
Evaluating location predictors with
extensive Wi-Fi mobility data

Libo Song, David Kotz
Dartmouth College

6211 Sudikoff, Hanover, NH 03755
{lsong,dfk}@cs.dartmouth.edu

Ravi Jain, Xiaoning He
DoCoMo USA Labs

181 Metro Drive, San Jose, CA 95110
{jain,xiaoning}@docomolabs-usa.com

Abstract— Location is an important feature for many appli-
cations, and wireless networks can better serve their clients by
anticipating client mobility. As a result, many location predictors
have been proposed in the literature, though few have been
evaluated with empirical evidence. This paper reports on the
results of the first extensive empirical evaluation of location
predictors, using a two-year trace of the mobility patterns of
over 6,000 users on Dartmouth’s campus-wide Wi-Fi wireless
network.

We implemented and compared the prediction accuracy of
several location predictors drawn from two major families
of domain-independent predictors, namely Markov-based and
compression-based predictors. We found that low-order Markov
predictors performed as well or better than the more complex and
more space-consuming compression-based predictors. Predictors
of both families fail to make a prediction when the recent
context has not been previously seen. To overcome this drawback,
we added a simple fallback feature to each predictor and
found that it significantly enhanced its accuracy in exchange
for modest effort. Thus the Order-2 Markov predictor with
fallback was the best predictor we studied, obtaining a median
accuracy of about 72% for users with long trace lengths. We
also investigated a simplification of the Markov predictors, where
the prediction is based not on the most frequently seen context
in the past, but the most recent, resulting in significant space
and computational savings. We found that Markov predictors
with this recency semantics can rival the accuracy of standard
Markov predictors in some cases. Finally, we considered several
seemingly obvious enhancements, such as smarter tie-breaking
and aging of context information, and discovered that they had
little effect on accuracy. The paper ends with a discussion and
suggestions for further work.

I. INTRODUCTION

A fundamental problem in mobile computing and wireless
networks is the ability to track and predict the location of mo-
bile devices. An accurate location predictor can significantly
improve the performance or reliability of wireless network
protocols, the wireless network infrastructure itself, and many
applications in pervasive computing. These improvements lead
to a better user experience, to a more cost-effective infrastruc-
ture, or both.

For example, in wireless networks the SC (Shadow Cluster)
scheme can provide consistent QoS support level before and
after handover [1]. In the SC scheme, all cells neighboring a
mobile node’s current cell are requested to reserve resources
for that node, in case it moves to that cell next. Clearly,
this approach ties up more resources than necessary. Several

proposed SC variations [2] attempt to predict the device’s
movement so the network can reserve resources in only certain
neighboring cells.

Location prediction has been proposed in many other areas
of wireless cellular networks as a means of enhancing perfor-
mance, including better mobility management [3], improved
assignment of cells to location areas [4], more efficient pag-
ing [5], and call admission control [6].

Many pervasive computing applications include opportu-
nities for location-based services and information. With a
location predictor, these applications can provide services or
information based on the user’s next location. For example,
consider a university student that moves from dormitory to
classroom to dining hall to library. When the student snaps a
photo of his classmates using a wireless digital camera and
wishes to print it, the camera’s printing application might
suggest printers near the current location and near the next
predicted location, enabling the photo to finish printing while
the student walks across campus.

Both of these examples depend on a predictor that can
predict the next wireless cell visited by a mobile device, given
both recent and long-term historical information about that
device’s movements. Since an accurate prediction scheme is
beneficial to many applications, many such predictors have
been proposed, and recently surveyed by Cheng et al. [7].

To the best of our knowledge, no other researchers have
evaluated location predictors with extensive mobility data from
real users. Das et al. use two small user mobility data sets
to verify the performance of their own prediction schemes,
involving a total of five users [8].

In this paper we compare the most significant domain-
independent predictors using a large set of user mobility data
collected at Dartmouth College. In this data set, we recorded
for two years the sequence of wireless cells (Wi-Fi access
points) frequented by more than 6000 users.

After providing more background on the predictors and our
accuracy metric, we present the detailed results we obtained by
running each predictor over each user’s trace. We found that
even the simplest classical predictors can obtain a median pre-
diction accuracy of about 72% over all users with sufficiently
long location histories (1000 cell crossings or more), although
accuracy varied widely from user to user. This performance
may be sufficient for many useful applications. On the other

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

hand, many applications will need higher accuracy.
Although predicting the time of the occurrence of next

movement besides the next location is important for some
applications, in this paper we focus on predicting the next
location, since most domain-independent predictors do not
predict time.

We found that the simple Markov predictors performed as
well or better than the more complicated LZ predictors, with
smaller data structures. We also found that many predictors
often fail to make any prediction, but our simple fallback
technique provides a prediction and improves overall accuracy.
We conclude the paper with a more extensive summary of our
conclusions.

II. BACKGROUND

In this section, we discuss the nature of location prediction,
and summarize several predictors from the literature. We
define the metrics we used to evaluate the predictors, and how
we collected the empirical data set we used in our evaluation.

A. Location

In the context of this work we assume that a user resides at
a given discrete location at any given time; sample locations
include “room 116” within a building, “Thayer Dining Hall”
within a campus, “cell 24” within a cellular network, or
“berry1-ap” access point within an 802.11 wireless network.
(In our data, as we discuss below, each location is the name of
an access point with which the user’s device associated.) We
list all possible such locations in a finite alphabet A, and can
identify any location as a symbol a drawn from that alphabet.
For a given user we list the sequence of locations visited, its
location history L, as a string of symbols. If the history has
n locations, Ln = a1a2 . . . an.

The location history may be a sequence of location obser-
vations, for example, the user’s location recorded once every
five seconds, or a sequence of location changes. In the latter
case, ai �= ai+1 for all 0 < i < n. All of the predictors we
consider in this paper are agnostic to this issue. It happens
that our data is a sequence of location changes.

All of the predictors we consider in this paper are domain-
independent and operate on the string L as a sequence of
abstract symbols. They do not place any interpretation on the
symbols. For that reason, our location history does not include
any timing information, or require any associated information
relating the symbols such as geographic coordinates. As an
example, though, consider the environment with six wireless
cells (labeled b through g) diagrammed in Figure 1, accompa-
nied by one possible location history.

B. Domain-independent predictors

In this paper we consider only domain-independent predic-
tors; we will examine domain-dependent predictors in future
work. We are interested in on-line predictors, which examine
the history so far, extract the current context, and predict the
next location. Once the next location is known, the history is

g
c

b
d

e

f

Sample location history L = gbdcbgcefbdbde

Figure 1. Sample cell map and location history

now one symbol longer, and the predictor updates its internal
tables in preparation for the next prediction.

During the rest of this section, we discuss two families
of domain-independent predictors, Order-k Markov predictors
and LZ-based predictors.

Markov family
The order-k (or “O(k)”) Markov predictor assumes that the

location can be predicted from the current context, that is, the
sequence of the k most recent symbols in the location history
(an−k+1, . . . , an). The underlying Markov model represents
each state as a context, and transitions represent the possible
locations that follow that context.

Consider a user whose location history is L = a1a2 . . . an.
Let substring L(i, j) = aiai+1 . . . aj for any 1 ≤ i ≤ j ≤ n.
We think of the user’s location as a random variable X . Let
X(i, j) be a string XiXi+1 . . . Xj representing the sequence
of random variates Xi,Xi+1, . . . Xj for any 1 ≤ i ≤ j ≤ n.
Define the context c = L(n−k+1, n). Let A be the set of all
possible locations. The Markov assumption is that X behaves
as follows, for all a ∈ A and i ∈ {1, 2, . . . , n}.

P (Xn+1 = a|X(1, n) = L)
= P (Xn+1 = a|X(n − k + 1, n) = c)
= P (Xi+k+1 = a|X(i + 1, i + k) = c)

where the notation P (Xi = ai| . . .) denotes the probability
that Xi takes the value ai. The first two lines indicate the
assumption that the probability depends only on the context
of the k most recent locations. The latter two lines indicate
the assumption of a stationary distribution, that is, that the
probability is the same anywhere the context is the same.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

These probabilities can be represented by a transition proba-
bility matrix M . Both the rows and columns of M are indexed
by length-k strings from Ak so that P (Xn+1 = a|X(1, n) =
L(1, n)) = M(s, s′) where s = L(n − k + 1, n), the current
context, and and s′ = L(n−k+2, n)a, the next context. In that
case, knowing M would immediately provide the probability
for each possible next symbol of L.

Since we do not know M , we can generate an estimate
P̂ from the current history L, the current context c, and the
equation

P̂ (Xn+1 = a|L) =
N(ca, L)
N(c, L)

(1)

where N(s′, s) denotes the number of times the substring s′

occurs in the string s.
Given this estimate, we can easily define the behavior of the

O(k) Markov predictor. It predicts the symbol a ∈ A with the
maximum probability P̂ (Xn+1 = a|L), that is, the symbol
that most frequently followed the current context c in prior
occurrences in the history. Notice that if c has never occurred
before, the above equation evaluates to 0/1 = 0 for all a, and
the O(k) Markov predictor makes no prediction.

If the location history is not generated by an order-k Markov
source, then this predictor is, of course, only an approximation.

Fortunately, O(k) Markov predictors are easy to implement.
Our implementation maintains an estimate of the (sparse)
matrix M , using Equation 1. To make a prediction, the
predictor scans the row of M corresponding to the current
context c, choosing the entry with the highest probability for its
prediction. After the next move occurs, the predictor updates
the appropriate entry in that row of M , and updates c, in
preparation for the next prediction.

Vitter and Krishnan [9] use O(k) predictors to prefetch disk
pages, and prove interesting asymptotic properties of these
predictors. Other variations of Markov predictors can be found
in the survey [7].

LZ family
LZ-based predictors are based on a popular incremental

parsing algorithm by Ziv and Lempel [10] often used for text
compression. This approach seems promising because (a) most
good text compressors are good predictors [9] and (b) LZ-
based predictors are like the O(k) Markov predictor except
that k is a variable allowed to grow to infinity [5]. We briefly
discuss how the LZ algorithm works.

Let γ be the empty string. Given an input string s, the LZ
parsing algorithm partitions the string into distinct substrings
s0, s1, . . . , sm such that s0 = γ, and for all j > 0 substring
sj without its last character is equal to some si, 0 ≤ i < j,
and s0s1 . . . sm = s. Observe that the partitioning is done
sequentially, i.e., after determining each si the algorithm
only considers the remainder of the input string. Using the
example from Figure 1, s = gbdcbgcefbdbde is parsed as
γ, g, b, d, c, bg, ce, f, bd, bde.

Associated with the algorithm is a tree, the LZ tree, that is
grown dynamically during the parsing process. Each node of

γ

g:1
b:4

d:1
c:2

f:1

g:1 e:1

s = gbdcbgcefbdbde
si = γ, g, b, d, c, bg, ce, f, bd, bde

d:2

e:1

Figure 2. Example LZ parsing tree

the tree represents one substring si. The root is labeled γ and
the other nodes are labeled with a symbol from A so that the
sequence of symbols encountered on the path from the root
to that node forms the substring associated with that node.
Since this LZ tree is to be used for prediction, it is necessary
to store some statistics at each node. The tree resulting from
parsing the above example is shown in Figure 2; each node is
labeled with its location symbol and the value of its statistic,
a counter, after parsing.

To parse a (sub)string s we trace a path through the LZ tree.
If any child of the current node (initially the root) matches the
first symbol of s, remove that symbol from s and step down to
that child, incrementing its counter; continue from that node,
examining the next symbol from s. If the symbol did not match
any child of the current node, then remove that symbol from
s and add a new child to the current node, labeled with that
symbol and counter=1; resume parsing at the root, with the
now shorter string s.

Based on the LZ parsing algorithm, several predictors have
been suggested in the past [9], [11], [12], [5], [6]. We describe
some of these below and then discuss how they differ. For
more detailed information, please refer to [7].

LZ predictors. Vitter and Krishnan [9] considered the case
when the generator of L is a finite-state Markov source, which
produces sequences where the next symbol is dependent on
only its current state. (We note that a finite-state Markov
source is different from the O(k) Markov source in that the
states do not have to correspond to strings of a fixed length
from A.) They suggested estimating the probability, for each
a ∈ A, as

P̂ (Xn+1 = a|L) =
NLZ(sma, L)
NLZ(sm, L)

(2)

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

where NLZ(s′, s) denotes the number of times s′ occurs as a
prefix among the substrings s0, . . . , sm which were obtained
by parsing s using the LZ algorithm.

It is worthwhile comparing Equation (1) with Equation (2).
While the former considers how often the string of interest
occurs in the entire input string, the latter considers how often
it occurs in the partitions si created by LZ. Thus, in the
example of Figure 2, while dc occurs in L it does not occur
in any si.

The LZ predictor chooses the symbol a in A that has
the highest probability estimate, that is, the highest value of
P̂ (Xn+1 = a|L). An on-line implementation need only build
the LZ tree as it parses the string, maintaining node counters
as described above. After parsing the current symbol the
algorithm rests at a node in the tree. It examines the children
of the current node, if any, and predicts the symbol labeling
the child with the highest counter, which indicates the highest
frequency of past occurrence. If the current node is a leaf, the
LZ predictor makes no prediction.

LZ-Prefix and PPM.
Bhattacharya and Das propose a heuristic modification to

the construction of the LZ tree [5], as well as a way of using
the modified tree to predict the most likely cells that contain
the user so as to minimize paging costs to locate that user.

As we mention above, not every substring in L forms a node
si in the LZ parsing tree. In particular, substrings that cross
boundaries of the si, 0 < i ≤ m, are missed. Further, previous
LZ-based predictors take into account only the occurrence
statistics for the prefixes of the leaves. To overcome this,
they proposed the following modification. When a new leaf
is created for si, all the proper suffixes of si (i.e., all the
suffixes not including si itself) are also inserted into the tree.
If a node representing a suffix does not exist, it is created;
and the occurrence counter for every prefix of every suffix is
incremented.

Example. Suppose the current leaf is sm = bde and the
string de is one that crosses boundaries of existing si for
1 ≤ i < m. Thus de has not occurred as a prefix or a suffix
of any si, 0 < i < m. The set of proper suffixes of sm is
Sm = {γ, e, de}, and since there is no node representing the
substring for de, it is created. Then the occurrence frequency
is incremented for the root labeled γ, the first-level children b
and d, and the new leaf node de. Figure 3 shows the tree after
this transformation, which we call “LZ+prefix” or “LZP” for
short.

We observe that this heuristic only discovers substrings
that lie within a leaf string. Nonetheless, at this point it is
possible to use the modified LZ tree and apply one of the
existing prediction heuristics, e.g., use Eq. 2 and the Vitter-
Krishnan method. Indeed, we include the LZP predictor in our
comparison.

Bhattacharya and Das [5] propose a further heuristic that
uses the LZP tree for prediction. This second heuristic is
based on the Prediction by Partial Match (PPM) algorithm
for text compression [13]. (The PPM algorithm essentially

γ

g:2
b:4

d:3
c:2

f:1

g:1 e:1

s = gbdcbgcefbdbde
si = γ, g, b, d, c, bg, e, ce, f, bd, de, bde

d:2

e:1

e:1

e:2

Figure 3. Example LZP parsing tree

attempts to “blend” the predictions of several O(k) Markov
predictors; we do not describe it here in detail.) Given a
leaf string sm, construct its set of proper suffixes Sm and
update the LZP tree as described above. Then, for each such
suffix, the heuristic considers the subtree rooted at the suffix
and finds all the paths in this subtree originating from this
subtree root. The PPM algorithm is then applied to this set of
paths. PPM first computes the predicted probability of each
path, and then uses these probabilities to compute the most
probable next symbol(s) based on their weights (number of
occurrences) in the path. We include the “LZ+prefix+PPM”
predictor, nicknamed “LeZi” [5], in our comparison.

C. Breaking ties

In our descriptions of the predictors, above, we indicate
that each predicts the symbol with the highest probability of
occurring next, given the current state of its data structure
(Markov matrix or LZ tree). It is quite possible, though, for
there to be a tie for first place, that is, several symbols with
equal probability and none with higher probability. None of the
literature indicates how to break a tie, yet our implementations
must make a specific choice. We implemented 3 different tie-
break methods:

• First added: among the symbols that tie, we predict the
first one added to the data structure, that is, the first one
seen in the location history.

• Most recently added: among the symbols that tie, we
predict the one that was most recently added to the data
structure.

• Most recent: among the symbols that tie, we predict the
one most recently seen in the history.

In Figure 4, we show the ratio of the number of ties and the
number of predictions, using a cumulative distribution function
(CDF) across all users having more than 1000 movements for
different predictors (the O(2) Markov fallback predictor will
be described later). Fortunately, Figure 4 shows that most of
the users had few ties, less than about 10% of all predictions.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Ratio of number of ties and number of predictions

O(1) Markov
O(2) Markov fallback

LZ
LZP

Figure 4. Ratio of number of ties and the number of predictions

Our experiments showed that the results were not significantly
affected by the choice of a tie-breaking method. We used the
“first added” method throughout the results below, and do not
consider tie-breakers further.

D. Entropy metric

We believe that there are some intrinsic characteristics of
a trace that ultimately determine its predictability and hence
the performance of different predictors. In the results section,
we compare the accuracy metric with the entropy metric, for
each user, on several predictors.

In general, the entropy H(X) of a discrete random variable
X is defined as

H(X) = −
∑
x∈X

P (x) log2 P (x) (3)

where X is the set of all possible of values of x.
In this paper, we compute the entropy of a given user under

the O(k) Markov predictor. We obtain the probabilities P (x)
from the data structures constructed by that predictor on that
user’s trace.

If C is the set containing all the context strings encountered
in parsing a location history L, then the conditional entropy
is

H(X|C) = −
∑
c∈C

N(c, L)
n − k + 1

∑
a∈A

P (x = a|c) log2 P (x = a|c)
(4)

E. Accuracy metric

During an on-line scan of the location history, the predictor
is given a chance to predict each location. There are three
possible outcomes for this prediction, when compared to the
actual location:

• The predictor correctly identified the location of the next
move.

• The predictor incorrectly identified the location of the
next move.

• The predictor returned “no prediction.”

All predictors encounter situations in which they are unable
to make a prediction; in particular, all realistic predictors will
have no prediction for the first location of each user trace.

We define the accuracy of a predictor for a particular user
to be the fraction of locations for which the predictor correctly
identified the next move. Thus, “no prediction” is counted as
an incorrect prediction. In the future we plan to examine other
metrics that can better distinguish the two forms of incorrect
prediction (there may be some applications that may prefer no
prediction to a wild guess). For now, this metric best reflects
the design of predictors common in the literature.

F. Data collection

We have been monitoring usage on the Wi-Fi network at
Dartmouth College since installation began in April 2001.
Installation was largely complete by June 2001, and as of
March 2003 there are 543 access points providing 11 Mbps
coverage to the entire campus. Although there was no specific
effort to cover outdoor spaces, the campus is compact and the
interior APs tend to cover most outdoor spaces. The wireless
population is growing fast. As of May 2003 there are between
2,500 and 3,500 users active in any given day.

The access points transmit a “syslog” message every time
a client card associated, re-associated, or disassociated; the
message contains the unique MAC address of the client card.
Although a given card might be used in multiple devices or a
device used by multiple people, in this paper we think of the
wireless card as a “network user” and thus the term “user”
refers to a wireless card.

We have a nearly continuous, two-year record of these
syslog messages from April 2001 through March 2003. Our
data has some brief “holes” when the campus experienced a
power failure, or when a central syslog daemon apparently
hung up. Also, since syslog uses UDP it is possible that some
messages were lost or misordered. In March 2002, we installed
two redundant servers to record the data, so that holes in one
of the servers can be filled by the data recorded by the other
server.

For more information about Dartmouth’s network and our
data collection, see our previous study [14] [15].

After we cleaned the data of some glitches, and merged
the data from two servers (where available), we extracted user
traces from the data. Each user’s trace is a series of locations,
that is, access-point names. We introduced the special location
“OFF” to represent the user’s departure from the network
(which occurs when the user turns off their computer or their
wireless card, or moves out of range of all access points).
The traces varied widely in length (number of locations in the
sequence), with a median of 494 and a maximum of 188,479;
most are shown in Figure 5. Users with longer traces were
either more active (using their card more), more mobile (thus
changing access points more often), or used the network for
a longer period (some users have been on the network since

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

F
ra

ct
io

n
of

 u
se

rs

Trace length

Figure 5. Length of user traces

April 2001, and some others have only recently arrived on
campus).

G. Evaluation experiments

To evaluate a predictor, we run each user’s trace indepen-
dently through our implementation of that predictor. For each
location in the trace, the predictor updates its data structure
and then makes a prediction about the next location. Our
experiments framework tracks the accuracy of the predictor.

III. RESULTS

We evaluated the location predictors using our Wi-Fi mo-
bility data. In this section we examine the results.

A. Markov

Recall that accuracy is defined as the number of correct
predictions divided by the number of attempts (moves). As
we step through the locations in a single trace, attempting
to predict each location in sequence, we can examine the
accuracy up to that point in the trace. Figure 6 shows how the
accuracy metric varies over the course of one user’s history,
using the O(1) Markov predictor. Ultimately, for comparison
purposes, we define the accuracy over the entire trace, the
rightmost value in this plot. In subsequent graphs we use this
overall accuracy as the performance metric.

Of course, we have several thousand users and the predictor
was more successful on some traces than on others. In Figure 7
we display the accuracy of the O(1) Markov predictor in
CDF curves, one for each of three groups of traces: short,
medium, and long traces. It is obvious that curves “to the
right” are better, because for a given fraction of users, the
right curve has a higher prediction accuracy. The predictor
was clearly unsuccessful on most short traces (100 or fewer
moves), because its curve is far to the left. Ultimately, we
found that all predictors fared poorly on traces with fewer than
1000 moves, and we restrict the remainder of our comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Position in location history

O(1) Markov

Figure 6. Prediction accuracy for a sample user

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

O(1) Markov (1000+ moves) median=0.64
O(1) Markov (100-1000 moves) median=0.57

O(1) Markov (<=100 moves) median=0.28

Figure 7. Accuracy of O(1) Markov predictor

to traces of more than 1000 moves. There were 2,195 such
users, out of 6,202 total users traced.

After such strong evidence that the predictor’s accuracy was
better, in general, for users with longer traces, it is tempting to
suggest that accuracy is somewhat correlated with trace length.
Figure 8 also shows there is a slight trend that longer traces
have higher prediction accuracy, although it is not a linear
dependence.

Intuitively, it should help to use more context in each
attempt to predict the next location. In Figure 9 we compare
the accuracy of O(1) Markov with that of O(2), O(3), and
O(4) Markov predictors. As an aside, we include an “order
0” Markov predictor, in which no context is used in the pre-
diction of each move. This predictor simply predicts the most
frequent location seen so far in that user’s history. Although
it represents a degenerate form of Markov prediction, it helps
to show the benefit of context in the O(1) predictor.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

A
cc

ur
ac

y

Length

O(1) Markov

Figure 8. Correlating accuracy with trace length

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

O(0) Markov median=0.35
O(1) Markov median=0.64
O(2) Markov median=0.70
O(3) Markov median=0.67
O(4) Markov median=0.63

Figure 9. Comparing Markov predictors

Not surprisingly, O(2) generally outpredicted O(1), and its
curve is further to the right. The high-order O(3) and O(4)
predictors were, however, worse than O(2). Although these
predictors use more information in the prediction process, they
are also more likely to encounter a context (a three- or four-
location string) that has not been seen before, and thus be
unable to make a prediction. A missing prediction is not a
correct prediction, and these unpredicted moves bring down
the accuracy of the higher-order predictors. In Figure 10 we
display the conditional accuracy of these same predictors:
the number of correct predictions divided by the number of
predictions. In this metric, we ignore unpredicted moves, and
it becomes clear that longer context strings did lead to better
prediction, where possible, although with diminishing returns.

Returning to our original accuracy metric, we now con-
sider a meta-predictor based on the Markov predictor family.
Figure 11 displays the performance of the O(2) Markov

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Conditional Accuracy

O(1) Markov conditional median=0.66
O(2) Markov conditional median=0.75
O(3) Markov conditional median=0.77
O(4) Markov conditional median=0.78

Figure 10. Conditional accuracy metric

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

O(1) Markov median=0.64
O(2) Markov median=0.70

O(2) Markov fallback median=0.72

Figure 11. Markov predictors with fallback

predictor with “fallback,” which used the results of the O(2)
predictor when it made a prediction, or the O(1) predictor if
the O(2) predictor had no prediction. In general, the O(k)
fallback predictor recursively used the result of the O(k − 1)
predictor (with k = 0 as the base of the recursion) whenever it
encountered an unknown context. Fallback indeed helped to
improve the O(2) Markov predictor’s performance. O(3) and
O(4) Markov also improved with fallback, but the results are
nearly identical to the O(2) Markov with fallback and are thus
not shown. Markov predictors with fallback gain the advantage
of the deeper context but without losing accuracy by failing
to predict in unknown situations.

In the plots so far we examine the performance of O(k)
Markov predictors that used the most recent k locations in
making a prediction, weighting the potential next locations by
their frequency of occurrence in the past. An alternative ap-
proach assigns weights according to the recency of occurrence

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

O(1) Markov Recent. median=0.68
O(2) Markov Recent. median=0.65

O(2) Markov Recent. fallback median=0.66

Figure 12. Markov using “most recent”

in the past; thus, one transition (the most recent seen for this
context) has weight 1 and the others have weight 0. Observe
that the Order-k Markov prediction using the most-frequent
location in general takes O(nk+1) space, while using the
most-recent location it takes only O(nk) space, a potentially
significant decrease in storage. Figure 12 shows the quality
of Markov predictors based on this approach. Curiously, here
O(2) did worse than O(1), although fallback made up some
of the difference. We are still exploring the reason behind this
curious difference.

In Figure 13 we compare the recency-weighted approach
with the original frequency-weighted approach. The best
recency-weighted Markov predictor, O(1), was better than
the corresponding frequency-weighted predictor. This result
implies that recent history was a better predictor of the
immediate future than was an accumulated probability model,
when considering only the current location. On the other
hand, recall from Figure 12 that among the recency-weighted
predictors the extra context of O(2) lowered prediction ac-
curacy. Thus, among O(2) predictors, the frequency-weighted
approach beats the recency-weighted approach (not shown in
Figure 13). Ultimately, the O(2) frequency-weighted Markov
predictor with fallback has the best outcome.

Some of our user traces span a period of hours or days,
but some span weeks or months. Clearly it is possible for
a user’s mobility patterns to change over time; for example,
a student may move to a new dormitory, or attend different
classes. The transition weights constructed by the frequency-
weighted Markov model may become ineffective after such a
change; for users with a long history, these weights will adapt
too slowly. In another series of experiments (not shown), we
added an exponential decay to the frequency weights so that
more recent locations have a larger impact, but we saw little
improvement in the quality of the predictors. We need to study
this option further.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

O(1) Markov Freq. median=0.64
O(1) Markov Recent median =0.68

O(2) Markov Freq. fallback median=0.72

Figure 13. Markov: “most recent” vs. “most frequent”

B. LZ-based

We first consider the LZ predictor, shown in Figure 14.
Since LZ makes no prediction whenever the current context
string leads to a leaf in the tree, the plot includes two LZ
variants. As an alternative to no prediction (the first curve),
we can use the statistics at the root (second curve) to make
a prediction based on the probability of each location. That
is, when the predictor encounters a leaf, it behaves as if it is
at the root and simply predicts the most frequently seen child
of the root. Given our accuracy metric, it is always better
to make some prediction than no prediction, and indeed in
this case the accuracy improved significantly. An even better
approach (third curve) is to fallback to progressively shorter
substrings of the current context, much as we did with the
Markov predictors, until a substring leads to a non-leaf node
from which we can make a prediction. This fallback ability
is critical to allow prediction to occur while the tree grows,
since the trace often leads to a leaf just before adding a new
leaf.

Later, Bhattacharya and Das [5] proposed two extensions to
the LZ predictor. Figure 15 displays the performance of the
first extension, LZP. Once again, this predictor (as defined)
makes no prediction when the context leads to a leaf, and once
again it helped to use statistics at the root, or (better) fallback.
The second extension produces a LZ+prefix+PPM predictor
nicknamed “LeZi.” Figure 16 compares the performance of LZ
with LZP and LeZi, showing that each extension did improve
the accuracy of the LZ predictor substantially.

When we compare the best variant of each LZ form, in
Figure 17, it becomes clear that the simple addition of our
fallback technique to the LZ predictor did just as well as
the prefix and PPM extensions combined. (LeZi automatically
includes fallback by adding suffix substrings into the tree,
so there is no fallback variant.) LZ with fallback is a much
simpler predictor than LZP or LeZi, and since the accuracy
is similar (and as we show below, the LZ data structure was

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

LZ no-predict at leaf median=0.53
LZ use root stat. at leaf median=0.61

LZ fallback at leaf median=0.68

Figure 14. LZ predictors

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

LZ+prefix no prediction at leaf (median=0.56)
LZ+prefix usr root stat. at leaf (median=0.63)

LZ+prefix fallback at leaf (median=0.69)

Figure 15. LZP predictors

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

LZ (median=0.53)
LZ+prefix = LZP (median=0.56)

LZ+prefix+PPM = LeZi (median=0.69)

Figure 16. LZ, LZP, LeZi predictors

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

LZ fallback at leaf (median=0.68)
LZP fallback at leaf (median=0.69)

LeZi (median=0.69)

Figure 17. LZ predictors with fallback

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 u
se

rs

Accuracy

O(1) Markov Recent. (median=0.68)
O(2) Markov Freq. fallback (median=0.72)

LZP fallback (median=0.69)
LZ fallback (median=0.68)

Optimal (median=0.94)

Figure 18. The best predictors, compared

smaller) we recommend LZ with fallback.

C. Overall

We compare the best Markov predictors with the best LZ
predictors in Figure 18. It is difficult to distinguish the LZ
family from the recency-based O(1) Markov, which all seem
to have performed equally well. The O(2) Markov predictor,
with fallback to O(1) whenever it had no prediction, was the
best overall. It is striking that the extra complexity, and the
theoretical aesthetics, of the LZ predictors apparently gave
them no advantage.

We include an “Optimal” curve in Figure 18, as a simple
upper bound on the performance of history-based location
predictors. In our definition, the “optimal” predictor can ac-
curately predict the next location, except when the current
location has never been seen before. Although it should be
possible to define a tighter, more meaningful upper bound for
domain-independent predictors like those we consider here, it

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

A
cc

ur
ac

y

Entropy

O(1) Markov

Figure 19. Correlating accuracy with entropy

seems clear that there is room for better location-prediction
algorithms in the future. It may be that some user traces are
simply less predictable than others. In Figure 19 we compare
the entropy of each user, based on the probability table built
by the O(1) Markov predictor, with the accuracy of the O(1)
predictor. The correlation is striking, and indeed the correlation
coefficient is -0.95 (a coefficient of 1.0 or -1.0 represents
perfect correlation). This strong correlation indicates that some
users with high entropy are doomed to poor predictability.

Other metrics. Of course, prediction accuracy is not the
only metric by which to compare location predictors. In
Figure 20 we show the size of the predictors’ data structures, at
the end of simulating each user. As with the accuracy metric,
we plot the table size for each predictor as a distribution across
all users. For Markov predictors, we define the size to be
the number of entries in the (sparse) transition matrix, except
for the recency-based O(1) Markov, which simply needs to
record the location of the latest transition for each location
ever visited. For LZ predictors, we define the size to be the
number of tree nodes. (Since the size of each table entry or
tree node is implementation dependent, we do not measure
table sizes in bytes.)

Clearly the recency-based O(1) Markov had the simplest
and smallest table, by far. In second place are the O(2) Markov
and LZ predictors. The LZP and LeZi predictors used by far
the most space.

Although the medians of O(2) Markov and LZ predictors
appear to be similar, on a closer examination it is clear that the
LZ predictor has a much higher maximum. Indeed, this plot is
truncated at the right side; for one user, LZ used 17,374 nodes.
LeZi used as many as 23,361 nodes! The Markov predictor,
on the other hand, never used more than 5,000 table entries.

Computational complexity is another important metric, in
some applications; we leave the asymptotic analysis to the
theoretical literature. Furthermore, we have not yet evaluated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

F
ra

ct
io

n
of

 u
se

rs

Table or tree size

O(1) Markov Recent. (median=45)
O(2) Markov Freq. fallback (median=460)

LZ-based fallback (median=468)
LZP or LeZi (median=700)

Figure 20. Distribution of final table sizes

the running time of these predictors on our data (e.g., average
microseconds per prediction), as we have not yet tuned our
implementation. Nonetheless, it is intuitively clear that the
simpler Markov predictors are likely to be faster than the LZ
predictors.

IV. CONCLUSIONS

In this paper we compared two major families of domain-
independent on-line location predictors (Markov and LZ) by
measuring their accuracy when applied to the mobility traces
we collected from 6,202 users of Dartmouth College’s wireless
network.

Most of the traces in our collection were short, less than
1000 movements, and all predictors fared poorly on most of
those users. These predictors typically required a fair amount
of history to initialize their probability tables to a useful state.
The rest of our results are based exclusively on the long-trace
users.

In general, the simple low-order Markov predictors worked
as well or better than the more complex compression-based
predictors, and better than high-order Markov predictors. In
particular, O(3) (or above) Markov predictors did not improve
over O(2) Markov, and indeed reduced accuracy by failing to
make predictions much of the time.

Most of the predictors, as defined in the literature, fail to
make a prediction when faced with a context (recent history)
that has never been encountered in the full user’s history.
We found it was simple to add “fallback” to each predictor,
allowing the predictor to use shorter and shorter context until
it was able to make a prediction, and that this fallback often
improved the predictor’s accuracy substantially.

In particular, O(2) Markov with fallback beat or equaled all
of the LZ-based predictors, even though the latter have better
theoretical asymptotic behavior [7]. We found O(2) Markov
with fallback to be the best overall predictor, was simple to
implement, had relatively small table size, and had the best
overall accuracy.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

We experimented with a simple alternative to the frequency-
based approach to Markov predictors, using recency (proba-
bility 1 for most recent, 0 for all other) to define the transition
matrix. Although this recency approach was best among
O(1) Markov predictors, it was worst among O(2) Markov
predictors, and we are still investigating the underlying reason.

We found most of the literature defining these predictors
to be remarkably insufficient at defining the predictors for
implementation. In particular, none defined how the predictor
should behave in the case of a tie, that is, when there was
more than one location with the same most-likely probability.
We investigated a variety of tie-breaking schemes within the
Markov predictors, but found that the accuracy distribution
was not sensitive to the choice.

Since some of our user traces extend over weeks or months,
it is possible that the user’s mobility patterns do change over
time. All of our predictors assume the probability distributions
are stable. We briefly experimented with extensions to the
Markov predictors that “age” the probability tables so that
more recent movements have more weight in computing
the probability, but the accuracy distributions did not seem
significantly affected. We need to study this issue further.

We examined the original LZ predictor as well as two
extensions, prefix and PPM. LZ with both extensions is known
as LeZi. We found that both extensions did improve the LZ
predictor’s accuracy, but that the simple addition of fallback
to LZ did just as well, was much simpler, and had a much
smaller data structure. To be fair, PPM tries to do more than
we require, to predict the future path (not just the next move).

We stress that all of our conclusions are based on our ob-
servations of the predictors operating on over 2000 users, and
in particular whether a given predictor’s accuracy distribution
seems better than another predictor’s accuracy distribution.
For an individual user the outcome may be quite different
than in our conclusion. We plan to study the characteristics
of individual users that lead some to be best served by one
predictor and some to be best served by another predictor.

There was a large gap between the predictor’s accuracy
distribution and the “optimal” accuracy bound, indicating
that there is substantial room for improvement in location
predictors. On the other hand, our optimal bound may be
overly optimistic for realistic predictors, since it assumes that
a predictor will predict accurately whenever the device is at a
location it has visited before. We suspect that domain-specific
predictors will be necessary to come anywhere close to this
bound.

Overall, the best predictors had an accuracy of about 65–
72% for the median user. On the other hand, the accuracy
varied widely around that median. Some applications may
work well with such performance, but many applications will
need more accurate predictors; we encourage further research
into better predictors.

We continue to collect syslog data, extending and expanding
our collection of user traces. We plan to evaluate domain-
specific predictors, develop new predictors, and develop new
accuracy metrics that better suit the way applications use

location predictors. We also plan to predict the location along
with the time in the future.

ACKNOWLEDGEMENTS

The Dartmouth authors thank DoCoMo USA Labs, for their
funding of this research, and Cisco Systems, for their funding
of the data-collection effort. We thank the staff of Computer
Science and Computing Services at Dartmouth College for
their assistance in collecting the data.

REFERENCES

[1] David A. Levine, Ian F. Akyildiz, and Mahmoud Naghshineh, “The
shadow cluster concept for resource allocation and call admission in
ATM-based wireless networks,” in Mobile Computing and Networking,
1995, pp. 142–150.

[2] William Su and Mario Gerla, “Bandwidth allocation strategies for
wireless ATM networks using predictive reservation,” in Proceedings of
Global Telecommunications Conference (IEEE Globecom), November
1998, vol. 4, pp. 2245–2250.

[3] George Liu and Gerald Maguire Jr., “A class of mobile motion predic-
tion algorithms for wireless mobile computing and communications,”
ACM/Baltzer Mobile Networks and Applications (MONET), vol. 1, no.
2, pp. 113–121, 1996.

[4] Sajal K. Das and Sanjoy K. Sen, “Adaptive location prediction strategies
based on a hierarchical network model in a cellular mobile environment,”
The Computer Journal, vol. 42, no. 6, pp. 473–486, 1999.

[5] Amiya Bhattacharya and Sajal K. Das, “LeZi-Update: An information-
theoretic approach to track mobile users in PCS networks,” ACM/Kluwer
Wireless Networks, vol. 8, no. 2-3, pp. 121–135, March–May 2002.

[6] Fei Yu and Victor C. M. Leung, “Mobility-based predictive call admis-
sion control and bandwidth reservation in wireless cellular networks,”
Computer Networks, vol. 38, no. 5, pp. 577–589, 2002.

[7] Christine Cheng, Ravi Jain, and Eric van den Berg, “Location prediction
algorithms for mobile wireless systems,” in Handbook of Wireless
Internet, M. Illyas and B. Furht, Eds. CRC Press, 2003.

[8] Sajal K. Das, Diane J. Cook, Amiya Bhattacharya, Edwin Heierman,
and Tze-Yun Lin, “The role of prediction algorithms in the MavHome
smart home architecture,” IEEE Wireless Communications, vol. 9, no.
6, pp. 77–84, 2002.

[9] Jeffrey Scott Vitter and P. Krishnan, “Optimal prefetching via data
compression,” Journal of the ACM, vol. 43, no. 5, pp. 771–793, 1996.

[10] Jacob Ziv and Abraham Lempel, “Compression of individual sequences
via variable-rate coding,” IEEE Transactions on Information Theory,
vol. 24, no. 5, pp. 530–536, Sept. 1978.

[11] P. Krishnan and Jeffrey Scott Vitter, “Optimal prediction for prefetching
in the worst case,” SIAM Journal on Computing, vol. 27, no. 6, pp.
1617–1636, 1998.

[12] Meir Feder, Neri Merhav, and Michael Gutman, “Universal prediction
of individual sequences,” IEEE Transactions on Information Theory,
vol. 38, no. 4, pp. 1258–1270, July 1992.

[13] Timothy C. Bell, John G. Cleary, and Ian H. Witten, Text Compression,
Prentice Hall, 1990.

[14] David Kotz and Kobby Essien, “Analysis of a campus-wide wireless
network,” in Proceedings of the Eighth Annual International Conference
on Mobile Computing and Networking, September 2002, pp. 107–118,
Revised and corrected as Dartmouth CS Technical Report TR2002-432.

[15] David Kotz and Kobby Essien, “Analysis of a campus-wide wireless
network,” ACM Mobile Networks and Applications (MONET), 2003,
Accepted for publication.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

