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EVALUATING HIGHER DERIVATIVE TENSORS
BY FORWARD PROPAGATION

OF UNIVARIATE TAYLOR SERIES

ANDREAS GRIEWANK, JEAN UTKE, AND ANDREA WALTHER

Abstract. This article considers the problem of evaluating all pure and mixed
partial derivatives of some vector function defined by an evaluation procedure.
The natural approach to evaluating derivative tensors might appear to be their
recursive calculation in the usual forward mode of computational differentia-
tion. However, with the approach presented in this article, much simpler data
access patterns and similar or lower computational counts can be achieved
through propagating a family of univariate Taylor series of a suitable degree.
It is applicable for arbitrary orders of derivatives. Also it is possible to cal-
culate derivatives only in some directions instead of the full derivative tensor.
Explicit formulas for all tensor entries as well as estimates for the correspond-
ing computational complexities are given.

1. Introduction

Many applications in scientific computing require second- and higher-order der-
ivatives. Therefore, this article deals with the problem of calculating derivative
tensors of some vector function

y = f(x) with f : D ⊂ Rn̄ 7→ Rm

that is the composition of (at least locally) smooth elementary functions. Assume
that f is given by an evaluation procedure in C or some other programming lan-
guage. Then f can be differentiated automatically [6]. The Jacobian matrix of first
partial derivatives can be computed by the forward or reverse mode of the chain-
rule based technique known commonly as computational differentiation (CD). CD
also yields second derivatives that are needed in optimization [8] and even higher
derivatives that are called for in numerical bifurcation, beam dynamics [2] and other
nonlinear calculations.

Even though the reverse mode of CD may be more efficient when the number of
dependent variables is small compared to the number of independents [6], only the
forward mode will be considered here. The mechanics of this direct application of
the chain rule are completely independent of the number of dependent variables, so
it is possible to restrict the analysis to a scalar-valued function

y = f(x) with f : D ⊂ Rn̄ 7→ R.
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1118 ANDREAS GRIEWANK, JEAN UTKE, AND ANDREA WALTHER

In other words, formulas for one component f(x) of the original vector function
f(x) are derived. This greatly simplifies the notation, and the full tensors can then
easily be obtained by an outer loop over the component index.

The natural approach to evaluating derivative tensors seems to be their recursive
calculation using the usual forward mode of CD. This technique has been imple-
mented by Berz [3], Neidinger [10], and others. The only complication here is the
need to utilize the symmetry in the higher derivative tensors, which leads to fairly
complex addressing schemes. As has been mentioned in [7] and [1], much simpler
data access patterns and similar or lower computational counts can be achieved
through propagating a family of univariate Taylor series of an arbitrary degree. At
the end, their values are interpolated to yield the tensor coefficients.

The paper is organized as follows. Section 2 introduces the notations that are
used and makes some general observations. In Section 3 the complexity of storing
and propagating multivariate and univariate Taylor polynomials is examined, and
the advantages of the univariate Taylor series are shown. Section 4 derives formulas
for the calculation of all mixed partial derivatives up to degree d from a family of
univariate Taylor polynomials of degree d. Some run-time results are presented in
Section 5. Finally, Section 6 outlines some conclusions.

2. Notations and basic observations

In many applications, one does not require full derivative tensors but only the
derivatives in n ≤ n̄ directions si ∈ Rn̄. Therefore suppose a collection of n ≤ n̄
directions si ∈ Rn̄ is given, and that they form a matrix

S = [s1, s2, . . . , sn] ∈ Rn̄×n.
One possible choice is S = I with n = n̄. Here, I denotes the identity matrix
in Rn×n. Of particular interest is the case n = 1, where only derivatives in one
direction are calculated.

With a coefficient vector z ∈ Rn, one may wish to calculate the derivative tensors

∂

∂z
f(x + Sz)

∣∣∣∣
z=0

= (f ′(x)sj)j=1,... ,n ∈ R
n,

∂2

∂z2
f(x + Sz)

∣∣∣∣
z=0

= (f ′′(x) si sj)
j=1,... ,n

i=1,... ,n ∈ R
n×n,

and so on. The last equation is already an abuse of the usual matrix-vector notation.
Here, the abbreviation

∇kS f(x) ∈ Rnk

will be used in order to denote the k-th derivative tensor of f(x + Sz) with respect
to z at z = 0.

The use of the seed matrix S allows us to restrict our considerations to a subspace
spanned by the columns si along which the properties of f might be particularly in-
teresting. This situation arises for example in optimization and bifurcation theory,
where the range of S might be the tangent space of the active constraints or the
nullspace of a degenerate Jacobian. Especially, when n � n̄ it is obviously prefer-
able to calculate the restricted tensors ∇kS f(x) directly, rather than first evaluating
the full tensors

∇kf(x) ≡ ∇kI f(x) ∈ Rn̄
k
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and then contracting them by multiplications with the directions si.
One way to evaluate the desired tensors ∇kS f(x) is to recursively calculate for all

intermediate quantities w the corresponding restricted tensors ∇Sw,∇2
S w, . . . etc.

The process would be started with the initialization ∇Sx = S and with ∇kS x = 0
for k > 1. For all subsequent intermediates, the derivative tensors are defined by
the usual differentiation rules. For example, in the case w = u ∗ v there are the well
known differentiation rules

∇Sw = u∇Sv + v∇Su
and

∇2
S w = u∇2

S v +∇Su(∇Sv)T +∇Sv(∇Su)T + v∇2
S u.

For the third derivative tensor, the matrix-vector notation is no longer sufficient,
but the following observation is generally applicable.

To calculate ∇kS w, each element of ∇jS u with 0 ≤ j ≤ k has to be considered
and then multiplied with all elements of ∇k−jS v. The result is then multiplied by
a binomial coefficient given by Leibniz’ theorem, and finally incremented to the
appropriate element of ∇kS w.

The next section studies the complexity of storing and propagating multivariate
and univariate Taylor polynomials. Taylor coefficients are used since they are some-
what better scaled than the corresponding derivatives and satisfy slightly simpler
recurrences.

3. The complexity of propagating univariate Taylor series

If the k-th tensor were stored and manipulated as a full nk array, the corre-
sponding loops could be quite simple to code, but the memory requirement and
operations count would be unnecessary high. In the case k = 2, ignoring the sym-
metry of Hessians would almost double the storage per intermediate (from 1

2 (n+1)n
to n2) and increase the operations count for a multiplication by about fifty percent.
This price may be worth paying in return for the resulting sequential or at least
constant stride data access. However, by standard combinatorial arguments

∇kS f(x) ∈ Rnk

has exactly (
n+ k − 1

k

)
=

n · (n+ 1) · · · (n+ k − 1)
1 · 2 · · ·k ≈ nk

k!
(1)

distinct elements. Hence, the symmetry reduces the number of distinct elements in
∇kS w almost by the factor k!. Therefore in the case k = 3 the number of distinct
elements is reduced almost by six and in the case k = 4 the storage ratio becomes
almost 24. Since higher order tensors have very many entries, one has to utilize
symmetric storage modes.

The drawback of symmetric storage modes is that the access of individual ele-
ments is somewhat complicated, requiring for example three integer operations for
address computations in the implementation of Berz [3]. Moreover, the resulting
memory locations may be far apart with irregular spacing, so that significant pag-
ing overhead may be incurred. None of these difficulties arises when n = 1. Then
for any intermediate value w the directional derivatives w,∇sw,∇2

s w, . . . ,∇ds w can
be stored and manipulated as a contiguous array of (d+ 1) scalars. Here d denotes
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the highest degree that is desired. It will be shown in Section 4 that to reconstruct
the full tensors ∇kS f(x) for k = 0, . . . , d, exactly as many univariate Taylor series
are needed as the highest tensor ∇dS f(x) has distinct elements. As we will see, that
entails a slight increase in storage, but a very significant gain in code simplicity and
efficiency. After this outlook, the manipulation of Taylor polynomials is considered.
The collection of Taylor coefficients that constitute the tensors

∇kS f(x), k = 0, . . . , d,

represents a general polynomial of degree d in n variables. As can be concluded
from (1), ∇kS f(x) contains(

n+ d

d

)
=

d∑
k=0

(
n+ k − 1

k

)
(2)

distinct monomials. The truncated Taylor polynomials of all intermediate scalar
quantities w have exactly the same structure. Considering again a product w = u∗v,
for the computation of ∇kS w each element of ∇jS u, 0 ≤ j ≤ k, has to be multiplied
with all elements of ∇k−jS v. It follows that(

2n+ k − 1
k

)
=

k∑
j=0

(
n+ j − 1

j

)(
n+ k − j − 1

k − j

)
multiplications are necessary because of (1). Hence, the total count of multiplica-
tions for computing ∇dS w is(

2n+ d

d

)
=

d∑
k=0

(
2n+ k − 1

k

)
.

When n > 1 there are also a significant number of additions and other overhead
for each multiplication. Nevertheless it is possible to consider the number(

2n+ d

d

)
≈ 1

d!
(2n)d if d� n

as a reasonable approximation for the factor by which the cost to evaluate f grows
when the calculation is performed in Taylor arithmetic of degree d and order n.
Here, we have tacitly used the fact that propagating Taylor polynomials through
nonlinear functions such as the exponential, logarithm, and trigonometric functions
is about as costly as the convolution for the product discussed above. All linear
operations are cheaper, of course, since for them the effort is roughly

(
n+d
d

)
and

thus about the same as the number of data entries that need to be fetched and
stored from and into memory.

Provided there is a significant fraction of nonlinear elementary functions in the
overall calculation, one may consider(

2n+ d

d

)/(
n+ d

d

)
≈ 2d

as an approximate computation/communication ratio for propagating Taylor poly-
nomials. Consequently, even on a modern super-scalar processor with compara-
tively slow memory access, communication should not be the bottleneck.

Now suppose that instead of propagating one Taylor polynomial in n variables
and degree d one propagates

(
n+d−1

d

)
univariate Taylor polynomials of the same
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degree d. Since the common constant term needs to be stored only once, the
amount of data per intermediate becomes

1 +
(
n+ d− 1

d

)
d = 1 +

dn

d+ n

(
n+ d

d

)
.(3)

By inspection of the right-hand side we see this is at most d times that for the
standard case (see (2)). Furthermore,

(d+ 2)(d+ 1)
2

=
(
d+ 2
d

)
multiplications are needed to propagate one univariate Taylor polynomial of degree
d through an elementary multiplication. Hence, the total amount of the computa-
tional effort for propagating

(
n+d−1

d

)
univariate Taylor polynomials of degree d is

essentially given by(
n+ d− 1

d

)(
d+ 2
d

)
= q(d, n)

(
2n+ d

d

)
,(4)

where

q(d, n) ≡ (d+ 2)(d+ 1)
2

· (n+ d− 1) . . . (n)
(2n+ d)(2n+ d− 1) . . . (2n+ 1)

.

It is easy to check through induction that q is never greater than 3
2 and that

q(d) ≡ lim
n→∞

q(d, n) =
(d+ 2)(d+ 1)

2d+1
.

One has in particular q(0, n) = 1 and

q(1, n) = 3
2 −

3
4n+2 = 3

2 −O( 1
n ),

q(2, n) = 3
2 −

3
4n+2 = 3

2 −O( 1
n ),

q(3, n) = 5n(n+2)
(2n+3)(2n+1) = 5

4 −O( 1
n ),

q(4, n) = 15n(n+3)
4(2n+3)(2n+1) = 15

16 −O( 1
n ),

q(5, n) = 21n(n+3)(n+4)
4(2n+5)(2n+3)(2n+1) = 21

32 −O( 1
n ),

as well as, for all higher derivatives d ≥ 6,

q(d, n) =
(d+ 2)(d+ 1)

2d+1
+O

( 1
n

)
.

In other words, the computational effort is dramatically reduced when the degree
d is quite large. This fact can also be seen in Figure 1, which displays the function
q(d, n). For the probably more important moderate values of d ≤ 5 the complexity
ratio is surprisingly close to one. The computations/communications ratio is about
d/2, almost independently of n (see (3) and (4)). For d ≤ 4 that ratio might
appear rather small. However, the memory access is now strictly sequential, and
no addressing calculations are needed.

In this section, we have demonstrated that for moderate values of d the propaga-
tion of

(
n+d−1

d

)
univariate Taylor series has essentially the same operations count as

multivariate derivative propagation. We found also that for higher degree deriva-
tives, one needs considerable fewer operations using univariate Taylor series instead
of the multivariate one. In the next section, an efficient scheme for interpolating

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1122 ANDREAS GRIEWANK, JEAN UTKE, AND ANDREA WALTHER

0.2

0.4

0.6

0.8

1

1.2

1.4

q

0 20 40 60 80 100

n0

2

4

6

8

10

d

Figure 1. q(d, n) for n = 4, . . . , 100, d = 0, . . . , 10

all partial derivatives up to degree d from these
(
n+d−1

d

)
univariate Taylor series is

developed.

4. Interpolation with univariate Taylor series

For each direction s ∈ Rn̄ one can obtain the Taylor expansion

f(x + ts) = f(x) + f (1)(x; s)t+ f (2)(x; s)t2 + · · ·+ f (d)(x; s)td +O(td+1).(5)

The notation f (m)(x; s) will be used throughout to denote the m-th homogeneous
polynomial in s in the Taylor expansion of f at x. Hence, x is considered constant
and s ∈ Rn̄ variable with the homogeneity property

f (m)(x; ts) = tmf (m)(x; s) for t ∈ R.(6)

Since only the last coefficient f (d)(x; s) contains any information about the highest
tensor ∇ds f(x) with its

(
n+d−1

d

)
distinct elements, it is clear that one needs to

evaluate at least that many univariate expansions. We will see that this number is
sufficient.

Let i = (i1, . . . , in) ∈ Nn0 with ij ∈ N0 (j = 1, . . . , n) be a multi-index. The
norm of i is defined by

|i| =
n∑
j=1

ij .

Consider the matrix S throughout this section as fixed. Now choose the directions

Si ∀i ∈ Nn0 with |i| = d.
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After selecting a particular d, Taylor coefficients are propagated along these
(
n+d−1

d

)
necessary directions only. In other words, for each multi-index i ∈ Nn0 with |i| = d,
we consider the Taylor series for the univariate function

ϕi : R 7→ R, ϕi(t) ≡ f(x + tSi),

and evaluate the Taylor coefficients of ϕi up to the degree d. The dependence of
the ϕi on S is not denoted explicitly, because S is considered as fixed.

Note that there is no propagation along the directions Si with |i| < d. However,
we will see that it is still possible to obtain all lower order derivative information
that is necessary to compute the tensors ∇mS f with m < d.

Interpolating second derivatives. To illustrate our approach, let us first con-
sider the computation of the Hessian ∇2

S f with S = I when the maximal degree d
equals 2. Denote the i-th unit vector in Rn by ei. Then, the restricted gradient
components of ∇Sf(x) are obtained immediately as

∇Sf(x)ei =
1
2
ϕ′i(0) =

1
2
∇f(x)Si with i ∈ Nn0 , ik =

{
2, k = i,
0, k 6= i.

(7)

Similarly, the pure second derivatives can be obtained from

eTi ∇2
S f(x)ei =

1
4
ϕ′′i (0) =

1
4

(Si)T∇2f(x)Si

with the same multi-index i as in (7). However, the mixed second derivatives
eTi ∇2

S f(x)ej , i 6= j, are not directly available. To get them, one has to consider the
diagonal direction Sl defined by the multi-index

l ∈ Nn0 with lk =

{
1 if k = i or k = j,

0 if k 6= i and k 6= j.

Because of |l| = 2 the second order Taylor coefficient of ϕl is known:

ϕ′′l (0) = (ei + ej)T∇2
S f(x)(ei + ej)

= eTi ∇2
S f(x)ei + eTj ∇2

S f(x)ej + 2eTi ∇2
S f(x)ej .

This identity yields the interpolation formula

eTi ∇2
S f(x)ej =

1
2

[(ei + ej)T∇2
S f(x)(ei + ej)− eTi ∇2

S f(x)ei − eTj ∇2
S f(x)ej ]

=
1
2
ϕ′′l (0)− 1

8
ϕ′′i (0)− 1

8
ϕ′′j (0)

(8)

with the multi-indices i, j, l ∈ Nn0 and

ik =

{
2 if k = i,

0 if k 6= i,
jk =

{
2 if k = j,

0 if k 6= j,
lk =

{
1 if k = i or k = j,

0 if k 6= i and k 6= j.
(9)

When d = 3 this scheme is not directly applicable because |l| < 3. Therefore l does
not aim at a derivative of the highest order, and one does not propagate a Taylor
series along the direction Sl. Hence, ϕ′′l (0) is unknown. To handle that situation
and generally the higher order cases, one needs a systematic way of generating
formula of the form (8) for mixed partials.
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Computing mixed partials from grid values. For any polynomial P of degree
n or less, it can be checked that

∂nP (Sz)
∂z1∂z2 . . . ∂zn

=
1∑

i1=0

· · ·
1∑

in=0

P (i1s1 + · · ·+ insn)(−1)n−(i1+···+in)(10)

through integration of the constant function on the left side over the unit cube
in n dimensions. The important observation here is that one only has to know
the value of the polynomial at the corners of the parallelepiped {Sz : 0 ≤ zi ≤ 1}
in order to compute the mixed derivative with respect to all zi. Naturally, one
does not want to assume that f itself is a polynomial. However, one can use
the m-th coefficients of the univariate Taylor expansions to compute values of the
homogeneous approximating polynomials f (m)(x; s), 1 ≤ m ≤ d, satisfying (5)
and (6). For example, it follows immediately for the second mixed partials with
P (Sz) = f (2)(x; Sz) and 1 ≤ j < i ≤ n:

∂2f (2)(x; Sz)
∂zi∂zj

= f (2)(x; S(ei+ej))︸ ︷︷ ︸
= 1

2ϕ
′′
l (0)

− f (2)(x; Sei)︸ ︷︷ ︸
= 1

8ϕ
′′
i (0)

− f (2)(x; Sej)︸ ︷︷ ︸
= 1

8ϕ
′′
j (0)

+f (2)(x; 0)(11)

with the multi-indices i, j, and l defined as in (9). Through the homogeneity prop-
erty (6) one obtains that

f (m)(x; 0) = 0, ∀ m > 0,(12)

so that the last term in (11) drops out and one gets

∂2f (2)(x; Sz)
∂zi∂zj

≡ ∂2f(x + Sz)
∂zi∂zj

∣∣∣∣
z=0

because of the previous formula (8). For fixed S and given d, the real numbers
f (|i|)(x; Si) with |i| ≤ d will be referred to as the grid values.

By considering seed matrices S ∈ Rn̄×d with repeated columns, one can derive
from (10), for any polynomial P of degree up to d, its generalization

∂|i|P (Sz)
∂zi1

1 ∂z
i2
2 . . . ∂zin

n

=
i1∑

k1=0

i2∑
k2=0

· · ·
in∑

kn=0

(
i1
k1

)(
i2
k2

)
· · ·
(

in
kn

)
(−1)|i−k|P (Sk),

where now S ∈ Rn̄×n and i may be any multi-index with |i| = deg(P ). Applying this
identity to the homogeneous components f (|i|)(x; s) of f at x and using binomial
coefficient notation for multi-indices, one obtains, with (12) and the zero vector
0 ∈ Nn0 ,

fi(x) ≡ ∂|i|f(x + Sz)
∂zi1

1 ∂z
i2
2 . . . ∂zin

n

∣∣∣∣∣
z=0

=
∑

0<k≤i

(
i
k

)
(−1)|i−k|f (|i|)(x; Sk).(13)

We conclude this subsection with a geometric illustration of the situation. Suppose
one wishes to obtain the partials fi for all i with 1 ≤ |i| ≤ d. The functions
f (m)(x; s), s ∈ Rn̄, denote the m-th homogeneous polynomial at x as in equation
(5). Through formula (13) it is possible to calculate fi(x) from the grid values
f (|i|)(x; Sk) for all k ≤ i. However, the propagation of univariate Taylor series
only yields some of the grid values directly. The others must be calculated in a
second interpolation step. The values f (m)(x; Si) are known for all |i| = d and
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e2

e1

Figure 2. Grid values and ray values for n = 2 and d = 4

for all 0 ≤ m ≤ d. They will be referred to as ray values. Figure 2 illustrates
this situation for n = 2 and d = 4. The thin lines represent the directions of the
propagated Taylor series including the e1- and the e2-axes. The grid points whose
values can be obtained by scaling of the ray values f (m)(x; Si) with |i| = d and
0 ≤ m ≤ d are marked by unfilled circles. The black circles denote the values
that are desired because they arise on the right hand side of (13) but are as yet
unknown. The grey shaded circles mark points that do not belong to the grid but
whose values can be obtained by scaling.

The following section describes the way to compute the unknown grid values
from the known ray values.

Computing grid values from ray values. For all multi-indices k with |k| < d,
the fact that f (m)(x; s) is homogeneous of degree m implies

f (m)(x; Sk) = (|k|/d)mf (m) (x; S(dk/|k|)) .(14)

The ray values are placed at equal distances, and the polynomial
(
z
j

)
f (m)(x; Sj) in

z is nonzero for only one ray point. Hence, an interpolation process similar to the
one dimensional Lagrange interpolation formula yields the equation

f (m)(x; Sz) =
∑
|j|=d

(
z
j

)
f (m)(x; Sj)(15)

for z = dk/|k| or any other vector z ∈ Rn with value |z| = d. Therefore the ray
values f (m) (x; S(dk/|k|)) can be computed for any k with |k| < d. Substituting
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(15) into (14), one obtains

f (m)(x; Sk) =
∑
|j|=d

(
|k|
d

)m(
dk/|k|

j

)
f (m)(x; Sj).(16)

Direct computation of mixed partials from ray values. Now the main result
of this article can be established, namely an efficient scheme for calculating all
mixed partial derivatives up to degree d from the known ray values. The following
proposition contains the explicit formula and an estimation of the complexity of
the interpolation procedure.

Proposition 4.1. Let f be at least d-times continuously differentiable at some
point x ∈ Rn̄. Then for any i ∈ Nn0 with 1 ≤ |i| ≤ d the partial derivative fi(x)
defined in (13) is given by the formula

fi(x) =
∑
|j|=d

f (|i|)(x; Sj)
∑

0<k≤i

(−1)|i−k|
(

i
k

)(
dk/|k|

j

)(
|k|
d

)|i|
︸ ︷︷ ︸

≡ ci,j

(17)

The number of nonvanishing coefficients

0 6= ci,j for i, j ∈ Nn0 , 1 ≤ |i| ≤ d, |j| = d,(18)

is less than or equal to

p(d, n) ≡
d∑

m=1

(
n

m

)(
d

m

)(
m+ d− 1

d

)
,

which bounds the number of operations needed to calculate all partial derivatives
from the univariate Taylor series.

Proof. Combining (13) and (16), one obtains the identity (17), which can be written
in a simpler form as

fi(x) =
∑
|j|=d

ci,jf
(|i|)(x; Sj).(19)

Define the sign function for multi-indices componentwise as follows:

sign(i) ≡ (sign(i1), . . . , sign(in)) ∀i ∈ Nn0 .
For two multi-indices i and j with 1 ≤ |i| ≤ d and |j| = d, the coefficient ci,j can
only be nonzero if

sign(j) ≤ sign(i),(20)

since otherwise the second binomial coefficient in (17) must vanish for all 0 < k ≤ i.
Now, consider an arbitrarym ∈ N with 1 ≤ m ≤ d. A multi-index i with |sign(i)| =
m has m nonvanishing components. Therefore the inequality m ≤ |i| ≤ d must
hold for all i with |sign(i)| = m. The number of distinct possibilities for choosing
m positive integers so that their sum is no greater than d is given by

(
d
m

)
.

It follows that the total number of multi-indices i with 1 ≤ |i| ≤ d and |sign(i)| =
m is equal to

(
n
m

)(
d
m

)
. For each of these multi-indices the coefficient ci,j can be

greater than zero only if j satisfies the necessary condition (20). This implies that

|sign(j)| ≤ m.
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Figure 3. r(d, n) for n = 1, . . . , 100, d = 0, . . . , 10

Therefore, one has that for each multi-index i with 1 ≤ |i| ≤ d and |sign(i)| = m

the number of multi-indices j with sign(j) ≤ sign(i) is given by
(
m+d−1

d

)
. Hence

we conclude that the function

p(d, n) ≡
d∑

m=1

(
n

m

)(
d

m

)(
m+ d− 1

d

)
(21)

denotes an upper bound for the number of nonvanishing coefficients ci,j. One can
derive from (19) that (21) is also an upper bound for the total number of multipli-
cations of the interpolation procedure.

It follows from the tables at the end of this section that for d = 2, 3 and any
n ∈ N, the function p(d, n) gives the exact number of nonvanishing coefficients ci,j.
Therefore it may be conjectured that p(d, n) corresponds exactly to the number of
nonvanishing factors ci,j, but so far there is no proof of this. Define

r(d, n) ≡ p(d, n)(
2n+d
d

) =
1
2d

(
2d− 1
d

)
+O

(cd
n

)
as the ratio of the upper bound p(d, n) and the complexity

(
2n+d
d

)
of propagating

multivariate Taylor series through a single multiplication operation. Hence, one
obtains for large d

r(d, n) ≈ 2d−1

√
πd

+O
(cd
n

)
.
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Table 1. Nonvanishing coefficients for d = 2

Multi-indices ci,j

i ∈M1 j ∈M2 iT j 6= 0 1
2

i ∈M2 j ∈M2 iT j 6= 0 1
2

i ∈M3 j ∈M2 iT j 6= 0 − 1
4

i ∈M3 j ∈M3 iT j = 2 1

As can be seen in Figure 3 the ratio r(d, n) is quite small for the more important
moderate values d ≤ 5. It follows in particular that

r(1, n) = 1
2 −

1
4n+2 = 1

2 +O( 1
n ),

r(2, n) = n(1+3n)
2(2n+1)(n+1) = 3

4 +O( 1
n ),

r(3, n) = n(1+3n+5n2)
(2n+3)(2n+1)(n+1) = 5

4 +O( 1
n ),

as well as

r(4, n) = 35
16 +O( 1

n ) ≈ 2 +O( 1
n ),

r(5, n) = 63
16 +O( 1

n ) ≈ 4 +O( 1
n ),

r(6, n) = 231
32 +O( 1

n ) ≈ 7 +O( 1
n ),

r(7, n) = 429
32 +O( 1

n ) ≈ 13 +O( 1
n ).

To apply the formula (19) at various points x ∈ Rn̄ it makes sense to precompute
the rational coefficients (18). So far a simple, explicit formula for them has not
been found, but it is possible to further reduce the computation by grouping the
additive terms together. A listing is given for d = 2 and d = 3.

When d = 2 one has to consider the following four groups of multi-indices:

M0 = {0 ∈ Nn0},
M1 = {i ∈ Nn0 | |i| = 1},
M2 = {i ∈ Nn0 | |i| = 2 and |sign(i)| = 1},
M3 = {i ∈ Nn0 | |i| = 2 and |sign(i)| = 2}.

(22)

Then, the coefficient ci,j has to be calculated for each i ∈M0 ∪M1 ∪M2 ∪M3 and
each j ∈ M2 ∪M3. Table 1 lists the nonvanishing ci,j. For d = 3 there are three
groups of multi-indices besides those of (22):

M4 = {i ∈ Nn0 | |i| = 3 and |sign(i)| = 1},
M5 = {i ∈ Nn0 | |i| = 3 and |sign(i)| = 2},
M6 = {i ∈ Nn0 | |i| = 3 and |sign(i)| = 3}.

Now, for each i ∈ M0 ∪ . . . ∪M6 and each j ∈ M4 ∪M5 ∪M6 the coefficients (18)
must be considered. The nonvanishing ci,j are given by Table 2. As one can see,
all coefficients ci,j for |d| ≤ 3 are of moderate size and most are positive. It should
also be noted that the interpolation procedure does not involve any divisions, so it
does not expand errors occurred by propagating the univariate Taylor series.
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Table 2. Nonvanishing coefficients for d = 3

Multi-indices ci,j Multi-indices ci,j

i ∈M1 j ∈M4 iT j 6= 0 1
3 i ∈M5 j ∈M4 iT j = 3 2

27

i ∈M2 j ∈M4 iT j 6= 0 2
9 i ∈M5 j ∈M5 iT j = 5 2

3

i ∈M3 j ∈M4 iT j 6= 0 − 5
36 i ∈M5 j ∈M5 iT j = 4 − 1

3

i ∈M3 j ∈M5 iT j = 3 1
4 i ∈M6 j ∈M4 iT j 6= 0 2

27

i ∈M4 j ∈M4 iT j 6= 0 2
9 i ∈M6 j ∈M5 iT j = 3 − 1

6

i ∈M5 j ∈M4 iT j = 6 − 5
27 i ∈M6 j ∈M6 iT j = 3 1

5. Some run time results

This section presents some run time results for computing higher derivative ten-
sors using the interpolation with univariate Taylor expansions described above.

To optimize bevel gears, exact knowledge of the geometric properties of bevel gear
tooth flanks is necessary (see e.g. [9]). Arbitrary points on a given grid on the tooth
flank can be calculated with machine accuracy by an analytical characterization [5]
and computational differentiation. To that end one needs to compute the higher
derivative tensors of a vector function f : R3 → R3 describing a family of surfaces.
A corresponding evaluation code consisting of approximately 160 C statements was
differentiated using ADOL-C [4] and a special driver for the calculation of higher
derivative tensors by forward propagation of univariate Taylor series.

The run times observed on a Sun Sparc 10, always normalized by time for eval-
uating f without derivatives, are listed in Table 3. The third column states the
theoretical run time ratios given by (d + 2)2(d + 1)2/4 (see equation (4) in Sec-
tion 3). The next column contains the ratios of the complete calculation of ∇kf(x),
k = 0, . . . , d, using ADOL-C and the special driver mentioned above. As can be
seen, the total ratio is about 50 % – 70 % of the theoretical estimate. The ratio
of the run time of the interpolation process only and the run time of the function
evaluation is contained in the fourth column. In agreement with the asymptotic
expansion for r(d, n), one observes a doubling of the ratio with each increment of
d by 1. Nevertheless, one finds on this example for d ≤ 9 that no more than five
percent of the run time for the derivative calculation is needed to interpolate the
coefficients of the derivative tensors from the univariate Taylor series.

Table 3. Run-time ratios for derivative tensor evaluations

distinct elements in theoretical ratio for evaluating ratio for the
d ∇kf(x), k = 0, . . . , d run time ratio ∇kf(x), k = 0, . . . , d interpolation

2 10 36 16.2 0.6
3 20 100 45.0 1.9
4 35 225 93.3 4.0
5 56 441 184.7 8.5
6 84 672 356.0 15.1
7 120 1290 655.3 26.3
8 165 2025 1174.0 44.4
9 220 3025 2040.7 81.0
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6. Conclusions

Many applications in scientific computation require higher order derivatives.
This article described a promising approach to compute higher order derivatives
by using univariate Taylor series. The main result is equation (17), which repre-
sents general partial derivatives in terms of univariate Taylor coefficients.

It was found that the post-processing effort for the interpolation given by the
function p(d, n) in Section 4 is very small, especially for the more important mod-
erate values of d. Also, for these d the complexity ratio q(d, n) analyzed in Section
3 between the new univariate Taylor approach and a more conventional multivari-
ate Taylor approach is essentially 1. In addition, the data structures and memory
access pattern are much simpler and more regular, so that actual run-times should
be significantly reduced.
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