1999); thus

we can measure statistical-modeling power by SGC with respect to semiring-weighted structures.

This notion of SGC turns out to classify formalisms rather coarsely: if a grammarG can be covered

by (say) a CFG, then weights can also be assigned to the cover grammar to make it strongly

equivalent toG with respect to weighted strings. In other words, we do not expect in general that

formalisms which “squeeze” SGC out of CFG will provide any more statistical parsing models

than weighted CFG does (although a more precise treatment of the question below leaves some

room for exceptions).

But if the statistical-modeling power of these “squeezed” formalisms is already accessible

within PCFG, then we can investigate how that power may already be utilized by existing PCFG

models like those of Charniak (1997) or Collins (1997), which represented a breakthrough in sta-

tistical parsing. It turns out that the style of CFGs, calledlexicalized CFGs, that these models use
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is very similar to the cover CFGs from the above result. Thus, applying the construction in reverse

to a lexicalized PCFG model yields a reinterpretation of lexicalized PCFG as a special kind of

probabilistic TAG.

But TAG structural descriptions contain more information than the phrase-structure trees found

in typical training corpora like the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993).

Under this interpretation, then, it becomes more clear that the purpose of the head-propagation

rules used by lexicalized PCFG models is not simply to rearrange information in the training data,

but to reconstructinformation missing from the training data; and this information is not lexical,

butstructural.

We then describe our implementatation of this interpretation in a parsing model based on prob-

abilistic tree-insertion grammar with sister-adjunction (TIG-SA). We reinterpret the head/argument

rules from Magerman’s SPATTER parser (Magerman, 1995) and Collins’ parser (Collins, 1997)

as a heuristic for reconstructing full structural descriptions from partial ones; we also explore a

method related to the approach of Hwa (1998) which uses Expectation-Maximization to directly

estimate the model defined over full structural descriptions on the partial structural descriptions in

the training data. We present experimental results for both of these techniques, training our prob-

abilistic TIG-SA model from the Penn Treebank (English) and the Penn Chinese Treebank. We

find that our probabilistic TIG-SA model performs at roughly the same level as lexicalized PCFG

models and explore some new directions of research that such a model opens up.

Natural language translation

The next application we discuss is translation (Chapter 4), for which the relevant notion of SGC is

that of string pairs. In contrast to the classification above, this notion of SGC classifies formalisms

quite finely. We analyze several synchronous formalisms proposed in the literature and add a new

one, synchronous regular-form TAG (Dras, 1999; Chiang, Schuler, and Dras, 2000; Chiang, 2002).

Whereas these formalisms are all weakly equivalent and have the same statistical-modeling power,

they all differ in their translation power, that is, their SGC with respect to string or tree pairs.
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We observe that machine translation research is following statistical parsing in moving to-

wards more complex structural descriptions. But we argue that because translation power classifies

formalisms so much more finely than statistical-modeling power, it is much more important in

translation research to target the right formalism. We discuss how synchronous RF-TAG’s formal,

linguistic, and computational properties make it potentially well-suited for use in translation sys-

tems.

Biological sequence analysis

Finally, in Chapter 5 we explore the use of formal grammars for biological sequence analysis.

Proteins and RNAs are folded out of molecules which are chains of building blocks (amino acids

and nucleotides) assembled in a sequence specified by genes. The task of biological sequence

analysis is to relate genetic sequences to the folded structures they encode. It was Searls (1992) who

first observed the similarity between biological sequence analysis and natural-language-syntactic

analysis and proposed that the same techniques could be applied to both problems. We give a

unified treatment of previous applications of formal grammars to this problem, highlighting in

particular their shared assumption that grammatical locality corresponds to physical locality. This

observation implies that the relevant notion of SGC for this problem is that oflinkedstrings. Searls’

original work was on CFG; we explore some old and new ways of employing formalisms with

greater SGC than CFG to model more complex structures:α-helices,β-sheets, kissing hairpins,

and pseudoknots.

Most grammatical approaches to biological sequence analysis rank structures using weights—

usually probabilities or energies. We describe a more sophisticated use of weights, drawing on

a model due to Chen and Dill (1995; 1998) which tries not only to predict structures of chain

molecules but to give a full description of their statistical-mechanical properties. Their model is

not explicitly grammatical, but we show that it can be more cleanly viewed as a weighted CFG.
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In Chapter 6, we explore a family of approaches based on the technique ofintersection—

analyzing a string with two or more grammars and composing their structural descriptions. Inter-

section is not used much for natural language, probably because hierarchical structural descriptions

do not compose easily, but is more promising for biological sequence analysis, because there is a

well-defined way of composing structures. We show how our CFG version of Chen and Dill’s

model can be intersected with a finite-state automaton forα-helices, easily yielding a novel model

for bundles ofα-helices. We also discuss how simple literal movement grammars (Groenink, 1997)

(similar to range concatenation grammars (Boullier, 2000)) might use their built-in intersection op-

eration to efficiently model proteinβ-sheets.

1.2 Example: Dutch, DGC, and TAG

The controversy over the complexity of Dutch is a classic illustration of the kinds of issues involved

in testing the adequacy of a grammar formalism, which will guide us as we develop the theoretical

framework for our own comparisons of grammar formalisms. One early argument against the ade-

quacy of context-free grammar for natural language was put forth by Huybregts (1976). He argued

that Dutch sentences exhibitingcross-serial dependencieslike the following:

(1.1) dat
that

Jan
Jan

Piet
Piet

de
the

kinderen
children

zag
saw

helpen
help

zwemmen
swim

that Jan saw Piet help the children swim

(where the first NP is the subject of the first verb, the second of the second, and so on) show that

Dutch is like the copy language{ww}, which is non-context-free. Pullum and Gazdar (1982) cor-

rectly replied that the sequence of verbs is not a copy of the sequence of nouns; the two sequences

only had to be the same length. Therefore Dutch, considered as a set of strings, cannot be shown

in any formal way to be reducible to the copy language.

Bresnan et al. (1982) argued using traditional constituency arguments that the phrase-structure

trees of sentences like (1.1) had to have a certain form, and then proved that CFG cannot generate

such tree sets, concluding that CFG does not have enough “strong generative capacity” (in our
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terminology, tree generative capacity) to capture this construction. However, because it relied on

theory-internal assumptions to determine the desired trees, this argument was not compelling.

Finally Huybregts (1984) and Shieber (1985) independently observed that Swiss German al-

lows a cross-serial word order as Dutch does but also has verbs which mark their objects with

different cases.

(1.2) das
that

mer
we

d’chind
the children-ACC

em Hans
Hans-DAT

es
the

huus
house-ACC

lönd
let

hälfe
help

aastriiche
paint

that we let the children help Hans paint the house

(1.3) ∗das
that

mer
we

d’chind
the children-ACC

de Hans
Hans-ACC

es
the

huus
house-ACC

lönd
let

hälfe
help

aastriiche
paint

that we let the children help Hans paint the house

Therefore Swiss German can be reduced via homomorphisms and intersections to the copy lan-

guage{ww | w ∈ a∗b∗}, which proves that Swiss German is not a context-free language. But this

still does not settle the question for Dutch.

The most satisfying answer to the question of Dutch comes from the literature on tree-adjoining

grammars and related formalisms. Just as CFGs generate strings by rewriting symbols as strings,

tree-adjoining grammars(Joshi, Levy, and Takahashi, 1975; Joshi and Schabes, 1997) generate

trees by rewriting nodes as trees.

For example, consider the TAG of Figure 1.1. The treeα is called aninitial tree, analogous to

the start symbol in CFG. The treesβ1 andβ2 are calledauxiliary trees, analogous to productions

in CFG. They differ from initial trees in that they have exactly one frontier node marked with an

asterisk (∗); this node is called thefoot nodeand always has the same label as the root node. The

path from the root node to the foot node of an auxiliary tree is called itsspine.

The basic rewriting operation is calledadjunction, in which a node is rewritten with the spine

of an auxiliary treeβ along with all its branches. The rewritten node and the root/foot of β must

have the same label. For example, Figure 1.2 shows the result of rewriting the lower S node ofα

with β1.
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S

S

NP

dekinderen

VP

V

t

V

zwemmen

S

S

NP

N

Piet

VP

S V

t

V

helpen

∗

S

S

NP

N

Jan

VP

S V

t

V

zag

∗

(α) (β1) (β2)

Figure 1.1: TAG for Dutch cross serial dependencies in sentence (1.1).

S

S

S

NP

N

Piet

VP

S

NP

dekinderen

VP

V

t

V

t

V

helpen

V

zwemmen

Figure 1.2: Example of adjunction. The treeβ1 has been adjoined at the lower S node ofα.
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S

S

NP

dekinderen

VP

V

t

V

zwemmen

S

S

NP

N

Piet

VP

S V

t

V

helpen

∗

S

S

NP

N

Jan

VP

S V

t

V

zag

∗

(α) (β1) (β2)

Figure 1.3: TAG with links for Dutch cross-serial dependencies in sentence (1.1).

S

S

S

NP

N

Piet

VP

S

NP

dekinderen

VP

V

t

V

t

V

helpen

V

zwemmen

Figure 1.4: First step in derivation of cross-serial dependencies. The treeβ1 has been adjoined at
the lower S node ofα.
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S

S

S

S

NP

N

Jan

VP

S

NP

N

Piet

VP

S

NP

dekinderen

VP

V

t

V

t

V

t

V

zag

V

helpen

V

zwemmen

Figure 1.5: Second step in derivation of cross-serial dependencies. The treeβ2 has been adjoined
at the third S node of Figure 1.4.
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Joshi (1985) showed that a tree-adjoining grammar withlinks (see Figure 1.3; this particular

analysis is due to Kroch and Santorini (1991)) could generate examples like (1.1) with the depen-

dencies (which are much less controversial than the phrase structure) explicitly marked:

(1.4) datJanPietdekinderenzaghelpenzwemmen

Figures 1.4 and 1.5 show the derivation of the sentence, with the cross-serial dependencies as

desired. This is possible with a TAG but not possible for any CFG. There are two key assumptions

at work in this argument. First, grammars are not measured according to their WGC but according

to their ability to generate strings with subject-verb dependencies explicitly marked with links.

Second, CFGs and TAGs can only generate links between terminal symbols in the same elementary

structure.

Becker et al. (1991) developed these two assumptions into the notion ofderivational generative

capacityas an alternative to weak generative capacity and tree generative capacity.

Definition 1. A linked string is a pair〈w,∼〉, wherew is a string and∼ is a symmetric binary

relation between string positions ofw.

Definition 2. We say that a grammarG generates a linked string〈w,∼〉 if G generatesw such that

i ∼ j if and only if theith and jth symbol ofw are generated in the same derivation step.

Definition 3. The derivational generative capacity(DGC) of G is the set of all linked strings

generated byG.

We notate linked strings either using arcs as above, or sometimes boxed numbers (1 , 2 , . . .)

if the linking relation is transitive. In this terminology, then, we would say that CFG lacks the

DGC to capture cross-serial dependencies in Dutch. Becker et al. push this approach further: they

extend the notion of DGC to a large class of formalisms calledlinear context-free rewriting systems

(LCFRSs) and then prove that “doubly unbounded” German scrambling is beyond the power of this

entire class.
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The merit of this approach is that it eschews notions of generative capacity which are inappro-

priate (WGC, tree generative capacity) or vague (SGC) in favor of a notion (DGC) which allows

a rigorous result to be proven from minimal assumptions (namely, what the correct dependencies

are and how dependencies must be represented in CFG and LCFRS). It might be objected that it

adds anad hocnotion of generative capacity instead of working with established notions, but it is

reasonable to test a grammar formalism according to a notion of generative capacity that is suited

to the problem against which it is being tested. Indeed, there may be as many notions of generative

capacity as there are applications of formal grammars.

1.3 Basic framework

Our framework generalizes that of Joshi and Becker et al. in two ways: first, just as they introduced

a notion of generative capacity suited to a particular question, we take the position, following

Miller (1999), that SGC should always be tested with reference to a particularinterpretation do-

main. Second, they defined DGC on a class of grammar formalisms with well-defined domains

of locality, and we extend to a still larger class of formalisms, simple literal movement grammars

(Groenink, 1997).

1.3.1 A relativized view of SGC

Miller (1999) deals with the elusiveness of SGC by defining it not as the set of structural de-

scriptions of a grammar, but the set ofinterpretationsof its structural descriptions in a particular

interpretation domain, for example, constituency or dependency (see Figure 1.6). Thus SGC must

always be considered with respect to an interpretation domain. This creates many notions of SGC,

but ensures that the SGC of two formalisms can be meaningfully compared—provided they both

have interpretation functions in a common domain.

A strength of Miller’s approach is that it tries to preserve the generality of the formalisms that

can be dealt with, placing no restrictions on structural descriptions or their interpretation functions

except that interpretation functions are not supposed to add information to structural descriptions
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Structuraldescriptions

Strings

Constituentstructures

Dependency structures

Linking systems

Figure 1.6: Structural descriptions, strings, and interpretations under Miller’s framework.

that is not specified by the formalism. A formalism might even have multiple possible interpre-

tation functions for a single domain. For example, we might or might not want a constituency

interpretation to consider terminal nodes to be constituents. There would then be multiple possi-

bilities for the SGC of the formalism with respect to a single domain (Miller, 1999, pp. 13–14).

But this generality makes it hard to make definite statements about what a formalism is capable of.

Characterizing the SGC of a formalism with respect to a domain using one particular interpretation

function will not tell us whether a different interpretation function might have made the formalism

more or less powerful.

The approach of Joshi and of Becker et al. allows a more uniform treatment. Miller cites their

work with approval, rightly observing that it can be subsumed into his framework as one among

many interpretation domains. But the key to the TAG approach, which sets it apart from Miller’s,

is the concept oflocality. Their definition of DGC assumes that structural descriptions can be de-

composed into elementary structures, and specifies alocal interpretation of each: all the symbols in

each elementary structure are linked, and no others. This completely determines the interpretation

functions for a large class of formalisms. Thus they can claim, using a consistent set of assump-

tions, that Dutch cross-serial dependencies are possible for TAG but impossible for CFG, or that

German scrambling is impossible for any LCFRS.
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We generalize the TAG approach to allow for many interpretation domains, but our interpreta-

tion domains will continue to specify thelocal interpretation functionson elementary structures.

When an elementary structure has more than one possible local interpretation function, we leave

the choice up to the grammar (a departure from Miller) and assume that the formalism contains all

the possibilities. For example, we could relax the definition of DGC so that not all symbols in an

elementary structure are necessarily linked. Then the choice of which symbols are linked would be

specified in the grammar, as in our example above of a TAG with links.

In the following section we define local interpretation functions more precisely.

1.3.2 Simple literal movement grammars

There are many grammar formalisms for which interpretation functions can be decomposed into

local interpretation functions on elementary structures; all the formalisms we will consider are

subclasses of Groenink’ssimple literal movement grammar, or sLMG (Groenink, 1997).

Definition 4. A simple LMGis a tuple〈T,N,V,S,A,P〉, where:

• T is a finite set ofterminal symbolsandN is a finite set ofnonterminal symbols

• V is a set ofvariables

• S ∈ N is called thestart symbol

• A is a set of axioms of the form

X(α1, . . . , αm)

whereX ∈ N andα j ∈ T∗

• P is a set of productions of the form

X(α1, . . . , αm) D Y1(β11, . . . , β1m1), . . . ,Yn(βn1, . . . , βnmn)

(“the αi are anX if the β1i are aY1 and theβ2i are aY2, etc.”) where
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– X,Yi ∈ N

– α j , βi j ∈ (T ∪ V)∗

– eachβi j consists of a single variable, and

– each variable in the production appears at least once on the right-hand side and at least

once on the left-hand side

This is equivalent to range concatenation grammar or RCGs (Boullier, 2000), the difference

being that RCG variables stand for ranges of positions of a fixed input string, whereas LMG vari-

ables simply stand for strings. Thus LMGs can be thought of as a special type of Post system (Post,

1943; Chomsky and Miller, 1963).

Definition 5. A linear sLMG is an sLMG in which for each production, each variable in the

production appears exactly once on the right-hand side and exactly once on the left-hand side.

Linear sLMG is equivalent to LCFRS, nonerasing multiple context-free grammar (Seki et al.,

1991), local scattered context grammar (Rambow and Satta, 1999), and simple RCG (Boullier,

2000).

Definition 6. Let π be an sLMG production,x1, . . . , xn be the distinct variables occurring inπ, and

w1, . . . ,wn ∈ T∗. Thenπ[w1/x1, . . . ,wn/xn] instantiatesor is aninstantiationof π.

Definition 7. If G is an sLMG, we say thatG derives X(α1, . . . , αm) according to the following

recursive definition:

• An axiomX(α1, . . . , αm) of G is derivable byG.

• X(α1, . . . , αm) is derivable byG if there is a production inG which can be instantiated as

X(α1, . . . , αm) D Y1(β11, . . . , β1m1), . . . ,Yn(βn1, . . . , βnmn)

andYi(βi1, . . . , βimi ) is derivable byG for 1 ≤ i ≤ n.
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• Nothing else is derivable byG.

The weak generative capacityL(G) of G is defined to be{w | G derivesS(w)}.

Definition 8. A derivationof an sLMGG is a tree or term over (names of) productions ofG. The

set of derivations ofG is defined recursively:

• If π = X(α1, . . . , αm) is an axiom ofG, π() is a derivation ofX(α1, . . . , αm).

• If a productionπ of G can be instantiated as

X(α1, . . . , αm) D Y1(β11, . . . , β1m1), . . . ,Yn(βn1, . . . , βnmn)

andτi is a derivation ofYi(βi1, . . . , βimi ), 1 ≤ i ≤ n, thenπ(τ1, . . . , τn) is a derivation of

X(α1, . . . , αm).

To add interpretations, we effectively change an sLMG from a definition of a predicate into a

definition of a multivalued function, similar to attribute grammars (Knuth, 1968).

Definition 9. A functional sLMGis an sLMG〈T,N,V,S,A,P〉 together with:

• for eachX ∈ N and arityn, a domainDn
X (not necessarily disjoint)

• for each axiomX(α1, . . . , αm) ∈ A, a constantlocal interpretation d∈ Dm
X

• for each production inP of the form

X(α1, . . . , αm) D Y1(β11, . . . , β1m1), . . . ,Yn(βn1, . . . , βnmn),

a local interpretation function f: Dm1
Y1
× · · · × Dmn

Yn
→ Dm

X

Definition 10. We say thatG derives X(α1, . . . , αm) with aninterpretationaccording to the follow-

ing recursive definition:
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Strings

Constituentstructures

Dependency structures

Linking systems

Figure 1.7: Strings and interpretations under functional sLMG.

• An instantiation of an axiom ofG with local interpretationd is derivable byG with interpre-

tationd.

• X(α1, . . . , αn) is derivable byG with interpretationd if there is a production inG with func-

tion f which can be instantiated as

X(α1, . . . , αm) D Y1(β11, . . . , β1m1), . . . ,Yn(βn1, . . . , βnmn)

andYi(βi1, . . . , βimi ) is derivable byG with interpretationdi for 1 ≤ i ≤ n, and whered =

f (d1, . . . ,dn).

• Nothing else is derivable byG.

Then the strong generative capacityΣ(G) of G (with respect to the domainD1
S) is defined to be

{d | G derives some stringw with interpretationd}.

(Note that whereas Miller’s interpretation functions map from structural descriptions to in-

terpretations (Figure 1.6), these functional sLMGs map directly from strings to interpretations

(Figure 1.7), the structural descriptions not appearing explicitly.)

We will make use occasionally of a trivial interpretation function, the string yield function:
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Definition 11. Thestring yield functionis the interpretation function defined in terms of the fol-

lowing local interpretation functions: to each production

X(α1, . . . , αm) D Y1(β11, . . . , β1m1), . . . ,Yn(βn1, . . . , βnmn)

associate the local interpretation function defined on tuples of strings:

f (〈β11, . . . , β1m1〉, . . . , 〈βn1, . . . , βnmn〉) = 〈α1, . . . , αm〉

If the sLMG is nonlinear, this pattern may not always match; in such casesf is undefined.

Many formalisms also have atree yield function, but its definition depends on the definition of

the formalism. For example, a CFG’s tree yield function would generate CFG derivation trees; a

TAG’s tree yield function would generate derived trees as in Figure 1.2.

* * *

Our definition of interpretation functions gives enough control to prove results with genuine

relevance to applications. Because they are defined with reference to particular domains, we can

test the right properties of a formalism; because they are defined in terms of local interpretation

functions, we can firmly characterize a formalism’s SGC.

In the main chapters of this dissertation, we will use this framework to define interpretation

domains suited to particular applications and then compare various grammar formalisms in those

interpretation domains. The goal is to see whether more results like those of Joshi and Becker et

al. can be obtained in these other areas of application, and what implications they have for those

applications.





Chapter 2

Foundational issues

This chapter contains various building blocks which will be used in later chapters. Section 2.1

contains definitions of all the grammar formalisms used in the thesis; it may be safely skipped and

referred to as necessary. Section 2.2 deals with issues related to parsing which the discussion of

Section 3.1 depends on.

2.1 Grammars

2.1.1 Tree-adjoining grammars

We have already introduced tree-adjoining grammars in Section 1.2, but what follows is a more

precise definition which also includes the substitution operation.

Definition 12. An auxiliary tree is a finite tree with a distinguished frontier node called itsfoot

node, which we mark with the symbol∗. The path from an auxiliary tree’s root node to its foot

node is called itsspine.

Definition 13. A tree-adjoining grammar(Joshi, Levy, and Takahashi, 1975; Joshi and Schabes,

1997) is a tuple〈T,N, I ,A,S〉, where

• T is a finite set of terminal symbols

• N is a finite set of nonterminal symbols,N ∩ T = ∅

21
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• N′ = N × {ε, , } is the set of nonterminal symbols withadjoining constraints; unless

otherwise indicated, equivalence is understood to be modulo adjoining constraints

• I is a finite set ofinitial trees, which are finite trees whose interior labels are drawn fromN′

and whose frontier labels are drawn fromN′ ∪ T

• A is a finite set of auxiliary trees whose interior labels are drawn fromN′, whose frontier

labels are drawn fromN′ ∪ T, and whose root and foot nodes bear the same label

• S ⊆ I is a set of initial trees which can begin a derivation

Definition 14. The result ofadjoiningan auxiliary treeβ with root/foot labelX at a nodeη with

labelX is the tree obtained as follows: detach the subtree rooted byη and call itγη, leaving behind

a copy ofη; attachβ by merging its root node with (the copy of)η; reattachγη by merging its root

node with the foot node ofβ.

Definition 15. The result ofsubstitutingan initial treeα with root labelX at a frontier nodeη with

labelX is the tree obtained by merging the root node ofα with η.

Definition 16. A derived tree(or derived initial treeor derived auxiliary tree) of G is obtained by

taking an elementary treeγ in S (or I or A, respectively), and:

• substituting a derived initial tree at each of the non-foot frontier nonterminal nodes (called

substitution nodes)

• adjoining a derived auxiliary tree at each of the nodes with adjoining constraint and zero

or more of the nodes without adjoining constraint

Definition 17. The tree set or tree generative capacity of a TAGG is the set of all possible derived

trees ofG. The string set or weak generative capacity ofG is the set of yields of derived trees ofG.

The following three restrictions of TAG have been proposed to capture some of the additional

descriptive power of TAG while remaining weakly context-free.
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No adjunction: tree substitution grammars

Definition 18. A tree-substitution grammaror TSG (Schabes, 1990) is a tree-adjoining grammar

with no auxiliary trees.

As a historical note, TAG as originally defined only had adjunction; substitution was introduced

later by Abeilĺe (1988), and then adjunction was dropped by Schabes et al. (1988) to form TSG,

though it does not seem to have been called by that name until later (Schabes, 1990).

No wrapping adjunction: tree-insertion grammars

Definition 19. A left (or right) auxiliary tree is an auxiliary tree in which every frontier node to

the right (or left, respectively) of the foot node is labeled with the empty string.

Definition 20. A tree-insertion grammaror TIG (Schabes and Waters, 1993; Schabes and Waters,

1995), originally termed a “lexicalized context-free grammar,” is a TAG in which all auxiliary trees

are either left or right auxiliary trees, and adjunction is constrained so that:

• no left (right) auxiliary tree can be adjoined on any node that is on the spine of a right (left)

auxiliary tree, and

• no adjunction is permitted on a node that is to the right (left) of the spine of a left (right)

auxiliary tree.

Limited spine adjunction: regular form

In his original definition, the details of which we omit here, Rogers (1994) defines a restriction

on TAG adjunction, calledregular adjunction, that can generate only regular path sets. He then

identifies a subclass of TAGs, called TAGs inregular form, which have the property that every

derived tree that can be derived using unrestricted adjunction could also have been derived using

only regular adjunction. But since Rogers’ recognition algorithm only performs regular adjunction,
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Figure 2.1: Examples of adjunction in regular-form TAG. (a) Off-spine adjunction, allowed; (b)
acyclic spine adjunction, allowed; (c) cyclic spine adjunction, not allowed; (d) root adjunction, not
allowed; (e) foot adjunction, allowed.

it cannot in general produce all possible derivations of a sentence and therefore cannot be used as

a parser.

A more technical issue is that regular adjunction can occur at either the root or foot, which

creates derivational ambiguity. Rogers’ algorithm, however, cannot distinguish between the two.

If we want the parser to compute derivations, one or the other should be disallowed. Following

Schuler et al. (2000), we prohibit adjunction at the root.1 This leads us to the following definition,

which narrows Rogers’ definition to eliminate both of the above problems:

Definition 21. We say that a TAG is inregular form, or an RF-TAG, if there exists some partial

ordering� over nonterminal symbols such that ifβ is an auxiliary tree whose root and foot nodes

are labeledX, andη is a node labeledY onβ’s spine where adjunction is allowed, thenX � Y, and

X = Y only if η is a foot node.

Thus adjunction at nodes not lying along the spine and adjunction at the foot node are allowed

freely; adjunction at nodes lying along the spine is allowed to a bounded depth, but adjunction at

the root is not allowed at all (see Figure 2.1).
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Figure 2.2: Sister adjunction.

Multiple adjunction and sister adjunction

In Schabes and Shieber’s extended notion of derivation (1994), a distinction is made between

modifier auxiliary treesandpredicative auxiliary trees. Multiple modifier auxiliary trees may be

adjoined at a single node, but only one predicative auxiliary tree may be adjoined at a single node.

We combine this idea with an operation borrowed from d-tree substitution grammar (Rambow,

Vijay-Shanker, and Weir, 1995) calledsister-adjunction:

Definition 22. The result ofsister-adjoiningan initial treeα under a nodeη at positioni is the tree

obtained by

• if i = 0: addingα as the leftmost daughter ofη;

• if 0 < i < n, wheren is the number of daughters ofη: insertingα between theith and (i+1)st

daughter ofη;

• if i = n: addingα as the rightmost daughter ofη.

See Figure 2.2. As in Schabes and Shieber’s extension, multiple trees may be sister-adjoined at

the same position (Chiang, 2000).

This extension does not add any weak generative power. However, a TAG extended in this way

is no longer an sLMG, strictly speaking, because its derivation trees can have unbounded branching

1If we had prohibited adjunction at the foot, as is more customary, and allowed adjunction at the root, then the
resulting grammars would not be coverable by CFGs (see Section 2.2.2). It might be possible to relax the definition of a
cover grammar to allow this, but we do not pursue this possibility here.
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Figure 2.3: Example multicomponent TAG elementary tree sets.

factors, whereas an sLMG’s derivation trees only allow bounded branching.

2.1.2 Multicomponent grammars

Multicomponent TAGs(Weir, 1988) are TAGs whose elementary structures are sets of elementary

trees. The basic operation is the simultaneous adjunction or substitution of all the trees in a set.

In set-localmulticomponent TAG, all the trees must compose into the same elementary tree set;

in tree-local multicomponent TAG, all the trees must compose into the same elementary tree.

For example, Figure 2.3 shows some multicomponent TAG elementary tree sets. In a set-local

multicomponent TAG,β1 would be able to adjoin intoβ2, by adjoining the first component into the

first component and the second component into the second component. Moreover,β2 would be able

to adjoin intoβ1, by adjoining both components into the two X nodes of the first component. But

in a tree-local multicomponent TAG, the former would not be possible because the two adjunction

sites are in different components.

We may generalize this concept to sLMGs in general.

Definition 23. A multicomponent predicateis one whose arguments are partitioned into one or

morecomponents(shown separated by a colon):

X(α11, . . . , α1m1 : . . . : αn1, . . . , αnmn)
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Thedissolutionof a multicomponent predicate with the above form is the set

{X1(α11, . . . , α1m1), . . . ,Xn(αn1, . . . , αnmn)}

Definition 24. A set-local(or component-local) multicomponent productionis an sLMG produc-

tion whose predicates are multicomponent predicates, and all the arguments of each right-hand-side

component (or predicate, respectively) are found in a single component of the left-hand side.

Thedissolutionof a multicomponent production is the set of all possible well-formed sLMG

productions formed out of the dissolutions of its predicates (keeping left-hand-side predicates on

the left-hand side and right-hand-side predicates on the right-hand side).

Definition 25. A set-local (or component-local) multicomponent sLMGis an sLMG with set-

local (or component-local, respectively) multicomponent productions and a single-component start

predicate.

If a formalismF can be embedded in sLMG, thenset-local(or component-local) multicompo-

nentF consists of set-local (or component-local, respectively) multicomponent sLMGs such that

the dissolution of each production is a well-formed production ofF .

A component-local multicomponent TAG is more commonly known as atree-local multicom-

ponent TAG. Set-local multicomponent CFG is also known aslocal scattered-context grammar

(Rambow and Satta, 1999).

Proposition 1. If a formalismF can be embedded in sLMG, then component-local multicompo-

nentF is weakly equivalent toF .

Proof. Observe that in the dissolution of a component-local multicomponent production, all the

components of each right-hand-side predicate end up in the same production. Therefore, given

a component-local multicomponent sLMGG, we can dissolveG and augment the nonterminal

alphabet to guarantee that it has the same behavior as the original grammar. LetP′ be the set of all

productions that can be obtained as follows: for anyπ ∈ P, relabel the left-hand predicate to beπ
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itself and relabel each right-hand predicate to a production with a matching left-hand side. Then

let P′′ be the union of the dissolutions of all the productions inP′. This set of productions forms a

grammar ofF weakly equivalent toG. �

2.2 Parsing

2.2.1 Computing derivation forests

The basic parsing algorithm for sLMGs is straightforward: since they are just deductive systems,

a chart-based deductive parser (Shieber, Schabes, and Pereira, 1995) can operate on an sLMG

fairly transparently. Such a parser essentially searches the space of all possible instantiations of the

productions of the input grammar for an instantiation with left-hand sideS(w), wherew is the input

string. Because the variables of an sLMG, as in an RCG, can only be instantiated to substrings of

w, the number of instantiations of each sLMG production, and therefore the running time of the

parser, is polynomial in|w|.

To obtain a parse forest, that is, a representation of all possible parses of a given string, we can

use a construction due to Bertsch and Nederhof (2001), a generalization of similar constructions

for other formalisms (Bar-Hillel, Perles, and Shamir, 1964; Vijay-Shanker and Weir, 1993). Given

an sLMGG and an input stringw, it computes another sLMG which compactly represents all

possible derivations ofw by G. (If G is linear, then the construction works for a general finite-state

automaton, as shown by Bertsch and Nederhof.)

Define a new nonterminal alphabet

N′ =
⋃

X∈N,m≤ f

{X} × Q2m

whereQ = {0, . . . , |w|} and f is the maximum arity of any predicate. Intuitively, each nonterminal

X ∈ N and aritym is accompanied by 2m string positions, indicating the left and right input

positions of the arguments ofX. Next define a new set of productionsP′: for each production



2.2. Parsing 29

π ∈ P, if π has the form

X0(α01, . . . , α0m0) D X1(α11, . . . , α1m1), . . . ,Xn(αn1, . . . , αnmn)

for eachαi j , define a series of indicesq(i, j,0), . . . ,q(i, j, |αi j |) ∈ Q, which are the input positions

between the symbols ofαi j . Then let

X′i = 〈Xi ,q(i,1,0),q(i,1, |αi1|), . . . ,q(i,mi ,0),q(i,mi , |αimi |)〉

for all possible values ofq(i, j, k) ∈ Q, subject to the following constraints:

• if the kth symbol ofαi j and thek′th symbol ofαi′ j′ are the same variable, thenq(i, j, k−1) =

q(i′, j′, k′ − 1) andq(i, j, k) = q(i′, j′, k′);

• if the kth symbol ofαi j is a terminal symbola, thenq(i, j, k−1)+1 = q(i, j, k) andwq(i, j,k) = a.

These constraints ensure that theq(i, j, k) correspond to a valid instantiation ofπ and are consistent

with the input string. From theseX′i construct the production

X′0(α01, . . . , α0m0) D X′1(α11, . . . , α1m1), . . . ,X
′
n(αn1, . . . , αnmn)

These productions form a new grammarGw whose start symbol is〈S,0, |w|〉. Observe that even

if G was nonlinear,Gw is essentially a CFG; the nonterminals do all the work and the arguments

do not further constrain the derivations. The size ofGw is O(|G|n(r+1) f ) productions, where|G| is

the number of productions,n is the length ofw, f is the maximum arity, andr is the maximum

number of nonterminals on the right-hand side of a production. Therefore the running time of this

construction is alsoO(|G|n(r+1) f ).

This algorithm is by no means optimal, however. In order to improve parsing time, one would

have to write a specialized parser for the grammar or, equivalently, construct acover grammar

for it. For example, in order to achieveO(n3) time complexity for parsing CFGs, we must either
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Figure 2.4: Example of weakly context-free TAG.

convert the CFG into Chomsky normal form (that is, strict binary-branching) or use a specialized

algorithm like Earley’s algorithm, which effectively binarizes the grammar on the fly. In either

case, there must be a way of reconstructing the derivations of the original grammar. We discuss

this topic further below.

2.2.2 Cover grammars

When considering the use of new formalisms, we are especially interested increasing a formalism’s

power in some desirable respect while preserving it in some costly respect. The most familiar

example of a cost criterion is WGC: Joshi (2003) speaks of “squeezing” SGC out of a formalism

without increasing its WGC. From a theoretical standpoint, such formalisms are interesting because

they point to finer-grained ways of measuring formal power than the traditional measure of WGC.

A more practical cost criterion would be parsing complexity: it would be ideal to gain extra SGC

without increasing the asymptotic complexity of the parsing algorithm.

These two constraints, WGC and parsing complexity, often coincide: proofs of weak equiva-

lence to, say, CFG, are often accompanied byO(n3) parsing algorithms. Indeed, we argue that to

have one without the other is not likely to be very interesting.2 For example, the TAG of Figure 2.4a

generates a CFL ({a,b}∗), and adding the tree in Figure 2.4b does not increase its WGC, nor would

2A notable exception would the Lambek calculus (Lambek, 1958), which is weakly context-free (Pentus, 1993) but
NP-complete to parse (Pentus, 2003), because the Lambek-to-CFG conversion does not preserve derivations.
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adding any tree (or multicomponent tree set) over{a,b}. Conversely, the language

{aib jck | i jk + 1 is a prime number}

has anO(n3) recognition algorithm but whatever formal system generates it is not likely to resemble

a CFG.

It would be easier to characterize what it means to “squeeze” SGC out of a formalism if we

used a tighter constraint, one which entailed both preservation of WGC and preservation of pars-

ing complexity. Such a constraint is suggested by examining the parsing algorithms for common

weakly context-free formalisms. For example, the parsers for RF-TAG and TIG are based on CKY;

their items are of the form [X, i, j] and are combined in various ways, but always according to the

deductive rule schema
[X, i, j] [Y, j, k]

[Z, i, k]

where the material below the line is deduced from the material above the line (Shieber, Schabes,

and Pereira, 1995). But this is just like the CKY parser for CFG in Chomsky normal form. In effect

the parser dynamically converts the RF-TAG or TIG into an equivalent Chomsky-normal-form

CFG—each parser rule of the above form corresponds to the rule schemaZ→ XY.

More importantly, given a grammarG and a stringw, a parser can reconstruct a packed forest

of all possible derivations ofw in G by storing some information inside its chart items. Every time

it generates a new item, it takes the derivation information in the antecedent items to compute some

new information for the new item. If we think of the parser as dynamically convertingG into a CFG

G′, then we may think of these computations as attached not to the deductive rules of the parser,

but to the productions ofG′. Indeed, we may think of them as a kind of interpretation function for

G′ into the domain ofG-derivations. We callG′ acover grammarfor G, following Nijholt (1980).

This covering relationship is a relationship between grammars and not parsing strategies: while

this covering relationship prescribes a particular approach to parsingG, it is independent of any

particular parsing strategy forG′.
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So far we have not articulated how the derivations ofG are reconstructed. A parser like CKY

builds a packed parse forest by storing in each parser item [X, i, j] a set of productionsX → YZ

together withback-pointersto forests of derivations ofY andZ. Crucially, because these subforests

would be exponential in size if unpacked, the parser never accesses their internals; it only deals

with back-pointers to them, without dereferencing them. Parsers which use cover grammars also

typically use back-pointers in this way, which we formalize as follows:3

Definition 26. A cover sLMG G′ is a functional sLMG whose local interpretation functionsf

operate on tuples of derivations and are each definable as:

f (〈t11, . . . , t1m1〉, . . . , 〈tn1, . . . , tnmn〉) = 〈u1, . . . ,um〉

where theti j are variables and eachui is drawn from the setτ, which is a set of derivation fragments

recursively defined as follows:

1. ti j is in τ (copying a back-pointer)

2. π(τ1, . . . , τn) is in τ, whereτi ∈ τ andπ is an sLMG production (creating a derivation frag-

ment with back-pointers)

Definition 27. We say that a cover sLMGG′ coversanother sLMGG if there is a one-to-one

correspondence between derivations ofG′ and derivations ofG such thatG′ derivesw with inter-

pretationδ if and only if δ is the correspondingG-derivation, andδ is a derivation ofw. We say

that the coverrespectsan interpretation domainD if corresponding derivations also have the same

interpretation inD.

Definition 28. We say that a formalismF ′ coversanother formalismF (respectingD) if for any

grammarG provided byF , there is a grammar provided byF ′ which can coverG (respectingD).

Proposition 2. TSG, TIG, RF-TAG, and component-local multicomponent CFGs are all coverable

by CFG. Component-local multicomponent TAG is coverable by TAG.

3This notion is similar to generalized syntax-directed translation (Aho and Ullman, 1971).
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Figure 2.5: Example TAG to be covered. Here adjunction at foot nodes is allowed.

Production Name

S(x1y2y2x2) D X(x1, x2),Y(y1, y2) (α)

X(ax1, x2d)D X(x1, x2) (β1)

X(ε, ε) (εX)

Y(by1, y2c)D Y(y1, y2) (β2)

Y(ε, ε) (εY)

Figure 2.6: sLMG representation of the TAG of Figure 2.5.

Proof. Implicit in the parsing algorithms for these formalisms. �

As an example, a CFG which covers the RF-TAG of Figure 2.5 is shown in Figure 2.7. The

nonterminals of this grammar consist of an elementary tree name, a superscripted tree address, a

dot indicating the “top half” or “bottom half” of the node (to prevent multiple adjunctions at a

node), and a stack in square brackets. When a treeβ is adjoined into another treeγ, γ is pushed

onto the stack so that it can be recalled whenβ is finished; however, ifβ is adjoined at the foot node

of γ, thenγ does not need to be recalled, so it is not pushed onto the stack, as in the programming-

language technique of tail recursion.

The notion of a cover grammar provides a new view of the question posed by Joshi (2003),

“How much strong generative power can be squeezed out of a formal system without increasing

its weak generative power?” In our present framework, we must understand SGC to be relative to

some interpretation domain. Moreover, in light of the foregoing arguments, we should modify the
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Production Local interpretation function Comment

S→ α0• α(t1, t2)← � 〈t1, t2〉

α0• → α0
• 〈εX(), t2〉 ←� 〈−, t2〉 no adjunction

α0
• → α

1• 〈−, t2〉 ←� 〈−, t2〉

α1• → α1
• 〈−, εY()〉 ←� 〈−,−〉 no adjunction

α1
• → ε 〈−,−〉

α0• → β0
1[α0] 〈β1(t1), t2〉 ←� 〈t1, t2〉 adjoinβ1

β0
1[α0] → aβ2

1[α0] d 〈t1, t2〉 ←� 〈t1, t2〉

β2
1[α0] → β0

1[α0] 〈β1(t1), t2〉 ←� 〈t1, t2〉 adjoinβ1 by “tail recursion”

β2
1[α0] → α0

• 〈εX(), t2〉 ←� 〈−, t2〉 no adjunction, return toα

α1• → β0
2[α1] 〈−, β2(t2)〉 ←� 〈−, t2〉 adjoinβ2

β0
2[α1] → bβ2

2[α1] c 〈−, t2〉 ←� 〈−, t2〉

β2
2[α1] → β1

2[α1] 〈−, β2(t2)〉 ←� 〈−, t2〉 adjoinβ2 by “tail recursion”

β2
2[α1] → α1

• 〈−, εY()〉 ←� 〈−,−〉 no adjunction, return toα

Figure 2.7: CFG cover of the TAG of Figure 2.5. Here we leave the local interpretation functions
anonymous;y←� x denotes the function which mapsx to y.
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constraint on WGC to be a constraint on coverability. This provides a more rigid framework in

which Joshi’s question can be explored.

We will show in later chapters that in some interpretation domains, formalisms that are cover-

able by CFG can indeed have greater SGC than CFG. For example, in Section 5.3.1 we show that

RF-TAG can generate a linked string set that CFG cannot:

L =

caa · · · acb · · · bb


In a sense, this greater SGC is “squeezed” out of CFG for free. But this kind of “squeezing” has its

limits.

Proposition 3. If G′ covers G, then for any interpretation of G, there exists an equivalent interpre-

tation of G′.

Proof. The equivalent interpretation forG′ is easy to construct: the basic idea is that wherever a

local interpretation functionf ′ in the cover generates aG-productionπ, we substituteπ’s local

interpretation function in place ofπ. �

This means that we could in fact construct an interpretation for the cover CFG of Figure 2.7

that generatesL. It is only under the restriction that links be defined within local domains thatL is

impossible for CFG.

In Proposition 3, the interpretation ofG could even be another cover, which implies that cov-

erability is transitive. This means that while a covered formalism might have greater SGC than

the cover formalism in some domains, it can never have greater SGC in the domain of covered

derivations.

Corollary 4. A formalismF ′ can cover another formalismF if and only ifF ′ can cover every

sLMG thatF can.
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In other words, one cannot “squeeze” a formalism a second time to get still more power out.

Therefore the class of sLMGs coverable by CFG represents the maximum amount of SGC that can

be “squeezed” out of CFG as we have defined it.

In an earlier paper (Chiang, 2001) we tried to characterize this class of grammars more directly

by choosing an interpretation domain and exhibiting a formalism that maximized SGC with respect

to this domain. But since there are many different ways to do this, it is more fruitful to consider

Joshi’s question with reference to a particular application, as in the following chapters.
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Statistical parsing

We now turn tostatistical parsing, in which some probability model defined over parse structures

(standardly, phrase-structure trees) is used to determine the best structure or bestk structures of

a given string. We introduceweightedinterpretation domains and show how parsing models of a

very general nature can be expressed as weighted grammars. But we find that this domain classi-

fies formalisms rather coarsely: any two formalisms with the same coverability (respecting parse

structures) also define the same parsing models.

Though this result makes the hope rather dim of squeezing statistical-modeling power out of

PCFG for free, it invites a reinterpretation of lexicalized PCFG models (Charniak, 1997; Collins,

1997) as cover grammars of grammars with richer structural descriptions than phrase-structure

trees. As a demonstration of this new view, we define a probabilistic TAG model and discuss

techniques for obtaining adequate models from corpora which, from this point of view, are labeled

only with partial structural descriptions. This model performs at the same level as lexicalized PCFG

parsers and captures the same kinds of dependencies they do in a conceptually simpler way.

3.1 Measuring statistical-modeling power

At first glance one might think that flexibility in specifying probability distributions over parses

would be the desideratum for statistical parsing, but in fact nearly the opposite is true, because a

probability model is learned from a limited amount of data, and we need toconstrainthe set of

37
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possible probability distributions so that a good one can be induced from the data. What actually

matters, then, is flexibility in specifyingparameterizedparsing models.

3.1.1 Weighted interpretation domains

Below we examine two of the most commonly-used model types to arrive at a simple way of

measuring statistical-modeling power. For generality’s sake, we will define conditional models

P(Y | X), whereY ranges overY andX ranges overX. In a conditional parsing model,Y would

be the parse tree andX would be the input string, and the parsing problem would be to compute

arg maxY P(Y | X). Alternatively, one could use agenerativeparsing model, in whichY = 〈S,T〉 is

the parse treeT including the input stringS, andX is some fixed value. Then the parsing problem

would be to compute

arg max
T

P(T | S) = arg max
T

P(S,T)
P(S)

= arg max
T

P(S,T)

In either case the training data are represented by a distribution ˜p(x, y).

History-based models A conditionalhistory-based model(Black et al., 1992; Collins, 1999) is

one which decomposes each outcomey into a sequence of decisionsd1 · · · dn, where thedi are

drawn from some setD. Each decision is conditioned onx and the preceding decisions; in order

to reduce the number of contexts, there are functionsΦx which group historiesd1 · · · di−1 into

equivalence classesc. Then the parameters of the model arep(d | c), and

(3.1) P(y | x) =
∏

i

p(di | Φx(d1 · · · di−1))
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Given a training sample ˜p(x, y), it is easy to get the maximum-likelihood parameter estimate subject

to the constraint

(3.2)
∑

d

p(d | c) = 1

for all c: it is simply

(3.3) p̂(d | c) =
1
Zc

∑
x

∑
d1,d2∈D

∗

Φx(d1)=c

p̃(x,d1dd2)

whereZc is a normalization constant.

Maximum-entropy models A conditionalmaximum-entropy model(Berger, Della Pietra, and

Della Pietra, 1996) defines a set of arbitraryfeaturefunctions fi : X × Y → Z+0 . Given a train-

ing sample ˜p(x, y), we seek the maximum-entropy probability distributionp(y | x) subject to the

constraints

(3.4) Ep̃(Ep( fi | x)) = Ep̃( fi) for all i

and

(3.5)
∑

y

p(y | x) = 1 for all x

This distribution can be shown to have the following form:

(3.6) p(y | x) =
1
Zx

∏
i

θ
fi (x,y)
i

where theθi are real-valued feature weights and theZx are normalization factors which are found

by solving (3.4) and (3.5), respectively. We can also go in the reverse direction: starting with (3.6),
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the maximum-likelihood estimate subject to the constraint (3.5) turns out to be the same as the

solution to (3.4).

Equation (3.4) does not in general have an analytic solution for theθi . There are various nu-

merical methods for doing this (for example, iterative-scaling (Darroch and Ratcliff, 1972; Berger,

Della Pietra, and Della Pietra, 1996); Malouf (2002) provides an overview and comparison of

several methods), but they are all more computationally expensive than the relative-frequency es-

timator for history-based models.

Conclusion Since the both the above cases model the probability of a parse as the product of pa-

rameter values, we can characterize the statistical-modeling power of a grammar by its SGC with

respect to the domain of parameter vectors, or, more generally still, semiring weights. This defini-

tion can be coupled with other interpretation domains in the obvious way to provide interpretations

in the domain of weighted strings, weighted trees, and so on.

3.1.2 Grammar-based statistical parsing models

Below we show how to define statistical parsing models based on grammars. First we define gram-

mars with generalized weights (Goodman, 1999):

Definition 29. If R is a semiring, anR-weighted sLMGis one whose interpretation functions have

composition operations of the form

(3.7) φ(p1, . . . , pn) = p
∏

pi

wherep ∈ R.

Next we instantiate this definition for both of the above classes of models. A history-based

model decomposes parses into sequences of decisions; a maximum-entropy model represents them

as vectors of features. When either model is based on an sLMG, we require that its parse represen-

tations respect the derivation structure of the grammar.
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History-based models For a history-based model based on alinear sLMG G, we define a con-

ditional history-based model ofproductions, P(π | X,n), whereπ ranges over productions,X over

their left-hand nonterminals,n over their arities. This model decomposes each productionπ into a

decision sequenced1 · · · dn; we assign this sequence toπ as its weight. The weights are multiplied

by concatenation,1 which induces a history-based model ofderivationsin which a derivation’s

decomposition is simply its weight. The reasonG must be linear is that otherwise the derivation

distribution would not sum to one in general; but even whenG is linear it is not guaranteed (Booth

and Thompson, 1973).

In the prototypical case, the production model decomposes each production trivially, that is,

into itself. Thus a PCFG is a history-based model based on a CFG whose production model de-

composes a productionX→ α into itself. Probabilistic TAG (Resnik, 1992; Schabes, 1992) can be

constructed in a similar way, although the details depend on how we embed TAG into sLMG.

Maximum-entropy models For a maximum-entropy model based on a grammarG, we do not

define a model of productions, but we do define feature functions on productions. The feature

functions assign to each productionπ a feature vector; we assign this vector toπ as its weight. The

weights are multiplied by vector addition, which induces a maximum-entropy model of derivations

in which a derivation’s feature vector is simply its weight.

Note that the above definition does not allow totally arbitrary features, but it does allow them to

be arbitrary within a local domain. Note also that it applies even to nonlinear sLMGs. In addition to

providing a general way of defining maximum-entropy models on grammars, it provides a new way

of efficiently training maximum-entropy parsing models. We devote the remainder of this section

to this latter point.

Above we noted that estimating a maximum-entropy model requires the computation of the

expected feature values, which in turn requires a summation over all possible parses. Since there

will in general be exponentially many parses, it is impractical to perform this summation by brute

1The fact that concatenation is noncommutative and our semirings are commutative does not matter, because of the
independence assumption between productions.
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force. For joint models, random sampling of the parse space seems to be the only recourse (Abney,

1997); for conditional models the problem is not as severe (Johnson et al., 1999), but the number of

parses is still asymptotically exponential. Non-grammatical solutions include modeling moves of

a pushdown automaton (Ratnaparkhi, 1997), which, however, is susceptible to the label-bias prob-

lem (Lafferty, McCallum, and Pereira, 2001), and reranking the parses of a history-based model

(Collins, 2000).

But it would seem most straightforward to compute expected feature values the same way we

typically compute the most probable parse of a sentence: use a dynamic-programming algorithm

that exploits the structure of the grammar derivation space. Miyao and Tsujii (2002) describe an

algorithm in which parameters are estimated from afeature forest, a compact representation of

the feature vectors of all the possible parses ofS. It is essentially a generalization of conditional

random fields (Lafferty, McCallum, and Pereira, 2001) to CFGs (more accurately, and-or graphs).

But they do not specify how these feature forests are obtained. Clark and Curran have done so for

CCG (Clark and Curran, 2003), and Miyao et al. have done so with HPSG (Miyao, Ninomiya, and

Tsujii, 2003); our definition of maximum-entropy models based on sLMGs makes this possible in

a much more general way.

Miyao and Tsujii’s algorithm is essentially the same as the Inside-Outside algorithm (Baker,

1979; Lari and Young, 1990), which computes the expected number of timesE(π) that each pro-

ductionπ will be used in a CFG. LetF be a derivation forest of an sLMG for a given string. This

F can be thought of as a weighted CFG. Then

(3.8) E( fi | S) =
∑
π

fi(π)E(π)

whereπ ranges over productions inF and the expectationE(π) is computed by the Inside-Outside

algorithm using the weights ofF (it makes no difference algorithmically thatF is not a proper

PCFG), and then dividing by the normalization constantZS from (3.6). This algorithm only works

on forests with a finite number of derivations, although it is possible to extend it to the general
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case (Goodman, 1999).

Geman and Johnson (2002) have employed a different kind of packed representation to define

dynamic-programming algorithms for estimating stochastic unification-based grammars. In a sepa-

rate paper (Chiang, 2003) we compared their representation with Miyao and Tsujii’s and concluded

that while the former is much more general, the latter is more efficient for the common case.

3.1.3 The coarse-grainedness of statistical-modeling power

With the above definitions characterizing statistical-modeling power in hand, we may ask whether

we can “squeeze” statistical-modeling power out of a formalism for free—that is, without affecting

coverability. The answer is the following negative result:

Proposition 5. If a grammar G′ covers G respecting some interpretation domain D, then the R-

weighted versions of G′ and G are equivalent with respect to the R-weighted version of D.

Proof. LetGw be the weighted version ofG. GivenG′, it is easy to construct anR-weighted version

of G′ that is equivalent toGw: replace each composition operationf ′ in G′ by (3.7), withp equal

to the product of the weights inGw of the composition operations invoked byf ′. The resulting

weighted grammarG′w is equivalent toGw, for even thoughG′w andGw multiply the production

weights together in different orders, the result is the same becauseR is commutative. �

This means that squeezing SGC while preserving coverability will not increase the number

of models that can be described. On the other hand, it is trivially true that a formalism with

greater SGC with respect to parse structures can describe more models. For example, TIG (see

Section 2.1), because it can be covered by CFG respecting strings, cannot be used to describe any

more models of string probability than CFG can. But because it has greater tree generative capacity

than CFG, it can describe more models of tree probability.

Therefore, since many recent parsing models (Charniak, 1997; Collins, 1997; Miller et al.,

2000) are based on PCFG, we should not expect to improve much on them by moving to TIG,

and not at all by moving to TSG or RF-TAG. However, this result reveals a deeper insight into
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Figure 3.1: Lexicalized PCFG tree.

these models. The CFGs they are based on are calledlexicalized, which means that they have been

modified so that every nonterminal symbol contains a lexical item (see Figure 3.1 for an example

derivation). Before training, a set of rules (Magerman, 1995) is used to identify ahead childfor

every node in the training data; then the training data are transformed in the following way, bottom-

up:

1. If a node labeledX has a head child which is a terminal node labeledw, then relabel the node

X(w).

2. If a node labeledX has a head child labeledY(w), relabel the nodeX(w).

The conventional wisdom regarding lexicalized PCFG is that it rearranges the lexical information

in trees so that it can be used more effectively; specifically, it places pairs of words into the same lo-

cal domain so thatbilexical statisticscan be collected. But experiments have shown (Gildea, 2001;

Klein and Manning, 2003; Bikel, 2004a) that bilexical statistics actually help very little in parsing.

We argue below that the lexicalization process does more than rearrange lexical information to

create bilexical dependencies.

Recall that a cover grammar has pieces of the covered derivations attached to its productions,

and it uses information transmitted through its nonterminal symbols to ensure that the pieces are
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attached correctly. For example, one way to construct a cover grammar for a TSG (see Section 2.1)

could be:

1. For every non-substitution node labeledX with addressη in an elementary treeα, add as a

decoration the singleton set

{〈α, η〉}

2. For every substitution node labeledX, add the decoration

{〈α, ε〉 | α is an elementary tree with root labelX}

3. For every node labeledX with decoration{〈α, η〉} immediately dominating nodes labeled

X1, . . . ,Xn with decoration∆1, . . . ,∆n, construct the CFG rules

X(α, η)→ X1(α1, η1), . . . ,Xn(αn, ηn) for all 〈αi , ηi〉 ∈ ∆i

If we further assume that each elementary treeα has a single lexical anchorwα, then observe that

(α, η) subsumes (wα), so that the CFG with rules

X(wα)→ X1(wα1), . . . ,Xn(wαn) for all 〈αi , ηi〉 ∈ ∆i

generates an approximate superset of the original TSG. But this grammar is none other than a

lexicalized PCFG. We may therefore think of a lexicalized PCFG as an approximate cover of a

TSG. If each elementary tree has a unique lexical anchor and each node in a tree has a unique

label, then the cover is exact.

Collins’ models decompose the generation of productions more finely; we omit the details

here, only noting that the use of a Markov process to generate adjuncts makes an infinite number

of productions possible. To avoid infinite grammars, we add sister-adjunction (see Section 2.1),

which can create new children under a node in a manner similar to Collins’ Markov model.
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Figure 3.2: Derivation of TSG with sister-adjunction corresponding to tree of Figure 3.1.

Therefore Collins’ Model 2, minus its distance measure, can alternatively be thought of as de-

fined on a TSG with sister-adjunction (see Figure 3.2). Since a TSG’s derivations are distinct from

its derived trees and contain more information than them, we should likewise think of Collins’

Model 2 as being defined over richer structural descriptions than are found in the Penn Treebank,

and we should think of the lexicalization process as reconstructing information rather than rear-

ranging information, and this information is structural rather than lexical.

In the following section we build a parsing model from the ground up according to this new per-

spective. This perspective also suggests an alternative to reconstruction heuristics: to treat training

as a partially-unsupervised learning problem and use EM to train the model from partial structural

descriptions.
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Figure 3.3: Derivation of TIG with sister-adjunction corresponding to tree of Figure 3.1.

3.2 A probabilistic TIG model

If lexicalized CFG is a cover grammar for something like a TAG, then perhaps a statistical parsing

model should be defined directly as one. In this section we define a model based on probabilis-

tic TIG with sister-adjunction. Such a formulation would have several advantages (beyond any

aesthetic considerations).

First, we noted that lexicalized CFG is only an approximate cover because it uses lexical an-

chors as a proxy for their elementary structures. Various modifications to lexicalized CFG have

been found to improve parsing accuracy, for example:

• an S which does not dominate an argument NP to the left of its head is relabeled SG, so that

the attachment of the clause can be conditioned on whether it has a subject (Collins, 1999)

• an NP which does not dominate another NP which does not dominate a POS is relabeled

NPB, and if its parent is not an NP, an NP node is inserted (Collins, 1999) because PCFG

mismodels Treebank-style two-level NPs (Johnson, 1998)

• every node’s label is augmented with the label of its parent (Charniak, 2000; Johnson, 1998)

Such changes are not always obviousa priori and often must be devised anew for each language
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or each corpus. But the above modifications are not necessary in a TAG-like model, because it

has statistics of pairs of elementary trees and not just pairs of words. Thus many dependencies that

have to be stipulated in a PCFG by tree transformations are captured for free in a probabilistic TAG

model.

Second, TAG provides greater flexibility in defining heuristics. For example, we might want

elementary trees that contain both a preposition and the head word of the prepositional object, in

the hope that the latter will help make PP attachment decisions (Collins and Brooks, 1995). Or, in

a sentence with an auxiliary verb, like the above example “Qintex would sell off assets,” we might

want the subject to attach to the tree for ‘sell’ instead of the tree for ‘would.’ It would be tricky to

make such changes to a head word percolation scheme, but easy with a TAG or TIG (see Figure 3.3

for a TIG derivation of the latter example).

Third, by decoupling the reconstruction heuristics from the training process proper, this new

view suggests alternative training methods. Below we describe experiments using Expectation-

Maximization to train directly on the observed, not the reconstructed data (a method explored

previously by Hwa (1998) for TIG).

3.2.1 Basic definition

The parameters of a probabilistic TAG model (Resnik, 1992; Schabes, 1992) are:

∑
α

Pi(α) = 1

∑
α

Ps(α | η) = 1

∑
β

Pa(β | η) + Pa(NONE | η) = 1

whereα ranges over initial trees,β over auxiliary trees, andη over nodes.Pi(α) is the probability

of beginning a derivation withα; Ps(α | η) is the probability of substitutingα at η; Pa(β | η) is

the probability of adjoiningβ at η; finally, Pa(NONE | η) is the probability of nothing adjoining



3.2. A probabilistic TIG model 49

at η. The probability of a derivation can then be expressed as a product of the probabilities of the

individual operations of the derivation.

We restrict the TAG to be a TIG for efficiency reasons. The above model works for TIG just as

it does for TAG. However, the original definition of probabilistic TIG (Schabes and Waters, 1996)

is flawed because it allows one left auxiliary tree and one right auxiliary tree (but not more than one

of each) to adjoin at the same node in either order, but the probability model does not distinguish

the two orders, so that the total probability of all valid derivations is greater than one. Hwa (2001,

p. 30) describes how to fix the problem, but our fix is simply to prohibit this type of simultaneous

adjunction.

Our variant (henceforth TIG-SA) adds another set of parameters for sister-adjunction:

∑
α

Psa(α | η, i, α
′) + Psa(STOP| η, i, α′) = 1

whereα andα′ range over initial trees, and (η, i) over possible sister-adjunction sites. Letn be the

number of children ofη; Psa(α | η, i, α′), 0 ≤ i ≤ n, is the probability of sister-adjoiningα under

η at positioni, whenα′ is the previous2 tree to have sister-adjoined at that position (or START if

none). Thus modifier trees are generated as a first-order Markov process, as in the model used in

BBN’s SIFT system (Miller et al., 2000) and the base-NP model of Collins (1999).

3.2.2 Independence assumptions and smoothing

Since the number of parameters in this model is too high to get reasonable estimates from corpus

data, we generate an elementary tree in two steps and smooth each step: first thetree template(that

2Here “previous” means “next closest to the lexical anchor,” which presupposes a single lexical anchor; we could
alternatively define it to mean “next to the left,” which would be more general but less efficient.
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is, the elementary tree stripped of its anchor), then the anchor. Thus:

Pi(α) = Pi1(τα)P2(wα | τα)

Ps(α | η) = Ps1(τα | η) · P2(wα | τα, tη,wη)

Pa(β | η) = Pa1(τβ | η) · P2(wβ | τβ, tη,wη)

Psa(α | η, i, α
′) = Psa1(τα | η, i,Xα′) · P2(wα | τα, tη,wη,Xα′)

whereτα is the tree template ofα andwα is the lexical anchor ofα, and similarly forβ; wη is the

lexical anchor of the elementary tree containingη, andtη is the part-of-speech tag of that anchor.

We have reducedα′ to its root labelXα′ . Note that the same probabilityP2 is used for all three

composition operations: for adjunction and substitution,Xα′ is assigned the value START.

These probabilities each have three backoff levels:

Ps1,a1(γ | · · · ) Psa1(α | · · · ) P2(w | · · · )

1 τη,wη, ηη τη,wη, ηη, i,Xα′ τγ, tη,wη,Xα′

2 τη, ηη τη, ηη, i,Xα′ τγ, tη,Xα′

3 τ̄η, ηη τ̄η, ηη, i τγ

4 Xη ∅ tγ

whereτη is the tree template of the elementary tree containingη, τ̄η is τη stripped of its anchor’s

POS tag,Xη is the label ofη, andηη is the address ofη in its elementary tree;τγ is the tree

template ofγ, andtγ is the POS tag of its anchor. The backed-off models are combined by linear

interpolation:

(3.9) e= λ1e1 + (1− λ1)(λ2e2 + (1− λ2)(λ3e3 + (1− λ3)e4))

whereei is the estimate at leveli, and theλi are computed by a combination of formulas used by
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Collins (1999) and Bikel et al. (1997):

(3.10) λi =

(
1−

di−1

di

) (
1

1+ 5ui/di

)

wheredi is the number of occurrences in training of the context at leveli (d0 = 0), andui is the

number of unique outcomes for that context seen in training.

To handle unknown words, we treat all words seen five or fewer times in training as a single

symbol UNKNOWN, following Collins (1997).

3.2.3 Parsing

We used a CKY-style TIG parser similar to the one described by Schabes and Waters (1996), with

a modification to ensure completeness (because foot nodes are effectively empty, which standard

CKY does not handle). We also extended the parser to allow sister-adjunction.

The parser uses a beam search, assigning a score to each item [η, i, j] and pruning away any

item with score less than 10−5 times that of the best item for that span, following Collins (1997).

The score of an item is its inside probability multiplied by the prior probabilityP(η), following

Goodman (1997).P(η), in turn, is decomposed asP(τ̄η | tη,wη) · P(tη,wη), so that the first term

can be smoothed by linear interpolation (as above) with the backed-off estimateP(τ̄η | tη), again

following Collins (1999).

As mentioned above, words occurring five or fewer times in training were replaced with the

symbol UNKNOWN. When any such wordw occurs in the test data, it is also replaced with

UNKNOWN. Following Collins (1997), the parser only allowsw to anchor templates that have

POS tags observed in training withw itself, or templates that have the POS tag assigned tow by

MXPOST (Ratnaparkhi, 1996); all other templates are thrown out forw.

When parsing English, we use Collins’ comma rule: when the parser combines two con-

stituents, if the right-hand constituent has a comma to its left, it must also have a comma (or

the end of the sentence) to its right, or else the two constituents cannot be combined. In our parser,
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because a binary-branching cover grammar is used, this means that if a right modifier (substitution

or sister-adjunction) has a comma to its left, it must have a comma (or the end of the sentence) to

its right; if a left modifier has a comma to its left, then theparent nodemust have a comma to its

right.

3.3 Training from partial structural descriptions

We want to obtain a maximum-likelihood estimate of these parameters, but cannot estimate them

directly from the Treebank, because the sample space of probabilistic TIG-SA is the space of TIG-

SA derivations, not the derived trees that are found in the Treebank. For there are many TIG-SA

derivations which can yield the same derived tree, even with respect to a single grammar. We need,

then, to reconstruct TIG-SA derivations somehow from the training data.

One approach, taken by Magerman (1995) and others for lexicalized PCFGs and Neumann

(1998) and others (Xia, 1999; Chen and Vijay-Shanker, 2000) for TAGs, is to use heuristics to

reconstruct the derivations, and directly estimate the probabilistic TIG-SA parameters from the re-

constructed derivations. Another approach, taken by Hwa (1998), is to choose some grammar gen-

eral enough to parse the whole corpus and obtain a maximum-likelihood estimate by Expectation-

Maximization. Below we discuss the first approach, and then a combination of the two approaches.

3.3.1 Rule-based reconstruction

Given a CFG and a Magerman-style head-percolation scheme, an equivalent TIG-SA can be con-

structed whose derivations mirror the dependency analysis implicit in the head-percolation scheme.

For each nodeη, the head-percolation and argument/adjunct rules classify exactly one child of

η as a head and the rest as either arguments or adjuncts. We use Magerman and Collins’ rules with

few modifications (see Tables 3.4 and 3.5), but we treat coordination specially: if anX dominates

a CC, and the rightmost CC has anX to its left and to its right, then that CC is marked as the head

and the two nearestXs on either side as arguments, and no further rules apply.
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Using this classification into heads, arguments, and adjuncts, we can construct a TIG-SA

derivation (including elementary trees) from a derived tree as follows:

1. If η is an adjunct, excise the subtree rooted atη to form a sister-adjoined initial tree.

2. If η is an argument, excise the subtree rooted atη to form an initial tree, leaving behind a

substitution node.

3. But if η is an argument andη′ is the nearest ancestor with the same label, andη is the

rightmost descendant ofη′, and all the intervening nodes, includingη′, are heads, excise the

part of the tree fromη′ down toη to form an auxiliary tree, leaving behind a head node.

Rules (1) and (2) produce the desired result; rule (3) changes things somewhat by making trees

with recursive arguments into auxiliary trees. Its main effect is to extract VP auxiliary trees for

modal and auxiliary verbs. In the present experiments, in fact, it is restricted to nodes labeled VP.

The complicated restrictions onη′ are simply to ensure that a well-formed TIG-SA derivation is

produced.

When we run this algorithm on sections 02–21 of the Penn Treebank (Marcus, Santorini, and

Marcinkiewicz, 1993), the resulting grammar has 50,628 lexicalized trees (with words seen five
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Figure 3.5: Distribution of tree templates: frequency versus rank (log-log)

or fewer times replaced with UNKNOWN). However, if we consider elementary tree templates,

the grammar is quite manageable: 2104 tree templates, of which 1261 occur more than once (see

Figure 3.5). A few of the most frequent tree templates are shown in Figure 3.4.

So the extracted grammar is fairly compact, but how complete is it? Ideally the size of the

grammar would converge, but if we plot its growth during training (Figure 3.6), we see that even

after training on 1 million words, new elementary tree templates continue to appear at the rate of

about four every 1000 words, or one every ten sentences.

We do not consider this effect to be seriously detrimental to parsing. Since 90% of unseen sen-

tences can be parsed perfectly with the extracted grammar, its coverage is good enough potentially

to parse new data with state-of-the-art accuracy. Note that even for the remaining 10% it is still

quite possible for the grammar to derive a perfect parse, since there can be many TIG-SA deriva-

tions which yield the same derived tree. Nevertheless, we would like to know the source of this

effect and minimize it. Three possible explanations are:

• New constructions continue to appear.

• Old constructions continue to be (erroneously) annotated in new ways.
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Figure 3.6: Growth of grammar during training: types versus tokens (log-log)

• Old constructions continue to be combined in new ways, and the extraction heuristics fail to

factor this variation out.

In a random sample of 100 once-seen elementary tree templates, we found (by casual inspection)

that 34 resulted from annotation errors, 50 from deficiencies in the heuristics, and four apparently

from errors in the text itself. Only twelve appeared to be genuine.3

Therefore the extracted grammar is more complete than Figure 3.6 suggests at first glance.

Evidently, however, our extraction heuristics have room to improve. The majority of trees result-

ing from deficiencies in the heuristics involved complicated coordination structures, which is not

surprising, since coordination has always been problematic for TAG. In practice, we throw out all

elementary tree templates seen only once in training, on the assumption that they are most likely

the result of noise in the data or the extraction heuristics.

This method is extremely similar to that of Xia (1999) and that of Chen (Chen and Vijay-

Shanker, 2000), the main difference being that these other methods tend to add brackets to the

Treebank in order to obtain a more sensible grammar, whereas our method tends to reproduce the

Treebank bracketing more closely, in order to facilitate comparison with other statistical parsers.

3This survey was performed on an earlier version of the extraction heuristics.
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≤ 40 words
Model LR LP CB 0CB ≤ 2 CB
PCFG (Charniak, 1997) 71.7 75.8 2.03 39.5 68.1
Magerman (1995) 84.6 84.9 1.26 56.6 81.4
Charniak (1997) 87.5 87.4 1.0 62.1 86.1
present model 87.7 87.7 1.02 65.2 84.8
Collins (1999) 88.5 88.7 0.92 66.7 87.1
Charniak (2000) 90.1 90.1 0.74 70.1 89.6

≤ 100 words
Model LR LP CB 0CB ≤ 2 CB
PCFG (Charniak, 1997) 70.6 74.8 2.37 37.2 64.5
Magerman (1995) 84.0 84.3 1.46 54.0 78.8
Charniak (1997) 86.7 86.6 1.20 59.5 83.2
present model 87.0 87.0 1.21 62.2 82.2
Collins (1999) 88.1 88.3 1.06 64.0 85.1
Charniak (2000) 89.6 89.5 0.88 67.6 87.7

Table 3.1: Parsing results using heuristics on English. LR= labeled recall, LP= labeled precision;
CB = average crossing brackets, 0 CB= no crossing brackets,≤ 2 CB = two or fewer crossing
brackets. All figures except CB are percentages.

We trained the model using the extraction heuristics on sections 02–21 and tested it on sec-

tion 23. The results (Table 3.1) show that our parser lies roughly midway between the earliest

(Magerman, 1995) and latest (Charniak, 2000) of the lexicalized PCFG parsers,4 and that both do

considerably better than a PCFG trained on Treebank treesquaCFG derivations (Charniak, 1997).

While these results are not state-of-the-art, they demonstrate that a probabilistic TIG-SA parser can

perform at the same level of accuracy as a lexicalized PCFG parser—or, under our reinterpretation,

that lexicalization makes PCFG parsers perform at the same level of accuracy as a probabilistic

TIG-SA parser.

We suspect that our model does not match the best of the lexicalized PCFG models because

it is not using the larger elementary structures of TIG-SA very robustly. Fine-tuning the backoff

model might bring accuracy closer to the state of the art, but it may be more productive to look to

maximum-entropy models to provide greater flexibility in choosing model features with different

4Note that these figures are an improvement over an earlier version (Chiang, 2000).
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amounts of context.

To see how this system would adapt to a different corpus in a different language, we replaced

the head rules and argument/adjunct rules with rules appropriate for the Penn Chinese Treebank

(Xia et al., 2000). These were adapted from rules constructed by Xia (1999) and are shown in

Tables 3.6 and 3.7. We also retained the coordination rule described above.

We also made the following changes to the experimental setup:

• We lowered the unknown word threshold from five to one because the new training set was

smaller.

• The POS tagger for unknown words had to be retrained on the new corpus.

• A beam width of 10−4 was used instead of 10−5, for speed reasons.

• The comma pruning rule was not used, because it is based on an empirical observation from

the English Treebank which does not hold for the Chinese Treebank.

We then trained the parser on sections 001–270 of the Penn Chinese Treebank (84,873 words)

and tested it on sections 271–300 (6776 words). To provide a basis for comparison with perfor-

mance on English, we performed two further tests. First, we trained the parser on sections 001–270

of the English translation of the Penn Chinese Treebank (118,099 words) and tested it on sections

271–300 (10,913) words). Second, we trained the parser on sections 02–03 of the WSJ corpus

(82,592 words) and tested it on the first 400 sentences of section 23 (9473 words) with the same

settings as the Chinese parser (but with the comma pruning rule). Note that because of the relatively

small datasets used, cross-validation would be desirable for future studies.

The results, shown in Table 3.2,5 show that this parser is quite usable on a language other than

the one it was developed on. Indeed, it was the parser used to bootstrap later releases of the Penn

5Because of part-of-speech tagging errors on the part of either the corpus or the parser, two sentences are flagged
by the scorer as having the wrong length. The standard policy is to treat the sentence as if it were not in either the gold
standard file or the test file, but the more rigorous policy used here is to keep the sentence but treat the test file as if it
had not guessed any brackets. For the WSJ corpus, the scores are not affected, but in this case, they are affected slightly.
Using the standard policy, labeled recall would be 75.8% for sentences of length≤ 100 and 79.2% for sentences of
length≤ 40.
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≤ 100 words
Model Corpus LR LP CB 0CB ≤ 2 CB
present WSJ-small 82.9 82.7 1.60 48.5 74.8
present Xinhua-English 73.6 77.7 2.75 48.6 66.0
present Xinhua 75.3 76.8 2.72 46.0 67.0

≤ 40 words
Model Corpus LR LP CB 0CB ≤ 2 CB
present WSJ-small 83.5 83.1 1.42 50.4 77.2
present Xinhua-English 76.4 82.3 1.39 61.4 78.3
present Xinhua 78.4 80.0 1.79 52.8 74.8

Table 3.2: Parsing results using heuristics on Chinese. Abbreviations are as in Figure 3.1. Xinhua:
trained on Penn Chinese Treebank sections 001–270, tested on sections 271–300. Xinhua-English:
same, but on English translation. WSJ-small: trained on Penn Treebank, Wall Street Journal sec-
tions 02–03, tested on section 23, sentences 1–400.

Chinese Treebank, providing rough parses which human annotators can correct up to twice as fast

as annotating from scratch (Chiou, Chiang, and Palmer, 2001).

3.3.2 Training by Expectation-Maximization

In the type of approach we have been discussing so far, we use hand-written rules to reconstruct

TIG-SA structural descriptions from the partial structural descriptions in training data, and then

train the TIG-SA model by maximizing the likelihood of the reconstructed training data according

to the model. However, the estimate we get will maximize the likelihood of the reconstructed

training data, but not necessarily that of the observed training data itself. In this section we explore

the possibility of training a model directly on partial structural descriptions using the method of

Expectation-Maximization (Dempster, Laird, and Rubin, 1977); more specifically, a generalization

of the Inside-Outside algorithm (Lari and Young, 1990).

This approach follows a very similar experiment by Hwa (1998). The difference between the

two is that whereas Hwa begins with a non-linguistically-motivated grammar that is designed to

be general enough to generate any bracketing, we use the grammar and initial model induced

by the heuristic method of the previous section. For this reason, Hwa’s method is not able to
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take advantage of the information in the nonterminal labels in the data, but only the bracketing

information.

The expectation step (E-step) of the Inside-Outside algorithm is performed by a parser that

computes all possible derivations for each parse tree in the training data. This algorithm is analo-

gous to CKY for TAG (Shieber, Schabes, and Pereira, 1995), except instead of items of the form

[η, i, j, k, l], whereη ranges over elementary tree nodes andi, j, k, andl range over positions in the

input string, it uses items of the form [η, θil , θ jk], whereθil andθ jk range over addresses in the input

tree. By contrast, Hwa’s E-step uses a standard TIG parser, but discards chart items with spans that

cross a bracket in the input tree. But because the TIG parser achieves its cubic time complexity by

pretending that foot nodes have zero spans, Hwa’s implementation of the E-step will not work cor-

rectly if adjunction is allowed at spine nodes other than the root node. Since this type of adjunction

is necessary to show that TIG has greater tree generative capacity than CFG, this implementation

is not fully general.

The E-step then uses the derivation forest thus produced to compute inside and outside proba-

bilities and uses these, in turn, to compute the expected number of times each decision occurred.

Since a TIG-SA derivation forest has the same form as a CFG derivation forest, this computation

is identical to the standard Inside-Outside algorithm; it is not necessary to define a specialized

algorithm (Schabes, 1992; Hwa, 1998).

For the maximization step (M-step), we obtain a maximum-likelihood estimate of the param-

eters of the model using relative-frequency estimation, just as in the original experiment, as if the

expected values for the complete data were the training data; the only difference is that the expected

values may be fractional.

Smoothing presents a special problem: recall that our model uses several backoff levels com-

bined by linear interpolation. There are several ways one might incorporate this smoothing into

the reestimation process, and we chose to depart as little as possible from the original smooth-

ing method: in the E-step, we use the smoothed model, and after the M-step, we use the original

formula (3.10) to recompute the smoothing weights based on the new counts computed from the
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Figure 3.7: Accuracy of reestimated models on held-out data: English, starting with full rule set.

E-step. While simple, this approach has two important consequences. First, since the formula for

the smoothing weights intentionally doesnot maximize the likelihood of the training data, each

iteration of reestimation is not guaranteed to increase the likelihood of the training data. Second,

reestimation tends to increase the size of the model in memory, since smoothing gives nonzero ex-

pected counts to many choices which were unseen in training. Therefore, since the resulting model

is quite large, if a choice at a particular point in the derivation forest has an expected count below

10−15, we throw it out.

A more theoretically correct method would be to permanently use the smoothing weights com-

puted on the initial model (Bikel, 2004b). This would restore the guarantee of nondecreasing like-

lihood, and perhaps limit the growth of the model as well. Bikel has performed some initial exper-

iments using this method.

We first trained the initial model on sections 02–21 of the WSJ corpus using the original head

rules, and then ran the Inside-Outside algorithm on the same data. We tested each successive model

on some held-out data (section 00), using a beam width of 10−4, to determine at which iteration

to stop. The F-measure (harmonic mean of labeled precision and recall) for sentences of length

≤ 100 for each iteration is shown in Figure 3.7. We then selected the ninth reestimated model and
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Figure 3.8: Accuracy of reestimated models on held-out data: English, starting with simplified rule
set.

compared it with the initial model on section 23 (see Table 3.3). This model did only marginally

better than the initial model on section 00, but it actually performs worse than the initial model on

section 23. One explanation is that the head rules, since they have been extensively fine-tuned, do

not leave much room for improvement. To test this, we ran two more experiments.

The second experiment started with a simplified rule set, which simply chooses either the

leftmost or rightmost child of each node as the head, depending on the label of the parent: e.g.,

for VP, the leftmost child is chosen; for NP, the rightmost child is chosen. The argument rules,

however, were not changed. This rule set is supposed to represent the kind of rule set that someone

with basic familiarity with English syntax might write down in a few minutes. The reestimated

models seemed to improve on this simplified rule set when parsing section 00 (see Figure 3.8);

however, when we compared the 30th reestimated model with the initial model on section 23 (see

Figure 3.3), there was no improvement.

The third experiment was on the Chinese Treebank, starting with the same head rules used in

(Bikel and Chiang, 2000). These rules were originally written by Xia for grammar development,

and although we have modified them for parsing, they have not received as much fine-tuning as
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Figure 3.9: Accuracy of reestimated models on held-out data: Chinese, starting with full rule set.

the English rules have. We trained the model on sections 001–270 of the Penn Chinese Treebank,

and reestimated it on the same data, testing it at each iteration on sections 301–325 (Figure 3.9).

We selected the 38th reestimated model for comparison with the initial model on sections 271–

300 (Figure 3.3). Here we did observe a small improvement: an error reduction of 3.4% in the

F-measure for sentences of length≤ 40.

Our hypothesis that reestimation does not improve on the original rule set for English because

that rule set is already fine-tuned was partially borne out by the second and third experiments. The

model trained with a simplified rule set for English showed improvement on held-out data during

reestimation, but showed no improvement in the final evaluation; however, the model trained on

Chinese did show a small improvement in both. We are uncertain as to why the gains observed

during the second experiment were not reflected in the final evaluation, but based on the graph of

Figure 3.8 and the results on Chinese, we believe that reestimation by EM can be used to facilitate

adaptation of parsing models to new languages or corpora.

* * *

We have shown how to define parsing models of a general nature based on grammars, and
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≤ 100 words
Model/Corpus Step LR LP CB 0CB ≤ 2 CB
English initial 87.0 87.0 1.21 62.4 82.3

9 86.4 86.7 1.26 61.4 81.8
English-simple initial 84.5 84.2 1.54 57.6 78.4

30 84.2 84.5 1.53 58.0 77.8
Chinese initial 75.3 76.8 2.72 46.0 67.0

38 75.2 78.0 2.66 47.7 67.6
≤ 40 words

Model/Corpus Step LR LP CB 0CB ≤ 2 CB
English initial 87.7 87.8 1.02 65.3 84.9

9 87.2 87.5 1.06 64.4 84.2
English-simple initial 85.5 85.2 1.29 60.7 81.1

30 85.1 85.4 1.30 60.9 80.6
Chinese initial 78.4 80.0 1.79 52.8 74.8

38 78.8 81.1 1.69 54.2 75.1

Table 3.3: Parsing results using EM. Original= trained on English with original rule set; Simple
= English, simplified rule set. LR= labeled recall, LP= labeled precision; CB= average crossing
brackets, 0 CB= no crossing brackets,≤ 2 CB= two or fewer crossing brackets. All figures except
CB are percentages.
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found that many of the grammar formalisms that have been proposed to increase the SGC of CFG

in fact do not define any more parsing models than PCFG does. We then showed how a lexicalized

PCFG can be thought of as a compiled version of a model defined over richer structural descrip-

tions than are found in typical treebanks, and described our implementation of this new view in

a probabilistic TIG-SA which performs at the same level of accuracy as lexicalized PCFG. This

result demonstrates that TIG-SA is a viable framework for statistical parsing. Moreover, it provides

more flexibility than the head- and argument-finding rules of current lexicalized PCFG models. For

future work, we would like to explore further how to exploit this flexibility. We would also like to

experiment with TAG-based maximum-entropy models as defined above.
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Parent Child
ADJP first NNS; first QP; first NN; first $; first ADVP; first JJ; first VBN; first VBG;

first ADJP; first JJR; first NP; first JJS; first DT; first FW; first RBR; first RBS;
first SBAR; first RB; first *

ADVP last RB; last RBR; last RBS; last FW; last ADVP; last TO; last CD; last JJR;
last JJ; last IN; last NP; last JJS; last NN; last *

CONJP last CC; last RB; last IN; last *
FRAG last *
INTJ first *
LST last LS; last :; last *
NAC first NN; first NNS; first NNP; first NNPS; first NP; first NAC; first EX; first $;

first CD; first QP; first PRP; first VBG; first JJ; first JJS; first JJR; first ADJP;
first FW; first *

{NP,NX} last{NN,NNP,NNPS,NNS,NX,POS, JJR}
first NP
last{$,ADJP,PRN}; last CD; last{JJ, JJS,RB,QP}; last *

PP last IN; last TO; last VBG; last VBN; last RP; last FW; last *
PRN first *
PRT last RP; last *
QP first $; first IN; first NNS; first NN; first JJ; first RB; first DT; first CD; first

NCD; first QP; first JJR; first JJS; first *
RRC last VP; last NP; last ADVP; last ADJP; last PP; last *
S first TO; first IN; first VP; first S; first SBAR; first ADJP; first UCP; first NP;

first *
SBAR first WHNP; first WHPP; first WHADVP; first WHADJP; first IN; first DT;

first S; first SQ; first SINV; first SBAR; first FRAG; first *
SBARQ first SQ; first S; first SINV; first SBARQ; first FRAG; first *
SINV first VBZ; first VBD; first VBP; first VB; first MD; first VP; first S; first SINV;

first ADJP; first NP; first *
SQ first VBZ; first VBD; first VBP; first VB; first MD; first VP; first SQ; first *
UCP last *
VP first TO; first VBD; first VBN; first MD; first VBZ; first VB; first VBG; first

VBP; first VP; first ADJP; first NN; first NNS; first NP; first *
WHADJP first CC; first WRB; first JJ; first ADJP; first *
WHADVP last CC; last WRB; first *
WHNP first WDT; first WP; first WP$; first WHADJP; first WHPP; first WHNP; first

*
WHPP last IN; last TO; last FW; last *
X first *

Table 3.4: Head rules for the Penn (English) Treebank. Rules (delimited by line breaks or semi-
colons) apply sequentially for each parent node until a match is found. The symbol * stands for
any label.
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Parent Child
S all {NP,SBAR,S} exceptA
{VP,SQ,SINV} all {NP,SBAR,S,VP} exceptA
SBAR all S exceptA
SBARQ all SQ exceptA
NP all NP exceptA
PP first{PP,NP,WHNP,ADJP,ADVP,S,SBAR,VP,UCP} after head

whereA = {-ADV , -VOC, -BNF, -DIR, -EXT, -LOC, -MNR, -TMP, -PRP, -CLR}

Table 3.5: Argument rules for the Penn (English) Treebank. All rules apply to every parent-child
pair.

Parent Child
ADJP last{ADJP, JJ}; last{AD,NN,CS}; last *
ADVP last{ADVP,AD}; last *
CLP last{CLP,M}; last *
CP last{DEC,SP}; first {ADVP,CS}; last{CP, IP}; last *
DNP last{DNP,DEG}; last DEC; last *
DVP last{DVP,DEV}; last *
DP first{DP,DT}; first *
FRAG last{VV ,NR,NN}; last *
INTJ last{INTJ, IJ}; last *
LST first {LST,CD,OD}; first *
IP last{IP,VP}; last VV; last *
LCP last{LCP,LC}; last *
NP last{NP,NN,NT,NR,QP}; last *
PP first{PP,P}; first *
PRN last{NP, IP,VP,NT,NR,NN}; last *
QP last{QP,CLP,CD,OD}; last *
VP first {VP,VA ,VC,VE,VV ,BA,LB,VCD,VSB,VRD,VNV ,VCP}; first *
VCD last{VCD,VV ,VA ,VC,VE}; last *
VRD last{VRD,VV ,VA ,VC,VE}; last *
VSB last{VSB,VV ,VA ,VC,VE}; last *
VCP last{VCP,VV ,VA ,VC,VE}; last *
VNV last {VNV ,VV ,VA ,VC,VE}; last *
VPT last{VPT,VV ,VA ,VC,VE}; last *
UCP last *
WHNP last{WHNP,NP,NN,NT,NR,QP}; last *
WHPP first{WHPP,PP,P}; first *

Table 3.6: Head rules for the Penn Chinese Treebank. Rules (delimited by line breaks or semi-
colons) apply sequentially for each parent node until a match is found. The symbol * stands for
any label.
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Parent Child
VP all {CP, IP,VP} except -ADV
CP all{CP, IP} except -ADV
PP all{NP,DP,QP,LCP,CP, IP,UCP} except -ADV
DNP all {NP,DP,QP,LCP,PP,ADJP,UCP} except -ADV
DVP all {NP,DP,QP,VP,ADVP,UCP} except -ADV
LCP all {NP,DP,QP,LCP, IP,PP,UCP} except -ADV
* all {-SBJ, -OBJ, -IO, -PRD} except -ADV

Table 3.7: Argument rules for the Penn Chinese Treebank. All rules apply to every parent-child
pair. The symbol * stands for any label.





Chapter 4

Applications to language translation

In this chapter we discuss applications of grammars to natural language translation. We define how

to measure the power of grammar formalisms for translation and find that this domain classifies

formalisms more finely than in the previous chapter: formalisms which were previously equivalent

now separate into different levels of power. This means that machine translation stands to gain

more from richer grammar formalisms than statistical parsing does; on the other hand, it is all the

more important for machine translation research to find the right level of power and not give up

on grammar-based methods. We discuss the formal properties of synchronous RF-TAG and the

possibility of its use for language translation.

4.1 Measuring translation power

The obvious way to measure the translation power of a grammar formalism is by its SGC with

respect to the domain of string pairs: if a grammar formalism can generate more string relations,

it will be a more flexible system for defining translations. Tree relations are also a useful measure

when constraints on phrase structures are needed.

Grammars which generate pairs of strings or structures are calledsynchronous grammars. The

interpretation functions of synchronous grammars are restricted so that transformations occur only

at the level of local domains. The most general type of synchronous grammars we will consider

69
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are defined by Bertsch and Nederhof (2001) (called by them “simple range concatenation trans-

ducers”).

Definition 30. A synchronous productionis a multicomponent linear sLMG production (see Sec-

tion 2.1.2) whose predicates have exactly two components, and all the arguments from theith

component of each right-hand-side predicate appear in theith component of the left-hand side.

Definition 31. A synchronous sLMGis a linear sLMG whose productions are all synchronous pro-

ductions and with a two-component start predicateS. The string relation defined by a synchronous

linear sLMG is the set

{〈w1,w2〉 | S(w1 : w2) is derivable}

The reason for the linearity requirement is that we would like to be able to take a synchronous

grammar generating a relationR and construct an ordinary grammar that generates the projection

of R onto one of its components. If the grammar is linear, then it is easy to unify the derivational

constraints from both components into a single component, because linear sLMG derivation sets

are context-free, and context-free tree sets are closed under intersection.

Any formalism embedded in linear sLMG has a synchronous equivalent. Therefore when we

speak of the SGC of a formalismF with respect to string pairs (or tree pairs), we actually mean

the string relation (or tree relation, respectively) generated by thesynchronousversion ofF .1

4.2 Synchronous grammars for syntax-based translation

Various subclasses of synchronous sLMG have been proposed for machine translation, both non-

statistical and statistical. We survey several of them below and compare them according to their

SGC with respect to string/tree pairs.

1A synchronous version of a grammar is different from a probabilistic version of a grammar in that the former
changes the grammar whereas the latter only changes the local interpretations. It would be easy to define synchronous
grammars so that they too change only the local interpretations: simply attach the string yield function of one grammar to
the productions of another. Such a definition would fit more neatly into our SGC framework, but look less like standard
definitions.
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4.2.1 Synchronous CFG and TAG

One of the simplest examples of a synchronous grammar is synchronous CFG or syntax-directed

translation schemata (Aho and Ullman, 1969). For example, the following grammar fragment

would translate between SVO and SOV word orders:

(4.1)
S(sp : s′p′) D NP(s),VP(p),NP(s′),VP(p)

VP(vo : o′v′) D V(v),NP(o),V(v′),NP(o′)

Or, in more standard notation, with boxed indices to indicate the correspondence between the two

sides:

(4.2)
〈S→ NP 1 VP 2 ,S→ NP 1 VP 2 〉

〈VP→ V 1 NP 2 ,VP→ NP 2 V 1 〉

In the statistical machine translation literature, synchronous CFGs were proposed by Wu (1997)

as inversion transduction grammars(Wu, 1997). These are not full synchronous CFGs, but are

equivalent to synchronous CFG with a maximum branching factor of two. They have strictly less

SGC with respect to string pairs than synchronous CFG does (Aho and Ullman, 1969).

Synchronous TAG was first defined by Shieber (1994) as a correction of an older faulty defi-

nition (Shieber and Schabes, 1990). The new definition, which requires that the source and target

derivations be isomorphic, is essentially a generalization to TAG of synchronous CFG. In their def-

inition, a synchronous TAG is a set of pairs of elementary trees in which input interior/substitution

nodes are coindexed with output interior/substitution nodes.

A synchronous tree-substitution grammar is just a synchronous TAG without adjunction.

Proposition 6. Synchronous TSG is strongly equivalent to synchronous CFG with respect to string

pairs but has greater SGC with respect to tree pairs.

Proof. Any synchronous TSG can easily be converted into a synchronous CFG generating the
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Figure 4.1: Synchronous TSG demonstrating transposition of subject and object.

same string pairs: for each tree pair〈α1 : α2〉, create the production pair

〈root(α1)→ yield(α1) : root(α2)→ yield(α2)〉

whereroot andyield are functions returning the root and yield, respectively, of a tree.

On the other hand, the following synchronous TSG generates a trivial example of a tree relation

that no synchronous CFG can generate: 
X

ε

:

X

X

ε


because the tree relations generated by a synchronous CFG must always have equal numbers of

nonterminal nodes. �

For a linguistic example, see Figure 4.1, which demonstrates how synchronous TSG can be

used to transpose subjects and objects, as when translating between the English and French sen-

tences:



4.2. Synchronous grammars for syntax-based translation 73

S

NP

NNP

Thomas

VP

VBZ

misses

NP

NP

Thérèse
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S→ NP VBZ NP

NP→ NNP

NNP→ Thomas

NNP→ Thér̀ese

VBZ → misses

Figure 4.2: Flattening of trees in the translation system of Yamada and Knight (2001).

(4.3) Thomas misses Thér̀ese.

(4.4) Th́er̀ese
Thér̀ese

manque
misses

à
to

Thomas.
Thomas

This kind of transformation might also be needed for stylistic reasons, for example, when translat-

ing English passive sentences into Chinese, in which the passive is used much less frequently.

Because of its slightly greater power, synchronous TSG has been proposed by Shieber (1994)

for generating pairs of TAG derivation trees: to use the terminology of Dras (1999), a synchronous

grammar called themeta-level grammar(elsewhere in the literature called acontrol grammar)

generates pairs of derivation trees of tree-adjoining grammars, called theobject-levelgrammars.

The resulting system has somewhat more flexibility than synchronous TAG.

More recently, Eisner (2003) and Gildea (2003) have proposed using synchronous TSG by

itself for statistical machine translation. However, in a certain sense this had already been achieved

by Yamada and Knight (2001). Their system is formally a synchronous CFG in which French

productions are generated from English productions (following the naming convention of Brown et

al. (1993)) through a sequence of transformations (“noisy channel”). But its trainer flattens English

trees by deleting nodes that have the same head word as their parent according to the Magerman

rules (see Figure 4.2). Thus their system can transpose subjects and objects as well. It is able to do

this within a synchronous CFG because it alters the trees, but we can also reinterpret this model,

as we did Collins’ parser, as a cover grammar for a synchronous TSG (see Figure 4.3).
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Figure 4.3: Alternative view of flattening operation as extraction of unlexicalized TSG.

4.2.2 Synchronous regular form TAG

Synchronous RF-TAGhas been proposed by Dras (1999) as a meta-level grammar for generating

pairs of TAG derivation trees, as a further extension to Shieber’s suggestion of using TSG. We may

also consider synchronous RF-TAG on its own. It has strictly greater SGC with respect to string

pairs (and therefore tree pairs) than synchronous CFG does (Chiang, 2002).

Lemma 7 (synchronous pumping lemma).Let L be a string relation generated by a synchronous

CFG. Then there is a constant n such that if〈z : z′〉 is in L and|z| ≥ n and|z′| ≥ n, then〈z : z′〉may

be written as〈uwy : u′w′y′〉, and there exist strings v, x, v′, x′, such that|vxv′x′| > 0, |vwx| ≤ n,

|v′w′x′| ≤ n, and for all i≥ 0, 〈uviwxiy : u′v′iw′x′iy′〉 is in L.

Proof. The proof is analogous to that of the standard pumping lemma (Hopcroft and Ullman,

1979, pp. 125–127). However, a CFG cannot be put into Chomsky normal form without changing

its SGC with respect to string pairs, and there are both sides to take into account. So we letm be

the longest right-hand side in either grammar or the number 2, whichever is greater, andk andk′

be the size of the two nonterminal alphabets; thenn = mkk′ . This guarantees the existence of a pair

of corresponding paths in the derivation of〈z : z′〉 such that the same pair of nonterminals〈A : A′〉

occurs twice:

〈S : S〉
∗
⇒ 〈uAy : u′A′y′〉

∗
⇒ 〈u1vAxy1 : u′1v′A′x′y′1〉

∗
⇒ 〈u1vwxy1 : u′1v′w′x′y′1〉
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Figure 4.4: Synchronous TAG fragment demonstrating long-distance transposition of subject and
object.

If we let u = u1v andy = xy1, and likewiseu′ = u′1v′ andy′ = x′y′1, then〈z : z′〉 = 〈uwy : u′w′y′〉,

and for alli ≥ 0, 〈uviwxiy : u′v′iw′x′iy′〉 ∈ L.

�

Proposition 8. The string relation

L = {〈ambncndm : bnamdmcn〉}

is generable by a synchronous RF-TAG but not by any synchronous CFG.

Proof. The following synchronous RF-TAG generatesL:


A

B

ε

1

2 :

B

A

ε

2

1


 A

a A a∗ 1

:
A

a A a∗ 1


 B

b B b∗ 1

:
B

b B b∗ 1


But supposeL can be generated by some CFGG. For anyn given by the pumping lemma, let

〈z : z′〉 = 〈anbncndn : bnancndn〉 satisfy the conditions of the pumping lemma. Thenvxv′x′ must

contain only a’s and d’s, or only b’s and c’s, otherwise〈uviwxiy : u′v′iw′x′iy′〉 will not be in L. But

in the former case,|vwx| > n, and in the latter case,|v′w′x′| > n, which is a contradiction. �
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We saw above how synchronous TSG can be used to transpose subjects and objects. But syn-

chronous TSG cannot perform the same translation with a raising verb added:

(4.5) Thomas seems to miss Thér̀ese.

(4.6) Th́er̀ese
Thér̀ese

semble
seems

manquer
to miss

à
to

Thomas.
Thomas

To do that, we need adjunction of an auxiliary tree pair (Figure 4.4), which stretches the subject-

object transposition apart arbitrarily. This is within the power of both TIG and RF-TAG.2

Schuler (1999) describes a similar problem translating between Portuguese and English, op-

erating at the level of TAG derivation trees rather than phrase-structure trees. The standard TAG

analysis for the sentences

(4.7) John is supposed to have to fly.

(4.8) John is supposed to be going to have to fly.

and so on, would have the auxiliary trees for ‘supposed,’ ‘have,’ and ‘going’ adjoining at VP

(see Figure 4.6). Their Portuguese translations, however, havepressuposto‘supposed’ above the

subject, and therefore its auxiliary tree would adjoin at S:

(4.9) É
it is

pressuposto
supposed

que
that

Jõao
John

tem
has

que voar.
to fly

(4.10) É
it is

pressuposto
supposed

que
that

Jõao
John

vai
is going

ter
to have

que voar.
to fly

The two derivation tree schemata are shown in Figure 4.7. One solution (Chiang, Schuler, and

Dras, 2000) is to use a synchronous RF-TAG to map between the two sets of TAG derivations

(Figure 4.8). Again, the displacement ofβ1[supposed] gets stretched apart arbitrarily by the inter-

position of raising verbs.

2In our definition of RF-TAG, adjunction is allowed at foot nodes but not auxiliary root nodes, contrary to typical
TAG syntactic analyses. We could accept the divergence, or else we could change the definition of RF-TAG to allow
adjunction at root nodes instead of foot nodes, but this would make parsing less simple.
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Figure 4.5: Relative translation power of various formalisms: (a) string pairs; (b) tree pairs. An edge
connecting two formalisms indicates that the higher has greater SGC than the lower. CL-MCCFG
= component-local multicomponent CFG; 2CFG= binary branching CFG.

4.2.3 The fine-grainedness of translation power

Figure 4.5 summarizes the relative SGC of various synchronous grammar formalisms with re-

spect to string and tree pairs, including some results from an earlier paper (Chiang, 2002) not

proven here. It is striking that SGC with respect to string pairs and tree pairs classify formalisms

quite finely: inversion transduction grammar generates fewer string pairs than synchronous CFG;

synchronous CFG generates fewer tree pairs than synchronous TSG; synchronous TSG generates

fewer string pairs than synchronous RF-TAG. By contrast, all these formalisms generate the same

weighted string languages and weighted tree languages.

What can we conclude? With statistical parsing, we can use PCFG to get the same SGC as for-

malisms like probabilistic TSG, and this SGC is beneficial, because training a PCFG from Treebank

treesquaCFG derivations yields poor results. The richer formalisms provide a conceptual advan-

tage only. But with machine translation, the advantage is real. We cannot use synchronous CFG to

get the same SGC as formalisms like synchronous RF-TAG, and therefore we should use the more

powerful formalisms if we hope to benefit from their extra SGC. If synchronous CFGs should be
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found wanting for machine translation, it would be incorrect to conclude that synchronous gram-

mars in general are not useful for translation; it would also be incorrect to justify this conclusion by

reasoning that if PCFGs were good enough for statistical parsing but not machine translation, then

more powerful formalisms are not worth considering. Because SGC with respect to string and tree

pairs classifies formalisms more finely than SGC with respect to weighted trees does, translation

has more to gain by using richer formalisms, and more to lose by ignoring them.

Recent research in syntax-based statistical machine translation has been climbing steadily up

the lattice of Figure 4.5b, with TSG being the most recent proposal (Eisner, 2003). Might any of

the still higher formalisms be better suited for translation? Moving from synchronous CFG/TSG

to synchronous RF-TAG would be a fairly modest extension to a system like that of Yamada and

Knight (2001). Their flattening of the training data, which effectively extracts a TSG from it, would

be replaced by a TAG extractor like the one described in Section 3.3.1, and the child-reordering

operation would be replaced by node-rearranging operations. Thinking of Yamada and Knight’s

system as a synchronous tree grammar suggests two more extensions. First, it might make more

sense to train directly on the observed training data instead of the reconstructed (flattened) training

data, as with our parser (Section 3.3.2) and Gildea’s TSG system (Gildea, 2003). Second, their

flattening step produces only unlexicalized trees and one-level lexicalized trees; it would be in-

teresting to experiment with grammars in which the nontrivial elementary trees had one or more

lexical heads.

* * *

We have discussed how to compare grammar formalisms for translation, finding that in this do-

main formalisms are much more differentiated than with statistical parsing, making the choice of

the right formalism more crucial. We observed that recent syntax-based statistical machine transla-

tion research has been proposing more and more powerful formalisms, and we ourselves proposed

synchronous RF-TAG as a possible next step in the series, showing that it has strictly greater trans-

lation power than CFG with the same asymptotic parsing complexity.
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Figure 4.6: Grammar (object-level) for English-Portuguese example.
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α1[fly]

α3[John] β1[have]

β1[going]

...

β1[supposed]

α2[voar]

β2[pressuposto] α3[João] β1[ter]

β1[vai]

...

Figure 4.7: Derivation trees (object-level) for English-Portuguese example.



α1[fly]

NP I′

β1[supposed]

↓ 1 2 :
α2[voar]

β2[pressuposto] NP I′↓ 1 2


(ℵ)


I′

β1[have,going,. . . ]

I′∗ 1

:

I′

β1[ter, vai, . . . ]

I′∗ 1


(i)

Figure 4.8: Meta-level grammar for English-Portuguese example.



Chapter 5

Applications to biosequence analysis I

A central problem in computational biology is analyzing genetic sequences to determine the struc-

tures of the molecules (RNAs, proteins) they code for. Since this problem is analogous to the

problem in computational linguistics of describing what structural descriptions are specified by

a given utterance, as first observed by Searls (1992), many researchers have tried using formal

grammars to analyze biological sequences as well (Sakakibara et al., 1994; Abe and Mamitsuka,

1997; Uemura et al., 1999; Rivas and Eddy, 2000). In this chapter we will attempt a synthesis of

this family of approaches, and investigate what properties of formal grammars will determine their

success.

5.1 Background

In this section we give an overview of some basic concepts in structural biology from a formal-

language-theoretic point of view. A more thorough and conventional introduction can be found in

biology textbooks (Branden and Tooze, 1999; Alberts et al., 2002).

5.1.1 Sequences

DNA molecules are built out of nucleotides, which come in four kinds (adenine, thymine, cytosine,

and guanine, or A, T, C, and G for short). Each contains a five-carbon sugar, and the only way for

two nucleotides to combine is for the fifth (5′) carbon of one to be joined by a covalent bond to

81
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Figure 5.1: Nucleotides combining to form (a segment of) a DNA/RNA molecule. The parenthe-
sized O is absent in DNA.
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Figure 5.2: Amino acids combining to form (a segment of) a protein.R indicates a side chain,
which varies from amino acid to amino acid.
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A Ala alanine
R Arg arginine
N Asn asparagine
D Asp aspartic acid
C Cys cysteine
Q Gln glutamine
E Glu glutamic acid
G Gly glycine
H His histidine
I Ile isoleucine

L Leu leucine
K Lys lysine
M Met methionine
F Phe phenylalanine
P Pro proline
S Ser serine
T Thr threonine
W Trp tryptophan
Y Tyr tyrosine
V Val valine

Figure 5.3: Amino acids and their abbreviations.

the third (3′) carbon of the other with a phosphate group in between (see Figure 5.1). This causes

nucleotides to form into chains; the end with its 5′ carbon free is called the 5′ end and the end

with its 3′ carbon free is called the 3′ end. This asymmetry is significant; the chain is always

synthesized starting with the 5′ end, for example. Thus we can think of DNA molecules as strings

over{a, t, c,g}.

DNA is purely informational: it has no function other than to be replicated and transcribed into

other alphabets. One such alphabet is that of RNA, which is similar to DNA in structure, except it

uses uracil (U) instead of thymine. Thus we can think of RNA molecules as strings over{a,u, c,g}.

RNA is transcribed from DNA by a base-to-base mapping (A→ U,T → A,C → G,G → C).

RNAs come in various types: transfer RNAs are about 80–100 bases long, and ribosomal RNAs

are about 120–2500 bases long.

Proteins are built out of amino acids, which come in twenty kinds (see Figure 5.3). Each amino

acid contains an amino group (NH2) and a carboxyl group (COOH), and the only way for two

amino acids to combine is for the amino group of one to be joined by a covalent bond to the

carboxyl group of the other (see Figure 5.2). Thus in some diagrams the ends of a protein molecule

are labeled N (for the nitrogen atom in the amino group) and C (for the carbon atom in the carboxyl

group). Thus, as with DNA and RNA, we can think of proteins as strings over the set of amino acids.

Proteins are transcribed from DNA via RNA by the so-called genetic code, which maps triples of
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1st 2nd 3rd
T C A G

T
Phe

Ser
Tyr Cys

T
C

Leu Stop
Stop A
Trp G

C Leu Pro
His

Arg

T
C

Gln
A
G

A
Ile

Thr
Asn Ser

T
C

Lys Arg
A

Met G

G Val Ala
Asp

Gly

T
C

Glu
A
G

Figure 5.4: The genetic code (DNA→ amino acids).

nucleotides (called codons) to amino acids (see Figure 5.4). There are also start and stop codons

which permit multiple proteins to be encoded in a single strand of DNA. Proteins can be quite long,

exceeding 5000 amino acids in length.

An alternative is to think of these molecules not as strings over an alphabet of nucleotides or

amino acids, but as strings ofcovalent bonds. That is, ifΣ is the set of nucleotides or amino acids,

then we can model a DNA/RNA or protein as a string overΣ × Σ, and all the strings we would

consider would be members of

{〈a1,a2〉 · 〈a2,a3〉 · · · 〈an−1an〉 | ai ∈ Σ}

The advantage of this scheme is that it allows grammars to model structures more flexibly. We will

illustrate the use of both schemes below.
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Figure 5.5: Example RNA secondary structure.

N

C

N

C

(a) (b)

Figure 5.6: Example protein secondary structures: (a)α-helix; (b)β-sheet.
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5.1.2 Structures

Though RNA molecules and protein molecules have a linear structure as described above, they

do not lie straight in space, because the chemical bonds in them are flexible. Nor do they get bent

around every which way, becauseself-contactsform between different parts of the molecule to give

it a secondary structure(see Figure 5.5), the primary structure being the sequence itself. Distant

parts of the secondary structure may come into contact to form atertiary structure.

In RNA, bonds form between complementary bases: A with U, C with G.1 Thus the sec-

ondary/tertiary structure of an RNA molecule is dependent on its primary structure. This struc-

ture gives the molecule its particular function: transfer RNAs pair codons with amino acids, and

ribosomal RNAs form the machinery which assembles amino acids into proteins.

With proteins the secondary structure is again dependent on its primary structure. Amino acids

do not have complementary pairs, but do have varying properties that make some pairings more

favorable than others. Protein secondary structures are observed to consist mainly of two types

of substructure:α-helicesandβ-sheets. Other regions are known asrandom coil. In anα-helix a

single region is coiled up into a helix (see Figure 5.6a); in aβ-sheet several discontiguous regions

are stretched flat to form a sheet (Figure 5.6b). These fold up further into atertiary structure. As

with RNAs, the structure of a protein determines its particular function. They perform a wide range

of functions, from catalyzing biochemical reactions to giving cells their shape.

In this chapter, we assume that a molecule’s structure is uniquely specified by a set of self-

contacts, that is, pairs of string positions. This representation is commonly used in the structure

prediction literature, where it is also known as apolymer graphor contact map.

1Sometimes uracil can pair with other bases besides adenine.
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5.2 Measuring sequence-analysis power

There is a long tradition of applying language-processing techniques (for example, hidden Markov

models) to genetic sequences, but the use of formal grammars originated with Searls (1992). Con-

sider the following CFG for RNA sequences:

(5.1)

S→ Z

X → aZu | uZa | cZg | gZc

Y → aY | uY | cY | gY | ε

Z→ YXZ | Y

A derivation of a stringw, represented as a tree (see Figure 5.7), has the same shape as a secondary

structure ofw, because the grammar is written so that only complementary bases appear in the

same rule, and CFG derivation trees have the convenient property that symbols from the same rule

appear next to each other in the tree. Formal locality corresponds to spatial locality.

It would seem that more complex formalisms do not have this property. For example, in a TAG

the adjunction operation can cause parts of an elementary tree to be stretched arbitrarily far apart.2

But if we distinguish between spatial locality in our drawings of derivations and spatial locality

in real molecules, then it becomes apparent that the former is convenient but not crucial. Even

if formal locality cannot correspond to spatial locality in our drawings of derivations, they can

still correspond to spatial locality in real molecules. In other words, derivations can still describe

molecules even if their drawings don’t look very much like them.

This gives us the following locality constraint: two nonadjacent monomers can contact only

if their corresponding symbols were generated in the same derivation step. All uses of formal

grammars to model biological molecules that we know of are based on this principle, though with

variations and sometimes only implicitly. In Searls’ original treatment (Searls, 1992) and that of

2However, Rogers (2003) explores the use of three-dimensional trees to represent derivations of tree-adjoining gram-
mars, and higher-dimensional trees for still more complex formalisms. In a tree-adjoining grammar defined on three-
dimensional trees, there is no stretching.
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Figure 5.7: Example CFG derivation of RNA secondary structure, with superimposed primary
structure. Nonterminal symbols other than X are suppressed for clarity.
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Uemura et al. (1999), any two bases appearing in the same right-hand side are assumed to be

in contact. Rivas and Eddy (2000) use diagrams reminiscent of Joshi’s links (Joshi, 1985). It is a

deficiency of the model of Abe and Mamitsuka (1997) that they do not specify self-contacts on their

elementary structures, with the result that a single derivation can correspond to multiple structures.

Chen and Dill (1998) do not use a grammar at all, but their model can be recast as a CFG (Chiang

and Joshi, 2002). They implicitly use an alphabet of covalent bonds (see Section 5.1.1) and specify

self-contacts on certain rules. Below is a simplified version of their grammar:

(5.2)

S→ Z | X

X → Z

Y → Y |

Z→ YX | XZ | YXZ | Y

where is a terminal symbol (representing a covalent bond) andis not a symbol at all, but a

placeholder (representing a monomer) for a link. The advantage of using an alphabet of covalent

bonds here is that multiple rules can create links on more than one monomer. Indeed, this grammar

can generate an arbitrary number of links on a single monomer. In our experiments in Chapter 6,

we use a grammar of this type; however, since grammars like (5.1) are more intuitive, we will use

it as the basis for our examples below.

The grammars used for modeling molecules typically generate the languageΣ∗, since we are

generally not interested in accepting or rejecting molecules as “grammatical,” but determining

their structures. Weak generative capacity, then, is not useful as an indicator of the usefulness of a

grammar formalism for modeling molecules. What matters is a formalism’s derivational generative

capacity (1.2), which, as we have already seen, is a measure of ability to generate linked strings.

(A slightly different measure would be needed for grammars with alphabets of covalent bonds. The

exact relationship between the two should be studied further.)
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(a) (b)

Figure 5.8: Example RNA tertiary structures: (a) kissing hairpins; (b) pseudoknot.

5.3 Linked grammars for sequence analysis

In the previous section we showed how CFG has been used to model RNA and protein structures.

Does CFG have enough DGC? It is commonly said that CFG cannot generate crossing dependen-

cies. This is not strictly true, since even a single production can have crossing dependencies:

(5.3) X→ abcd

Nevertheless there are patterns of crossing self-contacts which occur in nature which are provably

not generable by CFG (including Chen and Dill’s model). For example, helices involve unbounded

series of short crossing self-contacts. RNA tertiary structures involve long-distance crossing self-

contacts, for example,kissing hairpinsandpseudoknots(Figure 5.8). Finally, proteinβ-sheets in-

volve patterns of crossing self-contacts that are well beyond the power of CFG.

5.3.1 Squeezing DGC

We first consider the use of grammar formalisms coverable by CFG which have greater DGC than

CFG.

Alpha-helices

Helices have crossing self-contacts of a very limited type. Below we will be interested in helices in

which the (2i)th monomer is in contact with the (2i−3)rd monomer, as this is how helices appear on
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a square lattice (see Figure 5.9a). As an exercise, we may generate such helices with the following

multicomponent CFG (in the sLMG notation of Section 2.1.2):

(5.4)

S(a1a2ya3x) D H(y : x) ai ∈ Σ

H(a1 : ya2x) D H(y : x) ai ∈ Σ

H(a, ε) a ∈ Σ

Since this grammar is component-local, it can be covered by a CFG (indeed, by a right-linear

CFG or finite-state automaton). Its derivations can be faithfully represented as derivations of the

dissolved grammar (for example, see Figure 5.9b).

Proposition 9. The linked language L generated by the above component-local multicomponent

CFG cannot be generated by any CFG.

Proof. SupposeL is generated by a CFGG. If a linked string generated by a CFG contains two

crossing dependencies as in (5.3), all four terminal symbols involved must come from the same

production. By induction, this means that all the terminals in every string ofL must come from the

same production. SinceL is infinite,G must be infinite, which is a contradiction. �

In a previous paper (Chiang, 2002) we showed that component-local multicomponent CFG can

even generate linked languages that TAG cannot.

Other kinds of helices can be modeled as well; in particular, if we use an alphabet of covalent

bonds, we can model helices in which theith monomer is in contact with the (i − 4)th monomer,

as in realα-helices. All of this is somewhat academic, however, because it is easier just to write

down the cover grammar directly. For example, the Zimm-Bragg model (Zimm and Bragg, 1959)

is a standard theory of the helix-coil transition and can be thought of as a Markov chain.
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H1

a

a H2

H1

a

a H2

ε
(a) (b)

Figure 5.9: (a)α-helix as modeled by square lattice; (b)α-helix represented by derivation of gram-
mar (5.4).

Limited RNA tertiary interactions

The following results show how regular form TAG (see Section 2.1.1) can be used to model limited

tertiary interactions in RNAs.

Lemma 10 (linked pumping lemma). Let L be a linked string set generated by a CFG (or

component-local multicomponent CFG). Then there is a constant n such that if〈z;∼z〉 is in L

and |z| ≥ n, then z may be rewritten as uvwxy, with|vx| > 0 and |vwx| ≤ n, such that for all i≥ 1,

there is a relation∼i
z such that〈uviwxiy;∼i

z〉 is in L and∼i
z does not relate any positions in w to

any positions in u or y.

Proof. The proof is analogous to that of the standard pumping lemma (Hopcroft and Ullman,

1979, pp. 125–127). However, a CFG cannot be put into Chomsky normal form without changing

its DGC, so we letn = mk instead of 2k, wherek is the size of the nonterminal alphabet andm

is the longest right-hand side or the number 2, whichever is greater. The key difference from the

standard proof is the observation that since, for eachi, the derivation ofuviwxiy can be written as

S
∗
⇒ uAy

∗
⇒ uviAxiy

∗
⇒ uviwxiy

for some nonterminalA, no position inw can be contributed by the same derivation step as any
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position inu or y.

The generalization to the multicomponent case is straightforward, since a component-local

multicomponent CFGG can be converted into a CFGG′ which generates the same trees.G′ will

not generate the same linked strings asG; nevertheless, the equivalence relations generated byG

can only relate terminal instances which are first cousins in the derived tree, so fori ≥ 1, it remains

the case that no position inw is related to any position inu or y. �

Proposition 11. The following linked string set is generable by an RF-TAG but not by any CFG,

nor indeed by any component-local multicomponent CFG:

L =

caa · · · acb · · · bb


Proof. The following RF-TAG generatesL:

X

c Y

c

Y

a Y b∗

But supposeL is generated by some CFGG. For anyn given by the linked pumping lemma, let

z = cancbnc satisfy the conditions of the pumping lemma. It must be the case thatv andx contain

only a’s and b’s, respectively, or elseuviwxiy < L1. But thenu, w, andy would each have to contain

one of the c’s, and since the c’s are all related, this contradicts the pumping lemma. �

Grammars of this type could be used for structures in which all but a bounded number of self-

contacts are nested. For example, in a cloverleaf structure (Figure 5.5), the hairpins may “kiss”

(Figure 5.8a), forming a small number of self-contacts crossing over an unbounded number of

nested self-contacts. If the number of such self-contacts is indeed bounded, we can write an RF-

TAG similar to the one above to generate them (see Figure 5.10).
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Figure 5.10: RF-TAG for cloverleaf with kissing hairpins. The initial treeα generates the loops
(here fixed to two monomers each), andβ generates the stem regions.
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Figure 5.11: TAG fragment for pseudoknots, adapted from the grammar of Uemura et al. (1999)

5.3.2 Beyond CFG

We now examine some existing attempts to apply formalisms beyond CFG to more complex struc-

tures.

Pseudoknots

Uemura et al. (1999) use a grammar similar to the one shown in Figure 5.11 to generate pseudoknot

structures. A pseudoknot is generated by repeatedly adjoiningβ1 into α, then repeatedly adjoining

β2 into the result. Their grammar belongs to anO(n5)-time parseable subclass of TAG, which has

been conjectured (Kato, Seki, and Kasami, 2004) to be equivalent to the TAG restriction of Satta

and Schuler (1998).

Rivas and Eddy (2000) define a formalism called crossed-interaction grammar. Their definition
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W(x1y1x2y2) DWH(x1, x2),WH(y1, y2)

WH(ax : yā) DWH(x, y) a ∈ Σ

WH(ε, ε)

WH(x1y1x2, y2) DWH(x1, x2),WH(y1,h2)

Figure 5.12: sLMG fragment for pseudoknots, adapted from the grammar used by Rivas and
Eddy (2000), as a linear sLMG.

Figure 5.13: Chain of four hairpins beyond the power of TAG.

of this formalism is unclear in many places and seems to be as powerful as type-0 grammars; but

a little exegesis shows that what they had in mind is something equivalent to linear sLMG. They

then use a grammar similar to the one shown in Figure 5.12 to generate pseudoknot structures.

The first three rules generate basic pseudoknots just as the TAG of Figure 5.11. Like a TAG, Rivas

and Eddy’s grammar has a maximum arity of two and a maximum branching factor of two and

is therefore parsable inO(n6) time, but it lies outside the power of TAG. For example, the last

rule allows arbitrary-length chains of hairpins to be generated (Figure 5.13 shows a chain of four),

whereas TAG can only build such chains of up to three hairpins.

Beta-sheets

Abe and Mamitsuka (1997) use a formalism called ranked node-rewriting grammar (RNRG) to

generateβ-sheets. RNRG is essentially TAG with multiple foot nodes on elementary trees; for the

present discussion, it is enough to note that RNRG with a branching factor of one is equivalent to
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S(a1x1b1,a2x2b2,a3x3b3,a4x4b4) D S(x1, x2, x3, x4) ai ,bi ∈ Σ

S(ε, ε, ε, ε)

Figure 5.14: sLMG fragment forβ-sheet, adapted from one of the grammars of Abe and Mamit-
suka (1997).
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Figure 5.15: Set-local multicomponent TAG for proteinβ-sheet of Figure 5.6b.

linear sLMG with a maximum branching factor of one. Figure 5.14 shows a grammar for generating

a β-sheet of eight alternating strands. Set-local multicomponent TAG offers a similar solution;

Figure 5.15 shows a grammar to generate the five-strand sheet of Figure 5.6b.

The difficulty is that parsing of these grammars is exponential in the number of strands per

sheet. Moreover, every grammar imposes some upper bound, so that there is no single grammar

that can generate allβ-sheets. For this reason, approaches of this type appear to be prohibitively

expensive.

A second problem is that this analysis is susceptible to a kind of spurious ambiguity in which

a single structure can be derived in multiple ways. For example, consider Figure 5.16. In order to

generate theβ-sheet (a), we need trees like (b) and (c). But either of these trees can be used by itself

to generate theβ-sheet (d). The grammar must make room for the maximum number of strands,

but when it does not use all of it, ambiguity can arise. It should be possible to carefully write the

grammar to avoid much of this ambiguity, but we have not been able to eliminate all of it even for

the single-component TAG case.
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a2 X a3
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(a) (b) (c) (d)

Figure 5.16: Illustration of spurious ambiguity in a multicomponent TAG.

(a)

(b) (c)

Figure 5.17: All possible conformations of a 5-mer on a square lattice (modulo rotational and
reflectional symmetry), grouped according to structures, (a), (b), and (c).

5.4 Computing probabilities and partition functions

Just as with natural language parsing, a grammar can assign many derivations to a single string,

and we would like some measure of the relative importance of each of them—for example, a prob-

ability distribution. Attempts have been made to estimate probabilities from databases (Sakakibara

et al., 1994; Abe and Mamitsuka, 1997). However, maximizing the likelihood of a database would

not seem to make much sense, since the database does not represent a uniform sample of any natu-

rally occurring distribution (as a text corpus arguably does). Maximizing the conditional likelihood

might be a sounder approach (Hockenmaier, p.c.). But physical theory provides a more principled
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alternative. If we have some way of calculating the energies of structures, minimizing the energy

will give us the most stable structure. In fact, statistical physics can tell us the full probability

distribution over structures in terms of their energy.

Consider a set of many identical molecules, each in a particularconformation, or arrangement

in physical space. In the HP lattice model (Lau and Dill, 1989), conformations are represented

by self-avoiding walks on a lattice (see Figure 5.17). Note that there can be more than one con-

formation corresponding to a single structure; for example, in Figure 5.17, all the conformations

in the first row have the same structure. The maximum-entropy probability distribution over the

conformations of these molecules, subject to the constraint that their total energy must be constant,

is known as theBoltzmann distribution:

(5.5) P j =
e−E j/kT

Q

where j ranges over conformations,E j is the energy of conformationj, T is the temperature,k is

Boltzmann’s constant, and

(5.6) Q =
∑

j

e−E j/kT

is known as thepartition function. Since we are more interested in distributions over structures

than conformations, we may regroup both the Boltzmann distribution and the partition function

according to structure:

P j =
Ω je−E j/kT

Q
(5.7)

Q =
∑

j

Ω je
−E j/kT(5.8)

where j now ranges over structures, andΩ j is the number of conformations with structurej.

WhenT is low, the Boltzmann distribution says that the most probable structure will simply be
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the one(s) with the lowest energy: letEmin = minE j , then

lim
T→0

P( j) = lim
T→0

Ω je−E j/kT∑
j′ Ω j′e−E j/kT

(5.9)

= lim
T→0

Ω je−E j/kT+Emin/kT∑
j′ Ω j′e−E j/kT+Emin/kT

(5.10)

=


Ω j∑

j′ s.t.E j′ = Emin
Ω j′

if E j = Emin,

0 otherwise.

(5.11)

When T is high, the Boltzmann distribution predicts a uniform distribution of conformations,

therefore giving preference to structures with more conformations.

The partition function gives theeffective accessibilityof each conformation (0 being fully in-

accessible, 1 being fully accessible) and turns out to be the more useful object to compute. All the

statistical-mechanical properties of a system, including the Boltzmann distribution, can be com-

puted from it. We can use it, for example, to understand the folding process of a molecule, or the

changes it undergoes under varying conditions, which can shed further light on its function.

How do we compute the partition function using a weighted grammar? If we can assign quanti-

tiesωπ and∆Eπ to each elementary structure of the grammarπ such that for every structurej built

out of elementary structuresπ1, . . . ,πn,

∏
i

ωπi ≈ Ω j(5.12)

∑
i

∆Eπi ≈ E j(5.13)

and assign the weightωe∆E/kT to each elementary structure, then the weight of the derivation ofj

will be

(5.14)
∏

i

ωπi e
−∆Eπi /kT ≈ Ω je

−E j/kT
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The problem, then, is to design the grammar such that the energy increments (∆Eπ) and con-

formation counts (ωπ) can be estimated accurately.

Calculating energies Attaching energies to rules is common practice among previous grammat-

ical approaches to structure prediction. Here we describe a particularly simple energy model. In

the HP model (Lau and Dill, 1989), monomers are classified as either hydrophobic (h) or polar (p),

and hh contacts are favorable. That is, the energy of an hh contact isε < 0, and the energy of other

self-contacts is zero. Therefore, we can adapt grammar (5.1) as follows, lettingqhh = e−ε/kT:

(5.15)

S
1
−→ Z

X
qhh
−−→ hZh

X
1
−→ hZp | pZh | pZp

Y
1
−→ hY | pY | ε

Z
1
−→ YXZ | Y

(We use the factorqhh = e−ε/kT here instead of the energyε itself, so that the weights can be

multiplied instead of added, for consistency with the other grammars in this section.) A parser that

computes the minimum-weight derivation of a string under this grammar would compute the native

structure of the corresponding molecule.

Counting conformations Attaching conformation counts to grammar rules has not been ex-

plored previously to our knowledge. Chen and Dill (1995) use a matrix computation to estimate

conformation counts in polynomial time by dividing each structure into substructures and ignoring

excluded volume between substructures. That is, the substructures are counted separately, and then

the counts are multiplied together. The grammar can check for collisions between substructures to

the extent that the shape of a substructure can be finitely encoded; but in general collisions between

substructures are ignored. Their algorithm may alternatively be viewed as a parser for an implied



5.4. Computing probabilities and partition functions 101

grammar (Chiang and Joshi, 2002). We can similarly add conformation counts to grammar (5.15):

(5.16)

S
C(l−1)
−−−−−→ Zl

X
1
4U(l)qhh
−−−−−−→ hZlh

X
1
4U(l)
−−−−→ hZlp | pZlh | pZlp

Y l+1 1
−→ hYl | pYl

Y0 1
−→ ε

Zk+l+1 1
−→ YkXZ l

Zl 1
−→ Y l

where the superscripts are counters used for measuring lengths. Y generates open chains and X gen-

erates closed loops, and Z generates combinations of the two, counting the latter as having length

one. When an X forms a closed loop out of a Z of lengthl, it multiplies in a conformation count

of 1
4U(l), whereU(l) is the number of neighbor-avoiding loops of lengthl on the two-dimensional

lattice (l even). When S forms the whole molecule out of a Z of lengthl, it multiplies in a con-

formation count ofC(l − 1), whereC(l) is the number of neighbor-avoiding walks of lengthl.

For largel we use approximations of the formAµl lγ−1 (Madras and Slade, 1993). ForU(l), we

useA = 1.3, γ = 11
32; for C(l) we useA = 0.034,γ = 0.5; for both formulas we useµ = 2.3.

These values were chosen to approximate the results of exact enumeration; more precise or more

theoretically-motivated values would be desirable.

Computing partial sums of the partition function A weighted derivation forest lets us compute

the total weightQ of the forest (using the Inside algorithm), or the weight of a single derivation

(corresponding to a single structure). However, we may want to further group structures into bins

in various ways and compute the total weight of each bin. For example, we might want to group

structures according to their energy level and ask what the total contribution of each energy level

is. Or we might group structures according to how many self-contacts are present or not present in
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the native structure (Chen and Dill, 2000).

To do this, we incorporate the bins into the nonterminal alphabet. For example, to group the

derivations of grammar (5.1) by the number of self-contacts, we would write:

(5.17)

Sn→ Zn

Xn+1→ hZnh | hZnp | pZnh | pZnp

Y0→ hY0 | pY0 | ε

Zm+n→ Y0XmZn

Z0→ Y0

This grammar has multiple start symbols Sn, one for each bin. The total weight of Sn is the total

weight of states withn self-contacts. Using this grammar we can also calculate the mean and vari-

ance of the number of self-contacts, or the most likely structure for each number of self-contacts.

The rule weights come from grammar (5.16); combining these two grammars, we get:

(5.18)

Sn C(l−1)
−−−−−→ Zl,n

Y l+1,0 1
−→ hYl,0 | pYl,0

Y0,0 1
−→ ε

Zk+l+1,m+n 1
−→ Yk,0XmZl,n

Zl,0 1
−→ Y l,0

Xn+1
1
4U(l)qhh
−−−−−−→ hZl,nh

Xn+1
1
4U(l)
−−−−→ hZl,np | pZl,nh | pZl,np

Parsing CFG typically has time complexityO(|G|n3). The fourth rule schema above is the one

which has the most instantiations:O(n2B2), whereB is the number of bins, for two length indices

and two bin indices. However,l in this rule does not contribute to parsing complexity because it

is always equal to the width of the span of the Y; therefore this grammar can be parsed in time
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O(n4B2). Note thatB is the number of binsfor a given string, which needs to be finite. If the bins

are energy levels, they are all linear combinations (with integer coefficients) of the∆E’s, which

are drawn from a fixed, finite set. If there is a numberx such that each∆E can be expressed as an

integer multiple ofx (it suffices for the∆E’s to be all rational), thenB will be linear in the number

of self-contacts. If the number of self-contacts a single terminal can participate in is bounded (in

this case, it is bounded to one), thenB ∈ O(n), giving an overall complexity ofO(n6). Similar

reasoning fixes asymptotic upper bounds on other binning schemes as well.

Implementation details In practice it is more efficient to calculate the partition function (includ-

ing energies, lengths, counts, and bins) offline, after discarding chart items which are not part of a

complete derivation. Since the nonterminal indices for lengths and bins do not affect grammatical-

ity, we can first parse with grammar (5.1) and then reparse only the resulting forest with grammar

(5.18).

* * *

In this chapter we have provided a synthesis of current research in the application of for-

mal grammars to biological sequence analysis. We have characterized the ability of grammar for-

malisms to model secondary/tertiary structures by their DGC, and introduced a few novel ways of

using extra DGC to model more complex structures. Finally, we have shown how to use extended

weights in a grammar to compute partition functions, thus reformulating Chen and Dill’s non-

grammatical model as a weighted CFG. In the next chapter we explore the use of the technique of

intersectionto extend this model to more complex structures like bundles ofα-helices, or possibly

β-sheets.





Chapter 6

Applications to biosequence analysis II

Another strategy for obtaining more SGC out of a grammar formalism is to combine multiple gram-

mars into a single system which accepts the intersection of the languages accepted by the compo-

nent grammars, and which assigns to each string theunification(in some sense) of the structural

descriptions assigned by the component grammars. This technique has not received much attention

in computational linguistics, probably because linguistic structures tend to be hierarchical, and it

is not very clear how to unify multiple hierarchical structures into a single one. With molecular

structures, on the other hand, there is a straightforward way of unifying two linkings of a string:

simply form the union of the links. In this chapter we discuss the strengths and weaknesses of

several variants of this strategy.

6.1 Intersecting CFLs and CFLs: a critique

In the first style of intersection, a languageL = L1 ∩ L2 is simply specified by grammars forL1

andL2. A string is recognized as belonging toL just in case it is recognized as belonging to both

L1 andL2. There is no interaction between the two grammars at the level of their derivations or

structural descriptions; the only interaction is that each filters the other’s generated strings.

Context-free languages are not closed under intersection (Hopcroft and Ullman, 1979, pp. 134–

135). This suggests the possibility of using two or more CFGs to recognize a language beyond the

power of CFG. Brown and Wilson (1996) propose just this approach for RNA pseudoknots. They

105
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observe that{amg∗umc∗} and{a∗gnu∗cn} are context-free languages, but their intersection is the non-

context-free language{amgnumcn}. This language is reminiscent of a set of pseudoknots: them a’s

and u’s form one hairpin, and then g’s and c’s are the other. Therefore this would seem to be an

efficient way of modeling pseudoknots.

However, in order for the pseudoknot to be well-formed, the two hairpins must interlock with-

out colliding. That is, the base pairings must cross, but no two pairings should involve the same

base. But the only reason the above example achieves this is because one hairpin has only a’s and

u’s and the other has only c’s and g’s—that is, each symbol indicates overtly which hairpin it be-

longs to. For real molecules, both component grammars would have to generate at least all possible

hairpins, or{vwwRx}. In that case there would be no way of preventing the component grammars

from missing each other or colliding.

Brown and Wilson recognize that there is a problem, but it is not clear whether they appreciate

how serious it is. Their solution is to employ a special parsing strategy that uses the results of

parsing with the first grammar to constrain the parse with the second; then the string is reparsed

with the first, then again with the second. This procedure works only for their pair of grammars

and only approximates the desired computation.

The root of the problem is that intersection only operates on strings, not structural descriptions.

It allows parallel structural descriptions to be derived independently, then filters them on the basis

of their string yields. The above example attempts to harness this filtering to generate only well-

formed pseudoknots, but in order to do so it assumes that there is more information in the string

languages than there really is.

6.2 Intersecting CFGs and finite-state automata

Suppose, however, thatG1 is a CFG andG2 is a right-linear CFG, or a grammar that can be

covered by a right-linear CFG. SinceG2 generates a regular language and CFLs are closed under

intersection with regular languages, it is possible to construct a new CFGG∩ that generatesL(G1)∩

L(G2). Though there is no increase in WGC as in the previous section, there is still an increase
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Figure 6.1: Two-helix bundle.

qc qα

σs

1

1 s

Figure 6.2: The Zimm-Bragg model as a weighted finite-state automaton.

in SGC, because the resulting system assigns to each string the superposition of its structural

descriptions assigned byG1 andG2.1 The advantage of this approach is that the two grammars

are much easier to control when encapsulated into a single grammar than in the previous section.

In Section 5.3.1 we mentioned the Zimm-Bragg model ofα-helices (Zimm and Bragg, 1959),

which gives partition functions for conformations with local self-contacts. Chen and Dill’s model

gives partition functions for conformations with nested nonlocal self-contacts, but thus far it has

been impossible to compute partition functions for chain molecules having both localandnonlocal

interactions, as in bundles of helices (Figure 6.1).

But the Zimm-Bragg model is formally a weighted finite-state automaton: every helix unit

preceded by a coil unit has weightσs, and every helix unit preceded by a helix unit has weights

1Of course,G∩ itself has no more power than an ordinary CFG; it is the combination ofG1 andG2 that has greater
SGC. We leave for future work the question of when this combination can be covered by a CFG.
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(Figure 6.2). Moreover, this automaton could be thought of as a cover grammar for a component-

local multicomponent CFG for helices (Section 5.3.1). And we have already shown that Chen

and Dill’s model is equivalent to a weighted CFG. Therefore, we can use the machinery of formal

grammars to combine these two models easily. The combined system would generate linked strings

representing two-helix bundles, and the constructed weighted CFG would correctly calculate the

partition function.

6.2.1 Integrating the Zimm-Bragg model and the HP model

Before integrating the Zimm-Bragg model into Chen and Dill’s model, we must first adapt it to

the HP lattice model which underlies Chen and Dill’s model. This will apply both to our final

grammar-based model as well as the exact enumeration we will evaluate it against.

In a realα-helix, for eachi, the ith monomer is in contact with the (i − 4)th monomer, and

between theith and (i − 1)st monomer, there are two bond angles (like hinges) which must be

frozen into the correct shape. The Zimm-Bragg model models the self-contacts by giving each an

energy ofεs, and it models the freezing by giving a conformation count ofr < 1 to each bond

angle, representing the relative lack of conformational freedom of a helix relative to random coil.

Therefore the first turn of the helix should get a weight ofr6e−εs/kT. The r6 factor is for the six

frozen bond angles between the first through fourth monomers, and thee−εs/kT for the self-contact

between the first and fourth monomers. Then each subsequent monomer, because it freezes two

more bond angles and adds one more self-contact, gets a weight ofr2e−εs/kT. The simplest version

of the model collapses the whole first turn into the first monomer; thus the first monomer gets a

weight ofσs, whereσ ≈ r4 ands≈ r2e−εs/kT, and subsequent monomers get a weight ofs.

Now on a square lattice, a helix is modeled as shown in Figure 5.9a. This is not completely

accurate (cf. Figure 5.6a): only every other monomer creates a new self-contact, and the (2i)th

monomer is in contact with the (2i − 3)rd monomer. Nevertheless, we still give every monomer an

energy ofεs, plus an energy ofεhh for every hh contact.

Since we explicitly count conformations on a lattice, we are already counting random coil as
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having more conformations than helix—by a factor of approximatelyµ (the connective constant

from Section 5.4) per monomer. Ideally, then, the factorr would be superfluous. In that case we

would simply give each helix unit a weight ofs= e−εs/kT. However, because the lattice model does

not match reality very exactly, we keep a correction factor ons: s = s0e−εs/kT, wheres0 ≈ µr2.

Moreover, in the lattice model the first turn is no more difficult to form than subsequent turns.

Therefore we must retain theσ parameter as well.

To summarize, the factors contributing the weight of a conformation are:

qhh = e−εhh/kT for every hh contact

s= s0e−εs/kT for every non-initial monomer in a helix

σs for the first monomer in a helix

6.2.2 Intersecting the grammars

For the two-helix bundle problem, our grammar is the CFG (5.2), and our finite-state automaton

is shown in Figure 6.3. It is more complicated than the Zimm-Bragg model because it tries to

model the shape of a helix in a square lattice. Like the Zimm-Bragg model, it does not explicitly

generate self-contacts; but it can be viewed as a cover grammar for a grammar which does (see

Section 5.3.1).

The stateqc is for coil; the statesqi j are for helices, wherei cycles through four values corre-

sponding to the periodicity of the shape of a helix in a square lattice (see Figure 5.9a), andj is used

to ensure that all helices are at least six monomers long.

The procedure for intersecting a context-free grammar with a finite-state automaton is due to

Bar-Hillel et. al (1964, pp. 149–150). Given a CFGG = 〈V,Σ,S,P〉 and a finite-state automaton

(without ε-transitions)M = 〈Σ,Q,Q0,Qf , δ〉, the new CFGG′ has nonterminal alphabetQ× V ×

Q∪ S′, whereS′ is a new start symbol not inV; and its production set consists of all productions
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Figure 6.3: Automaton for helices in a square lattice. Nodes with the same label represent the same
state; the state is shown in multiple locations for visual clarity. The full automaton has the union
of the transitions shown in all six diagrams. The initial states are{qc,q00,q20}; the final states are
{qc,q12,q32}.
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of the form

〈q0,X,qn〉 → 〈q0, α1,q1〉〈q1, α2,q2〉 · · · 〈qn−1, αn,qn〉

whereX→ α1 · · ·αn ∈ P (n > 0), and for eachi, eitherαi ∈ V or elseαi ∈ Σ and〈qi−1, αi ,qi〉 ∈ δ;

and

〈q,X,q〉 → ε

for all q ∈ Q, whereX→ ε ∈ P; and, finally,

S′ → 〈q0,S,qf 〉

for all q0 ∈ Q0, qf ∈ Qf . The resulting grammar generates the languageL(G) ∩ L(M).

The difference between this construction and one like Brown and Wilson’s for pseudoknots

is that the two component grammars are fully integrated, so that we may let them control each

other however we please. For example, when two helices come together to form a bundle, self-

contacts should only be allowed between monomers on the sides of the helices facing each other.

Our original CFG had the ruleX → Z which generated a self-contact; in the intersected grammar

its corresponding productions include those of the form〈qi j ,X,qi′ j′〉 → 〈qi j ,Z,qi′ j′〉. We may now

stipulate thati, i′ ∈ {0,2} for such productions, which ensures that only one side of a helix may

participate in nonlocal contacts.

6.2.3 Computing the partition function

We compute the partition function offline as described in Section 5.4, with some modifications.

First, we incorporate the weightsσ ands from the Zimm-Bragg model, and an additional factor

qhh for every helical hh contact.

Second, previously we estimated the number of conformations of a loop of lengthl as 1
4U(l)

and the number of conformations of the tails with combined lengthl asC(l − 1). Now that these

loops and tails may include helices, which are rigid, we must adjust these estimates. Our current
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approach is simply to count each helix as a single step in a neighbor-avoiding walk, without trying

to take into account the length of the helix.

Finally, since the grammar is most error-prone with closed conformations, we use a special set

of rules for loops of length eight or less, shown below (weights are conformation counts only):

(6.1)

X
1
−→ HHHX′HHH

X
1
−→ UX′HHH

X
1
−→ HHHX′U

X
1
−→ HXH

X
1
−→ X′X′X′

X
4
−→ CCCCCCC

X′ → X | C

U→ H | C

H→ 〈q,a,q′〉 〈q,a,q′〉 ∈ δH

C→ 〈q,a,q′〉 〈q,a,q′〉 ∈ δC

These rules do not exhaustively cover all possible loops of length eight or less; a number of possi-

bilities were left out somewhat arbitrarily to limit overcounting. Chen and Dill’s steric compatibil-

ity matrices might be a more principled solution.

6.2.4 Evaluation against exact enumeration

We compared our parser against exact enumeration in various ways. First, we tried the sequence

hpphhpphhpphhpphhpph, which has minimum-energy structures high in both helix units and hh

contacts (Figure 6.4a). In this experiment and those below,σ = 0.01. Figure 6.5 shows the average

number of helix units as a function of the parameterssandqhh, and Figure 6.6 shows superimposed

cross-sections of these functions; the output of the parser qualitatively agrees with that of the exact
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(a) (b)

Figure 6.4: Some favorable structures for example sequences: (a) hpphhpphhpphhpphhpph; (b)
hppphhppphhppphhppph. Hydrophobic monomers (h) are indicated by black circles; polar mono-
mers (p) by white circles.
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Figure 6.5: Comparison against exact enumeration. Sequence: hpphhpphhpphhpphhpph; helix
units versuss andqhh. (a) Exact enumeration. (b) Parser.
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Figure 6.6: Comparison against exact enumeration. Sequence: hpphhpphhpphhpphhpph; helix
units versuss. (a)qhh = 1. (b)qhh = 10.
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Figure 6.7: Comparison against exact enumeration. Sequence: hpphhpphhpphhpphhpph; hh con-
tacts versuss andqhh. (a) Exact enumeration. (b) Parser.
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Figure 6.8: Comparison against exact enumeration. Sequence: hpphhpphhpphhpphhpph; hh con-
tacts versuss. (a)qhh = 1. (b)qhh = 10.

enumerator. Figures 6.7 and 6.8 compare the average number of hh contacts; again there is quali-

tative agreement, except for the regions < 2 of Figure 6.8b, which is not very important because

such low values fors make helix units unfavorable relative to random coil, which is unrealistic.

We next tried the sequence hppphhppphhppphhppph, which has structures with many hh con-

tacts and structures with many helix units, but not both at the same time (Figure 6.4b). Figures 6.9

and 6.10 compare the average number of helix units; as with the first sequence, the parser’s output

qualitatively agrees with the exact enumerator’s.

Figures 6.11 and 6.12 compare the average number of hh contacts. The agreement is not as

good as before for highqhh due to both overcounting of some structures and undercounting of oth-

ers. For example, the grammar is able to generate small spirals, but does not have the “memory”

needed to keep the spiral from colliding with itself. Figure 6.13a shows an unviable conformation

generated by the grammar. Such structures are causing the parser to overestimate the average num-

ber of hh contacts for highqhh and low s (again, such low values are unrealistic). On the other

hand, the grammar does not have a rule that would let helices contact each other at right angles.

Figure 6.13a shows a viable conformation with three helices that the grammar does not generate.



116 Chapter 6. Applications to biological sequence analysis II

1 2 3 4 5 6 7 8 910s
12345678910

qhh

0
4
8

12
16
20

〈nhelix〉

1 2 3 4 5 6 7 8 910s
12345678910

qhh

0
4
8

12
16
20

〈nhelix〉

(a) (b)

Figure 6.9: Comparison against exact enumeration. Sequence: hppphhppphhppphhppph; helix
units versuss andqhh. (a) Exact enumeration. (b) Parser.
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Figure 6.10: Comparison against exact enumeration. Sequence: hppphhppphhppphhppph; helix
units versuss. (a)qhh = 1. (b)qhh = 10.
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Figure 6.11: Comparison against exact enumeration. Sequence: hppphhppphhppphhppph; hh con-
tacts versuss andqhh. (a) Exact enumeration. (b) Parser.
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Figure 6.12: Comparison against exact enumeration. Sequence: hppphhppphhppphhppph; hh con-
tacts versuss. (a)qhh = 1. (b)qhh = 10.
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(a) (b)

Figure 6.13: Examples of grammar overcounting (a) and undercounting (b). Hydrophobic mono-
mers (h) are indicated by black circles; polar monomers (p) by white circles.

Missing this structure is causing the parser to underestimate the average number of hh contacts for

high qhh ands. Nevertheless, the parser agrees with the enumerator in predicting that the number

of hh contacts should decrease withs, in contrast to the first sequence.

The grammar could be modified to try to improve agreement, and this deserves further work. It

is possible that in a three-dimensional lattice, the problem of collisions will be less severe because

a greater proportion of structures will have viable conformations.

6.3 Intersection in nonlinear sLMGs

In a simple LMG there are no restrictions on what literals may be conjoined in the right-hand side

of a production. This makes sLMG closed under intersection: ifS1 andS2 are the start symbols of

two sLMGsG1 andG2(with disjoint nonterminal alphabets), create a new start symbolS and add

the production

S(x) D S1(x),S2(x)

which recognizesL(G1)∩ L(G2). Thus sLMG internalizes the intersection operation, which allows

more control than Brown and Wilson’s scheme. The caveats from our critique of that scheme still

apply, however. For example, Boullier (1999) gives a range concatenation grammar (which has

an equivalent sLMG) which he claims models German scrambling, a construction in which all

the nouns of a sentence can appear in any order. His grammar checks for a verb for every noun
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and vice versa, using intersection to enforce all these constraints simultaneously. But like Brown

and Wilson’s system, it relies on false assumptions about the generated string to ensure that the

constraints are properly coordinated.

Nevertheless, nonlinear sLMG’s closure under intersection might be a useful property for mod-

eling complex folds like proteinβ-sheets. We start with some building blocks:

Anti(a1X,Ya2) D Anti(X,Y) ai ∈ Σ

Anti(ε, ε)

Par(a1X,a2Y) D Par(X,Y) ai ∈ Σ

Par(ε, ε)

Adj(X,Y) D Ant(X,Y)

Adj(X,Y) D Par(X,Y)

The predicates Anti and Par generate pairs of adjacent antiparallel and parallel strands, respec-

tively, and the predicate Adj generates two adjacent strands in either configuration. Irregularities

as in Figure 5.16a are also possible, but not shown here.

We can then use the intersection ability of sLMG to combine these pairs of strands into a sheet.

Thus the following grammar generatesβ-sheets where the strands are arranged according to their

order in the sequence:

Beta(AB) D B(A, B)

B(ABY, B′) D B(A, B),Adj(B, B′)

B(BY, B′) D Adj(B, B′)

The first argument to B is aβ-sheet minus the last strand, and the second argument is the last strand.

The second production forms a largerβ-sheet out of a smaller one by appending a new last strand
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Figure 6.14:β-barrel.

and joining it to the previous last strand using Adj. This production hasO(n5) possible instantia-

tions (because it takes six indices to specify the variables on the left-hand side, but the arguments of

B are always adjacent, eliminating one index), and therefore the parsing complexity of this gram-

mar is alsoO(n5). Crucially, this complexity bound is not dependent on the number of strands,

because each series of contacts is generated in sister subderivations, unlike the multicomponent

TAG analysis.

But even sister subderivations can control each other via their root nonterminal (predicate)

symbols, as illustrated in the following example. Aβ-sheet can be rolled into a cylinder to form a

β-barrel (Figure 6.14). We can generate these as well, but we must keep track of the direction of

each strand so as not to generate any Möbius strips, as in the grammar of Figure 6.15. Here B has

three arguments: the first strand, the middle part, and the last strand; there is an additional predicate

symbol B′ which is the same as B, except that B′ is for sheets with antiparallel first and last strands,

whereas B is restricted here to sheets with parallel first and last strands. The first production joins

the first and last strands to form a barrel; it uses the information in the B vs. B′ distinction to join

the strands so that no M̈obius strips will be generated.

The strands ofβ-sheets do not always appear in linear order; they can be permuted as in Fig-

ure 6.16. We can model such permutations by increasing the degree of synchronous parallelism

(that is, the number of arguments to B), and therefore increasing parsing complexity. By contrast,
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Barrel(ABC) D B(A, B,C),Par(A,C)

Barrel(ABC) D B′(A, B,C),Anti(A,C)

B(A, BCY,C′) D B′(A, B,C),Anti(C,C′)

B(A, BCY,C′) D B(A, B,C),Par(C,C′)

B(A,Y,A′) D Par(A,A′)

B′(A, BCY,C′) D B(A, B,C),Anti(C,C′)

B′(A, BCY,C′) D B′(A, B,C),Par(C,C′)

B′(A,Y,A′) D Anti(A,A′)

Figure 6.15: sLMG forβ-barrels.

since multicomponent TAG already uses synchronous parallelism to generate all the strands to-

gether, it allows permutations of strands at no extra cost.

Suppose we envision a sheet being built up one strand at a time, each successive strand being

added to either side of the sheet:

Beta(ABCD) D B(A, B,C,D)

B(ABC,D,Y, B′) D B(A, B,C,D),Adj(B, B′)

B(A, B,CDY, B′) D B(A, B,C,D),Adj(D, B′)

B(ε, B,Y, B′) D Adj(B, B′)

Figure 6.16a shows an example sheet that can be generated by this grammar but not the previous

ones. In this grammar, the second and fourth arguments to B are the leftmost and rightmost strands

(not respectively) in the folded structure. The second production adds a new strand on one side,

and the third production adds a new strand on the other. Both productions haveO(n7) possible

instantiations if we take into account that the four arguments to B will always be adjacent.
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(a) (b) (c)

Figure 6.16: Permutedβ-sheets.

Suppose we always build up a sheet out of two smaller sheets:

Beta(ABCDE) D B(A, B,C,D,E)

B(ABC,D,EYA′, B′,C′D′E′) D B(A, B,C,D,E),B(A′, B′,C′,D′,E′),Adj(B,D′)

B(A, B,CDEYA′, B′,C′,D′,E′) D B(A, B,C,D,E),B(A′, B′,C′,D′,E′),Adj(D,D′)

B(ε, B,C,D, ε) D Adj(B,D)

Figure 6.16b shows an example sheet that can be generated by this grammar but not the previous

ones. In this grammar, the second and fourth arguments are again the leftmost and rightmost strands

(not respectively) in the folded structure. The second and third productions join twoβ-sheets to-

gether in two different ways; there are conceivably four ways to join them together, but using only

these two avoids spurious ambiguity. Both productions haveO(n12) possible instantiations if we

take into account that the five arguments to B will always be adjacent.

Figure 6.16c shows the only permutation of four strands that the above grammar cannot gen-

erate. This does not seem problematic, since, at least for sheets formed out of two hairpin motifs,

this permutation was not known as of 1991 to occur in nature (Branden and Tooze, 1999, p. 31).

It should be emphasized, however, that any energies or conformation counts added to these

grammars will not be able to make the self-contacts between two strands dependent on self-contacts
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with other strands. Akutsu (2000) and Lyngsø and Pedersen (2000) have shown that certain formu-

lations of the problem of predicting RNA secondary structures with generalized pseudoknots are

NP-hard. It turns out that both of these proofs assume some kind of dependence between nonadja-

cent strands. Akutsu assumes that no base can participate in two pairs (one on either side), which

is true of RNA secondary structures but not of protein structures. Lyngsø and Pedersen assume that

the energy of a base pairing (i, j) can be affected by another base pairing (j − 1, i′) even if i andi′

are in different strands (or by (j′, i + 1) even if j and j′ are in different strands); it remains to be

seen whether such dependencies might be needed, for example, in calculating conformation counts

for β-sheets.

* * *

Intersection is a technique which has been somewhat neglected in computational linguistics, but

we have shown in this chapter that it has the potential to provide extra SGC in a way that is useful

for analyzing biological sequences. There is a danger, however, of thinking that the extra WGC

gained by intersection corresponds with extra SGC. We have explored several ways of employing

this technique: we demonstrated a flaw in Brown and Wilson’s use of intersections of CFLs for

RNA pseudoknots, and we proposed intersections of CFGs and finite-state automata for two-helix

bundles and nonlinear sLMGs for larger helix bundles andβ-sheets. For future work we would like

to extend the helix-bundle work to a three-dimensional lattice and bundles of three or more helices,

using a TAG or a nonlinear sLMG. Since these larger bundles can be synthesized in the laboratory

(Ken Dill, p.c.), such a model could be evaluated more directly.





Chapter 7

Conclusion

We began this study with the question: What makes one grammar formalism better than another?

We developed a theoretical framework for dealing with this question, drawing on ideas from Miller

and Joshi and others: in this framework we measure the generative power of grammars by choosing

an interpretation domain suited to the task and restricting the interpretation functions to be defined

on local domains. We applied this framework in three general areas: statistical parsing, machine

translation, and biological sequence analysis.

Statistical parsing The ability of a grammar formalism to describe statistical parsing models

is characterized by its SGC with respect to weighted trees (or other weighted structures). This

interpretation domain classifies formalisms rather coarsely: of the weakly context-free formalisms

we examined, only tree-insertion grammar had greater statistical-modeling power than CFG. But

this negative result led to a reinterpretation of lexicalized PCFGs as being cover grammars for

grammars resembling TAG. This reinterpretation gave some new insights into how lexicalized

PCFG parsers work and how to train them.

We demonstrated a model based on probabilistic tree-insertion grammar with sister-adjunction,

discussing implementation details and some of its conceptual advantages. We described how to

train this model both using heuristic reconstruction of structural descriptions and using EM to

train directly on incomplete structural descriptions. Results on the Penn (English) Treebank were

125
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comparable to lexicalized PCFG parsers, and results on the Penn Chinese Treebank were state-of-

the-art.

We also laid a foundation for maximum-entropy models defined on formal grammars, pro-

viding an efficient way of estimating maximum-entropy parsers that is more self-contained than

parse-reranking models. Investigation of maximum-entropy models based in this way CCG, HPSG,

CFG, and TAG is just beginning; further work and comparison with the body of work on stochastic

unification-based grammars are needed.

Machine translation The ability of a grammar formalism to describe translations between lan-

guages is characterized by its SGC with respect to pairs of strings. By contrast with the previous

case, this interpretation domain classifies formalisms rather finely. We argued that this means that

the shift in statistical machine-translation research towards syntax-based methods, following a sim-

ilar shift in statistical parsing research, must be undertaken with greater care. Richer synchronous

grammar formalisms may provide the power that statistical machine-translation systems need, but

because there are many different levels of power, the right formalism must be chosen. It would be

incorrect to conclude from the failure of one formalism that still more powerful formalisms are not

worth trying.

We focused one synchronous formalism, synchronous regular-form TAG, as a basis for trans-

lation systems. We formally demonstrated that it has greater translation power than other syn-

chronous formalisms recently proposed for statistical machine translation, illustrated its use on

some examples, and outlined how it might be integrated into an existing system.

Biological sequence analysis The ability of a grammar formalism to describe secondary/tertiary

structures of chain molecules is characterized by its SGC with respect to linked strings. This in-

terpretation domain, like the previous one, classifies formalisms rather finely. We presented a syn-

thesis of previous research in this area, discussing CFG, formalisms coverable by CFG, and for-

malisms beyond CFG. We then turned our attention to the mechanism of intersection, which has a
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more natural interpretation in this domain than with syntactic structures. We showed how to extend

our CFG implementation of Chen and Dill’s statistical-mechanical model to use a CFG intersected

with a finite-state automaton, allowing it to model helix bundles, which was not previously fea-

sible. Finally, we discussed how nonlinear sLMGs might use intersection to modelβ-sheets more

efficiently than previous approaches.

* * *

Grammars are gaining or regaining attention in various quarters of research in natural language

processing and structural biology. But the theory fueling these applications will not be fully ef-

fective unless it is able to ask and answer the right questions: Is this grammar formalism more

powerful than that grammar formalism for this particular application? We have set up a framework

for carrying out such comparisons, and used it to explore three areas of application. We hope that

the exploration will continue: empirical evaluation of theoretical results in this thesis, new results

about other grammar formalisms, and investigation into further areas of application.
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