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Abstract: Accurately assessing groundwater storage changes in Niger is critical for long-term water
resource management but is difficult due to sparse field data. We present a study of groundwater
storage changes and recharge in Southern Niger, computed using data from NASA Gravity Recovery
and Climate Experiment (GRACE) mission. We compute a groundwater storage anomaly estimate
by subtracting the surface water anomaly provided by the Global Land Data Assimilation System
(GLDAS) model from the GRACE total water storage anomaly. We use a statistical model to fill
gaps in the GRACE data. We analyze the time period from 2002 to 2021, which corresponds to the
life span of the GRACE mission, and show that there is little change in groundwater storage from
2002–2010, but a steep rise in storage from 2010–2021, which can partially be explained by a period
of increased precipitation. We use the Water Table Fluctuation method to estimate recharge rates
over this period and compare these values with previous estimates. We show that for the time range
analyzed, groundwater resources in Niger are not being overutilized and could be further developed
for beneficial use. Our estimated recharge rates compare favorably to previous estimates and provide
managers with the data required to understand how much additional water could be extracted in a
sustainable manner.

Keywords: groundwater recharge; water table fluctuation method; long-term storage change; im-
puted GRACE data; web-application; sustainability; Niger; Africa

1. Introduction
1.1. Groundwater and Study Motivation

Groundwater is an important resource; studies estimate it provides approximately
30% percent of global freshwater use and is the primary water source for about half the
world population; ~2 billion people [1,2]. Agriculture relies on groundwater, with estimates
that groundwater irrigation supports 40–50% of global food production [3]. Globally
there are large differences in groundwater use, with use often depending on existing
water infrastructure and local climate, with increasing groundwater use in arid regions [4].
Groundwater is especially important in dry, arid regions of the world where other water
resources are scarce [5]. Groundwater resources can be stressed due to several factors, with
one of the primary concerns being groundwater depletion [6].

Limited groundwater data can make managing groundwater resources difficult [2,7,8],
especially over the longer time periods required to evaluate aquifer sustainability [5].
Groundwater monitoring is costly in terms of financial, technological, and time issues as
it requires installing multiple monitoring wells and consistently recording, storing, and
analyzing water level and quality data over long time periods [5]. Aquifers often have little
management because of the difficulty of obtaining data and the lack of understanding by
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regulators and the public of the impacts caused by groundwater depletion [9–11]. This
creates what Famiglietti [8] refers to as a “free for all,” where, in many jurisdictions, anyone
can drill and have unlimited access to groundwater with little or no regulation. This
development of groundwater resources with limited management is often encouraged by
local governments. For example, in India, electrical costs for well pumping are subsidized
by the government to encourage additional agricultural production [12].

Groundwater demand is increasing, with a 3% annual growth in groundwater use
globally from 1990 to 2010 [6]. The ability to evaluate aquifer use to determine if withdrawal
rates are sustainable is an important capability. The lack of historical or even current data
makes this task challenging, but recent advances in remote sensing have provided data sets
and tools that can be used to help evaluate sustainable yield in aquifers. We estimate storage
change and recharge for several large aquifers in Niger, West Africa, with areas ranging
from 13,000 to 161,000 km2. This information helps managers better include sustainability
considerations in their management.

1.2. GRACE Mission and Applications

In 2002, the United States National Aeronautics and Space Administration (NASA), in
collaboration with the German Aerospace Center (DLR), launched the Gravity Recovery
and Climate Experiment (GRACE) [13]. GRACE uses two satellites that follow the same
orbital path about 220 km apart. The distance between the satellites varies in response
to variations in the Earth’s gravitational field. The satellites measure distance changes
between the two satellites to 10 µm w [13–15]. As the satellites pass over the Earth, changes
in mass affect the lead satellite first, then the following satellite, thus changing the distance
between the two satellites. These measurements, along with high precision accelerometer
data, are processed to quantify gravitational anomalies (i.e., mass changes) below the
satellites as they cover the globe [14]. The first GRACE mission ended after about 15 years,
providing data from 2002 to 2017 [16]. In May of 2018, the GRACE Follow-On (GRACE-FO)
mission [17] was launched and provides gravitational anomaly data on a monthly basis,
similar to the original GRACE mission, up to the present [17,18].

The GRACE satellites globally map changes in the Earth’s gravitational field; for most
locations, the change in mass that produces gravitational changes is driven primarily by
changes in water storage as there are few other changes that affect Earth’s mass on this scale.
This means that GRACE data can be used to monitor changes in water storage globally [19].
These data cannot be used to estimate the total water mass, but instead, measure variations
or changes in water mass compared to a long-term mean which are called anomalies in
GRACE usage [20].

NASA processes GRACE data and provides the total water storage anomaly (TWSa)
dataset, a measure of the change in water storage at each location globally [21]. These
data are widely used, with one highly-cited paper reporting that there were over 150 pub-
lications in 2016 on GRACE data processing and applications to hydrological issues [21].
Example applications include drought studies [22–27], flood studies [28–32], and other
general hydrologic studies involving regional water storage and trends [33–35]. Recent
work has shown that GRACE data can be used to monitor groundwater storage changes
remotely [5,36–39], including groundwater depletion in arid and semi-arid areas [40,41].

1.3. Groundwater Storage Change Estimation Using GRACE

While GRACE measures the total change in mass, and by inference, the total change
in water storage, GRACE data can be used to study groundwater, a subset of the total
water storage [2,5,37,42]. Most GRACE groundwater applications use global land sur-
face model results to separate the groundwater component from total water storage [5].
For example, to estimate the groundwater anomaly, researchers subtract the surface wa-
ter, snow water equivalent, plant canopy, and soil moisture water storage components
computed by NASA’s Global Land Data Assimilation System (GLDAS) model from the
GRACE-derived TWSa [5,42,43]. This approach, subtracting the land surface model non-
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groundwater components from GRACE data, has been widely applied using various land
surface models [2,4,5,9,39,42,44–51].

While groundwater data can be derived from the GRACE TWSa, these data, based on
our knowledge, are not commonly used outside academia and are rarely used for ongoing
groundwater management. Various tools have been developed to access and process
GRACE TWSa data, but many have limited GRACE TWSa datasets because of their size,
and most lack derived groundwater datasets. Nearly all of these tools cater to a scientific or
technical experienced user and do not provide the ability to easily support regional analysis
required for local groundwater study and management [16,52–56].

We recently published tools designed to allow groundwater managers to easily use
GRACE data to estimate groundwater storage changes over time, representing aquifer
storage in a region [20]. These tools include both a web application and a Python-based
notebook interface that accesses GRACE and GLDAS model data, computes the gridded
monthly groundwater anomaly, accepts data to define an aquifer extent and integrates
the spatially gridded groundwater anomaly data over time to generate an aquifer storage
time history limited to the aquifer region being studied or managed [20]. These data and
the resulting information can be used by local groundwater managers to evaluate aquifer
groundwater use and better understand the impacts of future development.

1.4. Groundwater Recharge Estimation

An important part of analyzing aquifer sustainability is estimating annual ground-
water recharge. There are several techniques to estimate groundwater recharge; however,
selecting an appropriate method is difficult as most techniques require detailed informa-
tion, including accurate historical groundwater data [57]. Considerations for selecting the
appropriate method include the scope of the study, the size of the study area, the time
period of the study, and the reliability of the recharge estimation method. Both physical
and chemical techniques have been used to estimate recharge [58]. The chemical techniques
that have been used extensively in our study region are the chloride mass balance (CMB)
method and the tritium (3H) peak concentration method [58,59]. However, these methods
have disadvantages. The tritium method is not usable when the unsaturated zone is shal-
low [60], and the CMB method requires a balance between the input and output of chloride
concentrations from precipitation and underneath the root area, respectively. This balance
often takes years to decades to equilibrate in the vadose zone and up to a century for the
saturated zone. This means these techniques only provide appropriate results and are
mostly useful where the climate and land use have not changed significantly recently [60].
Furthermore, these methods rely on in situ measurements and laboratory analysis, both of
which are scarce in West Africa.

The Water Table Fluctuation (WTF) method is an alternate approach that does not
require chemical data. WTF was developed in the early 1920s to estimate episodic recharge
based on fluctuations in the groundwater table [61,62]. WTF analyzes seasonal changes
in the piezometric head at monitoring wells (or in the aquifer) and categorizes the rising
portion of the annual fluctuation as recharge. A few studies have been made to estimate
groundwater recharge using the WTF method with water levels derived from GRACE data.
For example, Henry et al. [63] analyzed both GRACE and GLDAS data in Mali, Africa,
to estimate the groundwater storage anomaly and annual groundwater recharge from
2002 to 2008 and compared these results to estimates using the WTF method with data
from available observation wells. They calculated a recharge value of 16.4% and 14.8%
of the annual precipitation using GRACE and historical water levels data, respectively.
Gonçalvès et al. [64] estimated the recharge in North-Western Sahara Aquifer System
employing GRACE monthly records, GLDAS results, and groundwater pumping rates.
Their results suggested a recharge rate of 40%, contradicting the hypothesis that in that
region, the recharge is low or even null. Another study that quantified recharge and
depletion rates with GRACE data was conducted by Ahmed and Abdelmohsen [65] in
the Nubian aquifer in Egypt. Their results indicated that recharge occurs only with a



Remote Sens. 2022, 14, 1532 4 of 22

substantial rise in Lake Nasser levels and/or excessive precipitation conditions in the
region. Finally, Wu et al. [60] estimated groundwater recharge using the WTF method
with GRACE and GLDAS data in the Ordos basin in China. The results indicated that the
groundwater recharge estimated with GRACE did not differ considerably from the values
calculated with an environmental tracer.

1.5. Causes of Groundwater Storage Change

Long-term water levels changes can be due to changes in groundwater pumping,
irrigation practices, climatic variations, or fluctuations in precipitation [66]. For example,
Leduc et al. [67] concluded that rainfall interferes with the change in the water table in
South-West Niger. They found that severe droughts could be interpreted as influencing
the decline in the water table at some points between 1960 and 1980. Furthermore, the rise
during the 1990s could be an indication of increased recharge due to wetter years. They
also argued that groundwater storage increases in recent decades could be explained by
land use changes that concentrated surface water runoff into catchments and ponds, thus
increasing recharge efficiency.

Scanlon et al. [68] recently reported an increase in total water storage trends in West
Africa, particularly in the Iullemeden aquifer. Favreau et al. [69] also reported a continuous
rise in the water table in southwestern Niger. Furthermore, Bonsor et al. [70] and Cuthbert
et al. [71] showed an increase in groundwater in the Sahelian aquifers (Iullemeden and
Chad). Each of these authors at least partially attributed this phenomenon to a change in
land use where the clearing of native vegetation enhances and concentrates runoff in the
ponds, causing an increase in infiltration and therefore recharging the aquifer.

1.6. Study Objectives and Goals

We use published GRACE groundwater storage change tools [5] to evaluate the
historical use and sustainability of aquifers in Southern Niger. Our goals are: (1) to perform
a defensible, quantitative analysis of the aquifers to determine historic use patterns and
determine if an aquifer is being used in a sustainable manner, being depleted, or if it could
be used more fully without depletion, (2) provide recharge estimates that allow managers
to understand the magnitude of groundwater extraction that could be maintained in a
sustainable manner, (3) determine if observed water level trends are correlated to rainfall
in the region, and (4) to provide a published case study that can be used by groundwater
managers globally that demonstrates how to use GRACE Earth observation data to better
understand groundwater use patterns, evaluate aquifer sustainability, and used estimated
recharge and aquifer history to develop more quantifiable and defensible groundwater
management plans.

2. Study Area and Background

We analyzed aquifers located in Southern Niger within the Iullemeden and Lake
Chad basins. The Iullemeden basin (Figure 1) is situated across five countries, including
Niger, Benin, Nigeria, Algeria, and Mali, in the Sahara and Sahel zones (arid and semi-arid
regions) [72]. It has an area of about 620,000 km2 and is the main source of drinking
water for the five countries [73]. It is bordered by the Tuareg shield in the north, by the
Togo-Benin-Nigeria shields in the south, by the Liptako-Gourma discontinuous aquifer in
the west, and by the dorsal of the Damagaram-Mounio crystalline basement in the east [74].
Precipitation varies between 550 and 650 mm per year, with a wet season from May to
October and a dry season between October and May. There is a north-south precipitation
gradient with less than 50 mm of precipitation in the north and more than 800 mm in the
south. Regional agriculture is dominated by rainfed crops; millet and sorghum. There is
limited irrigation near villages with shallow water tables, with water table depths less than
10 m [72].
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The Lake Chad basin (Figure 1) covers around 2.5 million km2. This basin spans
Algeria, Sudan, and small areas of Libya, Cameroon, Chad, Niger, and Nigeria [75]. The
climate of this region is semi-arid to arid. The average rainfall varies from 200 to 400 mm
per year, with a wet period from May to September and a dry season from October to April.

2.1. Aquifers and Geology

The Iullemeden basin is composed of sedimentary formations that vary from Qua-
ternary, Tertiary, to the Cambrian-Ordovician. This basin is represented by 2000 m thick
sequences of sedimentary aquifer formations [72]. The principal shared aquifers in the
Iullemeden basin are the Continental Intercalaire (CI), Continental Terminal (CT) (Tertiary),
and Quaternary (Figure 2).

In general, the CI aquifer is composed of Tegama sandstone, Farak clays, and the
Continental Hamadien, from top to bottom [73]. The CT aquifer is a multi-layer aquifer in
Niger, including three separate aquifers: Continental Terminal 1 (CT1), Continental Termi-
nal 2 (CT2), and Continental Terminal 3 (CT3) [73]. CT1 is a confined aquifer consisting of
red and speckled clays with intercalations of sandstones. CT2 is a semi-confined aquifer
containing sandy clays with lignite. The CT3 is an unconfined unit composed of a clayey
sandstone with medium to fine sand on top and conglomeratic sand at the base.

The Lake Chad basin belongs to the West African rift system, which is considered
the biggest intra-cratonic basin [76], with numerous aquifers recognized in the basin [77].
We analyzed two aquifers located in the Lake Chad basin in southeast Niger. The Manga
aquifer (Figure 3) has an area of approximately 150,000 km2 and is mainly composed of
layers of sand and clay [78] with a series of sand dunes in the center that have depressions
between 15 and 20 m that affect recharge [79]. The aquifer has a small hydraulic gradient
trending towards Lake Chad. The water table is shallow, with the maximum depth to
groundwater being about 15 m [78]. The Korama aquifer extends to the southern part of
Niger with an area of around 6000 km2. The Korama aquifer is bordered in the west by the
Damagaram Mounio Precambrian basement, in the east and north by crystalline rocks, and
in the south by the Nigerian border for our analysis [80]. This aquifer consists of sandy-clay
and alluvial sands layers with an apparent limited hydraulic connection to the sedimentary
materials of the Chad formation [78]. For both aquifers, groundwater recharge generally
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occurs in unconfined areas from rainfall, irrigation return flow, and by losing lakes and
rivers [78]. This recharge (e.g., rainfall) is sensitive to periodic droughts, wet periods, and
climatic changes [81].
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2.2. Aquifers Selected for Analysis

For our GRACE-derived groundwater storage analysis, we selected two sets of aquifers
in Southern Niger based on their importance to the region determined by their potential for
groundwater development and their location relative to the Iullemeden and Chad basins
(Figure 4). In the Iullemeden basin, we analyzed the CI and CT aquifers, the area of each
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aquifer is approximately 161,000 and 102,600 km2, respectively. For the Chad basin, we
analyzed the Manga aquifer, which has a study area of 13,000 km2, and the Korama aquifer,
with an approximate area of 124,600 km2.
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2.3. Previous West African Studies

There have been several GRACE studies in West Africa related to water storage
changes. Forootan [82] estimated total monthly water storage changes using precipitation
and sea surface temperature data and obtained results that matched the observed GRACE
total water storage anomaly (TWSa) better than the changes estimated using a global
hydrological model. Grippa [83] estimated GRACE surface water storage and soil moisture
storage using land surface models in the Sahelian area, which provided useful estimates of
water storage changes over the Sahel and West Africa. They showed that the water storage
interannual variability could be reproduced using GRACE data.

Hinderer [84] estimated and compared water storage changes using various ground
and space geodesy methods in the Lake Chad basin and Niger. They found a good agree-
ment between the CMAP (CPC Merged Analysis of Precipitation) cumulative precipitations,
GRACE solutions, and GLDAS model predictions.

A similar comparison was carried out by Nahmani [85], who compared the hydro-
logical loading deformation associated with Monsoon precipitation as computed by GPS,
GRACE, and loading models along the Niger River in three stations (Timbuktu, Gao, and
Niamey). They found a consistent match between the vertical ground deformations in
the annual signal between GPS, a combination of hydrological, non-tidal oceanic, and
atmospheric models, and GRACE-derived deformation estimates. They found that the
land deformation roughly paralleled the seasonal groundwater depth fluctuations and
speculated that the correlation was a result of the shrinking/swelling of clays.

Werth [86] analyzed a decade of terrestrial water storage changes based on GRACE
data and confirmed a water table rise in the Sahelian Niger River basin resulting from
an increase in groundwater storage. They concluded that zones with rising groundwater
storage could be used to mitigate future droughts and distribute water to distant areas.
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2.4. West Africa Groundwater Development and Regional Water Management

Agroforestry parklands are the established land-use system in the greater Sahel region.
This traditional system has been maintained for many generations and is characterized by
preserving trees on cultivated land [87]. These trees are an essential part of the agriculture
system providing food, wood for buildings, fuel, and medicines, and contribute to water
conservation, soil fertility, and environmental protection [88]. Due to the scarcity of surface
water in the region, agriculture, industry, and domestic use rely on groundwater [89].
During the last decade, local aquifers have been subjected to more use due to the increased
need for water for agriculture and industrialization. This region has experienced several
droughts [88], making groundwater an essential buffer, especially for agriculture [90]. This
situation has resulted in local managers being motivated to use groundwater resources in a
sustainable manner [89].

In general, the aquifers of the Iullemeden basin have been used mainly in southern
Niger, with pumping rates between 20 and 100 m3/h from wells 40 to 100 m in depth [91].
In this basin, there is an irregular distribution of wells, with wells located near population
concentrations. The Niger River and groundwater from the CI and CT aquifers are the
main water sources for industrial activities, with groundwater being Niger’s most valuable
water resource [73].

In the Chad Basin, there has been approximately a 200% increase in irrigation over the
last 30 years, causing an over-exploitation of surface water resources. This increase in water
resource demand is mainly due to the lack of efficient irrigation systems and irregular
rainfall [81]. In urban areas, groundwater is the primary source of drinking water; however,
this groundwater source is inadequate, mostly due to the cost of development [81]. Despite
the importance of this valuable groundwater resource in both basins, the groundwater
infrastructure is not fully developed. Money from both local and foreign investments may
be available to develop infrastructure, but first, it must be demonstrated that groundwater
can be developed sustainably in those regions.

3. Methods
3.1. GRACE Data

GRACE data are processed to provide a gridded gravitational anomaly map [13,19] by
three institutions that use different algorithms: the NASA Jet Propulsion Laboratory (JPL),
the University of Texas at the Austin Center for Space Research (CSR), and the German
Research Center for Geosciences (GFZ). Each of these methods generates total water storage
anomaly (TWSa) datasets that are distributed by NASA [91]. We used the JPL dataset in
this analysis [92,93]. NASA provides a monthly-averaged TWSa dataset on a 0.5-degree
grid resolution. They also provide an uncertainty estimate for each grid cell to quantify the
uncertainty of the data processing methods [2,45,94].

We also used Global Land Data Assimilation System (GLDAS) data to separate ground-
water data from the TWSa [43]. GLDAS includes three separate land surface models: Noah,
VIC, and CLSM, each of which produces data estimating water volume in the form of
canopy storage (CAN), snow-water equivalent (SWE), and soil moisture (SM). We converted
the GLDAS data to an anomaly format based on the deviation from the 2004–2009 mean
and labeled these anomaly datasets as CANa, SWEa, and SMa. The VIC and CLSM datasets
are produced at 1.0-degree resolution, and the Noah dataset is produced at 0.25-degree
resolution.

3.2. Regional Groundwater Storage Analysis Using GRACE

We used the GRACE Groundwater Subsetting tool (GGST) to estimate groundwater
storage changes [5]. GGST uses GRACE TWSa data and GLDAS data to estimate ground-
water storage anomalies and allows us to globally monitor changes in groundwater for
selected regions since 2002, with the exception of the high latitudes [7].

To study groundwater trends and sustainability over time in a regional aquifer, we
first define a region or aquifer for study. We then use GGST to derive a groundwater storage
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anomaly (GWSa) dataset by subtracting the GLDAS surface water anomaly datasets from
the GRACE TWSa dataset as follows:

GWSa = TWSa − (SWEa + CANa + SMa) (1)

This mass balance approach has been used and validated by a number of researchers [42–48].
To compute the surface water components, we average the GLDAS data from the

Noah, VIC, and CLSM land surface models, which have different grid resolutions. To do
this, we rescale the Noah dataset from 0.25-degree to 1.0-degree to match the resolution of
the VIC and CLSM models. We also scale the TWSa dataset from 0.5-degree to 1.0-degree
resolution. The resulting GWSa dataset is then at 1.0-degree resolution.

Once the GWSa dataset is computed, we then use the data from the three land surface
models to estimate uncertainties in our predictions. We compute the standard deviation for
each of the surface water components using the estimates from the VIC, CLSM, and Noah
models and then estimate the uncertainty in the GWSa as:

σGWSa =

√
(σTWSa)2 − (σSWEa)2 − (σCANa)2 − (σSMa)2 (2)

where σSWEa, σCANa, and σSMa are the standard deviations of each component and
σTWSa is the total water storage uncertainty provided by NASA [2]. The resulting uncer-
tainty estimates vary both in space and time.

The GGST clips each data set to the selected region, resulting in a set of clipped rasters
for each dataset. It averages the raster values for each month to produce a time series
indicating how each dataset has varied over time since 2002. The GGST then multiplies the
time-varying GWSa rasters by the region area resulting in a time series of cumulative water
storage change for the region in units of millions of cubic meters or cubic kilometers [5].
This time-series product is useful as it presents managers and others with a simple and
intuitive summary of water storage changes in a region of interest. It indicates if the
aquifer is being sustainably used, if it is recharging, or if storage is being depleted in a
non-sustainable manner.

We cannot compute the total amount of groundwater present, only the change in
storage over time. We do compute annual recharge values, which can be compared to
groundwater use data to determine how much additional water could be extracted, or how
much extraction would need to decrease to result in a sustainable year. This is discussed in
Section 3.4.

3.3. Imputation of Missing Groundwater Storage Anomaly Data

The original GRACE mission has mostly complete data up to 2010 with a further seven
years of additional collection that has periodic data gaps. There is an 11-month gap between
the original mission and the GRACE-FO mission [95,96]. (Figure 5) presents derived GWSa
data for the Iullemeden basin that shows these periods with missing data. Figure 5 shows
that, for this location, the GWSa data have a seasonal pattern with an increasing trend.
Data at other locations exhibit similar patterns, seasonal variations with a trend; globally,
not all aquifers exhibit a seasonal trend.

For our analysis, we need a data set without any gaps, so we need to impute the
missing GRACE data to generate this complete data set. Since the data exhibit a trend
with seasonal variation, we used a simple seasonal decomposition model (statsmod-
els.tsa.seasonal.seasonal_decompose) implemented in the statsmodels Python package [97]
to impute the missing data. This model first removes the trend using a convolution filter
(the trend component), then computes the average value for each period (the seasonal
component), in our case months, with the residual component being the difference between
the monthly average (seasonal component) and the actual monthly measurements. With
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this approach, we decompose the GWSa time series into three components: the trend, the
seasonal, and the random components: [98].

Y[t] = T[t] + S[t] + e[t] (3)

where, Y[t] is the GWSa, T[t] is the GWSa trend, S[t] is the seasonal GWSa component, and
e[t] is the residual GWSa component.
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Figure 6 shows the decomposition components for the GWSa from GRACE dataset for
the Iullemeden basin. For visualization purposes, we added a linear least squares fit to the
plot of the trend line, which is represented by the dashed line in the “trend” panel.
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To impute the missing data, we use the trend from the data decomposition, then add
the average of the monthly and residual values for that month to estimate the missing
value. This model can be written as:

Y[t] = y(T[t]) + S[t] + e[t] (4)
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Figure 7 shows the original time series in black, with imputed values in red. Visually,
the seasonality and trend are preserved and the imputation appears reasonable.
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3.4. Estimating Annual Recharge Using GRACE-Derived Groundwater Datasets

To estimate groundwater recharge in the two aquifers, we use the WTF method [62].
The WTF method estimates groundwater recharge as:

R = Sy

(
∆h
t

)
(5)

where R is the groundwater recharge in cm/yr, ∆h is the change in height of the water
table (cm), t is a specified interval over which the change was measured, and Sy is the
specific yield [61]. The time period is usually selected based on seasonal fluctuations.
Traditionally the water table fluctuation, ∆h, is measured at selected wells. For this study,
rather than well measurements, we used the computed GWSa for the aquifer and assumed
that ∆GWSa = Sy∆h [60].

To compute the recharge rate (cm/year), we examined seasonal fluctuations in ∆GWSa
time series plots, as shown in Figure 1. This allowed us to identify the seasonal fluctuations
and select the appropriate time period. The WTF method assumes that during the dry
period, there is minimal recharge, and the groundwater declines because of pumping (red
line in Figure 8). The subsequent rise represents the recharge period.

Two methods are traditionally used to estimate the recharge rate from the curve. For
the first method, we measure the distance from the trough of decline SB to the peak of
the rise Sp with the change being the net recharge (RS). For method 2, we project the
downward trend from the depletion curve fitted from SA (peak of the previous year) down
to the trough (SL) to find the recharge that balances continuing discharge (RD) and then
add that to RS to find a total recharge (RS + RD).

Rmethod 1 =
∆GWSa

∆t
=

Sp − SB

∆t
= RS (6)

Rmethod 2 =
∆GWSa

∆t
=

Sp − SL

∆t
= RS + RD (7)

Taken together, these two methods provide both a low and a high estimate of recharge.
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storage anomaly (GWSa) from 01/2007 to 06/2008 in the Iullemeden basin (modified from Wu,
et al. [60].

4. Results
4.1. GRACE-Derived Groundwater Storage Analysis

We processed both the selected regions in Southern Niger using GGST to analyze
water storage change in the regions. We created clipped time-series grids for each of the
water storage components: TWSa, surface water (SWEa and CANa), SMa, and GWSa. We
produced a time series of the average value for each variable, averaged over each region
with an uncertainty estimate. Figure 9 shows the 1-degree resolution regional maps of the
Iullemeden and Chad basins for April 2021. These maps represent the derived GWSa in cm
of liquid water equivalent (LWE) thickness.

1 
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 Figure 9. Raster maps of groundwater storage anomaly for the Iullemeden basin aquifers (panel
(a) and the Lake Chad basin aquifers (panel (b) for April, 2021.

To characterize and analyze the long-term groundwater storage trend in each basin,
we generated time series curves over for the full time period of the GRACE missions
(2002–2021). The GGST provides these time series in two formats: average liquid water
equivalent (cm) and cumulative storage change since 2002 in millions of cubic meters
(MCM). This second format helps communicate how much water an aquifer is gaining or
losing in a common volumetric unit [5].
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4.1.1. Iullemeden Basin Aquifer Cumulative Storage Change

Figure 10 shows the GWS anomalies in liquid water in an equivalent format for the
selected aquifers in the Iullemeden basin for the period of April 2002 to September 2021.
The anomalies are relative to the mean storage value between 2004–2009. The trend shows
a slight increase in groundwater storage during the first nine years (from 2002 to 2011) then
a larger increase for the last ten years (2011 to 2021), reaching a total increase in storage
of more than 10 cm of water equivalent. We fit a linear regression line to these two time
periods to indicate the visual trend in the plots. This indicates a significant increase in
groundwater storage in the region.
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Figure 11 presents the cumulative groundwater storage volume change in MCM over
the same period. The plot shows seasonal cycles, with little net change through 2010, but
then a steady upward trend for the next 11 years, resulting in a net gain of approximately
3000 MCM or 3 KM3.
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4.1.2. Chad Basin Aquifers Cumulative Storage Change

For the aquifers in the Chad Basin, the results are similar but less pronounced
(Figure 12). We observed a slight decrease in the GWSa for 2002–2011 and an increase
for 2011–2020. The average value indicates a net gain in groundwater storage over the
entire time range.
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Finally, Figure 13 shows the volumetric groundwater storage change curve for the
Chad aquifers. The net volume storage values change seasonally with a slight downward
trend until 2012 and then an upward trend with a net gain of approximately 600 MCM (0.6
KM3) by late 2021.
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4.2. Uncertainty of Storage Change Estimates

The groundwater storage change estimates illustrated in Figures 10–13 contain various
types and levels of uncertainty. There is an uncertainty in the monthly TWSa data, with an
estimate of the magnitude of this uncertainty provided by NASA. We combined this with
the standard deviation in the terrestrial water storage estimates provided by the three land
surface models in GLDAS to estimate time-varying uncertainly shown by the shaded band
in Figures 10 and 12.

There is an additional source of uncertainty in these estimates due to a well-documented
phenomenon called “leakage” [9,99,100]. While the TWSa datasets used in this study are
provided by NASA at a 0.5-degree resolution, the original GRACE grid cells are at a
3.0-degree resolution. Mass conserving scaling factors are used to derive the finer resolu-
tion of the 0.5-degree values, but the data are still implicitly tied to the 3.0-degree resolution.
One result of this is that when applying a GRACE analysis to a relatively small study area
such as the two regions analyzed in this study, anomalies just outside the study area can
impact the mass measured in the native 3.0-degree GRACE cells and impact the results (i.e.,
“leak” from adjacent areas to the target areas).

For our study regions, we anticipate that conditions to East, West, and South are likely
similar to the study regions while conditions to the North may be different. The North is
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more arid, resulting in less recharge, but there are also lower groundwater withdrawals as
there are fewer wells in this region. As a result, we have not attempted to make a leakage
adjustment, but recognize that the potential for leakage should be acknowledged as a
source of uncertainty.

4.3. Correlation with Precipitation Data

We obtained monthly precipitation data from CHIRPS (Climate Hazards group In-
frared Precipitation with Stations) which is computing using an algorithm presented by
Funk et al. [101]. While we used the monthly data, CHIRPS provides hourly, pentadal, and
monthly data from 1981 to 2020 on a 0.05◦ × 0.05◦ degree spatial resolution. We computed
the correlation of annual precipitation (mm) in Niger with GWSa (cm) in the Iullemeden
and Chad basins aquifers Figures 14 and 15 for the period of 2002 to 2020. During the first
9 years, the trend line shows that there has been a slight decrease in the average annual
precipitation, while from 2011 to 2020, rainfall average values increase.
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Figure 15. Groundwater storage (cm) and observed average annual precipitation (mm) of the Chad
Basin.

The behavior of the precipitation trend line parallels the behavior of the groundwater
storage change curves. However, the calculated correlation coefficients with a time lag of
seven months are 0.2 and 0.35 in the Iullemeden and Chad basins, respectively, indicating a
low correlation between the two variables and highlighting the effect of the change in land
use described in Section 1.5 on increasing groundwater storage.

4.4. Annual Recharge Analysis

We used both WTF approximation methods to estimate the recharge value for the
Iullemeden and Chad basins aquifers over the 2002 to 2021 period. We examined the
computed GWSa seasonal fluctuations and extracted the Rs and Rd recharge values from
the peaks and troughs. However, Figures 10 and 12 show that there is a short period in
both regions from 2014 to 2016 with little seasonal variation. Since this corresponds to a wet
period, it could be the result of recharge being diffused over a larger time period during
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these years. Because of this, it is difficult to estimate groundwater recharge during these
periods using the WTF method.

To address this issue, we examined the other years to determine the average downward
slope during the dry period, which the WTF method assumes is due to groundwater
extraction. We then calculated the average timing of the seasonal trough, and using
the average slope and average time of the trough, we applied the WTF to estimate the
groundwater recharge for the years 2014–2016, as illustrated in Figure 16.
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Figure 17 shows the groundwater recharge estimates using the two WTF methods
for the Iullemeden aquifers. Both methods show relatively constant recharge between
20–02–2011 and an increase in recharge from 2011–2020, matching the patterns observed
for groundwater storage change. The average recharge values estimated for the 2002–2011
period are 4.02 cm/year and 7.32 cm/year for Methods 1 and 2, respectively. For the second
period (2012–2021), the average groundwater recharge values are 4.53 and 9.15 for Methods
1 and 2, respectively.
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For the Chad aquifers, the derived recharge rates exhibit a similar pattern (Figure 18).
There was a relatively constant recharge from 2002 to 2011 and an overall increase in recharge
in the last 10 years (2011–2021). The estimated average recharge rates are 2.90 cm/yr and
5.41 cm/yr for Method 1 and 2, respectively. For the second period (2012–2021), the estimated
rates are 4.12 cm/yr and 7.60 cm/yr for Methods 1 and 2, respectively. The estimated recharge
rates in the Iullemeden basin are higher than those in the Chad basin, which correlates to the
higher groundwater storage gains observed in the Iullemeden basin.
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Table 1 presents the recharge rates we estimated with reported values from the litera-
ture for the same region. Our estimated recharge rates using WTF Method 1 are listed as the
low estimate for each range: 4.0–4.5 cm and 2.9–4.1 cm for the Iullemeden basin and Chad
basins, respectively. These values are in the range reported by Vouillamoz et al. [102] and
Leduc et al. [103] whom both used the WTF method (1 to 5 cm). The values we estimated
using WTF Method 2 of 7.3–9.2 cm and 5.4–7.6 cm in the Iullemeden and Chad basins,
respectively, are higher for both periods and basins than the published WTF values. The
estimated recharge values found by Leduc et al. [103] and by Favreau et al. [104] using 14C
and 3H, and by Bromley et al. [105] using the chloride mass balance (CMB) method, are
all lower than the values we found. All of these values reported in the literature refer to
Southwest Niger and the latest year of the reported groundwater recharge is 2000. With
the period of high precipitation and groundwater accumulation from 2011 to 2021, we
would expect the recharge rates we computed in the region to be higher than those from
the literature.

Table 1. Average recharge value (from 2002 to 2020) compared with results from prior studies.

Reference Country/Region Method Time Recharge (cm/year)

Estimated values in this
project

Iullemeden Basin WTF 2002–2011 4.0–7.3

Iullemeden Basin WTF 2012–2021 4.5–9.2

Estimated values in this
project

Chad Basin WTF 2002–2011 2.9–5.4

Chad Basin WTF 2012–2021 4.1–7.6

Bromley et al. [105] Southwest Niger CMB (Chloride mass balance) 1992 1.3

Leduc et al. [67] Southern Niger WTF 1991 5 to 6

Leduc et al. [104] and
Favreau et al. [104] Southwest Niger Radioisotopes (14C and 3H) 1950s–2000s 0.1 to 0.5

Leduc et al. [103] Southwest Niger WTF 1990s–2000s 2 to 5

Vouillamoz et al. [102] Southwest Niger WTF 1990s–2000s 2 to 5

5. Conclusions

We used published methods implemented in the GGST tool along with GRACE and
GLDAS data to analyze historical groundwater storage change in selected aquifers in two
basins in Southern Niger in West Africa. We applied a simple seasonal decomposition
model to impute missing data in the GRACE datasets and then derived groundwater
storage change estimates by subtracting surface water storage datasets provided by the
GLDAS model. Using this approach, we estimated the cumulative storage change of
aquifers in Iullemeden and Chad over a 19-year period from 2002 to 2021. During the first
9 years, we found a slight increase in the groundwater storage in the aquifers from the
Iullemeden basin and a slight decrease in aquifers associated with the Chad Basin. We
found a considerable increase in storage during the last 10 years in both basins. These
changes can at least be partially ascribed to increased precipitation during the same period.
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We estimated groundwater recharge rates for the basins using two WTF methods
which assumed that the increment changes in the groundwater levels are due to the
recharge. Our estimated annual average recharge rates are consistent with groundwater
storage changes for the region, showing relatively constant values from 2002–2010 and
an increase from 2011–2021. We compared the estimates we computed with those from
other studies in the region and found that groundwater recharge calculated other methods
such as CMD, 14C, and 3H resulted in lower estimated recharge rates. For reported values
using the WTF method, our estimated values with WTF Method 1 are within the range of
values reported by Leduc et al. and Vouillamoz et al. [102], while our estimates using WTF
Method 2 are higher than the reported values. However, it is reasonable to expect higher
recharge rates during a period of significant groundwater accumulation.

We found that groundwater storage in this region is not being depleted and rather
has been increasing for the past 10 years. These results indicate that there is potential for
additional groundwater infrastructure development in the region. Water managers should
continue to monitor groundwater storage changes to ensure sustainable long-term use, and
this study shows that such an analysis can be performed using remote sensing products,
which is especially helpful in this region where in situ data are scarce.
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Abbreviations
List of abbreviations used in the text, in alphabetical order.

Abbreviation Full Form
CAN canopy storage
CANa canopy storage anomaly
CMB chloride mass balance
CI Continental Intercalaire
CSR University of Texas at Austin Center for Space Research
CT Continental Terminal
DLR German Aerospace Center
GLDAS Global Land Data Assimilation System
GRACE NASA Gravity Recovery and Climate Experiment
GRACE-FO GRACE Follow-On
GFZ German Research Center for Geosciences
GGST GRACE Groundwater Subsetting tool
GWS groundwater storage
GWSa groundwater storage anomaly
JPL NASA Jet Propulsion Laboratory
LWE liquid water equivalent
MCM millions of cubic meters
SMa soil moisture anomaly
SWEa snow-water equivalent anomaly
Sy Specific yield
TWSa total water storage anomaly
WTF water table fluctuation
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