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Abstract Accurate simulation of extreme precipitation events remains a challenge in climate models.
This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate
rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional
climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States.
We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches
and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were
defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF)
between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated
a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the
similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations
and simulations does not reveal the added value of high-resolution simulations. However, the performance
of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution.
The simulation with the highest resolution of 4 km shows the best agreement with the observations in
simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly.
The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal
resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but
only with the high-resolution observational data that are aggregated into coarse resolution and
spatially averaged.

1. Introduction

Under a warming climate, extreme precipitation and drought events are expected to occur more frequently
[Ban et al., 2015; Donat et al., 2016]. The spatial pattern of extreme precipitation and its change are highly
heterogeneous, so it is important to study regional characteristics and variability of extreme precipitation
using observational and model data sets. Previous studies [e.g., Karl and Knight, 1998; Kunkel et al., 2003;
Groisman et al., 2012] have shown observational evidence for increasing extreme precipitation over the con-
tiguous United States (CONUS). Although an understanding of extreme precipitation and related human
influences at a local/regional scale is vital for policy decisionmaking, extreme precipitation across the CONUS
is not well represented in global climatemodels (GCMs). For example,Min et al. [2011] show that the Coupled
Model Intercomparison Project Phase 3 (CMIP3) GCMs tend to underestimate the observed trends in extreme
precipitation over the CONUS. The recent fifth phase of the Coupled Model Intercomparison Project (CMIP5)
GCMs also exhibit weaker trends in extreme precipitation for CONUS than those in the observations with
large model-to-model variability [Janssen et al., 2014]. As spatial resolution of climate models becomes finer,
the models generally better represent extreme weather events [e.g., Lee et al., 2014a; Lee and Hong, 2014],
the hydrological cycle [e.g., Lee et al., 2014b; J. W. Lee et al., 2015], and influential land surface processes [e.g.,
De Sales and Xue, 2011, Lucas-Picher et al., 2012]. To demonstrate the importance of fine spatial resolution
in climate simulations, regional climate model (RCM) simulations have been evaluated against observations
and compared with relatively low-resolution simulations from GCMs [Leung et al., 2003; Laprise et al., 2008;
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Feser et al., 2011; Hong and Kanamitsu, 2014]. Di Luca et al. [2012] show that RCMs represent short-term
precipitation in warm seasons better than GCMs over North America. Dynamical downscaling using RCMs
can improve representation of topography and related processes in addition to explicit numerical compu-
tation of dynamical and physical processes [Hall, 2014]. Maraun et al. [2010] and Wehner [2013] also report
that realistic precipitation in coastal areas and regions with complicated topography is the advantage of
high-resolution RCM simulations. Higher spatial resolution may further improve the performance of RCMs.
Pieri et al. [2015] and Casanueva et al. [2016] show that the high-resolution RCM simulations reduce precipi-
tation biases compared to their low-resolution counterparts. Several studies [Chan et al., 2014; Kendon et al.,
2012, 2014] demonstrate that the United KingdomMet Office RCM, which has very high spatial resolution of
1.5 km, simulates rainfall characteristics better than coarse-resolution simulations using the same model.

Relatively few studies have focused on high-resolution RCMs’ performance in simulating precipitation over
flat topographywhere even low-resolutionGCMs are expected to simulate precipitation reasonably. However,
contrary to expectations,Hardinget al. [2013] show that dynamically downscaled CMIP5 simulations at 30 and
10 km resolutions reproduce diurnal cycle and extreme precipitation better than the original CMIP5 output
over the Central U.S. where local topography does not significantly influence precipitation. Along with the
continuous efforts to generate climate projections with higher resolutions, RCMs require evaluation studies
that can highlight the added value of high spatial resolution and the associated improvements in simulations
other than the improved topographical precipitation. Furthermore, the spatial resolution of around 10 km in
the previous studies is not high enough to fully utilize observations with spatial resolutions finer than 10 km.

The main objective of the current study is to demonstrate the advantages of running an RCM at the very
high-resolution of 4 km in simulating rainfall characteristics over flat topography. Extreme precipitation is
frequently observed over the central U.S. during summer [Janssen et al., 2016]. Thus, we focus on evaluating
simulated rainfall characteristics over the Great Plains in summer (from June through August) using two
observed precipitation data sets from ground-based stations and satellite instruments.

The paper is organized as follows. Section 2 describes the observational and model data sets used. Section 3
presents the diagnostic of hourly precipitation and a model evaluation metric to show the added value of
high-resolution simulations. Section 4 reports a comparison between the observations and models. Results
of this study are summarized in section 5.

2. Data and Model

Table 1 summarizes the observational andmodel data sets for surface precipitation used in the current study.
The National Centers for Environmental Prediction Stage IV data [Lin, 2011] are based on radar and gauge
observations at ground stations over CONUS. Integrated Multi-satellitE Retrievals for Global Precipitation
Measurement (GPM IMERG, hereafter GPM) data [Huffman et al., 2015] provide precipitation products based
onmultiple satellites andgroundgauges. The original temporal resolution of GPM IMERG is a half hour, butwe
generated hourly precipitation data sets to make it comparable to the other data sets. The spatial resolutions
of Stage IV and GPM are 4 km and 0.1∘, respectively.

We used the high-resolution simulation results of the NASA-Unified Weather Research and Forecasting
(NU-WRF) [Peters-Lidard et al., 2015] over CONUS for multiple years in the 2000s managed in NASA’s down-
scaling project [Ferraro et al., 2017; Iguchi et al., 2017; Kim et al., 2017]. NU-WRF is a NASA-oriented superset
of the Advanced ResearchWRF (WRF-ARW)model [Skamarock et al., 2008]. Themodel has multiple modeling
components, such as improved land surface initialization and microphysics scheme, specially developed by
NASAGoddard Space Flight Center, in addition to the standard package inWRF-ARW. In theNASA’s downscal-
ing project, NU-WRF used the Goddard cumulus ensemble (GCE) single-moment, three-ice bulkmicrophysics
scheme [Tao et al., 2003; Lang et al., 2007] for the grid-scale cloud microphysics and Goddard shortwave and
longwave radiation schemes [ChouandSuarez, 1999, 2001] for calculating radiative flux. Also, theNU-WRF sim-
ulations used improved initial soil properties obtained from the NASA Land Information System (LIS) model
[Kumar et al., 2006].

So far, the performance of NU-WRF has been evaluated in case studies based on relatively short-term simu-
lations compared with observations. The unique coupling between LIS and WRF improves land initialization
and surface flux parameterization, and forecast of near-surface temperature and humidity [Santanello et al.,
2013]. The GCE scheme used in NU-WRF reduces biases in cloud water and graupel [Lang et al., 2011], so that
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Table 1. List of Observations and NU-WRF Simulationsa

Name Horizontal Resolution Period

Observations

Stage IV 4 km 2002–2010

GPM 0.1∘ 2014–2015

NU-WRF Simulations

Name Horizontal Resolution Period Spectral Nudging Scale Cumulus Parameterization

WRF04 4 km 2000–2004 600 km Grell 3-D ensemble

WRF12 12 km 2002–2010 600 km Grell 3-D ensemble

WRF24 24 km 2002–2010 600 km Grell 3-D ensembleb

WRF12-2000 12 km 2002–2010 2000 km Grell 3-D ensemble

WRF24-2000 24 km 2002–2010 2000 km Grell 3-D ensemble

WRF12-no-nudging 12 km 2002–2010 NA Grell 3-D ensemble

WRF24-no-nudging 24 km 2002–2010 NA Grell 3-D ensemble

WRF24-BMJ 24 km 2002–2010 600 km Bretts-Miller-Janjicc

WRF24-NKF 24 km 2002–2010 600 km New Kain-Fritschd

WRF24-NSAS 24 km 2002–2010 600 km New simplified Arakawa-Schuberte

aNA: not available.
bGrell [1993] and Grell and Devenyi [2002].
cJanjic [1994].
dKain [2004].
eHan and Pan [2011].

NU-WRF can reasonably predict heavy precipitation in theGreat Plains [Taoetal., 2013]. However, its capability

as a high-resolution RCM had hardly been investigated before NASA’s downscaling project.

To assess the added value of high spatial resolution to NU-WRF simulations, we evaluated simulations forced

at the lateral boundaries by the Modern Era Retrospective Analysis for Research and Applications version 2

(MERRA-2) [Bosilovich et al., 2015] with three different horizontal resolutions (24, 12, and 4 km). MERRA-2 is the

latest reanalysis data set from NASA’s Global Modeling and Assimilation Office with a spatial resolution of

0.5∘ (latitude)× 0.625∘ (longitude). The relatively high spatial resolution ofMERRA2 allowed us to perform the

default NU-WRF simulations with spectral nudging at 600 km scale. The simulations at 24 km and 12 km reso-

lutions (WRF24 andWRF12)weremade for 11 years (2000–2010),whereas the simulationwith 4 km resolution

(WRF04) is available only for 5 years (2000–2004) due to limited computational resources. We also examined

the impact of spectral nudging and cumulus parameterization on the precipitation simulation of NU-WRF.

Many previous studies have reported the influence of cumulus parameterizations on rainfall extremes simu-

lated by RCMs [e.g., Cortes-Hernandez et al., 2016; Ji et al., 2014; Pieri et al., 2015]. Included in this evaluation are

NU-WRF simulations with spectral nudging at 2000 km scale (WRF24-2000 andWRF12-2000) and simulations

without spectral nudging (WRF24-no-nudging andWRF12-no-nudging). These simulations used theGrell 3-D

ensemble scheme [Grell andDevenyi, 2002] for the cumulus parameterization. TheGrell 3-D ensemble scheme

utilizes a priori solution combiningmany assumptions commonly applied to cumulus parameterizations and

finds the best likelihood solution. We also evaluated three simulations with different cumulus parameteri-

zations (the Betts-Miller-Janjic scheme [Janjic, 1994]: WRF24-BMJ; the new Kain-Fritsch scheme [Kain, 2004]:

WRF24-NKF; and the new simplified Arakawa-Schubert scheme [Han and Pan, 2011]: WRF24-NSAS). The deep

convection in the BMJ scheme is vertical mixing of heat and moisture to reduce the conditional instability

while maintaining the total column enthalpy. The BMJ uses cloud efficiency parameter to characterize dif-

ferent convective regimes. In the NKF scheme, column mass is parameterized with updraft, downdraft, and

entrainment to remove the convective available potential energy. The NSAS scheme updates the simpli-

fied Arakawa-Schubert scheme by specifying fluxes of heat, moisture, and momentum that are balanced by

convective activity.
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Figure 1. The Northern (blue), Central (green), and Southern (orange) Plains are plotted over the topography map.
The three regions are defined in Bukovsky [2011].

3. Methodology

In the comparison of rainfall characteristics between the observations and simulations, considering spatial
homogeneity of precipitation characteristics is important. Therefore, we analyzed characteristics of hourly
precipitation data for the three regions displayed in Figure 1, the Northern, Central, and Southern Plains
defined inBukovsky [2011]. Because thewesternboundary of the three regions follows the eastern edgeof the
Rocky Mountains, the regions consist of very flat topography. However, each region’s sensitivity to tempera-
ture and precipitation variability is different from the others.

Using observational precipitation at daily or 6-hourly time scales, previous studies [e.g., Casanueva et al.,
2016; Harding et al., 2013] have shown the improvement of RCM-simulated precipitation with about 10 km
resolution relative to GCMs with coarse resolutions. Nowadays, more hourly precipitation observations are
available, so we focus on features in hourly precipitation to demonstrate the potential added value of the
4 kmNU-WRF simulation. As amodel evaluationmetric to show the value of high-resolution RCM simulations,
we adopted a joint probability distribution function (JPDF) between duration and peak intensity of precipita-
tion events from Kendon et al. [2012] and Kendon et al. [2014]. The JPDF reflects regional rainfall characteristics
on the subdaily time scale including extremes. By quantifying agreement of simulated JPDFs with those
from observations, we evaluated summertime rainfall characteristics in the NU-WRF simulations against the
observations.

In defining the JPDF of rainfall intensity and duration, awet spell is a continuous period of rainfall greater than
0.1 mm/h (i.e., every hourly rainfall exceeds 0.1 mm/hr within a wet spell). At each grid point in a region, we
analyzed hourly time series of precipitation between 1 June and 31August (JJA) in each year to findwet spells.
For this detection of wet spells, we did not spatially regrid the precipitation data sets to maintain fine-scale
structures of precipitation patterns. However, we also compared the JPDFs from regridded observation and
simulations for reference. The duration and highest hourly rainfall rate of each wet spell are used to bin the
event within a JPDF that summarize the region’s summertime precipitation characteristics for one summer.
This JPDF is essentially a two-dimensional histogram of wet spells binned by peak rainfall rate and duration.
Figure 2 shows GPM’s JPDF over the Northern Plains for the summer of 2014. The JPDF consists of bins scaling
probability (%)withblue colors for certain rangesof rainfall duration (x axis) andpeak intensity (y axis). The sum
of probability over all thebins is 100%. Thehistogrambinwidths are sameas thoseused inKendonetal. [2014].

LEE ET AL. EVALUATION OF NU-WRF’S HOURLY RAINFALL 7374
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Figure 2. JPDF of wet spell duration and peak rainfall in GPM data over the Northern Plains for summer (June–August)
in 2015. The probability of each spell duration-peak rainfall bin is expressed as a percentage between 0 and 100%.

To ensure traceability and reproducibility of the JPDF methodology used in the current study, we distribute
the example codes to calculate and plot the JPDF with GPM IMERG data with the Regional Climate Model
Evaluation System (RCMES, http://rcmes.jpl.nasa.gov) [Mattmann et al., 2014]. The example source code is
accessible in the public repository (https://github.com/apache/climate/blob/master/examples/GPM_WRF24_
JPDF_comparison.py) and executable after installing Open Climate Workbench library version 1.2 (https://
climate.apache.org/). The Jet Propulsion Laboratory and University of California, Los Angeles, have jointly
developedRCMES, anevaluation framework formultiscale climatemodelswith a special emphasis on regional
and local scales.

To build a climatological JPDF for each data set, we first calculated a regional joint histogram of peak rainfall
rate and duration for one summer (JJA). The joint histogram is similar to Figure 2, but a frequency of wet spells
is assigned to each bin, not the probability as in the JPDF. After calculating joint histograms in each summer
for multiple summers, we divided the sum of the histograms by the total number of wet spells for multiple
years to calculate climatological frequency values. Climatological JPDFs for WRF24 and WRF12 and Stage IV
were calculated by merging nine joint histograms between 2002 and 2010. WRF04’s climatological JPDF is
from 5 year JPDFs between 2000 and 2004. With GPM, only the observations in 2014 and 2015 are available
to build a JPDF. To measure similarity of a simulated JPDF to an observed JPDF, our model evaluation metric
[H. Lee et al., 2015] was calculated as

overlap =
∑

x

∑

y

minimum(F0(x, y), F1(x, y)) (1)

where x is wet spell duration and y is rainfall intensity. F0 and F1 are JPDFs from observational andmodel data
sets, respectively. The overlap ranges from 0 to 100%, and performance of a simulation is better with larger
overlap values. This simple metric measures the similarity between two JPDFs quantitatively. However, there
are no predefined benchmark values to measure statistical significance and a p value of the overlap. So the
overlap ratios should be used as a relative metric.

4. Results

Wecompared themodeleddiurnal cycle of precipitationwith that fromStage IV observations. First, we regrid-
ded the hourly precipitation from Stage IV,WRF04, andWRF12 intoWRF24 grid points before comparing their
diurnal cycles with that of WRF24 in summer. Figures 3a–3d show the regridded precipitation patterns that
are temporally averaged over the 276 days (the three summers between 2002 and 2004) for 06 UTC in the
Central Plains (the green region in Figure 1). At each of 935 grid points in the Central Plains, we calculated
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Figure 3. The 3 year (2002–2004) mean summertime (June–August) hourly precipitation for 06 UTC over the Central
Plains from (a) Stage IV, (b) WRF04, (c) WRF12, and (d) WRF24. Except WRF24, the data sets are regridded into WRF24
grids. (e) Diurnal cycle of precipitation averaged over the Central Plains for the three summers between 2002 and 2004.
The errors bars represent spatial standard deviation of the 3 year mean precipitation for each UTC.

precipitation diurnal cycles averaged over the 276 days using the four hourly precipitation data sets. Figure 3e
displays the spatial mean and standard deviation of the 935 precipitation diurnal cycles in the Central Plains.

The observed precipitation for 06 UTC does not have a noticeable spatial pattern in the region. In contrast,
the simulated precipitation is featured by peak precipitation of around 0.35 mm/h in Eastern Colorado.
In Figure 3e, the three simulations show good agreement in their representation of the nighttime precipita-
tion between 00 and 04UTC. However, there are differences in the timingof peak precipitation between Stage
IV andNU-WRF. The observed precipitation peaks at 04 UTC (10–11 P.M. at local time), whereas NU-WRF simu-
lates thehighest precipitation at 06UTC. The impact of spatial resolutionon the regriddedhourly precipitation
is relatively small compared to the common biases of the three simulations.

Figure 3e provides a concise summary of observed and simulated diurnal cycles of precipitation. However, the
large spatial variability displayed with error bars indicates that the spatial mean of the precipitation diurnal
cycle does not fully represent the regional precipitation characteristics. Sowe compared precipitation diurnal
cycles between NU-WRF and Stage IV by calculating a bias and an RMSE at each grid point inside our analysis
domain. Then we summarized the results by calculating spatial averages of the biases and RMSEs for each of
the three regions. WRF-24 has 1829, 935, and 971 grid points in the Northern, Central, and Southern Plains,
respectively.

Figure 4 shows biases and RMSEs of the simulations fromStage IV over the Southern Plains. Overall, the agree-
ment between Stage IV and the simulations appears to be good except the southeastern part of the region.
As shown in Figure 3, the biases and RMSEs of precipitation diurnal cycle do not show a significant depen-
dence on the spatial resolution of NU-WRF. WRF24’s bias and RMSE are smallest in this region. Table 2 lists
spatially averaged biases and RMSEs for the three regions. Considering that the data sets are available for
9 years except WRF04, we evaluated the 9 year climatological diurnal cycles fromWRF12 and WRF24 as well.
The performance difference between the three simulations is smaller than the systematic biases of NU-WRF
as shown in Figure 3e. In all three regions, WRF24 shows the best agreement in a diurnal cycle of precipita-
tion with Stage IV. The biases and RMSEs in WRF12 are slightly smaller than those in WRF04 in the Northern
and Southern Plains. This indicates that our comparison of the diurnal precipitation cycle does not show the
added value of high-resolution dynamical downscaling.

To demonstrate the added value of high-resolution NU-WRF simulations in reproducing hourly precipita-
tion characteristics, we analyzed impacts of (1) spatial resolution, (2) spectral nudging, and (3) cumulus
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Figure 4. Biases (mm/h) of precipitation diurnal cycle in (a) WRF04, (b) WRF12, and (c) WRF 24 from Stage IV observations
over the Southern Plains. Except WRF24, the data sets are regridded into WRF24 grids. The 3 year (2002–2004) mean
diurnal cycle of precipitation is calculated at each grid point. (d–f ) Same as Figures 4a–4c but for root-mean-square
errors (RMSEs) in the simulated multiyear mean diurnal cycle of precipitation.

parameterization on the NU-WRF’s performance in simulating the JPDFs of wet spell duration and peak inten-
sity. Figure 5 shows the JPDFs from Stage IV, and the biases of three WRF simulations for the Central Plains in
summer (JJA). Similar to Figure 2, the majority of rainfall duration is less than 3 h, and hourly peak rainfall is
lower than 5mm/hr inmost of the rain events in Stage IV. More than 11million wet spells in Stage IV data sets
for 9 years are summarized in Figure 5a; i.e., even a 1% value in the JPDF accounts for about 100,000 rainfall
events occurred in the region. For the simulations shown in Figures 5b–5d, the common negative biases indi-
cate that short-duration downpour eventswhose peak rainfall is higher than 5mm/h and duration is less than

Table 2. Spatially Averaged Biases and RMSEs of Precipitation Diurnal Cycles for the Three Simulations Against Stage
IV Over the Northern, Central, and Southern Plainsa

Northern Plains Central Plains Southern Plains

Simulations Bias RMSE Bias RMSE Bias RMSE

WRF04 0.05 0.081 0.064 0.108 0.0093 0.0097

WRF12 0.043 (0.043) 0.077 (0.061) 0.064 (0.047) 0.109 (0.078) 0.0074 (0.022) 0.098 (0.062)

WRF24 0.034 (0.035) 0.073 (0.057) 0.055 (0.039) 0.106 (0.074) −0.0057(0.0072) 0.093 (0.054)
aThe precipitation diurnal cycles are averaged for the three summers between 2002 and 2004. The numbers in

the parentheses are the biases and RMSEs for climatological diurnal cycle averaged for the nine summers between
2002 and 2010.
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Figure 5. (a) Climatological summertime (June–August) JPDF from hourly Stage IV data over the Central Plains between
2002 and 2010. The color scales probability density (%) of each bin. The JPDF differences of (b) WRF04, (c) WRF12, and
(d) WRF24 simulations with spectral nudging at 600 km scale from the Stage IV JPDF in Figure 5a.

5 h occur less frequently in NU-WRF than Stage IV. The negative bias in short-duration downpours in NU-WRF
is a common problem for all three Great Plains regions, regardless of the model’s spatial resolution. Also, in
NU-WRF, rainfall duration tends to be longer than Stage IV when the peak rainfall is less than 5 mm/h. The
frequency of short-duration downpour events becomes slightly higher with the higher spatial resolution of
NU-WRF. As a result, WRF12 shows better agreement with Stage IV than WRF24, and WRF04’s performance is
the best. The overlap ratios of JPDFs in Table 3 show the quantitative performance of the three NU-WRF simu-
lations. Eighty-one percent of the WRF04 JPDF in Figure 5b overlaps the observed JPDF in Figure 5a, whereas
the overlap between Stage IV and WRF24 JPDFS is only 67%.

In Figure 6, the reference data are the JPDF fromGPMprecipitation for the Southern Plains. Overall, the better
performanceofWRF04 is consistentwith the comparisonwithStage IV JPDF for theCentral Plains. As expected
from the JPDF comparison for the Central Plains,WRF04 better representswet spells whose peak rainfall is less
than 5 mm/h. The negative biases in WRF12 and WRF24 for the rainfall that lasts less than an hour become
weak positive in WRF04. Additionally, there are noticeable improvements in the short-duration downpour
rainfall in WRF04 and WRF12 compared to WRF 24. When comparing precipitation whose duration is longer

Table 3. Overlap (%) of the JPDFs Between NU-WRF Simulations With 600 km
Spectral Nudging and StageIV/GPM in the Northern, Central, and Southern Plainsa

Simulations Northern Plains Central Plains Southern Plains

WRF04 84/82 81/77 82/79

WRF12 79/76 78/73 74/71

WRF24 70/67 67/62 62/59
aThe highest overlap in each region is highlighted in bold.
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Figure 6. (a) Climatological summertime (June–August) JPDF from hourly GPM data over the Southern Plains between
2014 and 2015. The color scales probability density (%) of each bin. The JPDF differences of (b) WRF04, (c) WRF12, and
(d) WRF24 simulations with spectral nudging at 600 km scale from the GPM JPDF in Figure 6a.

than 10 h and intensity is greater than 10 mm/h, both WRF04 and WRF12 show improvement over WRF24.
The performance of WRF12 is slightly better than WRF04 in this precipitation regime. The overlap ratios for
WRF04, WRF12, and WRF24 are 79%, 71%, and 59% respectively (Table 3).

In Table 3, it is obvious that the JPDFs fromWRF04 show the best agreement with both observed JPDFs in all
three regions. TheperformanceofWRF12 is also alwaysbetter thanWRF24against the twoobservational data
sets. Our result is consistent with the findings in Sun et al. [2016] who report that more realistic precipitation
over the Central Plains in WRF with 4 km resolution than that in the 25 km WRF simulation results from the
more accurate intensity, location, and diurnal cycle of the low-level jet.

When climate model output is available only for a shorter period than other data sets to compare with, as
in our case with WRF04, there is an intrinsic uncertainty in the calculated metric for WRF04 evaluation in
Table 3. To estimate theuncertainty of theoverlap ratio for the 5 years ofWRF04 run,we randomly subsampled
9 years of JPDFs fromWRF24 andWRF12without replacement. The size of samples ranges fromone to 8 years.
For each sample size, we built climatological JPDF for each region using JPDFs in the subsampled years and
calculated the overlap ratio between the subsampled JPDF and Stage IV JPDF. We repeated this subsampling
and evaluation process 100 times and defined the standard deviation of the overlap ratio across the 100 sub-
samples as the uncertainty of the overlap ratio due to the subsampling. The underlying assumption of this
Monte Carlo simulation is that the uncertainty of the overlap ratio betweenWRF04 and Stage IV caused by the
WRF04’s shorter period than the other data sets can be estimated by comparing the subsampled JPDFs from
WRF12 andWRF24 with the 9 year climatological JPDF from Stage IV. The corresponding results are reported
in Figure 7. Figure 7a shows that our performance evaluation metric, the overlap ratio between observed
and simulated JPDFs, does not have a strong dependence on the number of years sampled. As expected, the
uncertainty of theoverlap ratios decreaseswith increasing sample size in Figure 7b. The similarity of theuncer-
tainty between WRF24 and WRF12 indicates that our assumption to estimate the uncertainty in the metric
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Figure 7. (a) Mean and standard deviation of the overlap ratios between
the subsampled JPDFs from (blue: WRF24; red: WRF12) and Stage IV.
(b) Standard deviation of the overlap ratios as uncertainty due to the
temporal subsampling.

forWRF04using subsampledWRF24 and
WRF12 is reasonable. It should be noted
that Figure 7 shows the value of high-
resolution WRF04 data set, even when
the overlap ratio is computed using only
5 years of simulated data. The largest
uncertainty by subsampling only 1 year
of data to build JPDF is less than 2.5%
for both WRF24 and WRF12. Consider-
ing the difference in the overlap ratio
between WRF04, WRF12, and WRF24
shown in Table 3, WRF04 precipitation,
even for the five summers between 2000
and 2004, still provides themost realistic
representation of the observed JPDF.

We also tested if the 2 years of GPM data
(2014 and 2015) can be used to build
JPDFs for model evaluation. The overlap
ratios between GPM and Stage IV JPDFs
for summer 2014 are 81, 85, and 85%
for the Northern, Central, and Southern
Plains, respectively. These overlap ratios
are comparable to those for WRF04 in
Table 3.

For 24 km and 12 km simulations, there are additional runs with a spectral nudging scale of 2000 km and
those without spectral nudging. Table 4 summarizes the impact of spectral nudging scales on the similarity
of the simulated JPDFs to Stage IV JPDF. In the Northern Plains, nudged runs show better agreement with the
observation for bothWRF24andWRF12.However, it is hard to say that thenudging improves theperformance
of NU-WRF significantly in simulating rainfall characteristics in the Central and Southern Plains.

Unlike the spectral nudging, the choice of cumulus parameterization used in NU-WRF affects the JPDF over
the Great Plains (Table 4). New simplified Arakawa-Schubert scheme shows the best performance overall,
followed by the default cumulus parameterization scheme, Grell 3-D ensemble scheme, new Kain-Fritsch
scheme, and Bretts-Miller-Janjic scheme. Because the different parameterizations were testedwith 24 km res-
olution only, the performance of cumulus parameterization schemes in Table 4 is not guaranteed in NU-WRF
simulations with higher spatial resolution, such as WRF12 and WRF04. Also, it should be noted that Table 4

Table 4. Overlap (%) of the JPDFs Between Stage IV and the Simulations
With (Upper: Different Spectral Nudging Scales/Lower: Different Cumulus
Parameterization Schemes) in the Northern, Central, and Southern Plainsa

Simulations Northern Plains Central Plains Southern Plains

Spectral Nudging Scales

WRF12 79 78 74

WRF12-2000 80 79 75

WRF12-no-nudging 74 77 75

WRF24 70 67 62

WRF24-2000 70 67 62

WRF24-no-nudging 66 68 64

Cumulus Parameterization Schemes

WRF24-BMJ 57 64 53

WRF24-NKF 62 58 55

WRF24-NSAS 70 72 70
aThe spectral nudging scale of WRF 12 and WRF24 is 600 km.
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Table 5. Overlap (%) of the JPDFs Between Regridded Stage IV and Simulations
in the Northern, Central, and Southern Plainsa

Simulations Northern Plains Central Plains Southern Plains

WRF04 85 (84) 83 (81) 83 (82)

WRF12 78 (79) 79 (78) 75 (74)

WRF24 74 (70) 72 (67) 66 (62)
aStage IV, WRF04, and WRF12 are regridded into WRF24 grid points. The

numbers in the parenthesis are from Table 3 for the comparison of the overlap
ratios with the original Stage IV JPDF.

shows NU-WRF sensitivity of JPDF to the cumulus parameterization only over the Great Plains in summer. It is
hard to find the best parameterization scheme under any conditions. However, it is important to carry out a
sensitivity test of cumulus parameterization schemes at a low spatial resolution and use the result as a guide
to planningmore computationally demanding simulations. Iguchi et al. [2017] providemore detailed analysis
of six different cumulus parameterization schemes and their impacts on NU-WRF simulations over CONUS.

Analyzing hourly time series at each grid point and building regional JPDF of precipitation peak intensity
and durationmay not require regridding to comparewith JPDFs fromhigh-resolution observations. However,
by using data sets at their original grid points, a data set’s horizontal resolution determines the number of
samples used for building JPDFs. For example, there are 65,023 Stage IV grid points in the Northern Plains,
whereas WRF24 and WRF12 have only 2434 and 9703 grid points from the same region. Considering the dif-
ference in sample sizes, we used the Stage IV, WRF04, and WRF12 data sets regridded into WRF24 grid points
to build JPDFs. This upscaling approach is same as that of Kendon et al. [2012]. The overlap ratios between
the regridded Stage IV and simulations are listed in Table 5. The upscaling via regridding does not signifi-
cantly change the performance of NU-WRF. The JPDF from the regridded Stage IV has the highest overlap
ratio with the regridded WRF04’s JPDF. Therefore, spatial regridding does not diminish the added value of
high-resolution NU-WRF simulations in terms of JPDFs of summertime precipitation in the Great Plains. The
higher overlap ratios in JPDFs between WRF24 and regridded Stage IV than those in Table 3 may result from
less number of wet spells from the upscaled Stage IV precipitation data.

We also aggregated the high-resolution Stage IV data into the nearest WRF24 and WRF12 grid points and
calculated average precipitation. Then we built another set of JPDFs using the aggregated Stage IV precipita-
tion for the three regions and compared themwith those fromWRF24 andWRF12. The underlying hypothesis
of these data aggregation and averaging processes is that low-resolution WRF simulations may represent
spatially averaged fields from their high-resolution counterparts. Not surprisingly, WRF 24 and WRF12 show
better agreement with the JPDF from the spatially aggregated Stage IV than the comparison with the JPDF
from original Stage IV data. The agreement in Table 6 is comparable to the overlap ratios forWRF04 in Table 3.
Nevertheless, this does not mean that we need to regrid or aggregate high-resolution observation data into
coarse model grid points. The spatial aggregation smoothens fine-scale spatial patterns of precipitation that
also have a high temporal frequency. When comparing JPDFs made out of 3-hourly precipitation data sets
from Stage IV and the NU-WRF simulations, WRF04 does not show noticeable improvement over WRF12 and
WRF24 (not shown). In addition, other precipitation data setswhose temporal resolutions are 3-hourly or daily
could not clearly demonstrate the advantage of WRF04 over WRF12 and WRF24. This further suggests that
we may need to use the GPM IMERG data set with its original half-hourly resolution when evaluating JPDFs
from RCM simulations whose resolution is higher than 4 km.

Table 6. Overlap (%) of the JPDFs between WRF24/WRF12 and the Spatially
Aggregated Stage IV Into the Coarse Resolution Model Grids in the Northern,
Central, and Southern Plainsa

Simulations Northern Plains Central Plains Southern Plains

WRF12 85 (79) 82 (78) 79 (74)

WRF24 82 (70) 82 (67) 77 (62)
aThe numbers in the parentheses are from Table 3 for the comparison of

the overlap ratios with the original Stage IV JPDF.
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Figure 8. (a) GPM precipitation over Nebraska, Colorado, Kansas, and Oklahoma Panhandle recorded at 1:30 UTC,
8 July 2014. (b) Spatially aggregated GPM precipitation into WRF24 grid points. (c) Fine-scale spatial pattern of the
precipitation after subtracting Figure 8b from Figure 8a.

5. Discussion and Conclusions

The JPDF of precipitation peak intensity and duration provides a summary of hourly precipitation data over
a region of interest. By calculating the JPDF, we can reduce the data size substantially while still maintaining
the key information including the intensity and duration of extreme precipitation events whose frequency
highly depends on data set’s resolution. Therefore, the JPDF and our quantitative evaluationmetric, the over-
lap ratio between two JPDFs, can be useful to assess the regional variability of extreme precipitation under a
changing climate.

Our evaluation of simulated diurnal cycle in precipitation over the U.S. Great Plains does not provide any
evidence to support the added value of NU-WRF simulations with fine spatial resolutions. However, our
evaluation of the simulated JPDFs demonstrates the added value in reproducing hourly precipitation char-
acteristics in the Great Plains of the United States and complements many previous studies that focus on the
improvement of topographical precipitation obtained by dynamical downscaling.

The three NU-WRF simulations (WRF24, WRF12, and WRF04) commonly show less frequent short-duration
downpour events in all three regions. Nevertheless, the NU-WRF with 4 km resolution simulates the most
similar rainfall characteristics to Stage IV andGPMat its original grid points. Theoverlap ratios betweenWRF04
and the observations are similar to those within the observations. Therefore, the added value of NU-WRF
simulationswith higher resolution is amore realistic precipitation over the Great Plains in summer. The choice
of spectral nudging does not have a significant impact on the precipitation JPDF over the Great Plains. The
effect of cumulus parameterization schemes is considerable but smaller than the improvement of NU-WRF
simulations due to high spatial resolution.

WRF04’s value is allowing us to fully utilize high-resolution observation data sets such as Stage IV and GPM
without regridding them. Figure 8a shows a snapshot of GPM precipitation at 0130 UTC on 8 July 2014 over
Nebraska, Colorado, Kansas, and Oklahoma Panhandle. When we spatially aggregate the GPM precipitation
at the resolution of 0.1∘ into WRF24’s grid points at 24 km resolution, we lose a significant fraction of the
information contained in the original GPM data. As shown in Figure 8b, the upscaled map of precipitation is
different from the original one. The fine-scale spatial pattern in Figure 8c could be another benefit of using
high-resolution data sets, such as GPM andWRF04 results. In other words, the added value of high-resolution
simulations is equivalent to lost informationwhen spatially averaging high-resolution data.Wang et al. [2015]
also report that high spatial resolution allows dynamically downscaled simulations to capture spatiotemporal
relationships of precipitation occurrence in high-resolution observations.

Finally, our results indicate that without the full 11 years (2000–2010) of simulations or observations, we can
still show the added value of WRF04 simulation with some uncertainty due to the temporal subsampling.
However, if available computational resources were not limited, we could obtain more realistic JPDFs with an
extended WRF04 simulation.
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