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Although there have been many proposed methods to model unsteady aerodynamic effects 

in the stall and post-stall region, little work has been done to directly assess the impact of 

unsteady aerodynamic models on stability and control characteristics. In this paper, we 

combine the state-space method for unsteady aerodynamic modelling with bifurcation 

analysis to examine the sensitivity of stall and post-stall behaviour to the choice of 

aerodynamic modelling method: quasi-steady or unsteady. It is found that quasi-steady 

modelling can adequately capture the dynamics of the chosen example of a T-tailed transport 

aircraft with negligible wing-tail coupling. The study is then expanded to investigate a 

hypothetical situation with highly unsteady aerodynamic characteristics resembling a delta 

wing configuration – achieved by increasing the time delay constants in the unsteady model. 

This results in an aircraft with significantly lower flying qualities as indicated by bifurcation 

analysis. These findings highlight the need to implement unsteady aerodynamic modelling 

techniques in high-performance aircraft with significant vortex-related unsteady 

aerodynamics in order to sufficiently capture their stall and post-stall dynamics.  
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I. Introduction 

Quasi-steady aerodynamic modelling remains the most popular method for representing aerodynamic forces and 

moments in flight dynamics studies. This method is traditionally based on the use of stability and control derivatives, 

which can adequately model the nonlinearities at low angles-of-attack during normal flights [1]. In the stall and post-

stall regime, however, quasi-steady modelling cannot adequately capture many important phenomena due to the major 

influence of unsteady (time-dependent) effects in these regions, which only become noticeable when the aircraft is 

manoeuvring. In fact, it has been shown that these unsteady effects can lead to strong discrepancies between the 

behaviours predicted using best-practice wind-tunnel tests and actual test flights [2]. Many important stall and post-

stall flight characteristics cannot be adequately analysed as a result, which can affect further studies of highly 

manoeuvrable combat aircraft as well as of upsets and loss-of-control prevention in transport applications [3-5].  

 

The need for adequate account for time-dependent flow phenomena is now recognised, and various methods to model 

these unsteady aerodynamics effects have been proposed as a result [6, 7]. However, most of the published studies on 

the topic only focus on accurate modelling of variations in the force and moment coefficients under wind-tunnel-like 

tests conditions, and no investigation has directly established the link between unsteady aerodynamics and flying 

characteristics in terms of stability and control. As observed in the real world, the presence of these time-dependent 

phenomena can seriously degrade the handling qualities of the aircraft in stall and post-stall regions [2]. A further 

study that constructs the basic framework to combine unsteady aerodynamics with stability and control analysis is 

therefore necessary. 

 

One of the common methods for investigating nonlinearities in flight dynamics is bifurcation analysis. Since its first 

application in the early 80s [8, 9], the method has been recognised by both researchers and the industry for its capability 

of characterising many important phenomena encountered at high angles-of-attack and sideslip, such as spin, wing 

rock, and static hysteresis. This makes bifurcation analysis a popular choice for studying the behaviours of high-

performance fighter jets [10, 11] as well as transport aircraft in upsets and loss-of-control situations [12, 13]. It has 

also been used for the study of rotorcraft, where the periodic nature of rotor behaviour in forward flight are facilitated 

via the use of harmonic forcing [14]. Recent works have extended this form of bifurcation analysis to assess the flight 

dynamics of fixed-wing aircraft under an external harmonic forcing term [15, 16]. Referred to as ‘nonlinear frequency 
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analysis’ or ‘harmonically-forced bifurcation analysis’, this approach permits the construction of a Bode plot without 

relying on linearisation and transfer functions – therefore allowing the non-stationary nonlinear effects such as sub- 

and super-harmonic resonance [15] and actuator rate limiting [16] to be directly reflected in the frequency response.  

Such nonlinear frequency responses can be constructed from time simulations but this is time-consuming and unstable 

solutions are unlikely to be identified in this manner. In the context of unsteady aerodynamic analysis, nonlinear 

frequency response is an especially suitable tool because a harmonically-forced aircraft is non-stationary by nature, 

meaning that the time-dependent aerodynamic effects observed during the aircraft’s transient motion can be directly 

reflected in the analysis. As a result, the insights gained by nonlinear frequency analysis cannot be obtained from 

linear-based methods or conventional (unforced) bifurcation analysis due to their linear and stationary nature, 

respectively. 

 

To initiate work on the topic, this paper utilised bifurcation analysis to examine the effect of unsteady aerodynamics 

on the longitudinal dynamics of the NASA GTT (Generic T-tail Transport) airliner model. Specifically, we use both 

conventional bifurcation analysis and the nonlinear frequency response to assess the sensitivity of stall and post-stall 

behaviours to the choice of aerodynamic modelling method: quasi-steady or unsteady. The GTT is of interest in the 

context of stall and upset dynamics following incidents such as the fatal Colgan Air crash of a (T-tailed) Bombardier 

DHC-8-400 in 2009.  The accident report [17] quotes the probable cause as “inappropriate response to the activation 

of the stick shaker, which led to an aerodynamic stall from which the airplane did not recover” and recommends the 

incorporation of realistic, fully developed stall models into training simulators. 

 

The GTT model was generated from wind tunnel test data by NASA and Boeing [18-20] from both static and forced 

oscillation tests, resulting in a nonlinear but conventional (quasi-steady) flight dynamics model. Further studies were 

conducted using computational fluid dynamics to establish the effects of Reynolds number on aerodynamics up to and 

including the post-stall region [21]. In this paper, we augment the quasi-steady aerodynamics in the GTT model 

provided by NASA Langley (which covers an angle of attack range of –8o to +60o and sideslip ±35o) with unsteady 

aerodynamics effects using the state-space method, sometimes referred to as the Goman-Khrabrov model in the 

literature [22]. The objective is to compare the two aerodynamic modelling techniques and validate the capability of 

the state-space approach in matching the forced oscillation test results. Finally, the study is expanded to consider a 
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hypothetical highly-unsteady version of the GTT by artificially increasing the magnitude of delay-relaxation 

parameters to the values typical of a delta wing configuration [23]. This allows us to demonstrate the advantages of 

our proposed approach when studying transient dynamics while also providing speculative insights into the impact of 

strong unsteady effects on the flight dynamics and control.  

 

 

Fig. 1 The NASA GTT (a) and GTM (b) with approximate wake geometry for angles of attack 8 and 20. 

Image sources: [5, 19] 

The implementation of a state-space model that represents aerodynamic time dependence is well established for lift.  

However, for pitching moment it becomes more difficult if there is interaction between the wing wake and the 

horizontal tailplane over the angle of attack range at which separated flow unsteadiness is significant (the stall region).   

Fig. 1 shows the geometries of the GTT and also the GTM (Generic Transport Model) – another NASA configuration 

that has been studied extensively in te  rms of upset behaviour, and which has underwing-mounted engines and a low 

horizontal tail. It also indicates the geometric location of the wake of both configurations in the stall region. Fig. 1a 

indicates that the horizontal stabiliser of the GTT is above the wing wake, particularly when wing downwash is 

accounted for. For the low-tail GTM, however, the wake is likely to impinge on the horizontal tailplane, due to 

downwash, therefore affecting the separated-flow unsteady aerodynamics. The wing-tail coupling is significant in this 

instance and therefore must be included in the analysis [24, 25]. For the GTT, on the other hand, it is acceptable when 

modelling the state-space pitching moment to assume that there is negligible wing-tail coupling and that the nonlinear 

unsteady aerodynamics is able to be fully described in terms of the flow separation process over the wing. This 

a) 

8o 

20o 20o 

8o 

b) 
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assumption for a T-tail aircraft may be further justified by the fact that the time scales identified for the NASA GTT 

will be shown to match very well with the time scales obtained for the NASA Common Research Model (CRM) wing-

body-notail configuration [26]. This is discussed in more detail in section II-C. 

 

II. Modelling and Validation 

The first mathematical formulation of the aeroplane’s longitudinal dynamics was introduced in 1911 by Bryan, where 

the aerodynamic derivatives in the equations of motion were treated as constant coefficients [1]. This was later 

expanded to accommodate flights at different conditions by considering these coefficients to be functions of the angles 

of attack (and often other states such as speed or Mach number, and of control surface deflections such as elevator 

𝛿𝑒); forces and moments under transient conditions, including time lag for wing downwash to reach the tailplane, were 

approximated by stability derivatives as a function of angular rate and rate of change of angle of attack. This is the so-

called quasi-steady modelling method. Despite its role as the foundation for modern flight dynamics and control 

analyses [3], it is known that the quasi-steady method cannot accurately model the unsteady aerodynamic effects in 

the stall region, such as delayed flow attachment and separation. In these instances, the state-space aerodynamic 

modelling method has been shown to be a better way to reflect these phenomena [22]. The formulation and implication 

of both approaches are discussed in this section. 

 Quasi-Steady Modelling 

As mentioned, the aerodynamic coefficients in the nonlinear quasi-steady approach are functions of the angle of attack 

and sometimes other motion and/or control variables. Their nonlinear relationships under static conditions are usually 

measured in wind tunnel static tests or predicted computationally, in either case keeping the angle of attack and sideslip 

angle constant. The contributions to aerodynamic loads due to the pitch rate 𝑞 and rate of change in the angle of attack 

𝛼̇ are usually considered as a linear increment by adding aerodynamic rotary or acceleration derivatives, also as a 

function of angle of attack. If only the longitudinal motion is considered, the normal force and pitching moment 

coefficients 𝐶𝑧 and 𝐶𝑚 can be represented in the following form:  
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1  𝐶𝑧 = 𝐶𝑧,𝑠𝑡(𝛼) + 𝐶𝑧𝑞(𝛼)
𝑞𝑐

2𝑉
+ 𝐶𝑧𝛼̇(𝛼)

𝛼̇𝑐

2𝑉
+ 𝐶𝑧𝛿𝑒

(𝛼)𝛿𝑒 (1) 

2  𝐶𝑚 = 𝐶𝑚,𝑠𝑡(𝛼) + 𝐶𝑚𝑞(𝛼)
𝑞𝑐

2𝑉
+ 𝐶𝑚𝛼̇(𝛼)

𝛼̇𝑐

2𝑉
+ 𝐶𝑚𝛿𝑒

(𝛼)𝛿𝑒 (2) 

 

where the first terms in equations (1) and (2) are the static nonlinear dependencies on the angle of attack obtained 

from static wind tunnel tests; the linear terms representing rotary (q) and acceleration aerodynamic derivatives (𝛼̇) are 

normally obtained in wind tunnel forced oscillations tests, while control derivatives are calculated based on 

linearisation of the experimental nonlinear dependences from static tests. The experimental forced oscillation rigs 

normally involve pure angular oscillations so that pitch rate 𝑞 and the rate of change in angle of attack 𝛼̇ are identical. 

This leads to the measurement of rotary and unsteady aerodynamic derivatives as mixed combinations, for example, 

𝐶𝑧𝑞(𝛼) + 𝐶𝑧𝛼̇(𝛼) and 𝐶𝑚𝑞(𝛼) + 𝐶𝑚𝛼̇(𝛼). Experimental rigs capable of generating heave motions for separate 

measurement of these two aerodynamic derivatives exist but are not widely used. As a compromise, representations 

(1) and (2) are often modified by inclusion of the measured cumulative pairs 𝐶𝑧𝑞
∗ = 𝐶𝑧𝑞(𝛼) + 𝐶𝑧𝛼̇(𝛼),  𝐶𝑚𝑞

∗ =

𝐶𝑚𝑞(𝛼) + 𝐶𝑚𝛼̇(𝛼), which is partly justified by noting that the changes in airplane stability characteristics due to the 

use of cumulative pairs are slight. This results in the following simplified representation: 

 

3  𝐶𝑧 = 𝐶𝑧,𝑠𝑡(𝛼) + 𝐶𝑧𝑞
∗ (𝛼)

𝑞𝑐

2𝑉
+ 𝐶𝑧𝛿𝑒

(𝛼)𝛿𝑒 (3) 

4  𝐶𝑚 = 𝐶𝑚,𝑠𝑡(𝛼) +  𝐶𝑚𝑞
∗ (𝛼)

𝑞𝑐

2𝑉
+ 𝐶𝑚𝛿𝑒

(𝛼)𝛿𝑒 (4) 

 

Issues arise when the rotary/unsteady aerodynamic derivatives are measured at stall conditions. This is caused by the 

flow separation creating a dependency of the measured aerodynamic derivatives on the frequency 𝜔 and amplitude of 

forced oscillations: 

 

5  𝐶𝑧 = 𝐶𝑧,𝑠𝑡(𝛼) + 𝐶𝑧𝑞
∗ (𝛼, 𝜔)

𝑞𝑐

2𝑉
+ 𝐶𝑧𝛿𝑒

(𝛼)𝛿𝑒 (5) 

6  𝐶𝑚 = 𝐶𝑚,𝑠𝑡(𝛼) +  𝐶𝑚𝑞
∗ (𝛼, 𝜔)

𝑞𝑐

2𝑉
+ 𝐶𝑚𝛿𝑒

(𝛼)𝛿𝑒 (6) 
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The flow separation may also cause a divergence in the effects of pitch and heave, in which case the use of combined 

derivatives 𝐶𝑧𝑞
∗  and  𝐶𝑚𝑞

∗  becomes less justifiable. 

 

It is not possible to directly translate these frequency and amplitude dependencies into time simulation of free flights 

involving arbitrary motions. This can be partially resolved by replacing the dependence on the frequency 𝜔 with the 

dependence on the angular pitching velocity 𝑞, as was done in [18, 20].  

 State-Space Method for Unsteady Aerodynamic Modelling 

The state-space method provides a more accurate representation of the unsteady aerodynamic effect in the normal 

force coefficient 𝐶𝑧 [22-24]. Recent development has shown that this approach is successful in modelling the effects 

of blowing-type plasma actuators for active control of flow separation as well as vertical wind gusts [27, 28]. At its 

core, the state-space method uses two separate envelope functions 𝐶𝑧,𝑎𝑡𝑡(𝛼) and 𝐶𝑧,𝑠𝑒𝑝(𝛼) to describe the dependencies 

of attached and fully separated flow on the angle of attack, plus an internal state variable 𝑥𝑧 characterising the delayed 

transition between 𝐶𝑧,𝑎𝑡𝑡(𝛼) and 𝐶𝑧,𝑠𝑒𝑝(𝛼). This delay and relaxation process is reflected by a first-order lag in 𝑥𝑧, 

which includes two time constants: 𝑇1 characterising the flow relaxation process and 𝑇2 characterising the delay in 

flow separation due to the rate of change in angle of attack (𝛼̇). Accordingly, the unsteady model for normal force 

coefficient 𝐶𝑧 can be represented in the following form:  

 

7  𝐶𝑧 = 𝐶𝑧,𝑎𝑡𝑡(𝛼)𝑥𝑧 + 𝐶𝑧,𝑠𝑒𝑝(𝛼)(1 − 𝑥𝑧) + 𝐶𝑧𝑞0(𝛼)
𝑞𝑐

2𝑉
+ 𝐶𝑧𝛿𝑒

(𝛼)𝛿𝑒 (7) 

8  𝑇1

𝑑𝑥𝑍

𝑑𝑡
+ 𝑥𝑧 = 𝑥z0(𝛼 − 𝑇2𝛼̇ −  Δ𝛼𝑅𝑒) (8) 

 

where: 

 

- 𝐶𝑧,𝑎𝑡𝑡(𝛼) is the dependence of the normal force coefficient assuming that flow is attached 

- 𝐶𝑧,𝑠𝑒𝑝(𝛼) is the dependence of the normal force coefficient assuming that flow is fully separated 

- 𝑥𝑧 ∈ [0,1] is a normalised internal state variable characterising transition from attached to separated flow 
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- 𝑥𝑧0(𝛼) is a smooth function describing transition between the attached and separated flow so that 𝑥𝑧0 = 1 at 

angles of attack below the stall zone and 𝑥𝑧0 = 0 at angles of attack above the stall zone 

- 𝑇1 is physical time in seconds characterising the relaxation process; it is often expressed as non-dimensional 

relaxation time 𝜏1 = 𝑇1𝑉/𝑐 

- 𝑇2 is physical time in seconds characterising the delay in onset of flow separation; it is often expressed in non-

dimensional form as 𝜏2 = 𝑇2𝑉/𝑐  

- Δ𝛼𝑅𝑒  is the change in angle of attack arising from the effect of Reynolds [22]; a similar adjustment can be made 

to capture the intensity of jet blowing [27] or vertical wind gust 𝑤 [28] when present 

- 𝐶𝑧𝑞0 is the rotary aerodynamic derivative reflecting contribution from an airframe without account for flow 

separation on the wing 

- 𝐶𝑧𝛿𝑒
 is the aerodynamic control derivative with respect to elevator deflection. 

 

It should be noted that 𝑥𝑧 is an important feature of the state-space formulation: it can be related, directly or indirectly, 

to the flow physics and, consequently, its value and dynamical behaviour carry a physical meaning. A Reynolds 

number adjustment, Δ𝛼𝑅𝑒 , is not implemented in the current work as the sub-scale wind tunnel model data is used. 

 

Unsteady aerodynamic modelling in pitching moment is more complicated because the process depends on both the 

magnitude of the aerodynamic force 𝐶𝑍 and the centre of its application 𝑥𝑝 [24]. Nevertheless, a structure similar to 

equations (7) and (8) can still be used on a T-tail aircraft because, as explained in Section I, the wing-tail interaction 

in the stall region is minimal ( between 8° and 20°)and hence will not influence the aerodynamic pitching moment. 

This is contrary to the conventional (low tail) configuration, where both the development of flow separation on the 

wing and the delayed action of wing downwash on the horizontal tail must be considered [5]. 

 

Accordingly, the contribution to the moment coefficient from flow separation on the wing can be described by a 

smooth function 𝐶𝑚,𝑤𝑠(𝛼), which equals zero outside of the stall region, and results in the following unsteady 

representation of the pitching moment coefficient: 
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9  𝐶𝑚 = 𝐶𝑚0(𝛼) + 𝑥𝑚 + 𝐶𝑚𝑞0(𝛼)
𝑞𝑐

2𝑉
+ 𝐶𝑚𝛿𝑒

(𝛼)𝛿𝑒 (9) 

10  𝑇1

𝑑𝑥𝑚

𝑑𝑡
+ 𝑥𝑚 = 𝐶𝑚,𝑤𝑠(𝛼 − 𝑇2𝛼̇ −  Δ𝛼𝑅𝑒) (10) 

 

where: 

 

- 𝐶𝑚0(𝛼), 𝐶𝑚,𝑤𝑠(𝛼) are the functions describing static dependence of the pitching moment coefficient without 

account of flow separation over the wing and the contribution from the wing separation to the pitch break, 

respectively. The sum of these two functions should be equal to the static dependence 𝐶𝑚,𝑠𝑡(𝛼) = 𝐶𝑚0(𝛼) +

𝐶𝑚,𝑤𝑠(𝛼) 

- 𝑥𝑚(𝑡) is the state variable characterising dynamic contribution to the pitching moment coefficient 

- 𝐶𝑚𝑞0 is the rotary aerodynamic derivative reflecting contribution from an airframe without account of flow 

separation on the wing 

 

Fig. 2a and 2b illustrate the contributions of the static terms in equations (7-8) and (9-10) to the normal force and 

pitching moment coefficients of the GTT airplane, respectively. Using our proposed modelling method, 𝐶𝑚,𝑤𝑠(𝛼) 

captures the nonlinear change in pitching moment in the stall region, which is characterised by the onset of an unstable 

positive slope and subsequent restoration of a negative slope. A similar process can be used for the initial choice of 

functions 𝐶𝑧𝑞0(𝛼) and 𝐶𝑚𝑞0(𝛼). This methodology could be extended to low-tail geometries by considering 

aerodynamic coefficients for different wing-body-tail, wing-body, and body-tail combinations, obtained from 

experiments or CFD, supplemented by visualisation of distributed flow parameters.  
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Fig. 2  Static unsteady aerodynamic components: normal force (a) and pitching moment (b). 

 GTT Implementation and Validation 

The state-space approach outlined above is now applied to the NASA’s Generic T-tail Transport (GTT) model. As the 

name suggests, the GTT represents a generic mid-size regional jet airliner with a T-tail configuration. Its aerodynamic 

data were collected from a series of low-speed sub-scale static and forced-oscillation wind tunnel and water tunnel 

flow visualisation tests, and some preliminary results have been reported in recent conferences [18-20]. The oscillatory 

tests were at one frequency and amplitude about each axis: reduced frequency for pitch-axis oscillations was 0.0158 

and for the roll and yaw axes it was 0.094; the oscillation amplitudes were ±5 for the pitch axis and ±10 for the roll 

and yaw axes [19]. Computational fluid dynamics was also deployed to estimate the influence of the Reynolds number 

on the measured aerodynamics data, allowing the pitching moment and pitch damping data to be adjusted to represent 

the equivalent full-scale aircraft. For this study, we base our analysis on the original set of data from the sub-scale 

testing to construct a 4th-order model that contains only longitudinal motions while neglecting the horizontal tailplane, 

a) 

b) 
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flaps and spoilers, which is deemed adequate for this study. All lateral-directional states and inputs are therefore zero. 

This 4th-order implementation contains 19 aerodynamics tables, which are 1D and 3D functions of angle-of-attack and 

of angle-of-attack/horizontal tailplane/elevator deflections. 

 

In order to compare quasi-steady and unsteady aerodynamics modelling techniques, the following three models based 

on the GTT are created for this study: 

 

- The ‘quasi-steady’ model is basically the original GTT but with the tabular data for static normal force and 

pitching moment replaced by spline functions as shown in Fig. 3 (as well as Fig. 2). The use of spline functions 

instead of look-up tables ensures consistency with the two unsteady models explained below while resulting in 

negligible difference comparing to the unmodified GTT.  

- The ‘nominal unsteady model’ is augmented with two additional states 𝑥𝑧 and 𝑥𝑚 to describe the internal 

unsteady dynamics of 𝐶𝑧 and 𝐶𝑚 using the approach outlined in equations (7-10).  

- A hypothetical highly-unsteady model is also examined to demonstrate the use of bifurcation analysis in studying 

unsteady aerodynamics phenomena. In this implementation, the time delay constants are both multiplied by a 

scale factor of 2.5 (i.e., 𝜏1 and 𝜏2 become Λ𝜏1 and Λ𝜏2, where Λ equals 2.5). This version is referred to as the ‘Λ 

= 2.5’ or ‘highly-unsteady’ model.  Note that Λ = 1 is the nominal unsteady model. 

 

It can be seen from Fig. 3 that the spline functions demonstrate a reasonable level of agreement between experimental 

and modelling results for static dependencies. The envelope boundaries for the normal force coefficients are quite well 

approximated as sinusoidal 𝐶𝑧,𝑎𝑡𝑡(𝛼) = 𝑎 sin 𝛼 and 𝐶𝑧,𝑠𝑒𝑝(𝛼) = 𝑏 sin 𝛼, where 𝑎 = –5.0, 𝑏 = –2.4, and 𝐶𝑧0 = –0.27. 

The upper limit 𝐶𝑧,𝑠𝑒𝑝(𝛼) = –5  is close to the experimental data at small angles of attack below the stall, the lower 

limit 𝐶𝑧,𝑠𝑒𝑝(𝛼) = –2.4 sin 𝛼 is close to the experimental data beyond the stall to 90°, while the function 𝑥z0(α) is 

responsible for the transition between the two envelope functions inside the stall region. 
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Fig. 3  Fitting of the static aerodynamic coefficients. 

To verify the dynamic dependencies, the damping derivatives 𝐶𝑧𝑞
∗ (𝛼) and 𝐶𝑚𝑞

∗ (𝛼) of the quasi-steady and nominal 

unsteady models are now compared in Fig. 4. The simulation condition used to obtain these derivatives was selected 

to match the amplitude and frequency of angle-of-attack oscillations during wind tunnel experiments [19]: 5o in 

amplitude, 𝑓 = 0.44 Hz in frequency at 𝑅𝑒 = 230,000 and flow speed  𝑉 = 18 m/s. As the GTT chord length is 𝑐 = 

3.37 m, this gives a non-dimensionalised frequency of 2𝜋𝑓𝑐/2𝑉 = 0.26. Correct identification of 𝜏1 and 𝜏2 should 

result in an unsteady model with damping derivatives 𝐶𝑧𝑞
∗ (𝛼) and 𝐶𝑚𝑞

∗ (𝛼) matching experimental data (quasi-steady 

modelling) in the condition specified above, especially in the stall region. The tuning process was done empirically, 

giving 𝜏1 = 4.5 and 𝜏2 = 3.5 for a reasonably good match. A more comprehensive approach would involve calculating 

𝜏1 and 𝜏2 using a formal identification method to ensure the best fit between experimental and modelling result [23, 

29], but this is beyond the scope of the paper. 

 

a) 

b) 
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Fig. 4  Out-of-phase aerodynamic derivatives 𝑪𝒛𝒒
∗  and 𝑪𝒎𝒒

∗  from NASA wind tunnel tests [19] and simulated 

using the nominal unsteady aerodynamic model, obtained at frequency 0.44 Hz (reduced frequency: 0.26) and 

amplitude 5o. 

It is worth noting that the values of 𝜏1 and 𝜏2 are similar to those obtained in [18] based on CFD simulations of the 

NASA Common Research Model (CRM) wing-body configuration (no empennage). The aerodynamic model structure 

for the normal force coefficient in [18] was identical to that obtained from equations (7-8) and the considered wing-

body configuration excludes the interference with the horizontal tail.  The dimensionless time constants found in [14] 

for this case were 𝜏1 = 4.86 and 𝜏2 = 3.89.  These values are very close to those obtained in this study for the GTT 

aircraft, based on the NASA wind tunnel test data [19] and utilising the aerodynamic models (7-8) and (9-10), namely 

𝜏1 = 4.5 and 𝜏2 = 3.5. This provides a reasonable independent verification of the obtained time constants in our study. 

It is interesting to note that for the full CRM geometry, with tailplane, the relaxation time for the model of the normal 

force coefficient shows an increase to 𝜏1 = 7.77, with no change in the delay 𝜏2 = 3.89 [18]. This increase in 𝜏1 is 

likely to account for the additional time for the downwash of the wing to act on the horizontal tail. The comparison 

a) 

b) 
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between the GTT and the CRM models provides qualitative evidence for the assumption that the wing-tail interaction 

can be neglected for the GTT.  

 

Fig. 5  Out-of-phase aerodynamic derivatives 𝑪𝒛𝒒
∗  and 𝑪𝒎𝒒

∗  of the unsteady models – obtained in simulated 

forced pitch oscillations with amplitude 5o and different frequencies. 

Aerodynamic derivatives obtained from forced oscillation tests in a wind tunnel in a stall region usually depend on 

the frequency and amplitude of the oscillations. To illustrate such dependencies in the normal force and the pitching 

moment coefficients, Fig. 5 shows the estimated traditional rotary aerodynamic derivatives (3-4) for the GTT aircraft 

obtained as an out-of-phase aerodynamic derivative from simulated forced oscillation tests using the identified 

unsteady aerodynamic models (7-8) and (9-10). The peaks of the derivatives 𝐶𝑧𝑞
∗ (𝛼) and 𝐶𝑚𝑞

∗ (𝛼)  in the stall region 

decrease in magnitude with increasing frequency 𝜔, demonstrating a significant dependence on frequency. Such 

dependence on frequency makes the use of the quasi-steady aerodynamic model (3-4) problematic for simulations in 

the time domain in the stall region.  The increase of frequency  correlates with the increase of pitch rate amplitude 

𝑞𝑚𝑎𝑥  during forced oscillations executed at the same amplitude. This is why in [18, 20], for example, the damping 

a) 

b) 
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terms are the equivalent of equations (5-6), where frequency was replaced with angular rate 𝑞. Such modification of 

the quasi-steady aerodynamic model allows only the delay process in flow separation to be represented, while the 

relaxation process is not accounted for. The relaxation process is important in modelling of a vertical wind gust effect 

in the stall region [28]. 

 

 

Fig. 6  Normal force (a) and pitching moment (b) variation in a sinusoidal 𝜶 forcing at 0.44 Hz (reduced 

frequency: 0.26) and 5o amplitude – quasi-steady vs unsteady. 

Now that the unsteady model has been verified to show a good match to the static and quasi-steady data under 

equivalent conditions, the effects of increasing the unsteady effects via the scaling factor Λ are examined. Fig. 6 

compares the quasi-steady and unsteady force and moment coefficients when the angle-of-attack is subjected to a 

sinusoidal forcing. It can be observed that a good match is achieved between the quasi-steady and nominal-unsteady 

model. In fact, the unsteady effects only become more prominent by increasing Λ to 2.5, resulting in the differences 

seen around the stall region of the highly-unsteady model. Specifically, negative damping results in the twisted 𝐶𝑀 

loop of the Λ = 2.5 response as well as a thicker 𝐶𝑍 loop, which are indicative of more unsteady dynamics due to the 

increased delay in flow separation and reattachment. The choice of Λ = 2.5 in this study can be regarded as 

representative of a configuration in which the unsteady effects play a bigger role. For reference, the equivalent scaling 

factor in the case of the delta wing study in [23] is approximately Λ = 3.4.   

a) 

b) 
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It has been shown that the state-space method is a feasible alternative to the quasi-steady approach because their 

responses are more or less the same in regions where the quasi-steady data is known to be valid (i.e., for forced 

oscillation conditions equivalent to those used in the wind tunnel tests from which the quasi-steady dynamic 

derivatives were defined). Furthermore, a modification to the time delay constants using the scaling factor Λ brings 

out the unsteady aerodynamics effects of interest for an aircraft configuration in which there are stronger time 

dependencies; this facilitates a speculative study on the potential ramifications of unsteady effects on the aircraft’s 

dynamics. These three models are now implemented on the fourth-order equations of motion to create the 

corresponding longitudinal flight dynamics models with four states [𝛼, 𝑉, 𝑞, 𝜃] (plus two additional internal states 𝑥𝑧 

and 𝑥𝑚 for the unsteady versions), which will be studied using bifurcation analysis in the sections to follow. 

 

III. Bifurcation Analysis 

The basics of bifurcation methods are illustrated in this section. For a comprehensive introduction to the topic, readers 

are referred to nonlinear dynamics textbooks such as [30, 31]. A simple example of unforced bifurcation analysis is 

provided in appendix A to demonstrate the method for readers new to the topic. 

 Unforced Bifurcation Analysis  

Consider a general autonomous dynamical system of the form: 

a  

11  𝒙̇ = 𝑓(𝒙, 𝒖) (11) 

 

where 𝑓 is a vector of 𝑛 smooth (differentiable) functions, 𝒙 is the state vector of dimension (𝑛 × 1) and 𝒖 is the input 

vector. In the context of open-loop flight dynamics, 𝑓 is usually the equations of motion, 𝒙 is the aircraft’s states like 

𝛼, 𝑉, and 𝒖 contains the control inputs (i.e., elevator, aileron, etc.). The system is in equilibrium when: 

 

12  𝒙̇ = 𝟎 (12) 
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A periodic solution of period 𝑇 exists when: 

 

13  𝒙(𝑡) = 𝒙(𝑡 + 𝑇) (13) 

 

By solving equation (12) and/or equation (13), a map of steady states (either equilibrium or periodic) as functions of 

one of the control inputs in 𝒖 can be generated. This map is referred to as a bifurcation diagram. We solve the equations 

numerically using continuation methods [32], which utilises a path-following algorithm to trace out a map of solutions 

as a parameter in 𝒖 is varied. This varying parameter is referred to as the continuation parameter. Numerical 

continuation requires knowledge of at least one solution, which can be obtained by the user through the time-

integration method (simulating the system in equation (11) long enough so that the states converge to their final values, 

assuming the system is stable) or Newton’s method for equilibria. In many published works, the terms ‘bifurcation 

analysis’ and ‘numerical continuation’ are used interchangeably.  

 

A bifurcation can be encountered in a nonlinear system, which reflects a qualitative change in the dynamics. Its 

mathematical definition is: 

 

- For equilibrium solutions: when at least one eigenvalue of the system’s Jacobian matrix 𝐽 = 𝑑𝑓/𝑑𝑥|𝑥0
 (evaluated 

at the equilibrium point 𝑥0) crosses the imaginary axis. 

 

- For oscillatory solutions: when a Floquet multiplier crosses the unit circle.  

 

Different types of bifurcations can lead to various nonlinear behaviours such as a limit cycle, multiple solutions for 

the same input, and hysteresis. A simple example of these concepts is provided in appendix A for readers who are new 

to the topic. 

 Harmonically-Forced Bifurcation Analysis/Nonlinear Frequency Response 

Bifurcation analysis can be implemented on a harmonically-forced system, thereby generating a nonlinear Bode plot 

for frequency analysis. All ensuing motions are therefore periodic. The method to implement the harmonic forcing 
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term into bifurcation analysis is best explained by another simple example. Consider the following second-order 

nonlinear system: 

 

14  𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 + 𝜖𝑥3 = 𝐴 cos 𝜔𝑡 (14) 

 

This is the Duffing equation – a textbook example of nonlinear frequency response. In order to utilise the numerical 

continuation solver, equation (14) has to be re-written into autonomous first-order form (no 𝑡 on the right-hand side). 

This results in the following fourth-order system:  

 

15  

𝑥̇1 = 𝑥2                                               

𝑥̇2 = −𝑘𝑥1 − 𝜖𝑥1
3 − 𝑐𝑥2 + 𝐴𝑥4 

𝑥̇3 = 𝑥3 + 𝜔𝑥4 − 𝑥3(𝑥3
2 + 𝑥4

2)     

𝑥̇4 = −𝜔𝑥3 + 𝑥4 − 𝑥4(𝑥3
2 + 𝑥4

2) 

(15) 

 

where 𝑥1 = 𝑥, 𝑥2 = 𝑥̇, and [𝑥3, 𝑥4] = [sin 𝜔𝑡 , cos 𝜔𝑡] (see appendix B for proof). A nonlinear frequency response is 

then obtained by setting 𝜔 as the continuation parameter, resulting in the Bode plot as shown in Fig. 7. Due to the 

nonlinear term, for 𝜖 > 0, the resonance peak leans to the right and creates a region with multiple solutions and the 

possibility of hysteresis. This is demonstrated by forcing the system with a chirp signal (𝜔 increasing or decreasing 

linearly). The data from time simulation is then superimposed on Fig. 7, which verifies the jump behaviour and 

hysteresis predicted by nonlinear frequency analysis.  

 

All bifurcation analysis in this paper was performed using the Dynamical Systems Toolbox [33], which is the 

MATLAB/Simulink implementation of the numerical continuation software AUTO [34]. 

 



 

19 

 

 

Fig. 7  Frequency response of the Duffing equation with time simulation data superimposed. 

[𝒄, 𝒌, 𝝐, 𝑨] = [0.2, 1, 0.05, 2.5]. 

IV. Results and Discussions 

We will now compare the flight dynamics characteristics of the NASA GTT using two different aerodynamic 

modelling methods: quasi-steady and unsteady. In both cases, the following standard fourth-order equations of motion 

for longitudinal dynamics are used:  

 

16  𝛼̇ =
1

𝑚𝑉
[
1

2
𝜌𝑉2𝑆(𝐶𝑧 cos 𝛼 − 𝐶𝑥 sin 𝛼) − 𝑇 sin 𝛼 + 𝑚𝑔 cos(𝜃 − 𝛼)] + 𝑞 (16) 

17  𝑉̇ =
1

𝑚
[
1

2
𝜌𝑉2𝑆(𝐶𝑧 sin 𝛼 + 𝐶𝑥 cos 𝛼) + 𝑇 cos 𝛼 − 𝑚𝑔 sin(𝜃 − 𝛼)] (17) 

18  𝑞̇ =
1

2
𝜌𝑉2𝑆𝑐

𝐶𝑚

𝐼𝑦

 (18) 

19  𝜃̇ = 𝑞 (19) 

 

The aircraft parameters are shown in Table 1. The three total aerodynamic coefficients [𝐶𝑥 , 𝐶𝑧 , 𝐶𝑚] are made up 

of static and dynamic components.  

Table 2 lists the data type for each static coefficient, and Table 3 summarises how the total component was calculated 

in the quasi-steady and unsteady models. Note that unsteady effects are not modelled for the axial force coefficient 𝐶𝑥 

in all cases. 
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Table 1. Aircraft parameters 

𝑆 wing area 70.08 m2 

𝑐 mean aerodynamic chord 3.37 m 

𝑚 mass 25,332 kg 

𝜌 air density (at 10,000 ft) 0.90463 kg/m3 

𝐼𝑦  pitch moment of inertia 1,510,624 kg m2 

𝑇 thrust 22,000 N 

𝑔 gravitational acceleration 9.81 m/s2 

 

Table 2. Static aerodynamic data types 

𝐶𝑥,𝑠𝑡 Tabular (not shown) 

𝐶𝑧,𝑠𝑡 Splines (Fig. 3a) 

𝐶𝑚,𝑠𝑡 Splines (Fig. 3b) 

 

Table 3. Modelling methods of the three total aerodynamic coefficients 

 Quasi-steady Unsteady (Λ = 1 and 2.5) 

𝐶𝑥 Similar to eq. (3) Similar to eq. (3) 

𝐶𝑧 eq. (3) eq. (7-8) 

𝐶𝑚 eq. (4) eq. (9-10) 

 

 Unforced Bifurcation Analysis 

Fig. 8 shows the unforced bifurcation diagrams of the quasi-steady and unsteady GTT with the elevator deflection 𝛿𝑒 

as the continuation parameter. The insets are magnified views of regions where limit cycles exist. Firstly, it is noted 

that Figs. 8a and b are very similar and suggest that dynamics of the quasi-steady and nominal-unsteady models are 

comparable. This observation is further verified in Fig. 9, which compares the pole positions of all equilibrium 
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solutions shown in the first two bifurcation diagrams (Figs. 8a and b). The rigid-body roots of the quasi-steady and 

nominal-unsteady models are comparable, although the latter model contains two additional real roots on the far-left 

due to the two internal states 𝑥𝑧 and 𝑥𝑚. These two roots overlap each other and travel as a real pair (as opposed to a 

common complex-conjugate pair). Apart from this minor difference, the similar rigid-body roots verify that the state-

space method is a valid alternative to quasi-steady modelling while also highlighting that unsteady aerodynamics in 

the current application (a T-tailed transport aircraft model that does not undergo rapid manoeuvres) is not sufficiently 

influential to require a time-dependent model. One can also make an opposite conclusion: that quasi-steady modelling 

is adequate for the GTT and possibly for any T-tail transport aircraft with negligible wing-tail coupling.  

 

 

Fig. 8  Unforced bifurcation diagrams – elevator continuation. 

 

 

Fig. 9  Pole positions of all equilibrium solutions in Figs. 8a and b. 

a) b) c) 
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Figures 8a and b also feature a pair of Hopf bifurcations between 8.2o and 9.4o angle-of-attack. They give rise to a 

branch of stable limit cycles, meaning that the aircraft may encounter pitch oscillation in the region. This pair of Hopf 

bifurcations disappears in Fig. 8c when Λ is increased to 2.5. To verify the pitch oscillation, we trim the aircraft at 𝛿𝑒 

= –6.3o, then step down to –6.47o. The resulting responses in Fig. 10 verify the limit cycle’s existence in the quasi-

steady and nominal-unsteady cases. For the Λ = 2.5 case, the aircraft is technically stable although marginally damped.  

 

Another Hopf bifurcation is detected at a higher angle-of-attack. This occurs at around 𝛼 = 17o for the first two cases, 

resulting in a branch of unstable limit cycles that collides with the unstable equilibrium branch (i.e., a global 

homoclinic bifurcation). These unstable limit cycles are not directly observable in time simulation. However, the 

similarity between figures 8a and b further emphasises that quasi-steady modelling is adequate to characterise the 

dynamics of the aircraft for the current application. When Λ is increased to 2.5, this Hopf bifurcation moves further to 

the left to reside at a higher angle-of-attack and create a branch of stable limit cycles that can be observed in time 

simulation – one of which is shown in Fig. 11 alongside a plot of how 𝐶𝑀 varies with 𝛼 throughout the oscillation. In 

the latter, it was found that the oscillation is linked to the damping loop in 𝐶𝑀 being partly undamped, which in turn 

was a result of the highly unsteady aerodynamics. In other words, increasing Λ reduces damping at high angles-of-

attack, which can lead to stability loss and pitch oscillation in extreme cases. 

 

 

Fig. 10  Response to an elevator step from –6.3o to –6.47o. 
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Fig. 11  A high-𝜶 stable limit cycle. [𝚲, 𝜹𝒆] = [2.5, –7]. 

Finally, the reduced damping at high 𝛼 is further highlighted by a large elevator step from –2o to –8o (Fig. 12). Based 

on the bifurcation diagrams, this manoeuvre equates to moving between the two stable trim points at 3.6o and 20.6o 

angle-of-attack. It can be seen from Fig. 12 that the quasi-steady and nominal-unsteady responses are very similar. On 

the other hand, the Λ = 2.5 case is very different in addition to being significantly less damped as inferred above.  

 

 

Fig. 12  Response to an elevator step from –2o to –8o. 

In conclusion, unforced bifurcation analysis and time simulations verify that the state-space method provides a feasible 

alternative to the quasi-steady modelling approach. Conversely, it can also be said that, based on the cases studied 

 undamped 
 damped 
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here, a quasi-steady model can be considered adequate for T-tail transport aircraft applications that do not undergo 

rapid manoeuvres. On the other hand, the responses become very different in the hypothetical highly-unsteady case, 

which underline the shortcomings of the quasi-steady method in instances where the unsteady effects are significant. 

The analyses also demonstrated the potential of combining the state-space modelling method with bifurcation analysis 

for studying the aircraft’s flight dynamics in these highly nonlinear instances. 

 Forced Bifurcation Analysis 

It has been shown that unforced bifurcation analysis provides valuable insights on the effects of unsteady 

aerodynamics on the aircraft dynamics especially at high angles-of-attack. However, this approach becomes less 

effective in closed-loop applications in which the controller provides stability. To illustrate this, consider a manoeuvre-

demand system as shown Fig. 13a, where the input is demanded angle-of-attack 𝛼𝑑. Fig. 13b is the resulting unforced 

bifurcation diagram of the closed-loop system, which is identical for all three cases (quasi-steady, nominal-unsteady, 

and highly unsteady). This is because unforced bifurcation analysis only provides information on the equilibirum 

solutions. Since the controller already provides stability and allows us to trim the aircraft at any angle-of-attack within 

the elevator deflection range, the influence of unsteady aerodynamics is not noticable in Fig. 13b.  

 

Fig. 13  Closed-loop block diagram (a) and closed-loop unforced bifurcation diagram (b) (same for all cases). 

a) 

b) 
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In order to assess the controlled aircraft using bifurcation analysis, we will now employ the nonlinear frequency 

analysis method to observe the impact of the unsteady effects when the aircraft is non-stationary. The pilot input now 

takes the form 𝛼𝑑 = 20 + 2 sin 2𝜋𝑓𝑡 (deg). This is equivalent to trimming the aircraft at 20o angle-of-attack, then 

apply a forcing input with amplitude 2o and frequency 𝑓 (Hz). The resulting Bode plots are shown in Fig. 14. As 

before, the quasi-steady and nominal-unsteady cases are very similar, and both become unstable for a range of 

frequencies near resonance below 1 Hz. The resonance peak also includes a region of observable hysteresis; this 

feature is not discussed further as it is also observed in the quasi-steady model and is therefore caused by the 

nonlinearity in the tabular aerodynamic data (rather than the unsteady effects). When Λ is increased to 2.5, the unstable 

solution branch near resonance expands and covers a wider frequency range,  up to 1.17 Hz. In all instances, stability 

is lost via a torus bifurcation, which gives rise to a large-amplitude quasi-periodic oscillation. We verify this by 

comparing the forced responses at 1 Hz in time simulation (Fig. 15). As predicted by nonlinear frequency analysis, 

this stick pumping results in very small-amplitude oscillations at exactly 1 Hz for the quasi-steady and nominal-

unsteady responses. However, the Λ = 2.5 simulation is remarkably different. In addition to having an extremely large 

amplitude, the oscillation is quasi-periodic at around 0.14 Hz, which is significantly lower than the 1 Hz input. This 

behaviour marks a degraded controller performance. Since the quasi-periodic (unstable) region expands as Λ increases, 

it can be said that unsteady aerodynamics can negatively affect the controller’s performance in a manner that cannot 

be detected using the quasi-steady modelling approach and even unforced bifurcation analysis with full unsteady 

aerodynamics modelling. These shortcomings can be addressed by using forced bifurcation analysis. 

 

 

Fig. 14  𝜶-to-𝜶𝒅 frequency responses. 𝜶𝒅 = 𝟐𝟎 + 𝟐 𝒔𝒊𝒏 𝟐𝝅𝒇𝒕 (deg). For clarity, not all bifurcations are shown. 

a) b) c) 
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Fig. 15  Forced responses at 1 Hz. 

The dynamics at resonance is also affected by the presence of unsteady aerodynamics. To illustrate, consider the 

motions during a large oscillation at 0.30 Hz forcing, for which there are no stable (period-1) solutions in all three 

cases according to the nonlinear Bode plots. The resulting phase plots in Fig. 16 show chaotic oscillations for the first 

two cases and period-2 stable for the highly unsteady one. As before, the dynamics of the quasi-steady and Λ = 1 

models are qualitatively similar, despite the large-amplitude oscillations. This further validates the adequacy of the 

state-space modelling method for the GTT. 

 

 

Fig. 16  Phase plots at 0.30 Hz forcing, showing trajectories between 500s and 600s. 

 

V. Conclusion 

This paper presents one of the first attempts at combining the state-space aerodynamic modelling method with 

bifurcation analysis for a fixed-wing aircraft, and at extending this to investigate the effects of the aerodynamic 

a) b) c) 
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modelling on transient behaviour via nonlinear frequency responses generated using numerical continuation. Whilst 

previous studies were limited to assessments of only aerodynamic characteristics, it has been shown here that the 

influence of unsteady aerodynamics relative to a quasi-steady formulation in the context of longitudinal dynamics and 

control can be directly evaluated using bifurcation analysis. 

 

The study starts with the longitudinal quasi-steady aerodynamic model provided by NASA Langley for the sub-scale 

GTT configuration, based on wind tunnel data. A state-space unsteady model is then derived to match the quasi-steady 

static and oscillatory lift and pitching moment characteristics and to also capture time-dependent separated flow 

effects. The two models were compared, in respect of aerodynamic responses and also flight dynamic responses via 

bifurcation analysis and time histories. In addition, harmonically forced bifurcation analysis was implemented to 

generate nonlinear frequency response plots. This approach provides another way to assess unsteady aerodynamic 

effects in terms of stability and control.  

 

Combining the state-space aerodynamic modelling method and bifurcation analysis allows the following observations 

to be made, which have not been thoroughly assessed previously:   

 

- Quasi-steady aerodynamic modelling is adequate for the longitudinal NASA GTT model, and potentially more 

generally for other T-tail transport aircraft that do not undergo rapid manoeuvring. 

- Likewise, the state-space modelling approach is a feasible alternative that provides comparable responses in 

regions where the quasi-steady results are known to be valid, and yields frequency dependence that is missing 

from the quasi-steady form.  

 

The above was also applied to the longitudinal behaviour of a hypothetical highly-unsteady aircraft model with time 

delay parameters chosen to resemble a delta wing configuration found in high-performance fighter aircraft.  In this 

case, the aircraft’s open- and closed-loop performance was shown to be severely degraded, especially at high angles-

of-attack and while transitioning between the stall and post-stall regimes. In this study, unforced bifurcation analysis 

detected the formation of stable limit cycles in the post-stall regime, and harmonically forced bifurcation analysis 

confirmed the significant reduction in pitch damping via the widened resonance region. Both of these indicate severely 
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degraded flying qualities caused by the aerodynamic phenomena that cannot be reflected using the traditional quasi-

steady modelling technique. Furthermore, this suggests that a representative mathematical model of these highly 

manoeuvrable platforms must account for unsteady aerodynamic effects in order to properly capture the stall and post-

stall behaviours. To this end, the combination of state-space aerodynamic modelling and bifurcation analysis presents 

a powerful alternative to traditional quasi-steady modelling and conventional analysis methods.  

 

Appendices 

 An Example of Unforced Bifurcation Analysis 

Consider the following simple dynamical system:  

 

1  𝑥̈ + (𝑥2 − 𝑚)𝑥̇ + 𝑥 = 0 (A1) 

 

This a variation of the Van der Pol oscillator. Nonlinearity comes from the damping term (𝑥2 − 𝑚). It can be seen 

that an equilibrium solution exists at the origin, and that increasing 𝑚 beyond 0 destabilises this equilibrium point due 

to the negative damping. Indeed, Fig. A17 shows the time simulation and phase plot at 𝑚 = 1 with non-zero initial 

conditions. The system enters a stable self-sustained oscillation that is only suppressed by the increased damping as 𝑥 

moves away from the origin. Consequently, its phase plot shows a closed-trajectory (i.e., a limit cycle).  

 

Fig. A18a is the bifurcation diagram of equation (A1) with 𝑚 as the continuation parameter. Stable equilibrium 

solutions exist for all negative 𝑚. When 𝑚 exceeds 0, a Hopf bifurcation is detected, which led to a family of stable 

limit cycle that increases in amplitude with increasing 𝑚 (i.e., damping becomes increasingly negative). The link 

between the limit cycle amplitude and 𝑚 can be verified by running a time simulation with 𝑚 reducing linearly from 

a high value at a rate of 0.26𝑡. Data from this time simulation (plotted in terms of 𝑚 rather than 𝑡) are superimposed 

on Fig. A18a, and match the prediction made by bifurcation analysis. The 3D projection of the phase plot is shown in 

Fig. A18b. 
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Fig. A17  Time simulation (a) and phase plot (b) of equation (A1). 

 

 

Fig. A18  Bifurcation diagram of the modified Van der Pol oscillator with simulated response superimposed 

(a). 3D projection of the simulation data (b) 

a) 

b) 

a) b) 



 

30 

 

 Proof of the Harmonic Oscillator Equations 

The third and fourth states derivatives in equations (15) are reproduced below: 

 

2  

𝑥̇3 =    𝑥3 + 𝜔𝑥4 − 𝑥3(𝑥3
2 + 𝑥4

2) 

𝑥̇4 = −𝜔𝑥3 + 𝑥4 − 𝑥4(𝑥3
2 + 𝑥4

2) 

(A2) 

 

Introducing the complex variable 𝑧 = 𝑥4 + 𝑖𝑥3. We have: 

 

3  |𝑧|2 = 𝑥3
2 + 𝑥4

2 (A3) 

and  

 

4  

𝑧̇ = 𝑥̇4 + 𝑖𝑥̇3 

𝑧̇ = [−𝜔𝑥3 + 𝑥4 − 𝑥4(𝑥3
2 + 𝑥4

2)] + 𝑖[𝑥3 + 𝜔𝑥4 − 𝑥3(𝑥3
2 + 𝑥4

2)] 

𝑧̇ = (𝑥4 + 𝑖𝑥3) − (𝑥3
2 + 𝑥4

2)(𝑥4 + 𝑖𝑥3) + 𝑖𝜔(𝑥4 + 𝑖𝑥3) 

𝑧̇ = 𝑧 − |𝑧|2𝑧 + 𝑖𝜔𝑧 

𝑧̇ = 𝑧(1 − |𝑧|2 + 𝑖𝜔) 

(A4) 

 

Now transform 𝑧 to its polar form of 𝑧 = 𝑟𝑒𝑖𝜃 , giving |𝑧|2 = 𝑟2. Substitute these in equation (A4):  

 

5  𝑧̇ =  𝑟𝑒𝑖𝜃(1 − 𝑟2 + 𝑖𝜔) (A5) 

 

Furthermore, the first derivative of 𝑧 = 𝑟𝑒𝑖𝜃 is: 

 

6  𝑧̇ =  𝑟̇𝑒𝑖𝜃 + 𝑖𝜃̇𝑟𝑒𝑖𝜃 = 𝑒𝑖𝜃(𝑟̇ + 𝑖𝜃̇𝑟) (A6) 

 

Equating (A5) and (A6) and cancelling 𝑒𝑖𝜃 gives: 
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7  𝑟(1 − 𝑟2) + 𝑖𝜔𝑟 =  𝑟̇ + 𝑖𝜃̇𝑟 (A7) 

  

Therefore:  

 

8  {
𝑟̇ = 𝑟(1 − 𝑟2)

𝜃̇ = 𝜔               
 (A8) 

 

It can be seen that 𝑟 = 1 gives 𝑟̇ = 0. In this instance, the system becomes: 

 

9  {
𝑟̇ = 0
𝜃̇ = 𝜔

 (A9) 

 

which describes a phasor of constant radius 1 and constant angular velocity 𝜔 rad/s. Its real and imaginary components 

are 𝑥4 = cos 𝜔𝑡 and 𝑥3 = sin 𝜔𝑡, respectively. To ensure that 𝑟 = 1 at the start of the simulation, set 𝑥3(𝑡 = 0) = 0 

and 𝑥4(𝑡 = 0) = 1. 

 

We can now couple the states 𝑥3 and/or 𝑥4 into the system’s equations of motion to generate the harmonic forcing 

term in autonomous form for bifurcation analysis. 
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