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Abstract

Prior to the genome-wide association era, candidate gene studies were a major approach in 

schizophrenia genetics. In this invited review, we consider the current status of 25 historical 
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candidate genes for schizophrenia (e.g., COMT, DISC1, DTNBP1, and NRG1). The initial study 

for 24 of these genes explicitly evaluated common variant hypotheses about schizophrenia. Our 

evaluation included a meta-analysis of the candidate gene literature, incorporation of the results of 

the largest genomic study yet published for schizophrenia, ratings from informed researchers who 

have published on these genes, and ratings from 24 schizophrenia geneticists. On the basis of 

current empirical evidence and mostly consensual assessments of informed opinion, it appears that 

the historical candidate gene literature did not yield clear insights into the genetic basis of 

schizophrenia. A likely reason why historical candidate gene studies did not achieve their primary 

aims is inadequate statistical power. However, the considerable efforts embodied in these early 

studies unquestionably set the stage for current successes in genomic approaches to schizophrenia.

Keywords

schizophrenia; genetics; candidate gene; review; meta-analysis

Introduction

In this review, we consider the current status of candidate genes for schizophrenia that were 

prominent in the literature prior to the genome-wide association study (GWAS) era. This 

review was invited by Prof Julio Licinio, the editor of Molecular Psychiatry.

Due to the high heritability of schizophrenia1, there have been many efforts to discover the 

causative genetic factors, and candidate gene studies have been a major approach. For 

example, the SZGene database 2 (obtained 11/2009) listed 1406 candidate gene papers 

investigating over 700 genes. In these studies, one or more genetic markers in genes 

hypothesized to be involved in the etiology of schizophrenia were genotyped in cases with 

schizophrenia and controls. Prior to the advances brought about by the Human Genome 

Project3 and the International HapMap Project 4, it was difficult and expensive to genotype a 

comprehensive list of genetic variants in a genomic region. Investigators thus tended to 

genotype a few genetic markers in a candidate gene selected based on prevailing theories of 

the etiology of schizophrenia (e.g., antipsychotic pharmacology) or positional candidate 

genes from linkage or cytogenetic studies.

The candidate gene strategy had a few notable successes in identifying genetic variation for 

other complex diseases. Influential examples included replicated associations of 

Alzheimer’s disease with common variation in APOE 5 and alcohol dependence with 

common variants in alcohol metabolic genes. 6 It was thus not unreasonable to hope that 

similar studies might work for schizophrenia. Realization of this expectation proved 

difficult. A pattern emerged whereby an initial claim of association for a seemingly 

plausible, even exciting, candidate gene for schizophrenia was followed by a mixed pattern 

of non-replications and replication. Thus, candidate gene association studies for 

schizophrenia became controversial. 7–10

The goal of this review is to evaluate the current status of historical candidate genes for 

schizophrenia. The motivation is straight-forward: there are hundreds of papers on these 

genes, several of these genes have motivated considerable biological experimentation, and 
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as recent large-scale studies have expanded our knowledge base, it is reasonable to review 

this topic. Early candidate gene studies evaluated tens of genetic markers in hundreds of 

subjects and more recent studies conducted genome-wide comparisons of millions of genetic 

markers in tens of thousands of subjects. The largest published study is of 34,000 cases from 

the Psychiatric Genomics Consortium, PGC) which identified 108 genome-wide significant 

loci. 11

Almost all of these historical candidate gene studies evaluated the role of common variation 

(one part of a spectrum of variants involved in schizophrenia). Our evaluation includes: (a) 

meta-analysis of candidate gene studies, (b) PGC schizophrenia mega-analysis results,11 (c) 

expert evaluations from researchers on specific candidate genes, and (d) survey ratings from 

schizophrenia genomics investigators. The latter two approaches are not “scientific” in a 

strict sense, but rather provide a general guide to the “significance” and “impact” that the 

earlier findings currently have in the field.

Methods

We selected 25 genes prominent in the pre-GWAS era. The first schizophrenia GWAS 

appeared in 2007 but, given that many candidate gene association studies were published in 

2008, we evaluated candidate gene studies published in calendar year 2008 or earlier. The 

25 genes we selected were either featured in reviews of the genetics of 

schizophrenia 10, 12–14 or were highly studied (≥20 papers recorded in SZGene). The genes 

and the rationale for being a candidate gene for schizophrenia are given in Table 1. We 

continued several important assumptions made by virtually all candidate gene studies (see 

Limitations). First, these studies evaluated “schizophrenia” as a dichotomous entity. Second, 

as with the primary studies, we assumed that genetic variants act on the gene it was in or 

near. This assumption is crucial and will be inaccurate for a currently unknown proportion 

of genetic variants. Third, as discussed below, almost all of these studies evaluated common 

genetic variation.

We evaluated these 25 historical candidate genes for schizophrenia in four ways. First, we 

conducted fixed-effects meta-analyses for all genetic markers in these 25 genes using 

summary data on subjects of European ancestry in the SZGene database. 2 Second, we 

included PGC results for schizophrenia (9.5 million markers in 34,241 cases, 45,604 

controls, and 1,235 trios followed by replication analyses of 263 SNPs in 1,513 cases and 

66,236 controls). 11 We report the results for the same SNP appearing in SZGene and for the 

SNP with the smallest P-value in a gene (± 25 kb).

Third, we elicited perspectives from “informed investigators” who had published most 

extensively on or were the original or firmest proponents of a particular candidate gene in 

schizophrenia. These individuals were identified using PubMed searches: (gene [All Fields] 

OR “protein name” [All Fields]) AND (“schizophrenia” [MeSH Terms] OR “schizophrenia” 

[All Fields]). Informed investigators were contacted to request their summary judgment of 

the current status of one particular gene as a genetic risk factor for schizophrenia (1=very 

unlikely and 5=very likely). Genetic risk could refer to common, uncommon, rare, private, 

or de novo genetic variation. A draft of Table 2 was supplied upon request. Informed 
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investigators were given the opportunity to include text in the Supplement to explain their 

rating.

Fourth, we obtained perspectives from “schizophrenia geneticists”. We used principal 

investigators from the PGC schizophrenia working group11 as a convenience sample. We 

obtained responses from 24 investigators for summary judgments using the same rating 

scheme as for the informed investigators. Many of these investigators study common, 

uncommon, rare, private, or de novo genetic variation.

Results

Table 1 summarizes 25 historically important candidate genes for schizophrenia. For 24 of 

25 genes, the initial study conducted genotyping to evaluate the impact of common genetic 

variation on risk for schizophrenia. Some candidate genes were selected because of rare 

genetic events (e.g., COMT, PRODH, and ZDDHC8 are located in the 22q11 deletion CNV) 

but the study evaluate common genetic variation rather than rare variation. The DISC1 study 

genotyped rare variation in a Scottish pedigree. The key findings for three genes were 

unimpressive for schizophrenia per se but presented somewhat more significant findings for 

putative endophenotypes (CHRNA7 and COMT) or a broadly inclusive set of psychiatric 

disorders (DISC1). Eleven genes were positional candidates based on genome-wide linkage 

or structural variation (CHRNA7, COMT, DAO, DAOA, DISC1, DTNBP1, NOTCH4, NRG1, 

PPP3CC, PRODH, and ZDHHC8). Eight genes derived from a hypothesis about the 

etiology of schizophrenia based on pharmacology (AKT1, DRD2, DRD3, DRD4, GRM3, 

HTR2A, SLC6A3, and SLC6A4). Six genes were from miscellaneous hypotheses (APOE, 

BDNF, KCNN3, MTHFR, RGS4, and TNF).

Many of the reported common variant SNP or haplotype relative risks were exceptionally 

large: often >1.5 and >2 for DRD3, HTR2A, MTHFR, NRG1, and PRODH. Rigorous control 

for multiple testing of genetic markers, haplotypes, and/or phenotypes was evident in one 

study (ZDHHC8). None of the P-values in the primary studies were genome-wide 

significant 15 (P<5x10−8), and most were not notable after correction for the number of 

SNPs genotyped.

Figure 1 shows the number of times that each gene or its protein product co-occurred with 

schizophrenia in a paper indexed by PubMed per year. This serves as a rough metric for the 

importance/impact of a gene for the schizophrenia research community. For eight genes, the 

numbers of studies increased with time (APOE, BDNF, CHRNA7, COMT, DISC1, DRD2, 

HTR2A, and NRG1). Four genes peaked and then tapered off (DAO, DAOA, DTNBP1, and 

RGS4). For 13 genes, there have been relatively few reports (AKT1, DRD3, DRD4, GRM3, 

KCNN3, MTHFR, NOTCH4, PPP3CC, PRODH, SLC6A3, SLC6A4, TNF, and ZDHHC8).

Table 2 provides four evaluations for each historical candidate gene for schizophrenia. The 

first evaluation is a meta-analysis of candidate gene association studies in SZGene published 

in 2008 or earlier showing the most-studied genetic marker per gene (Table S1 shows results 

for all markers). We have previously shown that the candidate gene studies in SZGene had 

small samples and poor coverage of common genetic variation.16 No finding is near 
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genome-wide significance 15 (P<5x10−8), and all P-values for this evaluation fall short by a 

factor of 10,000 or more. None is notable even on a gene-wise basis (which many would 

consider inappropriately liberal).

The second evaluation reports the results from the large PGC mega-analysis for 

schizophrenia. 11 We report results for the same SZGene polymorphisms (if available) plus 

the smallest P-value in the gene (±25 kb). The PGC and SZGene results agree on the 

absence of evidence of association for most of these genes (21/25). Four genes (DRD2, 

GRM3, NOTCH4, and TNF) are genome-wide significant in the PGC analysis, but were not 

implicated by the SZGene meta-analysis. The lack of association for NOTCH4 and TNF in 

the candidate gene literature is notable given that these genes are in the major 

histocompatibility complex (MHC). The MHC contains the most significant association 

common variant association (P=3.5x10−31) and the second largest OR (1.2) for 

schizophrenia. 11 Due to extensive linkage disequilibrium, the MHC contains thousands of 

genome-wide significant associations extending over 7 Mb. Indeed, there are over 60 

genome-wide significant associations ±25 kb of NOTCH4 and four ±25 kb of the small TNF 

gene (2.8 kb). 11

The third evaluation was a rating by informed investigators for 12 genes. These individuals 

introduced the gene into the literature or had published extensively on it. The informed 

investigators provide fuller explanations for their rankings in the Supplement. Five genes 

(AKT1, CHRNA7, DISC1, DRD2, and HTR2A) were rated as highly likely to be a genetic 

risk factor for schizophrenia (rating ≥4 on a 1–5 scale). With the exception of DRD2, none 

of the informed ratings ≥4 is supported by empirical results from the older SZGene or the 

newer PGC mega-analysis.

The fourth evaluation consisted of ratings from 24 schizophrenia geneticists. The 

distribution of ratings is provided in Figure S2. The mean ratings were ≥4 for only DRD2 

and GRM3. The mean ratings were discordant with those from informed investigators for 

AKT1, CHRNA7, DISC1, and HTR2A.

Discussion

Our knowledge of the genetic architecture of schizophrenia – the number of loci, allele 

frequencies, genotypic relative risks, and modes of action – has grown significantly in the 

past year. The largest GWAS to date suggests that schizophrenia is associated with many 

common genetic variants of small effect sizes. 11 Several rare CNVs have genotypic relative 

risks in the 5–20 range. 17 Rare exonic variants of stronger effect do play a role, but it now 

appears unlikely that schizophrenia has a genetic architecture dominated by such 

variants. 18, 19 A direct comparison found that common genetic variation accounted for far 

more of the variance in liability to schizophrenia than rare copy number variation or rare 

deleterious exonic variation.18

Given the importance of common variation in the etiology of schizophrenia and that 24 of 

25 historical candidate genes for schizophrenia explicitly posited and evaluated the role of 

common variation, it is timely to assess the contributions of this literature to our knowledge 
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of schizophrenia. With the advantages of hindsight (and noting that the authors of this 

review conducted many candidate gene studies including two in Table 1 20, 21), we offer a 

number of explanatory hypotheses regarding this literature.

Historical candidate genes for schizophrenia in light of current empirical results

First, it is now clear that historical candidate gene association studies for common genetic 

variation had grossly inadequate statistical power. For example, a candidate gene study of 

1,000 cases and 1,000 controls has 0.03% power 22 to detect a genotypic relative risk (GRR) 

of 1.15 (assuming a log-additive model, lifetime prevalence=0.007, minor allele 

frequency=0.3, and α=5x10−8). A GRR of 1.15 is large for schizophrenia, and only 10 of 

128 SNPs 11 reaching genome-wide significance had GRR > 1.15. When power is so low, 

the probability that a “significant” finding is a false positive is overwhelming. 23, 24

Second, the largest GWAS to date had essentially 100% power to identify common genetic 

variants with GRR > 1.15 (minor allele frequency > 0.10) or GRR > 1.19 (minor allele 

frequency > 0.05). We can thus exclude common genetic effects akin to those for APOE and 

Alzheimer’s disease (i.e., GRR of 3.7 for APOE*ε4 vs. ε3). 25 We can also conclude that the 

GRRs reported in many of the 24 common variant studies in Table 1 (often >1.5 and >2 for 

five genes) are inconsistent with what we now know about GRRs for common variation 

(Table 2, often for the same genetic marker reported in the initial study). Some common 

variants in Table 2 (e.g., the KCNN3 CAG repeat or complex haplotypes in NRG1) may not 

have been well-captured in SNP arrays; however, this criticism is mitigated by the lack of 

evidence from the SZGene meta-analyses for the same variants.

Third, even before the current generation of large genomic studies for schizophrenia, it was 

reassuring to note that candidate gene meta-analyses by other authors (Table S2) 26–41 and 

our SZGene meta-analyses (Table 2) were converging on the null. This is important because 

the candidate gene literature for common variation in schizophrenia is often believed to be 

replete with false positive claims: this generality is not supported by meta-analysis.

Fourth, the largest and most carefully conducted schizophrenia common variant association 

study does not provide empirical support for 21 of the 25 historical candidate genes as 

genetic risk factors for schizophrenia. 11 Two historical candidate genes (DRD2 and GRM3) 

have genome-wide significant evidence for common variant association with 

schizophrenia 11 although the candidate gene literature did not support these associations. 

Two additional candidate genes (TNF and NOTCH4) have genome-wide significant 

associations with schizophrenia. 11 These genes are in the extended MHC, a complex region 

with high gene density and extensive linkage disequilibrium, and the MHC-schizophrenia 

association may not implicate these genes. The candidate gene literature missed these 

associations although these should have been the most accessible common variant findings: 

the MHC was the first genome-wide significant GWAS signal for schizophrenia 42–44 and 

11% of high-quality SNPs (6,570 of 57,891) in the extended MHC region exceeded genome-

wide significance. 11 These false negatives from the pre-GWAS era likely resulted from 

extremely low statistical power and limited genotyping.
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Fifth, one historical candidate gene (DISC1) studied a rare genetic event, the t(1;11) 

(q42.1;q14.3) translocation in a Scottish pedigree where the propositus did not have 

schizophrenia. The genetic linkage results in this pedigree point to a broad phenotype (LOD 

7.1 for recurrent major depression, bipolar disorder, or schizophrenia). The status of DISC1 

is controversial despite its entry into the literature nearly 15 years ago 45 (see also a 

rebuttal 46). The most critical issue is that no other genetic study has independently 

implicated DISC1 (i.e., met contemporary significance thresholds for rare exonic variation, 

rare CNVs, or common variation). 11, 18, 19, 47, 48 In contrast, many other rare variant 

associations have genetic replication evidence. For example, early-onset Alzheimer’s 

disease is caused by rare mutations in APP, PSEN1, and PSEN2.49 Unlike the singular 

DISC1 event, these associations are highly compelling as they replicate in many different 

pedigrees (90 families for APP, 405 for PSEN1, and 22 for PSEN2, see URLs). Similarly, 

the CNV associations for autism and schizophrenia replicate in large samples worldwide. 17

In conclusion, the current evidence from large and carefully conducted studies of genetic 

variation does not support the idea that the historical candidate gene literature led to robust 

and replicable genetic findings with the capacity to provide insights into the etiology of 

schizophrenia. Most genes (24 of 25) evaluated common variant hypotheses: the large effect 

sizes posited by initial studies were not confirmed, and four common variant associations 

that now meet genome-wide significance were missed. These conclusions have an important 

qualifier. Knowledge of the genetic basis of schizophrenia is incomplete but rapidly 

growing. Historically large studies were published in 2014, and considerable expansions of 

sample sizes for common and rare variant analyses are in progress. Some genes in Table 2 

could become notable in the future.

Alternative perspectives on historical candidate genes for schizophrenia

The opinions of experts play a role in science particularly when there are few hard data, and 

have been important in psychiatry. 50 The prominence of some historical candidate genes for 

schizophrenia has increased despite a lack of strong support from genetic studies (Figure 1). 

Thus, we also surveyed opinions on these genes. First, for 12 genes, we obtained ratings 

from informed investigators (i.e., those who introduced a candidate gene into the literature 

or who published extensively on it, Table 2). We point readers to the Supplement for further 

explanations from the informed investigators. The informed investigator ratings agreed with 

the PGC results for seven genes. For five genes (AKT1, CHRNA7, DISC1, DRD2, and 

HTR2A), the informed investigator rating was high (a rating ≥4 on a 1–5 scale). For one of 

these five (DRD2), the PGC results concur. For the remaining four genes, the informed 

investigator ratings ≥4 were different from empirical results.

Second, we obtained ratings from 24 schizophrenia geneticists. The mean ratings were ≥4 

for only DRD2 and GRM3. The mean ratings were inconsistent with those from informed 

investigators for AKT1, CHRNA7, DISC1, and HTR2A. Note that all ratings could 

incorporate any type of genetic variation. In general, we found that empirical data and 

opinion agreed for most of the 25 candidate genes, and the discrepancies for AKT1, 

CHRNA7, DISC1, and HTR2A stand out. Several informed investigators address this issue 

and believe that genetic results that do not meet widely accepted standards for significance 
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in genetics or which lack replication can be augmented by biological data (Supplement). To 

this view, biological plausibility can provide salience to chance-level genetic results.

We contend that this “biological validation” argument is weak, subjective, prone to incorrect 

decisions, and liable to divert downstream research efforts by emphasizing the wrong 

targets. First, as documented in this paper, biology-driven candidate gene studies have not 

been particularly useful. Second, because we understand so little of the pathogenesis of 

schizophrenia, we have no biological gold standards or first principles. Put simply, there is 

neither a biology that we can demand of a ‘”true” associated gene nor a biology that is 

inconsistent with a “false” gene. Third, how then can we assess the validity of the biological 

connection being made? For genetics to achieve its goal of providing secure entry points 

into the biology of schizophrenia, findings must stand on their own merits without reference 

to other biological hypotheses or data. To do otherwise inevitably leads to circular reasoning 

(i.e., speculative biological supported by weak genetics supported by biological 

speculation).

Fourth, the criterion of biological salience is surprisingly inclusive. A large fraction of 

human genes are of legitimate interest to an integrative neuroscientist: depending on 

inclusion criteria, ⅓ to ⅔ of human genes are of biological interest (Figure 2). Genomic 

studies can test millions of hypotheses –hundreds of genetic markers will have P-values in 

the 10−5 to 10−7 range from the play of chance. These “intriguing” genetic markers will, 

merely by chance, often be located near a biologically “cool” gene. This is a meaningless 

coincidence until proven otherwise by genetic evidence.

Fifth, this argument is counter to best practices in human genetics that demand rigorous 

significance thresholds and replication. 51–55 For GWAS, the 5x10−8 threshold is nearly 

universally accepted. For rare variants of strong effect, a recent Nature paper summarized 

the recommendations of an NHGRI working group: 56 (a) “we emphasize the critical 

primacy of robust statistical genetic support for the implication of new genes, which may 

then be supplemented with ancillary experimental or informatic evidence supporting a 

mechanistic role”; (b) “Just as for genome-wide association studies of common variants, 

replication of newly implicated disease genes in independent families or population cohorts 

is critical supporting evidence, and in most cases essential for a novel gene to be regarded as 

convincingly implicated in disease”; and (c) “Without rigorous standards we risk an 

acceleration of false-positive reports of causality, which would impede the translation of 

genomic research findings into the clinical diagnostic setting and hinder biological 

understanding of disease”.

Sixth, this argument is not accepted by many journals. Nature Genetics requires: “the 

genetic and statistical evidence for association should be sound. Molecular biological 

evidence for a functional variant is desirable in addition to, but will not substitute for, sound 

genetic evidence.” 57 PLoS Genetics states: “genetic arguments should stand on their 

own”. 58

Finally, we note that invoking the biological argument is unnecessary. If statistical 

significance is marginal or if replication is required, then a more definitive study should be 
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designed and conducted in order to falsify the hypothesis. In many instances, this is 

achievable via collaboration and may be difficult for rarer genetic variants. We believe that 

schizophrenia genetics needs secure associations (significant beyond chance with precise 

replication) in order for genomic knowledge to be used as the essential anchor for 

understanding the biological basis of schizophrenia. Best practices in 2014 are thus very 

different from 2004. For example, the AKT1 paper appeared in Nature Genetics in 2004 59 

with a considerable amount of biological and mouse model data but the genetic data are a 

SNP P-value of 0.05 (uncorrected for five genotyped SNPs) with no replication data.

Limitations - Can any historical candidate gene be formally excluded?

We have been careful to state that the current genomic evidence is inconsistent with an 

association for a particular gene. This is an evolving area, and it is possible that genes not 

now associated with schizophrenia will transition to significance with on-going expansions 

of sample sizes for common and rare variation. None of the historical candidate genes can 

be unequivocally excluded as a genetic risk factor for schizophrenia. However, we can state 

with high confidence that the large common variant genetic effects originally reported in 

many initial candidate gene studies are highly unlikely to be true.

Moreover, the location of some associations could provide a false clue, as genetic 

associations can act over long genomic distances – however, this assumption was made in 

the primary studies too. All current genomic technologies may miss some important types of 

genetic variation that play an etiological role.

It can also be argued that the genetic models used in the current generation of genomic 

studies for schizophrenia are inappropriate, that models should incorporate gene-

environment, gene-gene, or even gene-gene-gene interactions. In a similar vein, it is possible 

that analyses that attempt to identify heterogeneity within the “schizophrenia” construct will 

prove informative. These hypotheses and alternative conceptualizations have merit and are 

now being investigated. Conducting these studies to a high standard is very difficult, and 

require unswerving adherence to accepted standards: thorough evaluation of bias, rigorous 

statistical significance thresholds, and replication are essential.

Conclusion

In summary, the current empirical evidence strongly supports the idea that the historical 

candidate gene literature yielded no robust and replicable insights into the etiology of 

schizophrenia. Even so, it is fair to note that these early studies unquestionably set the stage 

for the current era of genomic discovery for schizophrenia. These foundational efforts were 

a necessary step toward a better understanding of schizophrenia as a biological trait.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Candidate gene publications per gene and per year. For each gene, the number of 

publications is indicated on the Y-axis, and the year is the X-axis. The data shown are from 

a PubMed query: (gene [All Fields] OR “protein name”[All Fields]) AND (“schizophrenia”

[MeSH Terms] OR “schizophrenia”[All Fields]). The goal of this PubMed query was to 

provide a rough gauge of the impact of a candidate gene on the field (which differs from the 

“pre-GWAS” column in Table 1).
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Figure 2. How many biologically interesting human genes are there?
This bioinformatic analysis addressed the question: how many human genes are of 

legitimate interest to an integrative neuroscientist or psychiatric geneticist? (A) We 

intersected 19,304 gene models from GENCODE (v17, “KNOWN” or “protein_coding”) 

with multiple data sources. Some genes can be in multiple categories. (B) Summary 

statistics (1=in set, 0=not in set): 35.6% of all genes are in classes A or B (=6869/19304), 

and 61.4% of all genes are in classes A, B, or C (=11849/19304). These numbers are 

conservative as adding “expression in brain at any developmental stage” would increase the 

numbers further. Thus, sizable proportions of all genes are of potential interest to a biologist. 

Biological interest is an imprecise criterion for the salience of a finding.
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Table 1

Candidate genes of historical importance in schizophrenia research

Gene Product Reviews Pre-GWAS Rationale

AKT1 v-akt murine thymoma viral oncogene homolog 1 2 13 Mood disorder pharmacology 59

APOE Apolipoprotein E 1 32 Implicated in Alzheimer’s disease 75

BDNF Brain-derived neurotrophic factor 0 40 Neurodevelopment hypothesis 76

CHRNA7 Cholinergic receptor, nicotinic, α7 1 12 Linkage analysis 77

COMT Catechol-O-methyltransferase 4 81 22q11 CNV 78

DAO D-amino-acid oxidase 2 10 Linkage analysis, glutamate hypothesis 79

DAOA D-amino acid oxidase activator 3 27 Linkage analysis, glutamate hypothesis 79

DISC1 Disrupted in schizophrenia 1 3 22 Translocation in a pedigree 80

DRD2 Dopamine receptor D2 1 67 Antipsychotic pharmacology 81

DRD3 Dopamine receptor D3 2 71 Dopamine hypothesis 20

DRD4 Dopamine receptor D4 0 45 Antipsychotic pharmacology 82

DTNBP1 Dystrobrevin binding protein 1 3 32 Linkage analysis 83

GRM3 Glutamate receptor, metabotropic 3 1 15 Glutamate hypothesis 21

HTR2A Serotonin receptor 2A 2 57 Antipsychotic pharmacology 84

KCNN3 Potassium intermediate/small conductance calcium-
activated channel, subfamily N, member 3

0 23 Discovery of a CAG repeat 85

MTHFR Methylenetetrahydrofolate reductase 0 20 Psychiatric symptoms with MTHFR 
dysfunction 86

NOTCH4 Notch 4 0 24 Linkage analysis 87

NRG1 Neuregulin 1 3 41 Linkage analysis 88

PPP3CC Protein phosphatase 3, catalytic subunit, γ isozyme 1 9 Linkage analysis/mouse phenotype 89

PRODH Proline dehydrogenase (oxidase) 1 3 10 22q11 CNV (incorrectly called “PRODH2” 90

RGS4 Regulator of G-protein signaling 4 3 22 Differential expression in cases 91

SLC6A3 Dopamine transporter 0 22 Dopamine hypothesis 92

SLC6A4 Serotonin transporter 1 32 Implicated in mood disorders 93

TNF Tumor necrosis factor 0 21 Immune hypothesis 94

ZDHHC8 Zinc finger, DHHC-type 8 2 9 22q11 CNV 95

Reviews: the number of times a gene was in any of four selected reviews of schizophrenia genetics circa 2005. 10, 12–14 Pre-GWAS: the number 

of schizophrenia candidate gene papers studying this gene in calendar year 2008 or earlier. 2, 16 Rationale: the stated explanation for considering 
this gene as a candidate gene for schizophrenia according to the original publication. With the exception of DISC1, all studies evaluated common 
variant hypotheses.
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