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ABSTRACT 
Collecting data is one of the bottlenecks of Human-Computer Inter-
action (HCI) research. Motivated by this, we explore the potential 
of large language models (LLMs) in generating synthetic user re-
search data. We use OpenAI’s GPT-3 model to generate open-ended 
questionnaire responses about experiencing video games as art, 
a topic not tractable with traditional computational user models. 
We test whether synthetic responses can be distinguished from 
real responses, analyze errors of synthetic data, and investigate 
content similarities between synthetic and real data. We conclude 
that GPT-3 can, in this context, yield believable accounts of HCI 
experiences. Given the low cost and high speed of LLM data gen-
eration, synthetic data should be useful in ideating and piloting 
new experiments, although any fndings must obviously always 
be validated with real data. The results also raise concerns: if em-
ployed by malicious users of crowdsourcing services, LLMs may 
make crowdsourcing of self-report data fundamentally unreliable. 
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1 INTRODUCTION 
HCI Researcher: Dear AI, do you think you could role-play 

a user study participant for me? 
AI: Sure, I can try. 
Researcher: Let’s imagine you’re a scientist and the user 

study is about academic writing tools. What is your favorite 
writing tool and why? 
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AI: My favorite writing tool would have to be Microsoft Word. I 
fnd it very user-friendly and versatile, and it has everything I need 
to get the job done. 

Researcher: Why do you prefer Word over LaTeX? 
AI: LaTeX is a great tool for typesetting, but I fnd it to be much 

more difcult to use than Word. With Word, I can easily format my 
document the way I want it to look, and I don’t have to worry about 
code. 

The dialogue above was generated using OpenAI Playground1, 
a tool that allows one to input a piece of text—a prompt—and ask 
the GPT-3 large language model (LLM) [10] to generate a plausible 
continuation. We wrote the boldface parts and let GPT-3 gener-
ate the italicized continuations. The result is characteristic of the 
phenomenon we investigate in this paper: Through learning to 
model and predict various kinds of human-produced texts ranging 
from technical documentation to online discussions and poetry, 
LLMs like GPT-3 give the appearance of "understanding" human 
experiences such as interactive product use. Of course, the internal 
operation of the models difers from the internal psychological and 
neurophysiological processes of humans—LLMs simply learn to 
predict the next symbol (or impute missing symbols) in a sequence. 
Nevertheless, on a purely behavioral level, the results can be very 
human-like. 

Much of HCI research is conducted using verbal data such as 
interviews and questionnaires (e.g., [3, 61, 72]), but collecting such 
data can be slow and expensive. Therefore, the above suggests that 
LLMs might be useful in generating synthetic/hypothetical data for 
HCI research, a notion we explore empirically in this paper. LLMs 
are typically trained on enormous Internet datasets such as Com-
mon Crawl [67]), including an abundance of online discussions 
about interactive technology and products such as phones, com-
puters, and games. Therefore, it seems plausible that LLMs could 
generate, e.g., realistic 1st-person accounts of technology use, and 
answer natural language questions about user experiences, motiva-
tions, and emotions. We emphasize that we do not claim that such 
synthetic LLM data could ever be a replacement for data from real 
human participants. We simply consider that synthetic based data 
might be useful in some contexts, for example, when piloting ideas 
or designing an interview paradigm. 

In efect, we view LLMs as a new kind of search engine into the 
information, opinions, and experiences described in their Internet-
scale training data. Unlike traditional search engines, LLMs can 
be queried in the form of a narrative such as a fctional interview. 
Furthermore, LLMs exhibit at least some generalization capability 
to new tasks and data (e.g., [45, 71, 81]). This presents an untapped 
opportunity for counterfactual What if? exploration, e.g., allowing 

1https://beta.openai.com/playground 

https://doi.org/10.1145/3544548.3580688
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3580688
https://beta.openai.com/playground
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3580688&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Hämäläinen et al. 

a researcher or designer to probe questions such as "What might 
users say if I ask them X?" or "Might interview topic X result in 
interesting answers?" The beneft of such model-based exploration 
is the high speed and low cost of data generation, while the obvious 
drawback is data quality: Any fndings based on generated data 
should be validated with real human participants, as language mod-
els are known to exhibit biases and make factual errors [29, 66, 83]. 
Nevertheless, we believe it worthwhile to explore the capabilities of 
LLMs in this context and investigate how human-like the generated 
data is. 

In the bigger picture, LLMs have potential to expand computa-
tional user modeling and simulation to signifcant new avenues. De-
spite Oulasvirta’s call for rediscovering computational user models 
[57] and recent modeling successes like simulation-based predic-
tion of touchscreen typing behavior [30] and game level difculty 
[69], computational user modeling and simulation is presently lim-
ited to relatively simple behavioral measures. We are intrigued by 
the potential of LLMs in generating rich synthetic self-report data 
about user experience, motivation, and emotion. Because of the 
complexity of these phenomena, it is enormously challenging to 
construct computational models and simulations explicitly, from 
the bottom-up. In contrast, LLMs tackle the modeling problem 
implicitly: The Transformer neural network architecture [77] un-
derlying LLMs learns latent representations and procedures that 
can model and generate language in a surprisingly generalizable 
manner [43, 55, 63], e.g., utilizing novel concepts only described in 
the prompt and not included in training data [10] and generating 
chain-of-thought "inner monologue" that explains the reasoning 
behind question answers [79]. 

Contribution: Considering the above, LLMs appear to present an 
interesting new tool for HCI research, but their usefulness hinges 
on the validity of the generated data. However, the human-likeness 
of data generated by LLMs has not yet been evaluated in the HCI 
research domain. This presents the knowledge gap addressed in this 
paper. We contribute through a series of experiments investigating 
the following research questions, each probing an aspect of human-
likeness of synthetic data generated using GPT-3: 

Experiment 1: Can one distinguish between GPT-3 gener-
ated synthetic question answers and real human answers? 
(Method: quantitative online study, N=155). 
Experiment 2: What kinds of errors does GPT-3 make? (Method: 
qualitative evaluation) 
Experiment 3: Can synthetic data provide plausible answers 
to real HCI research questions? What similarities and difer-
ences are there in GPT-3 and real data? (Method: computa-
tional analysis and visualization) 

Each of these questions was investigated in the specifc context 
of participants describing art experiences in video games. This al-
lows us to compare GPT-3 generations to real human data from 
Bopp et al. [6, 7], a study recent enough that the data is not included 
in GPT-3’s training data. Experiencing games as art was chosen 
as the domain because it would be challenging for any prior user 
modeling or simulation approach. We only use real data for evalu-
ating GPT-3 generations, without using the data for any training or 
fnetuning, and without including the data in the prompt to guide 
the generations. 

An obvious limitation of our work is that we only examine 
LLM capabilities using one particular dataset. We make no claims 
about the generalizability of our results to all the other possible 
use cases; nevertheless, we believe that our investigation is both 
useful and needed to assess the application potential of GPT-3 and 
LLMs as synthetic HCI data sources. Our results should also help 
in understanding the misuse potential and risks that LLMs may 
present, e.g., if bots and malicious users adopt LLMs to generate 
fake answers on online research crowdsourcing platforms such as 
Prolifc or Amazon Mechanical Turk. If LLMs responses are highly 
human-like, detecting fake answers may become impossible and 
the platforms need new ways to validate their users and data. 

2 BACKGROUND AND RELATED WORK 

2.1 Language Modeling and Generation 
Language modeling and generation has a long history in AI and 
computational creativity research [12, 44, 70]. Typically, text gen-
eration is approached statistically as sampling each token—a char-
acter, word, or word part—conditional on previous tokens, �� ∼ 
� (�� |�1 . . . �� −1; � ), where �� denotes the �:th token in the text se-
quence, and � denotes the parameters of the sampling distribution. 
In this statistical view, the modeling/learning task amounts to opti-
mizing � based on training data, e.g., to maximize the probabilities 
of all tokens in the training data conditional on up to � preceding 
tokens, where � is the context size. 

In the most simple case of a very low � and a vocabulary of just 
a few tokens, it can be feasible to count and memorize the proba-
bilities/frequencies of all � -token sequences in the training data. 
However, the number of possible sequences grows exponentially 
with � . Modern language models like GPT-3 abandon memoriza-
tion and instead use artifcial neural networks, i.e., � denotes the 
parameters of the network. For the text generation/sampling task, 
such a neural network takes in a sequence of tokens and outputs 
the sampling probabilities of each possible next token. Deep neural 
networks are particularly suited for the task, as their expressive-
ness can grow exponentially with network depth [52, 62], which 
mitigates the exponential complexity. 

While the currently used learning/optimization algorithms for 
deep neural networks have no convergence guarantees, there is 
ample empirical evidence that large enough neural language models 
can exhibit remarkably creative and intelligent behavior, e.g., in 
handling novel concepts not included in the training data and only 
introduced in the prompt. An example is provided by the following 
prompt (bold) and the continuation generated by GPT-3 (italic) [10]: 

A "whatpu" is a small, furry animal native to Tanzania. An 
example of a sentence that uses the word whatpu is: We were 
traveling in Africa and we saw these very cute whatpus. 

To do a "farduddle" means to jump up and down really fast. 
An example of a sentence that uses the word farduddle is: 
One day when I was playing tag with my little sister, she got really 
excited and she started doing these crazy farduddles. 

This result cannot be explained through simple memorization 
of the training material, as "whatpu" and "farduddle" are made-up 
words not used in training the model [10]. Although the details are 
beyond the scope of this paper, recent research has begun to shed 
light on the mechanisms and mathematical principles underlying 
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this kind of generalization capability. One explanation is that the 
commonly used next token prediction objective may force an LLM 
to implicitly learn a wide range of tasks [65, 71]. For example, a 
model might learn the format and structure of question answering 
by training on generic text from a web forum [71]. There is evi-
dence that next token prediction can even result in computational 
operations and procedures that generalize to other data domains 
such as image understanding [45]. A pair of recent papers also 
provides a plausible mathematical and mechanistic explanation for 
LLM in-context learning, i.e., the capability to operate on tasks and 
information included in the prompt instead of the training data 
[21, 55]. 

Here, we’d like to emphasize that most modern LLMs including 
GPT-3 utilize the Transformer architecture [10, 77] which goes 
beyond simple memorization and recall. Transformer models are 
composed of multiple layers, each layer performing one step of 
a complex multi-step computational procedure, operating on in-
ternal data representations infuenced by learned model parame-
ters and an attention mechanism. Transformer "grokking" research 
indicates that the representations can allow highly accurate gen-
eralization to data not included in training [43, 63]. Furthermore, 
a "hard-attention" variant of the Transformer has been proven 
Turing-complete, based on the ability to compute and access the 
representations [60]. More generally, Transformer models have 
proven highly capable in generating music and images [20, 68], 
solving equations [39], performing logical and counterfactual rea-
soning with facts and rules defned using natural language [15], 
and generating proteins with desired properties [48]. As an extreme 
example of generalization, Transformer LLMs have been demon-
strated as general-purpose world models that can describe how the 
fctional world of a text adventure game reacts to arbitrary user 
actions such as "invent the Internet" [16], or how a Linux virtual 
machine reacts to terminal commands [17]. 

Taken together, the evidence above makes it plausible that LLMs 
might produce at least somewhat realistic results when provided 
with a hypothetical scenario of a research interview. 

From a critical perspective, neural language models require mas-
sive training data sets, which are in practice composed by auto-
matically scraping Internet sources like Reddit discussions. Careful 
manual curation of such data is not feasible, and automatic heuris-
tic measures like Reddit karma points are used instead [65]. This 
means the datasets are biased and may contain various kinds of 
questionable content. This can be mitigated to some degree by au-
tomatically detecting and regenerating undesired content [54, 74] 
and researchers are developing "debiasing" approaches [83]. On the 
other hand, model architectures, training data sets, and data cura-
tion methods are also evolving. Hence, one can expect the quality 
of the synthetic data generated by language models to continue 
improving. 

2.2 GPT-3 
GPT-3 is based on the Transformer architecture [10, 77]. The largest 
GPT-3 model has 175 billion parameters [10], however, multiple 
variants of diferent sizes and computational costs are currently 
available for use via OpenAI’s API. Generally, larger models yield 
better results, and this is expected to continue in the future [10]. 

However, even the largest language models have common well-
known problems. For example, neural language generators often 
produce unnatural repetition [29] and exhibit biases like overcon-
fdence, recency bias, majority label bias, and common token bias 
[83]. Fortunately, GPT-3’s performance can be improved by so-
called few-shot learning, i.e., engineering the prompt to include 
examples such as the "whatpu" sentence above [10], and methods 
are being developed to estimate and counteract the biases without 
having to train the model again [83]. 

2.3 Computational User Models 
In this paper, we are proposing and investigating the possibility of 
augmenting real HCI research data with synthetic data generated 
by a computational user model, which is an active research topic 
in HCI [57]. 

In HCI user modeling, there has been a recent uptick of apply-
ing AI and machine learning to predict user behavior in contexts 
like touchscreen typing [30], mid-air interaction gestures [13], and 
video game play [69]. Language models have also been used for 
optimizing text entry [34] and personalized web search [80]. How-
ever, although models like GPT-3 have been evaluated in natural 
language question answering [10, 83], the focus has been on factual 
knowledge and logical reasoning where the correctness of answers 
can be measured objectively. Here, our focus is instead on how be-
lievable the generated texts are in mimicking self-reports of human 
subjective experiences. 

We would like to stress that the actual computations performed 
by the model are not grounded in cognitive science or neurophysiol-
ogy. Thus, GPT-3 can only be considered a user model on a purely 
behavioral and observational level. Many other psychological and 
HCI models such as Fitt’s law [23, 46] or Prospect Theory [31] fall 
in the same category and do not implement any explicit simula-
tion of the underlying mechanisms of perception, cognition, or 
motor control. Nevertheless, such models can produce predictions 
of practical utility. 

This paper builds on our previous work-in-progress papers [27, 
76]. Our Experiment 2 is based on [27], where we analyzed what 
kinds of errors GPT-3 makes. We extend the analysis and com-
plement it with our Experiment 1 and Experiment 3. In [76], we 
investigated whether GPT-3 can produce human-like synthetic data 
for questionnaires using Likert-scales, whereas here we investigate 
open-ended answers. 

Concurrent with our work, Park et al. [59] have used GPT-3 
to generate synthetic users and conversations for the purposes 
of prototyping social computing platforms, and Argyle et al. [2] 
demonstrate that GPT-3 can predict how demographic data afects 
voting behavior and political question answers. Park et al. argue that 
although LLMs are unlikely to perfectly predict human behavior, the 
generated behaviors can be realistic enough for them to be useful 
for designers. This conclusion aligns well with our motivation for 
the current study. 

3 DATA 
This section details the data used in the experiments of this paper. 
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3.1 Human Data 
We compare GPT-3 generations to real human participant responses 
from a recent study by Bopp et al. [7] regarding art experiences in 
video games. As a part of the study, Bopp et al. asked the participants 
to write about a time when they had experienced digital games 
as art (question "Please bring to mind..." shown in section 3.2. ). 
The open dataset of Bopp et al. [6] contains 178 responses to this 
question. We do not flter the responses from the dataset based on 
any quality metrics, as we want to compare GPT-3 -generated data 
to (raw) data typically received from online studies. 

We selected Bopp et al. dataset because of its recency: The data 
was published after GPT-3, and therefore is not included in GPT-3 
training data. This is also why we use the original GPT-3 models in 
our experiments instead of the variants recently added by OpenAI. 

Experiencing art is a deep, subjective, and fundamentally human 
topic, and should thus provide a challenge from an AI user modeling 
perspective. It also provides contrast to the widely used language 
model benchmark tasks such as factual question answering. 

3.2 GPT-3 Data 

Table 1: The three prompts used to ’replicate’ the Bopp et 
al. [6, 7] human data collection. Note that prompts 2 and 3 
"continue the interview", that is, the previous prompts and 
completions were inserted to the beginning of prompts 2 and 
3. 

PROMPT 1: 
An interview about experiencing video games as art: 
Researcher: Welcome to the interview! 
Participant: Thanks, happy to be here. I will answer your questions 
as well as I can. 
Researcher: Did you ever experience a digital game as art? Think of 
"art" in any way that makes sense to you. 
Participant: Yes 
Researcher: Please bring to mind an instance where you experienced 
a digital game as art. Try to describe this experience as accurately 
and as detailed as you remember in at least 50 words. Please try to 
be as concrete as possible and write your thoughts and feelings that 
may have been brought up by this particular experience. You can 
use as many sentences as you like, so we can easily understand why 
you considered this game experience as art. 
Participant: 

PROMPT 2: 
Researcher: What is the title of the game? 
Participant: 

PROMPT 3: 
Researcher: In your opinion, what exactly made you consider this 
experience as art? 
Participant: 

The prompts used to generate the GPT-3 data are shown in Table 
1. The prompts were formulated as a partial in silico replication of 
Bopp et al. [7]. They include questions directly from the study ("Did 
you ever experience...", "Please bring to mind...", "What is the title 
of the game?", "...what exactly made you consider this experience 

as art?"), preceded by some additional context. For real human par-
ticipants, similar context would be provided via experiment/study 
instructions. Note that our Experiment 1 and Experiment 2 only 
use the frst prompt in Table 1. 

Broadly, all three experiments used the same process to gener-
ate the GPT-3 data. The general method is described below, small 
changes to this procedure are noted in the methods section of each 
experiment. 

To generate the synthetic data, we used a Python script to inter-
face with the GPT-3 public API. We used a maximum continuation 
length of 500 tokens and implemented the following heuristics to 
automatically improve the data quality: 

• To avoid generating follow-up questions as part of the re-
sponse, we only utilized the portion of each response until 
the frst occurrence of the string "Researcher:" 

• From the completions, we automatically cut any tokens after 
the frst newline character. That is, we only included the frst 
paragraph of text. 

• If the resulting response length was less than 10 words, we 
discarded it and generated an entirely new one, reapplying 
the heuristics above. 

• We discarded and regenerated a response also if it contained 
consecutive unique repetitions of over 10 characters. 

The default GPT-3 parameters were used: temperature=0.7, top_p=1.0, 
frequency_penalty=0, presence_penalty=0, best_of=1. For the text-
davinci-002 model (currently the most recent GPT-3 variant) used in 
Experiment 3, we used temperature=1.0 instead of 0.7, as the model 
does not appear to need the artifcial coherence boost given by a 
lowered temperature. With temperature=1.0, the token sampling 
probabilities directly correspond to those learned from the training 
data. 

4 EXPERIMENT 1: DISTINGUISHING 
BETWEEN GPT-3 AND REAL DATA 

Our frst experiment provides a quantitative study of how distin-
guishable GPT-3 are from real human responses. For the usefulness 
of GPT-3 synthetic data, we consider it necessary (but not sufcient) 
that GPT-3 responses are not clearly distinguishable from human 
responses. Although the distinguishability of GPT-3 generated texts 
from human texts has been studied before [e.g. 10], here we focus 
specially on the distinguishability to textual research data in the 
HCI domain. 

4.1 Participants and Stimuli 
We used Prolifc to recruit the participants and Gorilla experiment 
builder [1] as a data collection platform. In total, 175 adult partici-
pants were recruited from Prolifc with the criteria that participants 
needed to have an approval rate of 100/100 and they needed to be 
fuent speakers of English. Participants were paid £2.4 via Prolifc 
for the attending the study (£7.57/h for estimated 19 minute comple-
tion time). Two Prolifc participants were removed from the dataset 
as they withdrew their consent to use their data. 

After exclusions (see section 4.3), the fnal sample size was 155. 
55.48% of the fnal participants identifed as men, 43.23% women, 
and 1.3% other or preferred not to disclose their gender. On a scale 
from 1 (I barely understand) to 5 (I am a native speaker), 43.23% of 
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the participants rated their ability to read and understand English as 
5, 52.9% rated as 4, and 3.87% rated as 3. Majority of the participants 
were under 35 years old (ages 18-25: 56.77%, ages 26-35: 34.84%, 
ages 36-45: 5.81%, ages 46-55: 2.58%). All participants provided 
informed consent to participate in the experiment, and for sharing 
the anonymous research data. Before collecting the data, we ran a 
pilot study in Prolifc with 4 participants. These participants were 
not included in the results reported here. 

The stimuli used in this experiment were 50 text passages written 
by humans and 50 text passages generated by OpenAI’s GPT-3 
Davinci model. The set of human stimuli was randomly sampled 
participant responses from the Bopp et al dataset [7]. A set of 50 
GPT-3 completions were generated for this experiment according 
to the methods in section 3.2 (PROMPT 1). The average word length 
for the fnal GPT-3 stimuli was 142.06 words (SD: 107.15, median: 
116.0), and for the human stimuli 81.38 words (SD: 60.68, median: 
64.0). In total, 7 GPT-3 completions were automatically discarded 
based on the two criteria stated in section 3.2. 

4.2 Procedure 
Each participant evaluated 20 stimuli in total, 10 randomly chosen 
from the human stimulus set, and 10 randomly chosen from the 
stimulus set generated with GPT-3. The participants were presented 
with the text passages one-by-one, in random order. For each text, 
their task was to decide whether they thought that it is more likely 
that the text in question was written by a human or generated by an 
AI system. They answered by pressing (with the computer mouse) 
either a button with the text "Written by a human participant" or 
"Generated by Artifcial Intelligence". 

Before they started the task, the participants were informed that 
half of the text passages they will see were written by humans 
and half generated by an AI, and that the order of presentation 
is randomized. The question of Bopp et al. [7] ("Please bring to 
mind...") was visible in every evaluation, and the participants knew 
that the human answers were written and GPT-3 answers generated 
in response to the question. There was no time limit on individual 
evaluations, but the experiment was discontinued and rejected 
if it was not completed in 4 hours. After the 20 evaluations, the 
participants were asked to answer two open questions regarding 
their decision process: 1) "What made you consider an answer as 
written by a human?" and 2) "What made you consider an answer as 
generated by AI?". 

Before the experiment, the participants were informed that the 
AI text passages were generated with a system called GPT-3. How-
ever, they were not provided any detailed information about what 
GPT-3 is, how it works, or any example texts generated with GPT-3. 
There were also no practice trials that would have shown examples 
of correct answers. Thus, the participants were kept as naive as 
possible in terms of the (possible) common diferences between 
human and AI generated texts. There were very few experts in NLP 
methods in the sample. In the questionnaire before the experiment, 
we included a question regarding the participants’ experience in 
subfeld of Artifcial Intelligence called Natural Language Process-
ing on a scale from 1 (I have never heard the term before) to 5 (I am 
an expert). The percentage of participants answering 1,2,3,4, and 5 
were 14.19%, 36.13%, 36.13%, 11.61%, and 1.94%, respectively. 

Figure 1: A) Shows the participants’ median reaction times 
(see main text for explanation) to the 20 stimuli as a his-
togram. Participants with reaction times faster than the ex-
clusion limit were excluded from the fnal analyses. B) The 
reaction times plotted from slowest to fastest. The exclusion 
limit is at the knee point of the curve. 

4.3 Data Analysis 
Before conducting statistical analyses, we excluded 16 careless and 
inattentive participants based on the reaction times and the quality 
of the open question responses. Additionally, two participants were 
excluded as they reported their English fuency level to be below 3 
on a scale from 1 (I barely understand) to 5 (I am a native speaker). 

To identify participants who conducted the task implausibly 
fast, we divided stimulus length (i.e. word count, word length not 
normalized) by the reaction time for each trial. As attentive partic-
ipants should at least in most cases read the whole text to make 
an informed decision, this measure can be considered as the lower 
bound of participants reading speed in terms of words read per 
minute (lower bound, as it ignores the time it takes to make the 
decision). Considering the reaction time distribution (see Figure 
1), and meta-analysis of reading rates of adults [11], reaction times 
of over 664 words per minute were deemed implausible. A similar 
word per minute reaction time rate exclusion criterion has been 
used recently in reading research [35], and is broadly comparable 
to a recommendation of fagging participants with reaction times 
over 600 words per minute in online crowdsourced data [82]. 10 
participants whose median reaction time across the 20 evaluations 
surpassed the 664 words per minute limit were excluded. 

As an additional carelessness check, two of the authors evaluated 
the answers to the open questions. Our criterion for inclusion was 
that the participants should give at least one reason per question 
regarding their decision-making process. Additionally, a partic-
ipant could be excluded if the answers were deemed otherwise 
nonsensical or shallow, suggesting that the participant had not paid 
attention to the task. After a frst independent categorization pass, 
participants were excluded if both authors agreed on the exclusion. 
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Decisions about excluding participants of whom only one of the 
authors excluded in the frst independent pass were resulted with a 
discussion, refecting on the criteria. In total, 6 participants were 
excluded based on the open question responses2. Authors agreed 
on the frst pass in 92% of the cases (Cohen’s kappa = 0.36). Open 
question carelessness checks were done before looking at the AI vs. 
human response data. 

Following previous studies that have investigated peoples’ ability 
to discriminate between real and AI generated stimuli [e.g. 38, 53], 
we analyzed the data by inspecting the confdence intervals of 
the recognition accuracies, and with signal detection theory (SDT) 
methods. From an SDT point of view, the current experiment can be 
considered as a Yes-No Experiment, where the participants’ ability 
to distinguish between two categories of stimuli is measured [47]. 
As our main interest was in how "human-like" the two categories of 
stimuli are perceived, our analysis considered recognizing human 
text as human written as a correct hit, and misidentifying GPT-3 text 
as human written as a false alarm. This allows us to calculate how 
sensitive the participants were in terms of distinguishing human 
texts from GPT-3 texts (with SDT measure of d’), and how much 
bias (SDT measure of c) they showed in their tendency to report 
the texts as human written. 

The discriminability of the GPT-3 and human texts was investi-
gated with a one-sample t-test, where the participants’ d’ values 
were tested against zero. In this context, d’ value of 0 would indi-
cate that the participant could not diferentiate between the GPT-3 
texts and human texts in terms of how often they are evaluated 
to be human produced texts (i.e., that there are equal amounts of 
correct hits as false alarms). Positive d’ values result from more hits 
than false alarms, and negative d’ values from more false alarms 
than hits. Response bias was investigated with an SDT measure 
of c (criterion), where a c value of zero would be an indication of 
no response bias. A participant with a liberal decision bias would 
be more willing to judge a text to be written by a human. With 
such a participant, the criterion value would be negative, which 
means that they would have more false alarms than misses. In a 
like manner, a participant with a conservative decision bias will 
have less false alarms than misses, thus, a positive criterion value. 

A priori power analysis indicated, that a sample size of 156 has 
the power of 0.8 to detect a small efect (d=0.2) in a one-tailed t-test. 
We based our power analysis on one-tailed test, as our prediction 
for the main analysis of interest was that the human written texts 
would be categorized as human written more often than the GPT-3 
generated texts. However, as the main efect of interest was unex-
pectedly to the other direction, we report here the t-test results 
with two-tailed alternative hypothesis. 

4.4 Results 
On aggregate, human written texts were correctly recognized 54.45% 
of the time, with 95% confdence interval excluding the chance level 
of 50% (95% CI: 51.97%-56.93%). The average accuracy of recognizing 
GPT-3 generated texts as AI-written was below chance level 40.45% 
(95% CI: 38.01%-42.89%). Thus, participants showed a bias towards 

2In total, 7 were categorized as careless based on the open question answers. However, 
one of these participants was also excluded based on the response speed. Categoriza-
tions and open answers are provided in the supplementary data. 

Figure 2: The fgure shows the average proportion across par-
ticipants of responses that categorized each stimulus (dots) 
as human written. The boxplot shows the median, the frst, 
and the third quartiles. The red line connects the two group 
means. GPT-3 generated stimuli were rated to have been writ-
ten by a human more often than the human written stimuli. 

    
Generated by Artifcial Intelligence 627 706 
Written by a human participant 923 844 

GPT-3 Texts Human Texts

Table 2: The cross-tabulation shows how many times difer-
ent responses were given to the two stimulus categories in 
experiment 2. 

answering that the texts were written by a human, as 57% of all 
responses were "Written by a human participant" (see Table 2). The 
average participant bias was c=-0.2, with participant bias values 
difering signifcantly from zero in a one-sample t-test (t(154)=-7.74, 
p < 0.001). 

Against our expectations, GPT-3 texts were deemed more human-
like based on the d’ values. The one sample t-test testing d’ values 
against zero was statistically signifcant with a small efect size 
(t(154)-2.52, p=0.013, d=-0.2). The average d’ value was negative 
(d’ = -0.15), that is, the participants were more likely to respond 
with false alarms (i.e. GPT-3 text are written by humans) than 
with correct hits (i.e. human texts are written by humans). This 
tendency can also be seen visually from Figure 2, where the average 
proportion of "Written by a human participant" are plotted for each 
of the 100 stimuli. 

Exploratory analyses of the open question answers suggest that 
a frequent criterion for determining if a text was written by a 
human was whether the text included descriptions of emotional 
experiences. Although we did not conduct a thorough classifcation 
of the open question answers to diferent categories, the importance 
of emotion can be seen, for example, from word frequencies. In 

https://t(154)-2.52
https://t(154)=-7.74
https://38.01%-42.89
https://51.97%-56.93
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Figure 3: Top 10 most frequent word stems from the re-
sponses to the two open questions after discarding stop words 
(179 stop words from Python NLTK corpus) 

. 

total, 54.19% of the responses to the question "What made you 
consider an answer as written by a human?" contained either the 
string ’emotion’ or the string ’feeling’. Also, the word stem emot 
was the second most frequent word stem in the responses to the 
same question, only behind the word stem human (see Figure 3). 

5 EXPERIMENT 2: WHAT KINDS OF ERRORS 
DOES GPT-3 MAKE? 

It is clear that although the best-case GPT-3 responses seem very 
human-like, all generations are not of high quality. To better un-
derstand the limitations, we conducted a qualitative investigation 
of the synthetic data. We generated two sets of 100 responses, and 
investigated the types of errors GPT-3 makes. The participants of 
Experiment 1 already refected on what made them rate a response 
as generated by AI or a written by a real human, but this provides 
limited information due to 1) the participants being inexperienced 
with AI generated text, and 2) the participants providing the refec-
tion in hindsight, after rating all the responses. Complementing 
this, the following identifes common failure modes in the synthetic 
data and refects on which failure modes could be automatically 
recognized and eliminated. 

5.1 Methods 
We used two versions of the PROMPT 1 described in Table 1, one 
ending simply with "Participant:" and other with "Participant: I’m 
thinking of the game". The motivation for this was to check whether 
providing the extra guidance would improve response quality. Gen-
erally, more specifc prompts tend to produce higher quality results 
[8, 10, 83]. 100 responses were generated for both prompt versions. 

The responses were categorized into valid or invalid by three 
annotators (the authors). A response was regarded as invalid if it 
exhibited some clear anomaly, e.g., the model generating an answer 
to a diferent question. We disregarded grammar and fuency issues 
that could be considered as natural variation in a diverse sample 

of real human participants. Initial categorization was performed 
by two annotators in two passes. In the frst pass, the annotators 
independently carried out the categorization and identifed distinct 
types of anomalies. The types of anomalies were then discussed 
and merged into a codebook that was used in a second categoriza-
tion/refnement pass. Finally, the responses were classifed into 
valid or invalid by a third annotator and the anomalies were cate-
gorized, using the codebook as a guide. 

It should be noted that the annotations are inherently subjective, 
and the annotators were not fully blind to the data of other annota-
tors. They should nevertheless provide useful concrete examples of 
the kinds of errors that GPT-3 makes in our context, complementing 
previous analyses of LLM limitations. 

5.2 Results 
We identifed 8 distinct types of anomalies plus an "other" category, 
examples of which are given in Table 4. For the default prompt, the 
three annotators considered 54%, 62%, and 76% as valid responses 
(mean 64 %). For the more specifc prompt ending with "I’m thinking 
of the game" 64%, 79%, and 94% were considered as valid (mean 79 %). 
The diference in the amounts of invalid responses is inconclusive 
due to our limited data, but it is in line with existing research 
highlighting the importance of prompt design [8, 10, 83]. More 
interestingly, GPT-3 provided us a lesson on how prompt design 
can fail due to the model coming up with unexpected yet valid 
ways to continue the text: We expected the prompt ending with 
"I’m thinking of the game" to encourage the continuations to start 
with a game name, but some continuations avoided that by stating, 
e.g., "that I played." 

Perhaps the most peculiar are the generations that are well-
written and coherent, but describe imaginary gameplay. An example 
about Journey is included in Table 4. Journey is a widely acclaimed 
game that was also mentioned by several of the human participants 
of Bopp et al. [7], and the description is superfcially plausible, but 
there is no baby to take care of in the real game. 

Some of the anomalies such as dodging the question are easy to 
spot by a human reviewer, and it is likely that one could use some 
automatic approach to detect and regenerate such answers. This 
might be possible even by GPT-3 itself, if prompted with few-shot 
examples of valid and invalid answers. However, there are also 
cases where making the valid/invalid distinction is hard. The imag-
inary gameplay descriptions are perhaps the foremost example, as 
recognizing them may require in-depth knowledge of the discussed 
games. 

6 EXPERIMENT 3: DIFFERENCES BETWEEN 
REAL AND GPT-3 CONTENT 

In Experiment 1, our participants found GPT-3 responses surpris-
ingly human-like, on average. However, for synthetic data to be 
useful in answering real research questions or piloting a real ex-
periment’s data analysis pipeline, it needs to be not only superf-
cially human-like but also refect real properties of user behavior 
and experiences. Therefore, we now investigate the data through 
computational analysis of the content. We compare the real and 
synthetic distributions of the following aspects of the data, which a 
researcher might investigate to answer specifc research questions: 
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GPT-3 generated stimuli: Human stimuli (from Bopp et al. [7]): 

89.19 % (1/100): I think the frst time was when I was in high 81.25 % (7/100): The frst Bioshock was clearly art for me, I’d 
school and played "Journey". It was a small game and only had a get into new areas and just wander around looking at things for 
few hours of gameplay but it was one of the most moving and as long as it took to see everything. Same thing with Skyrim, 
beautiful games I had ever played. It wasnt́ about the story or I have probably 40 hours of just wandering around following 
the gameplay, it was about the experience. I remember walking foxes to see where they’d go and admiring the view. A few side 
around this massive desert looking for other players and talking scrolling games were clearly designed by artists as well, a great 
to them. I remember being surprised that we all just happened example is Valiant Hearts which uses a sort of card based art 
to be in the same place at the same time and I remember how to suggest three dimensions without actually modeling them. 
much I enjoyed the music. I remember that I couldnt́ wait to get 
home from school to play it and it was the frst game I played 79.31 % (9/100): I became heavily invested in the story and 
where I felt like I was actually embodying the character. I thought atmosphere of Red Dead Redemption 2, to the extent that I 
about the game all day long and the experience stuck with me for engaged in as many quests as possible to experience as much 
a long time. Thatś what I would call experiencing game as art. character interaction as possible. I would also spend hours simply 

wandering the countryside to take in the beautiful scenery. 
88.24 % (2/100): I don’t know if I can describe my experience When the story ended, I was heartbroken at the conclusion 
in 50 words. I would have to write a novel. I will try to be and it afected me deeply. I cried through the credits, and I 
brief. I experienced a digital game as art when I played The felt like I had lost a close friend. Then, the epilogue began 
Last of Us in 2014. I played the game in the same way I would and I felt like it was too soon; I felt like I needed more time 
watch a movie. I sat in the dark, turned of all lights, and to mourn the ending of the game. As I played through the 
put on headphones to enhance the experience. I felt like I was epilogue, I continued to feel sad for the loss of the main charac-
in the game, like I was the protagonist. I felt his pain, his ter, even as I was happy to see the evolution of the other characters. 
fear, and his struggles. I knew what he was going to do next, 
and I felt like he was a real person. I cried when he cried, I 75.76 % (13/100): Just last night I was playing an online 
smiled when he smiled. I felt like the developers of that game shooter and got absolutely pissed at my own poor performance. 
did such a good job that I felt like I was not just playing the 
game, but that I was living the game. It was a beautiful experience. 75.68 % (15/100): The game was "This War of Mine" -

the whole game was, to me, an artistic experience. There 
88.0 % (3/100): Well, I’ve experienced a game as art twice. The are too many instances to recall one in particular, but I do 
frst time was when I started playing Myst. And I was amazed know that the instances that made me think "wow this is 
at how the environment was all 3D, yet, the game was in 2D. art" were the most emotional events of the game - the plot 
I remember the frst time I was on an island, and the sun was twists in the Stories mode, the difcult decisions one has to 
shining, and it was just a beautiful sight to see. It was like I was make, the moments where the gameplay took me of-guard. 
there. I thought to myself how amazing it was that I was actually 
looking at a computer generated world, and it was beautiful. The 25.0 % (97/100): Themed, expressive worlds, exit stage left, 
second time was when I found a game called The Path by Tale of GIANT monsters, raccoons that fy, bears that turn to stone, 
Tales. I was looking for games on Steam, and I found The Path. I music that inspires. I was young still, but up to this point 
was intrigued by the game, and downloaded it. I started playing games we a very specifc thing; this one is Mario, he steps on 
it, and I was fascinated by the images and the music. They turtles and saves the princess, this one is Contra, they’re soldiers 
were like paintings, and the music was haunting, yet uplifting fghting of aliens, this one is Metroid, a space soldier fghting 
at the same time. I even wrote a review for it on Steam, and I aliens. But this one is art, you’re not just moving from one level 
gave it a positive review. I’ve never given a positive review for to the next, you’re on the map, and every world is new and 
any games, but I felt that it was something diferent, something unique. Ghost houses, the sun has a face and it’s mad at you, 
unique and I wanted other people to experience what I experienced. it attacks you, the every day enemies are now huge, you go to 

the sky and there is a castle in the clouds, a world of pipes, and 
21.88 % (99/100): I would like to start with a defnition of a world of lava. The creativity of it all mixed into one game. 
art. I think it’s a set of aesthetic criteria that are as follows: 

22.22% (98/100): An RPG I am playing features digital art cut 
21.62 % (100/100): I have been playing video games since the scene s, a plot that could be considered a novel, and a beautifully 
early 90s and I have played a lot of games. depicted digital world. 

Table 3: Examples of GPT-3 and human stimuli from Experiment 1. For each stimulus, we show the percentage of "Written by a 
human participant" responses in bold, followed by rank of the stimulus when all stimuli are sorted based on the percentages. 
All stimuli are provided as supplementary material. 
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Clearly too long or rambling incoherently (27.5%): 
I’m thinking of the game Journey, what a raw, emotional, and beautiful game. It’s hard to explain why exactly it hit me like that, but I can try. The game is 
about the feeling of being disconnected from the world, and feeling like you’re not part of the world. The environment is so surreal and alien, and there’s no 
way to communicate with the other people in the game. The music made me feel the same way as I feel when I’m completely alone, and I felt like I was being 
brought back to the time when I was little, before I had any friends, and I didn’t know what was going on with the world. I was a blank slate, and Journey 
made me feel that way again. I was just another person in the crowd, just like I was when I was little. I was being brought back to the sense of confusion and 
helplessness I felt when I was little, but at the same time I was being taken out of the world. The game made me feel like I was being taken away from the 
world that I know, and I felt reconnected to the world that I didn’t know... 

Not answering 
I can’t think of a 

the question or dodging the question (20.5%): 
specifc game, but I can tell you about a couple of experiences that I had. 

Incomplete: answer ends before getting to the point (15.2%): 
I would start by saying that I am currently a student in the games and narrative design 
project where we create our own game and we got to choose a "theme" for our game. I 

(gamedesign) program 
chose art as my theme. 

in the third year. We have been working on a 

Other (11.7%): 
I’m thinking of 
to go through the 
a point. And you 

the game The Path (gameplay video), it’s a very simple game. You are in the woods, you need 
woods. There are paths, and the paths are blocked by barbed wire. You can jump over it or you 
get a point if you fnd The Mother. But you can’t just fnd The Mother, you have to fnd a key 

to fnd The Mother, and to do that 
can go around it. If you jump over 
in order to get in her house. 

you need 
it you get 

Contradicts the positive answer in the prompt by claiming that has not experienced game as art (8.2%): 
Well I have to be honest, I have never experienced a game as "art" in the conventional sense. I have never spent time and energy to really 
meaning or message behind a game. I have always enjoyed games, but I have never tried to dissect them. I guess I should give an example. 

understand the 

Imaginary game or gameplay (7.6%): 
I’m thinking of the game I played most recently, which 
a few players, and we travelled together for a few hours. I 
up, we were really close. 

was 
was 

Journey. It was 
tasked to take 

a very 
care of 

emotional experience for me, and I 
a baby, and I was pretty protective 

was moved 
of the little 

by it. I was 
guy. When 

in a 
the 

team 
baby 

with 
grew 

Talks about art more generally, not about a game (4.1%): 
I would describe an art experience as something that’s grandiose 
a lot of emotion. It’s something that you just feel like you need 
something that you just feel, and you need to feel... 

or 
to 

that captures a lot of 
think about and you 

emotion. It’s something 
need to experience. It’s 

that you feel a lot, something that brings 
something that you can’t really explain. 

out 
It’s 

Sentences that clearly contradict each other (3.5%): 
I’m not sure how to answer this. I have learned to appreciate games in diferent ways, but I haven’t really had a moment where I felt 
played Limbo years ago, I remember feeling like it was art. I felt that way because it was a game that made me think about the meaning 
felt like it was something I couldn’t get from any other medium. 

like it 
of life 

was 
and 

art. When 
death, and 

I 
I 

Names a flm or other type of media instead of a game (1.8%): 
I’m thinking of the game Koyaanisqatsi: Life out of Balance’ (1982), directed by Godfrey Reggio. I watched this flm while I was playing a game called 
Path’ (2009), directed by Tale of Tales. Both of these experiences were in the context of an art exhibition and the ’Koyaanisqatsi’ flm was shown in a 
room with a big screen... 

’The 
dark 

Table 4: Examples of the 8 anomaly categories identifed in GPT-3 generations from Experiment 2. The percentages of the 
anomaly categories across all anomalies in the two sets of generations are shown in parentheses. For brevity, long generations 
have been truncated. 

• The games mentioned (RQ: "What games do players experi- the interview with the question "What is the title of the game?" 
ence as art?") (PROMPT 2, Table 1). These answers were also appended to the next 

• Reasons given for experiencing a game as art (RQ: "What prompt further asking "In your opinion, what exactly made you 
makes players consider a game as art?") consider this experience as art?" (PROMPT 3, Table 1). 

Thus, the questions ending the prompts 2 and 3 was kept the 

6.1 Methods same for all generations, but the individual prompts varied based on 
the previous GPT-3 completions. We generated 178 "full interviews" For this experiment, we continued the synthetic interview of ex- (i.e. 178 responses to each of the three prompts) to match the number periments 1 and 2 with follow-up questions that allowed us to of human responses from Bopp et al [6] dataset. To allow inspecting investigate more deeply the similarities between human and GPT-3 how model size and type afects the result, the set of 178 responses generated data. In this experiment, we used all the three prompts was created using fve diferent GPT-3 variants: ada, babbage, curie, shown in Table 1. davinci, and text-davinci-002. In the frst step of data generation, we generated descriptions of In this experiment, we allowed the response to include three art experiences as in the previous experiments (PROMPT 1, Table 1). paragraphs of text, except for the question regarding the game titles These response were included in the next prompt that "continued" 
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where the response was cut after the frst newline as in previous coded datasets and the Python source code are included in the 
experiments. As the prompt regarding game titles was expected supplementary material. 
to result in shorter continuations, for this prompt the maximum Note that although automatic coding using GPT-3 is obviously 
continuation length was set to 50 tokens. more limited than manual coding by an experienced researcher, 

the beneft is that the exact same biases are applied to all compared 
Automatic Qualitative Coding. Our analysis of the "Why art?" datasets, allowing more reliable comparison. 

answers (i.e. completions to PROMPT 3) is based on the observation The embedding, dimensionality reduction, and clustering steps 
that GPT-3 can be prompted to perform a form of qualitative in- are the same as in the BerTopic topic mining approach [26]. We 
ductive coding of the data, using the prompt given in Table 5. The added the coding step as applying the embedding and clustering to 
codes provide compact descriptors of the stated reasons, and allow the raw text data produces very noisy results, in part due to many 
fexible further analysis such as grouping into broader topics and answers listing multiple reasons, which confuses the embedding 
counting the topic frequencies. We perform the following steps: process. The coding distills the essence of the answers, reducing 

the noise, and naturally handles the multiplicity of reasons.(1)      Code the answers using the prompt in Table 5. We used a 
Our automated two-level coding approach is analogous to stagesPython script to insert each answer to the end of the    prompt, 

2 and 3 of qualitative thematic analysis as Braunand extract the codes separated  described by  and  by semicolons from the GPT-
Clarke [9], i.e., coding and then combining the codes into themes. In3 continuations. To the coding as unbiased ossible   make     as ,    p     
the frst stage, one familiarizes oneself with the data and notes downthe prompt in Table 5 is  r   designed to equire     no de       eper    in-
initial ideas, whichxts.  interpr ded Instead, we simply   ouretation of the co te extract   case corresponds to crafting the coding          
prompt. However, although our code groups could be consideredcompact descriptions  given  asof the    reasons. For example, if 
"themes", a full thematic analysis would go further into interpretingthe answer is "The questions it raised and the highly emo-           
the themes and reporting the results with illustrative quotes. Fortional connection that emerged between me and the game",                
the sake of objectivity, we avoid such interpretation, and only lookthe codes             are "raising questions" and "emotional connection" 
at diferences in group prevalence between datasets.(2)   Compute semantic embedding vectors of the codes. Semantic 

embedding maps a word or a piece of text � to a vector 
� Data Quality Metrics. Using the code embedding vectors,, such that the distance v for similar  webetween ectors  v� ∈ R          

compute two standard metrics for generative model data. First, weconcepts or texts is small. depends on the embedding                �     
compute Frechet Distances between the distributions of humanimplementation. We use the embeddings of the text-curie-                
and GPT-3 code embedding vectors that are reduced to 5001 del,   GPT-3 mo  with  dimen- � = 4096. 
sions using UMAP. Frechet Distance is a(3) Reduce the dimensionality of the embedding vectors using        commonly used metric          
inUniform Manifold Approximation and Projection (UMAP)  benchmarking image generators [28] and has later been also       
applied to text embeddings [73]. Second, we compute precision[4, 50]. This  and clustering of   allows efcient visualization  
and the 5-dimensionalthe  recall metrics using  code embeddings and  embedding vectors. 
the procedure of [37]. Intuitively, measur w(4) Cluster  precision es ho  large  the dimensionality-reduced embedding vectors using 
portion of the generatedof  data samples lie close ealHDBSCAN the popular DBSCAN algorithm   r[49], a variant  to  data, and          
recall measures how large portion of the real data22  co[  is vered by]   that automatically selects the epsilon parameter. This 
the generatedallows combining similar codes into larger groups or topics.   data. An ideal generator has both high precision and          
high recall. The metrics are visualized in Figure 5. For more reli-To obtain a    concise human-readable name for a group, we           
able comparison,list the the most representative codes of the group. Here, a   Figure 5 also includes additional results based on            
coding the game experience descriptions in addition to the "Whycode’s representativeness is measured as the cosine   distance      
art?" questions. This additional coding prompt is included in thebetween the code embedding and the average embedding of      
supplementary material.all in   the codes  the group.   

(5) Count the frequencies of the code groups/clusters (i.e., the 
We independently code andpercentage of answers that were assigned at least one code Topic Similarities and Diferences.      

group the compared dataset, and sort the code groups based on theirfrom the group). This allows comparing topic prevalence                  
frequencies. We then use a circular graph (Figure 7) to visualize thebetween human and GPT-3 data. The group frequencies are              
sorted groups and the connections between datasets. Themor code  visualisede   robust than individual  frequencies, as there can 
connection strengths correspond to the cosine similarity of the full-be two codes representing the same reason, just phrased             
dimensionalslightly diferently.  mean normalized embedding vectors of the groups.   
We only included the davinci GPT-3 variant in this analysis, as it 

An example of the coding and grouping results are shown in was the most human-like model based on the data quality metrics 
Figure 4. The fgure highlights the 5 highest-frequency real (i.e. above. 
human data) code groups, and their closest GPT-3 counterparts, 
measured by cosine distance of the normalized mean embedding Answer consistency. It is important that the separately queried 
vectors of groups. Note that although the grouping was done inde- answers continue an interview or a survey in a consistent manner. 
pendently for both datasets, the joint visualization required running Our prompts are designed for this, as the previously generated 
the dimensionality reduction again for the joint data, which may answers by the same synthetic "participant" are included in the 
cause some grouped codes to be located far from others. The full prompt for the next answer. Importantly, the "Why art?" prompt 
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The following presents a qualitative coding of answers from a video game research study. The answers explain why a participant experienced a 
game as art. The codes summarize the given reasons as compactly as possible. If an answer lists multiple reasons, the corresponding codes are 
separated by semicolons. 
### 
Answer: The questions it raised and the highly emotional connection that emerged between me and the game, the experience. 
Codes: raising questions; emotional connection 
### 
Answer: For a game experience to feel like a work of art to me, it would usually be an immersive experience that creates a real emotional 
response. Since games accomplish this through a combination of illustration, animation, sound, music, storytelling elements all together, I 
would consider these types of experiences art. 
Codes: immersive experience; emotional response 
### 
Answer: The fact that each asset was hand drawn in such a unique style. 
Codes: unique visual style 
### 
Answer: <each coded answer inserted here during coding> 

Table 5: The prompt used for automatic qualitative coding. Manually coded few-shot examples are separated by "###". This 
prompt guides GPT-3 to summarize the essential information in the answers (it will produce a wide range of codes, not 
only repeat the ones shown in the few-shot examples). To minimize LLM repetition bias, the example answers were selected 
randomly from the real human dataset, while avoiding answers that result in same codes. For brevity, only 3 out of the total 10 
few-shot examples are shown here. The full prompt can be found in supplementary material. 

(PROMPT 3, Table 1) always included a previously generated art 
experience description (generated using PROMPT 1, Table 1). 

Previously, we have used GPT-3 to generate synthetic Likert-
scale data for a psychological questionnaire (PANAS), by generating 
completions to questionnaire items one-by-one, always including 
the previous answers in the prompt for the next item generation 
[76]. The factorial structure that emerged from generating the data 
this way was similar to human data. This suggests that GPT-3 can 
take coherently into account the previous answers included in a 
prompt. 

Our data is open-ended answers, which does not allow factor 
analysis. Instead, we measured consistency using text embeddings 
computed with the text-curie-001 model. Because both PROMPT 
1 and PROMPT 3 probe diferent aspects of the same experience, 
consistently generated answers should exhibit at least some simi-
larity, which we measured using cosine similarity of answer em-
bedding vectors. Moreover, PROMPT 1 and PROMPT 3 responses 
should be more similar when taken from a single participant (intra-
participant similarity) instead of two randomly chosen participants 
(inter-participant similarity). To investigate this, we computed and 
visualized both intra-participant and inter-participant similarities 
(Figure 6). When computing the means and standard errors, we 
used intra-participant similarities of all 178 participants, and inter-
participant similarities of 178 pairs of randomly shufed (permuted) 
pairs of participants. For more reliable results, the random permu-
tation of participant pairs was repeated 5000 times and the means 
and standard errors in Figure 6 are averaged over these 5000 per-
mutations. 

Game Frequencies. Finally, we also count the frequencies of each 
mentioned game in the human and GPT-3 data. For the human data, 
we included responses from the same 178 participants that were 
included in the topic analyses. For the GPT-3 data, the frequency 
of games was counted from the 178 completions that were queried 
with prompts with the question "What is the title of the game?". 

The frequency of the games was manually counted from the data. 
If there was mentions of two or more games in the same response, 
these were counted as separate mentions. If it was clear that the 
response referred to the same game, small diferences in responses 
were discarded (for example, breath of the wild was categorized as 
the same answer as The Legend of Zelda: Breath of the Wild). If 
the response did not include a specifc game title or we could not 
fnd the game title to refer to a published game, the response was 
ignored. For brevity, we only report results from the davinci and 
text-davinci-002 variants. Note that game frequency analyzes do 
not utilize the automatic coding step described above. 

6.2 Results 
The results of this experiment can be summarized as: 

• Highly similar groups/topics emerge from both real and 
GPT-3 data. Figure 7 shows how many of the most frequent 
groups in the human data correspond to groups that are also 
amongst the most frequent in the GPT-3 data, such as groups 
relating to aspects of story (most frequent in both human and 
GPT-3 data) and music (2nd most frequent in both human and 
GPT-3 data). The visualization of code embedding vectors in 
Figure 4 also indicates that coding both datasets results in 
largely similar codes. 

• Table 6 (most frequently mentioned games) shows that real 
and GPT-3 data discuss some of the same games, like Jour-
ney, Bioshock, and Shadow of the Colossus. However, many 
games in the human data are missing from the GPT-3 gen-
erated data, suggesting that LLM generated synthetic data 
may have less diversity than real data. Only 17.3% of games 
in the human data are mentioned in GPT-3 davinci data (see 
supplementary material for details). 

• Larger GPT-3 variants yield more human-like data (Figure 
5). OpenAI does not disclose the exact sizes of the GPT-
3 models available through its API, but the ada, babbage, 
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Figure 4: A scatterplot of 2D dimensionality-reduced code embeddings of both real and GPT-3 data. The colored markers show 
the real code groups with highest frequencies, and their closest GPT-3 equivalents. The visualization demonstrates how similar 
codes are located close to each other, and that similar codes and groups emerged from both datasets, i.e., there are no large 
clusters with only real or only GPT-3 data. 

Figure 5: Frechet embedding distances (smaller is more human-like) and precision & recall metrics (larger is more human-like) 
for diferent GPT-3 variants. Overall, human-likeness grows with model size from ada to davinci. Curiously, text-davinci-002, 
the latest GPT-3 variant, shows improved precision but lower recall, i.e., the generated data is of high quality but has less 
diversity than real data or the older davinci variant. 

curie, and davinci models have been inferred to correspond 
to the continuum of increasingly larger models evaluated 
in the original paper [24]. The ordering of the models also 
corresponds to increasing text generation cost, supporting 

the conclusion that ada is the smallest model and davinci is 
the largest one. 

• The newest text-davinci-002 model has low recall and clearly 
less diversity than real data. This is evident in the lists of 
games mentioned, where 151 out of 178 answers discuss 
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Journey (only 7 mentions in the real data). Although OpenAI 
recommends this model as the default, our data suggests 
that it should be avoided for user modeling purposes, at least 
when one cares about data diversity. 

• As visualized in Figure 6, both human data and all GPT-3 vari-
ants exhibit higher intra-participant than inter-participant 
answer similarity, indicating at least some degree of con-
sistency in answering consecutive questions. For all of the 
data sources (ada, babbage, curie, davinci, text-davinci-002, 
human data), in all of the 5000 diferent inter-participant per-
mutations, the mean inter-participant similarity was lower 
than the true mean intra-participant similarity. The overall 
slightly higher-than-human GPT-3 similarities, and the no-
tably higher text-davinci-002 similarities probably refect the 
data diversity issues noted above. 

Based on the above, one can conclude that investigating synthetic 
data can provide plausible answers to real research questions, with 
some important caveats. First, real data can have more diversity. 
This is especially true when using the later text-davinci-002 model. 
The diversity problems of the model can be explained through its 
training procedure. The model is based on the InstructGPT series, 
which has been fnetuned based on user feedback [58]. While this 
procedure does improve the average sample quality, it does not 
encourage diversity. 

Second, synthetic data can also provide some misleading results, 
for example, many of the lower frequency groups in synthetic data 
do not have direct corresponding group in the human data. Some 
of the groups are hard to interpret (e.g. "unknown, unquantifable, 
unfn.."), however, others might reasonably be expected to describe 
art experiences (e.g. "connection to other players"). When compar-
ing the datasets, it should be noted that the sample of Bopp et al. 
[7] was not representative, thus the human dataset might also miss 
some themes that might arise in a more comprehensive sample. 

7 DISCUSSION 
In our three experiments, we have investigated the quality of GPT-3 
answers to open-ended questions about experiencing video games 
as art. We can now summarize the answers to the research ques-
tions we posed in the introduction (for more details, see the results 
sections of each experiment): 

Can one distinguish between GPT-3 generated synthetic question 
answers and real human answers? Our Experiment 1 suggest that 
GPT-3 can be capable of generating human-like answers to ques-
tions regarding subjective experiences with interactive technology, 
at least in our specifc context. Surprisingly, our participants even 
responded "Written by a human participant" slightly more often 
for GPT-3 generated texts than for actual human written texts. 

What kinds of errors does GPT-3 make? In Experiment 2, we 
identifed multiple common failure modes. Some errors such as 
the model dodging a question could possibly be detected and the 
answers regenerated automatically, using a text classifer model or 
GPT-3 itself with a few-shot classifcation prompt. A particularly 
difcult error category is factual errors that cannot be detected 
based on superfcial qualities of the generated text, but instead 
require domain knowledge about the discussed topics. 

Can synthetic data provide plausible answers to real HCI research 
questions? What similarities and diferences are there in GPT-3 and 
real data? Experiment 3 indicates that similar topics are discussed in 
both datasets, and that synthetic data can reveal plausible answers 
for research questions like "Why are games experienced as art?" and 
"What games do people experience as art?". However, although GPT-
3 correctly discusses some of the same games as real participants, 
the GPT-3 data exhibits considerably less diversity (e.g., the "Journey 
bias" in our case). GPT-3 also discusses some topics not found in 
the real data, although some diferences would be expected even 
between two sets of real human data, given the non-representative 
sample of Bopp et al. [6, 7]. 

Taken together, we fnd the results promising and intriguing, 
considering that even more capable models than GPT-3 have already 
appeared [e.g. 14]. LLM scaling laws predict that their performance 
will improve with new and even larger models [32, 66, 78], and the 
quality metrics of our Experiment 3 also indicate that larger scale 
yields more human-like data. 

7.1 Use Cases for Synthetic Data 
Regarding the possible uses for synthetic data, it is important to 
consider the trade-of between data quality, latency, and cost. GPT-
3 -generated data is of lower quality than real data—at least if 
disregarding the problems of online crowdsourcing such as bots 
and careless, insincere or humorous responses—but GPT-3 also has 
very low latency and cost. The crucial question then becomes: When 
can low cost and latency ofset issues with quality? 

We believe the synthetic data can be useful in initial pilot re-
search or experiment design where one explores possible research 
ideas or hypotheses or what people might say or write, before 
investing in real participant recruitment and data collection. The 
same should apply both to academic research and designers trying 
to understand their users. In such work, LLMs ofer an alternative 
to other exploration tools such as web searches. 

In comparison to web searches, LLMs have two primary benefts. 
First, they can directly provide data in the same format as an actual 
study. This allows using the synthetic data for pilot-testing and 
debugging of data analysis and visualization pipelines. Also, when 
pilot testing, seeing the data in the right format can arguably help 
the researcher explore the space of possibilities for the design of the 
actual study. Such exploration benefts from the low latency and cost 
of synthetic data collection, especially if combined with automatic 
data analysis similar to our Experiment 3. For example, reading the 
synthetic answers and inspecting the emerging codes and themes 
may give ideas for further questions to ask in an interview. 

The second beneft over web searches is that LLMs can generalize 
to new tasks and data, as reviewed in Section 2.1. This suggests that 
LLMs may at least in some cases generate answers to questions that 
are not directly searchable from the training data. For instance, the 
real human data used in this paper was released in July 2020 [6], i.e., 
it cannot have been used in training the GPT-3 variants we tested, 
except for text-davinci-002. According to OpenAI documentation, 
text-davinci-002 training data ends in 2021 and the data of older 
variants ends in 2019. However, it is not currently possible to predict 
how well a model generalizes for a specifc case, without actually 
testing. 
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Figure 6: A) Mean intra-participant and inter-participant cosine similarities between the experience descriptions and "Why 
art?" answers. The shaded areas indicate standard errors of the mean. B) Cosine similarity matrices between the experience 
descriptions and "Why art?" answers of all 178 synthetic and human participants. The intra-participant similarities are on the 
matrix diagonals, whereas the of-diagonal elements display inter-participant similarities. 

Rank Human data GPT-3 davinci GPT-3 text-davinci-002 

1. The Legend of Zelda: BOTW 10 Journey 44 Journey 151 
2. Journey 7 The Last of Us 12 Flower 5 
3. Nier: Automata 7 Dear Esther 8 That Dragon, Cancer 3 
4. Red Dead Redemption 2 6 Portal 7 Braid 2 
5. The Last of Us Part II 6 Bioshock 6 Shadow of the Colossus 2 
6. Firewatch 5 Shadow of the Colossus 5 Dreams of Geisha 1 
7. Hollow Knight 5 The Path 5 Final Fantasy VII 1 
8. Disco Elysium 4 Limbo 3 Flow 1 
9. Life Is Strange 4 Mirror’s Edge 3 Frog Fractions 1 
10. Bioshock 3 The Stanley Parable 3 Halo 5: Guardians 1 
11. Shadow of the Colossus 3 Final Fantasy IX 2 Kingdom Hearts 1 
12. The Witcher 3 3 Final Fantasy VII 2 The Legend of Zelda: BOTW 1 
13. Undertale 3 Flower 2 Nier: Automata 1 

14. –> ... and 97 other games 113 ... and 65 other games 69 ... and 10 other games 10 

Table 6: Most common games in human, GPT-3 davinci, and GPT-3 text-davinci-002 data. The numbers in bold indicate how 
many times the game was mentioned in the data. The table shows all the games that were mentioned more than twice in the 
human data. The games with corresponding frequency ranks from the GPT-3 davinci and text-davinci-002 data are shown in 
the second and third column. Ties are sorted in alphabetical order. 

To understand the limits and opportunities of generalization, 
consider that LLM text training data typically originates from a 
generative human thought process afected by multiple latent vari-
ables such as the communicated content and the writer’s emotion, 
intent, and style. Now, assuming that the training dataset is too 
large to simply memorize, an efcient way to minimize the next 
token prediction error is to learn internal data representations and 
computational operations that allow mimicking the data-generating 
process.3 For example, vector representations of words produced 
by language models can exhibit semantic-algebraic relations such 

3Recall that in a deep multilayer neural network such as an LLM, each layer performs 
one step of a multi-step computational process, operating on the representations 
produced by the previous layer(s). The power of deep learning lies in the ability to 
automatically learn good representations [5, 40]. 

as ����� − ��� = ���� − ����� [42, 51]; this allows subsequent 
computational operations to perform semantic manipulations. To 
minimize the average prediction error over all data, an LLM should 
prioritize representing and operating on latent variables that afect 
a large portion of the data. Hence, one should care less about par-
ticular facts that only afect a small subset of the data, but assign a 
high priority to commonly infuential variables such as emotion, 
style, and political views. Fittingly, LLMs are known to make factual 
errors, but can generate text in many literary styles [8], perform 
sentiment analysis [64], generate human-like self-reports of emo-
tion [76], and predict how political views afect voting behavior and 
which words people associate with members of diferent political 
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Figure 7: A circular graph presenting the human and GPT-3 davinci data resulting from the automatic qualitative coding. Each 
human data group is connected with a line to the most similar group in the GPT-3 data. The lines are color coded based on 
cosine similarity. The color coding and sorting of the group nodes is based in how frequent the groups were in the two datasets 
(groups with highest frequency on top). Here, group frequencies are reported as percentages. 

parties [2]. LLM representations have also been observed to encode 
emotion and sentiment [36, 64]. 

Considering the above, a reasonable working assumption is that 
although LLMs can be expected to make factual errors when dis-
cussing interactive software or HCI artefacts—especially novel ones 
not included in training data—they may be useful in generating 
data about psychological latent variables such as user emotion and 

motivation in response to a hypothetical scenario described in the 
prompt, or about user experiences more generally, as in this paper. 

Obviously, confrming hypotheses or arriving at conclusions 
about what people really think, feel, or need should only be done 
based on real data. LLM-based exploration could also steer inter-
view questions in a more biased direction, which will subsequently 
reduce data quality in interviews with real users. On the other hand, 
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other exploration techniques such as web searches or initial inter-
views with small participant samples can also be biased. More work 
is needed to test and evaluate LLMs in real research and design 
projects. 

7.2 Misuse potential 
Unfortunately, the quality requirements for synthetic data may be 
much lower for misuse than for actual research. In particular, GPT-3 
and other LLMs may exacerbate the data quality problems of online 
crowdsourcing platforms. The reward incentives of such platforms 
encourage completing studies as fast as possible, in the extreme case 
by utilizing bots (e.g., [25]) and/or multiple accounts. Based on our 
experiments, it is clear that advanced language models can enable 
bots to generate more convincing questionnaire answers. Similarly, 
human participants might artifcially increase their efciency by 
generating answers to open-ended questions that may be slow to 
answer for real. 

Now that GPT-3 is widely available outside the initially closed 
beta program, there is a risk that online crowdsourcing of self-report 
data becomes fundamentally unreliable. If the risk is realized, new 
tools are needed for detecting non-human data. Unfortunately, 
this is likely to become increasingly harder as language models 
advance. The risk may also imply a change in the cost-beneft 
analysis between research data sources. If one cannot anymore 
trust that online crowdsourced textual research data is from real 
humans, researchers may need to rely more on time-consuming 
and expensive laboratory studies than previously. If this is the case, 
LLM-generated fast and cheap synthetic data may become even 
more valuable for initial exploration and piloting. 

7.3 GPT-3 and Emotions 
As an incidental observation, the open question data of Experiment 
1 suggests that there might be a common belief that human-written 
texts can be recognized based on the emotion that the text conveys. 
If this is the case, the belief is a probable contributor to the high rate 
of human evaluations for some of our GPT-3 texts. For example, 
many of the top human-like rated GPT-3 stimuli contain detailed 
accounts of how the player has felt during the gameplay, including 
specifc emotional responses such as "I felt his pain, his fear, and his 
struggles." (see Table 3). Considering this, it is not surprising that 
these texts fooled the participants into thinking they were written 
by humans. If the belief that artifcial intelligence cannot generate 
descriptions of experiences that the reader interprets as emotional 
is a more general phenomenon, it might be of importance when 
considering the risks related to language model misuse. For exam-
ple, fake social media accounts that write about "their" emotional 
experiences might be perceived as more believable. 

7.4 Future Directions 
To mitigate the problems and better understand the biases of gener-
ated data, future eforts are needed in collecting reference human 
data together with extensive demographic information, and includ-
ing the demographic information in the prompt to guide synthetic 
data generation. This would allow a more in-depth and nuanced 
inspection of the similarities and diferences between real and hu-
man responses, including the ability of LLMs to portray diferent 

participant demographics. In initial tests, we have observed GPT-3 
adapting its output based on participant age and gender given in 
the prompt, when generating synthetic answers to the question 
"What is your favorite video game and why?". 

In addition to training larger and better models, data quality 
could be improved by using bias correction techniques such as the 
calibration approach of Zhao et al. [83], which does not require a 
slow and expensive retraining of a model. However, correct use of 
such technique also requires reference data—from a user model-
ing perspective, one should not try to remove the natural biases 
and imperfections of humans. On the other hand, problems of real 
human data such as social desirability bias and careless or humor-
ous answers should be avoided in synthetic data. We hypothesize 
that with a sufciently capable language model, this could be im-
plemented by describing a virtual participant’s motivations and 
attitudes as part of the prompt. 

Although not yet explored in this paper, it might be possible to 
use LLMs to augment AI agents performing simulated user testing, 
which is currently focused on non-verbal data such as task difculty 
or ergonomics [13, 30, 57]. LLMs could be integrated by generating 
textual descriptions of the test situation and agent behavior, and 
having the LLM generate synthetic "think aloud" descriptions of 
what the agent feels or thinks. This might greatly expand what 
kinds of data and insights simulated user testing can produce. 

7.5 Limitations 
The recruitment of Experiment 1 was not limited to native English 
speakers, and a sample with only native speakers might have dif-
ferent distinguishability scores. Additionally, as our sample was 
based on online crowdsourcing where the participants have at least 
an indirect incentive to respond fast, it is possible that laboratory 
studies would show diferent rates of distinguishability between 
human and GPT-3 generated texts. 

We only examined one HCI context: art experiences in video 
games, thus the generalizability of our results is unclear. Future 
work should investigate the scope of possibilities for synthetic data 
more thoroughly, e.g., for what kinds of questions synthetic data is 
and is not helpful for. For instance, we only evaluated open-ended 
question answers and are working on expanding our study to the 
quantitative Likert-scale aesthetic emotion data that Bopp et al. also 
collected [6]. We also only tested one kind of prompt structure for 
generating the synthetic data. Although we used the same questions 
as in the reference human data—which is logical for evaluating 
human-likeness—we acknowledge that results may be sensitive 
to the wording of the other parts of the prompt. More research is 
needed on prompt design for HCI data generation, although we 
believe that our prompt design can be a promising starting point in 
many cases. Also, we did not investigate how useful researchers 
rate LLM use when designing new interview paradigms. This is an 
important direction for future studies. 

Each of our three experiments probes a diferent aspect of the 
human-likeness and quality of GPT-3 generations. Although our ex-
periments complement each other, they do not yet paint a complete 
picture—there is no all-encompassing defnition of human-likeness, 
and the relevant features depend on context. Future studies should 



Evaluating Large Language Models in Generating Synthetic HCI Research Data: a Case Study CHI ’23, April 23–28, 2023, Hamburg, Germany 

investigate how realistically synthetic data can represent partici-
pants from diferent demographic groups, and expand the evalua-
tion of the human-likeness to other important features. Fortunately, 
new benchmarks and metrics are emerging for evaluating LLM 
biases [18, 19, 41]. 

Finally, one would often like to explore the reasons and expla-
nations for an observed data distribution. Our "Why art?" ques-
tion demonstrates that GPT-3 can be directly prompted for further 
insights in relation to previous generations (here: the experience 
descriptions). Naturally, the model cannot produce real causal expla-
nations of why it generated something, it merely samples an expla-
nation that is probable given the earlier generations included in the 
prompt. This is reminiscent of the research on Chain-of-Thought 
(CoT) prompting: An LLM can be prompted to provide step-by-step 
explanations for its "thought process", which can actually improve 
LLM reasoning capabilities [33]. The primary limitation is that 
generated explanations should be treated as hypotheses to be vali-
dated with real data, rather than trustworthy evidence. Our present 
experiments also focus on qualitative data—future work should 
explore collecting both quantitative and qualitative synthetic data, 
e.g., Likert-scale responses augmented with open-ended questions 
that probe the reasons. 

8 CONCLUSION 
We have explored and evaluated a general-purpose large language 
model (GPT-3) in generating synthetic HCI research data, in the 
form of open-ended question answers about experiencing video 
games as art. Our results indicate that GPT-3 responses can be very 
human-like in the best case, and can discuss largely similar topics as 
real human responses, although future work is needed to verify this 
with other datasets and research topics. On the other hand, GPT-3 
responses can have less diversity than real responses, and contain 
various anomalies and biases. More research is needed on ways to 
prune anomalous responses and/or guide the model towards better 
and less biased responses. 

Regarding use cases, we believe that LLMs can be useful in ini-
tial research exploration and pilot studies, especially as the models 
continue to improve. However, one must carefully consider the 
potential efects of the models’ biases and confrm any gained in-
sights with real data. As a downside, our results indicate that LLMs 
might make cheating in crowdsourcing platforms such as Amazon 
Mechanical Turk more prevalent and harder to detect. This poses 
a risk of crowdsourced self-report data becoming fundamentally 
unreliable. 

OpenAI’s GPT-3 is currently the largest and most capable pub-
licly available language model. However, other technology compa-
nies have joined the race to train the best performing (and largest) 
generative language model. The past 12 months have seen the 
introductions of (among others) Microsoft’s and NVIDIA’s 530 bil-
lion parameter model Megatron-Turing NLG [75], DeepMind’s 280 
billion parameter model Gopher [66] and Google AI’s 540-billion 
parameter model Pathways [14]. During this paper’s review period, 
OpenAI also released a new and improved GPT-3 variant called 
ChatGPT [56]. The size of the models as well as the performance 
in numerous NLP benchmark tasks is increasing [14, 66, 75]. It will 
be intriguing to compare the present results to the generations of 

even more capable models in the future. However, the availability 
of the latest models is limited, as they are too large to run on con-
sumer hardware or even on the computing infrastructures of most 
academic research labs. In practice, one may have to wait for the 
models to be released as cloud services, similar to GPT-3. 
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