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Abstract 

Background: Maize (Zea mays L.) is the third most consumed grain in the world and improving maize yield is of great 

importance of the world food security, especially under global climate change and more frequent severe droughts. 

Due to the limitation of phenotyping methods, most current studies only focused on the responses of phenotypes on 

certain key growth stages. Although light detection and ranging (lidar) technology showed great potential in acquir-

ing three-dimensional (3D) vegetation information, it has been rarely used in monitoring maize phenotype dynamics 

at an individual plant level.

Results: In this study, we used a terrestrial laser scanner to collect lidar data at six growth stages for 20 maize varieties 

under drought stress. Three drought-related phenotypes, i.e., plant height, plant area index (PAI) and projected leaf 

area (PLA), were calculated from the lidar point clouds at the individual plant level. The results showed that terres-

trial lidar data can be used to estimate plant height, PAI and PLA at an accuracy of 96%, 70% and 92%, respectively. 

All three phenotypes showed a pattern of first increasing and then decreasing during the growth period. The high 

drought tolerance group tended to keep lower plant height and PAI without losing PLA during the tasseling stage. 

Moreover, the high drought tolerance group inclined to have lower plant area density in the upper canopy than the 

low drought tolerance group.

Conclusion: The results demonstrate the feasibility of using terrestrial lidar to monitor 3D maize phenotypes under 

drought stress in the field and may provide new insights on identifying the key phenotypes and growth stages influ-

enced by drought stress.
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Background
In recent decades, the global climate change has brought 

more and more frequent heat-waves and severe droughts 

[17], which has become an explicit threat to the global 

food security [22]. Maize (Zea mays L.) is the third most 

consumed grain in the world and studying how to secure 

maize yield under drought stress is of great significance. 

Beyond improving the irrigation technology, cultivating 

maize varieties with high drought resistance potential is 

another effective way to reduce the influence of drought 

stress [47]. Crop phenotyping can provide crop trait 

estimations and help to identify the traits influenced by 

drought stress, which is a critical step for crop breeding 

[45, 47, 67].

Field-based method is the most commonly used for 

acquiring phenotype measurements currently [16] and 

has been widely used to assess the drought resistance of 

different crops [10, 64]. For example, Faroop et  al. [24], 

Getnet et  al. [26] and Xu et  al. [66] found that drought 

stress can influence crop physiological metabolism, leaf 

size and yield based on field phenotype observations. 

Among various crop phenotypes, plant height and leaf 

area have been proved to be the key indictors related to 

drought stress [11, 23, 34, 52, 58, 71]. Maize plants have 

to reach a sufficient height to have enough photosynthate 
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for yields, and drought stress can delay the plant develop-

ment to influence yields [57]. �e structure of crop leaves 

can influence the water and light use efficiency, which are 

important factors indicating the drought resistance [4, 38, 

63]. �e vertical structure of crop leaves is often repre-

sented by the leaf area density (LAD) and leaf area index 

(LAI) [33]. LAD is defined as the one-sided leaf area per 

unit of a horizontal layer volume [65], and the sum of 

LAD along the vertical profile is LAI [33]. �e horizontal 

structure of crop leaves can be represented by the pro-

jected leaf area (PLA), which is defined as the percentage 

of the vertically projected canopy area to the total ground 

area. However, taking field measurements is very time-

consuming and labor-intensive, and destructive harvest-

ing methods are frequently used to obtain LAD and LAI. 

�is limits most current studies only focusing on certain 

key growth stages, such as the tasseling stage and the rip-

ening stage, which cannot reflect the cumulative impact 

of drought stress on crops through the growing period 

[14, 53, 71]. �erefore, it is of great significance to moni-

tor the response of maize phenotypes to drought stress 

during the whole growing period using new crop pheno-

typing technology.

�e development of near-surface remote sensing tech-

nology provides new opportunity for non-destructive, 

high-efficiency and high-resolution (both temporal and 

spatial) phenotyping. Vegetation indices derived from 

multispectral/hyperspectral imagery (e.g., normalized 

difference vegetation index and enhanced vegetation 

index) have been proven to be correlated to crop pheno-

types, such as LAI, biomass, yield, and crop physiologi-

cal processes [13, 30, 31, 48, 49]. Photogrammetry and 

computer vision technologies can be further used to esti-

mate three-dimensional (3D) crop phenotypes [1, 7, 8, 

15]. For example, Meyer and Davison [44] used images 

taken from two perpendicular directions to reconstruct 

3D crop models and measure crop phenotypes (e.g. stem 

diameter and leaf angle) from the 3D models; Paproki 

et  al. [50] successfully used 64 images taken from dif-

ferent angles to reconstruct 3D surface models of cot-

ton plants; Duan et  al. [19], Rovira-Más et  al. [56] and 

Chen et al. [14] used the structure-from-motion method 

to derive 3D crop point cloud and measure crop pheno-

types; Kise et  al. [37] proved that the computer vision-

based methods can be used to retrieve plant height at a 

centimeter-level accuracy. However, these imagery-based 

remote sensing methods are easily influenced by light 

conditions and cannot penetrate crop canopy, which lim-

its their applications in field practices [42, 46].

Light detection and ranging (lidar), an active remote 

sensing technology, can provide accurate 3D informa-

tion through measuring the time of flight of an emitted 

laser pulse between the sensor and the target. Besides, 

the focused short-wavelength laser pulse used by lidar 

sensors can effectively penetrate vegetation canopy and 

less influenced by the light condition [12, 21, 61]. �ere-

fore, it has shown great potential for field-based high-

throughput crop phenotyping [2, 3, 29, 32, 41, 51, 60, 

62, 69]. However, lidar is still a relatively new technology 

to the field of crop phenotyping. Recently, more efforts 

have been spent on developing algorithms to automati-

cally extract crop phenotypes from lidar data. For exam-

ple, Jin et al. [35, 36] proposed methods combining deep 

learning algorithms with geometric principles to accu-

rately extract 3D maize phenotypes (e.g., plant height, 

stem diameter, crown diameter, leaf area, leaf inclination 

angle, leaf length, and leaf width) from terrestrial lidar 

data. �ese studies further proved that lidar is an ideal 

tool for monitoring crop growth dynamics non-destruc-

tively in field practices. Nevertheless, to the best of our 

knowledge, no study has been conducted to explore the 

responses of 3D maize phenotypes to drought stress 

using lidar technology. �e feasibility of lidar in monitor-

ing maize phenotype dynamics and how maize pheno-

types respond to drought stress cumulatively still need to 

be evaluated and analyzed.

�e aim of this study is to evaluate the performance of 

lidar in monitoring time-series maize phenotypes in field 

practices and analyze the growth dynamics of different 

maize varieties under drought stress. Specifically, three 

questions were addressed. First, how accurate is lidar 

for maize phenotype extraction in field practices, and 

how do maize phenotypes change under drought stress 

during the whole growing period? Second, what maize 

phenotypes are associated with drought stress, and how 

can they indicate the occurrence and development of 

drought in 3D? �ird, what are the key phenotypes that 

lead different maize varieties to have different drought 

resistance?

Materials and methods
Study site and �eld measurements

�e study site is located in the Institute of Botany, Chi-

nese Academy of Sciences, Beijing, China (39°59′10″N, 

116°12′21″E) with an area of 800 m2 (40 m × 20 m), and 

the soil type is yellow brown soil. To simulate a growth 

environment under drought stress, the study site was 

installed with a rain shelter. As can be seen in Fig. 1a, b, 

a layer of plastic film was installed at a height of 4 m to 

block natural rainfall. �e rain shelter was opened all the 

time unless there were rainfalls. Moreover, a water-resist-

ant barrier was installed below the ground to prevent 

water from surrounding soils penetrating to the study 

site.

To further reduce the influence of wind and edge effect, 

we sowed 20  maize varieties in the middle of the study 
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site (10 m × 3 m) on May 10th, 2016, and we harvested 

them on September 20th, 2016. All maize individu-

als were planted in a regular grid. �e distance between 

each column was 50  cm, and the distance between two 

adjacent plants along a column was 30 cm. Each column 

represented one maize variety with 10 individual plants 

(Fig. 1c). All maize varieties were watered during the first 

20 days from sowing (before May 30th, 2016) to ensure 

the survival rate. �e soil moisture was maintained at a 

level of higher than 30% (volumetric water content) dur-

ing this stage. Since May 31st, 2016, all maize varieties 

were not watered anymore, and that day was counted as 

Day 0 (D0) under drought stress hereafter.

To collect ground truth measurements of maize pheno-

types, 34 maize individuals were randomly chosen, and 

their plant height, plant area index (PAI) and PLA were 

manually measured. �eir plant heights were measured 

with a staff at six key growth stages separately, covering 

from the early leaf emergence stage to the final mature 

stage (Table 1). A DJI Mavic Pro was used to capture an 

image right above each plant at a height of 5 m above the 

ground at the ripening stage D70. Each individual plant 

was then cropped out to calculate the PLA using the 

method proposed by Richardson et  al. [55]. Moreover, 

each individual plant was divided into five height strata 

(Fig. 2). All leaves at each height layer of each individual 

plant were harvested separately (after the stage D95) and 

scanned using a Canon LiDE 220 scanner. If a leaf was 

intersected with two or more height layers, it was broken 

off from the thresholding height and each layer only har-

vested the part belonging to it. �e scanned images were 

processed by the software of WinFOLIA to derive plant 

area density (PAD) at each height layer and therefore cal-

culate PAI for each plant. Note that PAD and PAI were 

Fig. 1 a The maize growth site with a rain shelter for simulating drought conditions; b the internal view of the study site and an illustration of the 

laser scanner setup for collecting lidar data; and c an example of the collected lidar point cloud on June 20th, 2016

Table 1 The six maize key growth stages used in this study 

and their corresponding dates

a Days of drought stress were counted since May 31st, 2016 (D0) when all maize 

plants were not watered anymore

b The growing stage was determined by the standard provided by Bondesio 

et al. [9]. V6 represents the stage that plants have 5 leaves, growth point is 

20–25 mm below the ground, and cob and tassel is at initiation stage; V10–

V11 represents the stage of cob development with around 10–11 leaves; 

VT represents the beginning of pollination stage; R1 represents the end of 

pollination stage; R2–R3 represents the stage of kernel development; R6 

represents the end of mass grain stage and plants are ready for being harvested

Date Days 
since sowing

Days 
of drought 
 stressa

Growth  stageb

2016-06-20 40 D20 V6

2016-07-05 55 D35 V10–V11

2016-07-14 65 D45 VT

2016-07-29 80 D60 R1

2016-08-07 90 D70 R2–R3

2016-09-01 115 D95 R6
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commonly used to replace LAD and LAI when leaves can 

be hardly separated from other organs [33].

To analyze the drought tolerance level of each maize 

variety, we planted a control group with the same 20 

maize varieties in a field nearby the study site. Maize indi-

viduals of the control group were sowed and harvested 

in the same day as the group under drought stress and 

the same rules were used to manage them, except that 

they were watered all the time to keep the soil moisture 

higher than 30% (volumetric water content). After being 

harvested, the yields of all plants from both the control 

group and the group under drought stress were collected, 

dried, weighted and recorded. In this study, plant yields 

represent grain yields instead of biomass yields.

Terrestrial lidar data collection and preprocessing

To cover the whole growing period, we collected six sets 

of terrestrial lidar data under drought stress at six key 

growth stages of maize (Table 1). A FARO  Focus3D X120 

laser scanner in the high-resolution mode was used to 

acquire lidar data at five scanning positions surrounding 

the maize plants at each growth stage. �e specification 

of the laser scanner is listed in Table  2. �e five scan-

ning positions were fixed for the lidar scans of all growth 

stages, and each scan was set up at a height of 1.5  m 

above the ground (Fig. 1b). To register the point clouds 

from different scanning positions, we put 10 target balls 

with a high reflectance in the scene, and at least four tar-

get balls were ensured that could be visually seen at each 

scanning position. �e FARO SCENE 5.4.4 software was 

used to register the point clouds from different scanning 

positions for each growth stage, and the final registering 

error was around 2 mm on average.

Noise points are inevitable in lidar data due to object 

occlusion, wind and so on. In this study, we used the 

outlier removal algorithm integrated in the Green Valley 

International LiDAR360 software to reduce noise points 

in the collected lidar data (Fig. 3). �is algorithm identi-

fies outliers based on the rule that whether the distance 

of a point to its surrounding neighbors is larger than 

avg. + n × std. (where avg. and std. is the average distance 

of points to their surrounding neighbors, and n is a user-

defined threshold). �en, the improved progressive trian-

gulated irregular network densification filtering algorithm 

proposed by Zhao et al. [70] was used to classify ground 

points and non-ground points (i.e., vegetation points 

in this study) for the lidar data of each growth stage. A 

digital terrain model (DTM) in 5 cm resolution was cal-

culated from the lidar ground returns using the ordinary 

kriging method [28]. �e obtained DTM was used to nor-

malize the lidar point cloud by subtracting the ground 

elevation from the original lidar elevation. Moreover, 

although the same data collection setting was used for all 

the six growth stages, the collected lidar point density still 

increased with the growth of maize plants because of the 

increase of environmental complexity. To make the lidar 

data of the six growth stages be comparable to each other, 

we resampled the lidar point cloud to make sure all lidar 

data have the same average point distance.

Phenotype extraction from lidar data

It has been found that phenotypes related to maize plant 

height and leaf area are highly correlated to drought 

stress [11, 52, 71]. �erefore, in this study, we calculated 

Fig. 2 A demonstration of the division of maize vertical layers in this 

study. Note that the root layer (L0) was not included in the following 

analysis of this study

Table 2 Speci�cations of  the  FARO  Focus3D X120 laser 

scanner used in this study

Field of view Horizontal: 0°–360°

Vertical: 30°–330°

Emission point density 976,000 points

Scan speed 122.000–922.000 Hz

Laser scan resolution 0.009°

Scanning accuracy 2 mm @ a 25 m distance

Scan distance 0.6–153.49 m

Laser wavelength 905 nm

Camera resolution 70 million pixels

Tilt sensor ± 5°

Scanner weight 4.9 kg
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the plant height, PAI, PAD and PLA for each maize 

individual from the lidar data of each growth stage for 

drought stress analysis. To derive these four parameters 

for each individual maize, we need to first identify and 

segment each individual plant from lidar point clouds. 

Because all maize individuals were planted in a regular 

grid with large intervals, we created a simple grid with a 

size of 50 cm × 30 cm and treated the points in each pixel 

as one maize individual.

�e height of each plant was calculated as the maxi-

mum height from the ground in the corresponding pixel. 

PAI was calculated from the voxelized lidar data using 

the voxel-based canopy profiling method proposed by 

Hosoi and Omasa [33]. �e point cloud at each growth 

stage was first voxelized with a given voxel size, and the 

attribute of each voxel was determined by whether there 

was at least one vegetation point in it. If there was one 

or more than one vegetation points in a voxel, its corre-

sponding attribute was assigned as 1; otherwise, it was 

assigned as 0. �en, we divided a maize individual into 

five height strata, as shown in Fig. 2. �e PAD of a height 

layer was calculated using the following equation,

(1)PADk =
cos θc

G(θc)
×

1

�H
×

nl(k)

nl(k) + np(k)

in which, θc represents the incident angle of a laser pulse, 

nl(k) and np(k) represent the number of voxels with an 

attribute of 1 and 0 at the kth height layer, respectively, 

�H represents the height difference of each height layer, 

and G(θc) represents the extinction coefficient. Since 

voxel size has a great influence on the PAD estimation 

[29], we selected three maize individuals from the control 

group and repeatedly estimated their PAD values at each 

height layer using a voxel size varying from 1 to 12 mm 

with a step of 0.5  mm. �e estimated PAD values were 

compared with field measurements to find the optimized 

voxel size for PAD estimation. Finally, the PAI of a plant 

individual was calculated as the sum of PAD from the five 

height layers, which can be described as,

PLA is defined as the projected area of vegetation canopy 

on the ground. In this study, we first projected the lidar 

points of each maize individual to the X–Y plane. �en, 

the minimum point distance on the X–Y plane was used 

as the pixel size to rasterize the projected lidar points. 

Pixels with point(s) were marked as 1, and pixels without 

point were marked as 0. �e proportion of pixels with a 

(2)PAI =

5∑

k=1

PADk

Fig. 3 Scheme for processing the collected lidar point clouds and analyze the phenotype dynamics under drought stress. PAI, PAD, PLA, YRR, 

DSI and DRI represent plant area index, plant area density, projected leaf area, relative yield decrease, drought susceptibility index and drought 

resistance index, respectively



Page 6 of 16Su et al. Plant Methods           (2019) 15:11 

value of 1 to the total number of pixels of a maize indi-

vidual on the X–Y plane was the PLA estimation.

�e lidar-derived plant height, PAI and PLA esti-

mations for the 34 independent maize samples were 

compared with field measurements. Two statistic meas-

urements, i.e. coefficient of determination (R2) and root-

mean-square error (RMSE) were calculated to assess the 

estimation accuracy.

where xi is the ground truth measurement, x̂i is the lidar-

derived estimation, x̄ is the average lidar-derived estima-

tion, and n is the number of validation samples.

Analysis of the in�uence of drought stress on maize 

phenotypes

Classi�cation of drought tolerance level

Many drought tolerance indices have been proposed to 

evaluate crop drought resistance capability. However, 

most of these indices have their own limitations, and can-

not be used alone to classify drought tolerance level [14]. 

In this study, to avoid the limitations of single drought 

tolerance indices, a distance-based clustering algorithm 

was used to classify drought tolerance level from three 

commonly-used drought tolerance indices, i.e., yield 

reduction rate (YRR), drought susceptibility index (DSI) 

and drought resistance index (DRI). �ey were calculated 

from the field grain yield measurements using the follow-

ing equations [6, 25, 40],

where Ya represents the yield of a maize variety under 

drought stress, Ym represents the corresponding yield 

of the control group, YA represents the average yield of 

all maize varieties under drought stress, and YM repre-

sents the average yield of all maize varieties of the con-

trol group. YRR is a direct measurement of yield decrease 

but cannot evaluate the sensitivity under different stress 

severities [39]. DSI and DRI considers the stress severity 

(3)R
2

= 1 −
(n − 1)

∑
n

i=1
(xi − x̂i)

2

(n − 2)
∑

n

i=1
(xi − x̄)2

(4)RMSE =

√∑
n

i=1
(xi − x̂i)

2

n − 2

(5)YRR =

Ym − Ya

Ym

(6)DSI =

1 − Ya/Ym

1 − Y A/YM

(7)DRI =

(Ya)
2

Ym
×

YM

(YA)2

in their calculations, but they might be problematic to 

use under sever environmental stresses [43]. �e dis-

tance-based clustering function integrated in the SPSS 

(Statistical Product and Service Solutions) software was 

therefore used to classify the maize varieties into three 

groups (i.e., high drought tolerance, medium drought tol-

erance, and low drought tolerance) [14]. Note that among 

the 20 maize varieties, three of them were not included in 

the drought stress analysis due to the incomplete samples 

in the group under drought stress (certain maize individ-

uals died during the growth period).

Analysis of maize phenotype dynamics under drought stress

�e average plant height, PAI and PLA and the corre-

sponding standard deviations of maize varieties with 

the same drought tolerance level were calculated at 

each growth stage, and the change rates of each param-

eter compared to the previous stage were calculated. 

�ese statistics were used to analyze the change dynam-

ics of phenotypes with different drought tolerance lev-

els. Moreover, the statistical test was used to evaluate 

whether the differences in plant height, PAI and PLA 

were significant among different growth stages for each 

drought tolerance level. �e null hypothesis was that 

there was no difference between the values of a pheno-

type from two growth stages. Besides, we further cal-

culated the average PAD at each height layer for maize 

varieties with the same drought tolerance level. �e time-

series vertical PAD profiles from maize varieties with dif-

ferent drought tolerance levels were compared to analyze 

the responses of maize vertical structures to drought 

stress.

Results
Lidar-derived maize phenotypes

�e influence of voxel size on the PAI estimation from 

lidar is shown in Fig. 4. As can be seen, voxel size had a 

significant influence on the PAI estimation for all three 

testing maize individuals. With the increase of voxel size, 

PAI estimation first increased rapidly and then stayed rel-

ative stable after voxel size reaching a certain size. If the 

voxel size was too small, the voxel-based method under-

estimated the PAI; and if the voxel size was too big, the 

voxel-based method overestimated the PAI. In this study, 

we found that when the voxel size was set to 1.5 times 

of the average point distance, the estimated PAD at each 

height layer was close to the field measurements, and the 

final PAI reached a relative high accuracy as well. �ere-

fore, a voxel size of 1.5 times of the average point distance 

of each maize point cloud was used to estimate the PAI of 

all maize individuals at each growth stage.

Table  3 shows the statistics of plant height, PAI and 

PLA for all maize individuals at each growth stage. 
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Plant height, PAI, and PLA all reached their peaks at the 

growth stage of D60. �e maximum plant height, PAI, 

and PLA can be three to four times higher than those at 

the beginning stage under drought stress. From D60 to 

D95, the average plant height, PAI and PLA decreased 

by 8%, 40%, and 20%, respectively. Moreover, the varia-

tions in plant height and PAI increased with the growth 

of maize plants. �e standard deviations of plant height 

and PAI for the last three growth stages (i.e., D60, D70, 

and D95) were around three times higher than those of 

the growth stage D20. �e variation of PLA stayed rela-

tively stable during the growth period, and the smallest 

standard deviations appeared in the stage of D45. �e 

proportion of standard deviation to average plant height 

Fig. 4 The influence of voxel size on the estimation of PAI (left column) and PAD at different height strata (right column). Each row represents 

a selected maize individual at the final growth stage. The PAD estimated from ground truth was compared with the lidar-derived estimations at 

different height strata on the right column. The five height layers correspond to the same five layers in Fig. 2, and the 0.5 times, 1.5 times and 5.0 

times represent using a voxel size of the corresponding times of average point distance to estimate PAD from lidar data
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was the lowest among the three phenotypes, which was 

only around 15% on average.

�e estimated phenotypes were evaluated using field 

measurements of the 34 independent maize samples. 

Overall, all three lidar-derived phenotypes showed 

good agreements with field measurements (Fig.  5). 

Plant height had the highest estimation accuracy among 

the three phenotypes (R2 = 0.96, RMSE = 0.15  m) 

(Fig. 5a). Lidar-derived PLA showed a very high estima-

tion accuracy as well with a R2 of 0.92 and a RMSE of 

0.05 m2/m2 (Fig. 5b). Lidar-estimated PAI had the low-

est accuracy among the three phenotypes with a R2 of 

0.70 and a RMSE of 0.15 m2/m2 (Fig. 5c).

Table 3 Statistics of the lidar-derived plant height, PAI and PLA for all maize individuals at each growth stage

a Min, Max, Avg and Std represent the minimum, maximum, average and standard deviation of the corresponding phenotype of all plant individuals at each growth 

stage, respectively

Growth stage Height (m)a PAI  (m2/m2)a PLA  (m2/m2)a

Min Max Avg Std Min Max Avg Std Min Max Avg Std

D20 0.41 0.70 0.55 0.09 0.24 1.31 0.65 0.29 0.09 0.18 0.13 0.03

D35 0.67 1.32 1.00 0.16 0.68 2.00 1.18 0.36 0.14 0.19 0.17 0.02

D45 1.20 1.83 1.42 0.17 0.82 2.85 1.60 0.52 0.16 0.21 0.18 0.01

D60 1.34 2.35 1.80 0.28 1.04 4.02 2.09 0.62 0.16 0.23 0.20 0.02

D70 1.31 2.28 1.76 0.28 0.31 2.85 1.70 0.82 0.12 0.20 0.18 0.03

D95 1.26 2.08 1.66 0.27 0.29 2.66 1.26 0.64 0.11 0.19 0.16 0.03

Fig. 5 The comparison between the field-measured a plant height, b PAI and c PLA and the corresponding lidar-derived estimations
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Classi�cation of drought tolerance level

Based on the distance-based clustering analysis results, 

nine of the 17 maize varieties were classified as low 

drought tolerance (L1), five were classified as medium 

drought tolerance (L2), and three were classified as high 

drought tolerance (L3) (Fig.  6). �e yield of nine maize 

varieties with a low drought tolerance decreased by 85% 

on average, and certain individuals totally failed during 

the growth period (i.e., producing no yield at all). �e 

yield of five maize varieties with a medium drought tol-

erance decreased by 48% on average, and no individuals 

failed during the growth period. �e yield of three maize 

varieties with a high drought tolerance decreased only by 

27%, and the statistical test results showed that the yield 

of these three maize varieties had no significant differ-

ence with the control group (p > 0.05).

Maize phenotype dynamics under drought stress

The plant height of three drought tolerance groups all 

increased first and then decreased as the plant growth, 

and the height growth rate followed the same pattern 

(Fig. 7a). Before D20, the height differences among the 

three drought groups were the smallest, and the height 

growth rates were similar as well. From D20 to D45, 

maize individuals of all three drought tolerance groups 

increased significantly in plant height (p < 0.01), but 

the differences in plant height among three drought 

tolerance groups became larger (Figs. 7a, 8). From D45 

to D60, the low drought tolerance group still kept a rel-

ative high growth rate in plant height, but the growth 

rates for the medium and high drought tolerance 

groups dropped rapidly. From D60 to D70, all three 

drought tolerance groups had no significant change 

in plant height (p > 0.05) (Fig. 8). After D70, the plant 

height of all three drought tolerance groups began to 

decrease, and the high drought tolerance group had 

the smallest drop in plant height. The statistic test 

result showed that the high drought tolerance group 

was the only group having an insignificant change in 

plant height among the three groups during this stage 

(p > 0.05) (Fig. 8).

�e PAI of three drought tolerance groups followed a 

similar changing pattern as the plant height across the 

growth period, which increased first and then decreased 

(Fig. 7b). Before D20, the PAI values of three drought lev-

els were close to each other, and the medium drought tol-

erance group had a relatively higher PAI than the other 

two groups. From D20 to D45, all three drought tolerance 

groups still had significant increases in PAI (p < 0.01), but 

the increase speed became much smaller (Figs. 7b, 8). �e 

PAI of the medium drought tolerance group remained 

the highest among the three groups. From D45 to D60, 

the low drought tolerance group and high drought tol-

erance group still kept a relatively high PAI growth rate, 

but the PAI growth rate of the medium drought tolerance 

group began to decrease significantly. �e low drought 

tolerance group replaced the medium drought tolerance 

group to have the highest PAI among the three groups, 

and it was also the only group having a significant change 

in PAI at this period (p < 0.05) (Figs. 7b, 8). From D60 to 

D95, the PAI of all three groups began to decrease, and 

the high drought tolerance group had the smallest change 

magnitude. �e high drought tolerance group was also 

the only group having an insignificant change in PAI dur-

ing these stages (p > 0.05) (Fig. 8).

�e PLA of all three groups also followed the pattern of 

increasing first and then decreasing (Fig. 7c). Before D20, 

the PLA of all three groups increased rapidly. �e PLA 

growth rate during this stage was the highest among all 

growth stages. Among three drought tolerance groups, 

the medium and high drought tolerance groups had a 

slightly higher PLA growth rate than the low drought 

tolerance group. From D20 to D60, all three drought tol-

erance groups still had continuous increases in PLA, but 

the increase speed became much slower. �e low drought 

tolerance group was the only group having a significant 

change in PLA during this period (p < 0.01) (Fig.  8). All 

three drought tolerance groups had the highest PLA at 

the stage of D60, and the highest PLA values were close 

to each other. From D60 to D95, the PLA of all three 

Fig. 6 The distance-based clustering analysis for the maize drought 

tolerance level classification. L1, L2 and L3 represent the low drought 

tolerance level, medium drought tolerance level and high drought 

tolerance level, respectively
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Fig. 7 The growth dynamics of a plant height, b PAI and c PLA across the whole growth period (the right column), and the change rate of the 

corresponding parameter of each growth stage compared to its previous growth stage (the left column). Note that DTL represents the L1, L2 and L3 

drought tolerance levels in Fig. 6
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groups began to have significant decreases (p < 0.05) 

(Fig.  7c, 8). �e medium drought tolerance group had 

a relatively larger decreasing speed than the other two 

groups, and its PLA value at the final stage was the small-

est among all three groups.

PAD vertical pro�le dynamics under drought stress

�e PAD estimations at different height strata across the 

whole growth period were used to evaluate the verti-

cal structure dynamics of maize varieties under drought 

stress (Fig. 9). From the seedling stage to D20, the upper 

level canopy for the medium drought tolerance group 

grew the fastest among the three groups, and the lower 

canopy for the low drought tolerance group grew the 

slowest (Fig. 9a). At the stage of D35, the upper canopy 

PAD for the medium drought tolerance group remained 

the highest, and the lower canopy PAD became close to 

each other for the three groups (Fig.  9b). At the stage 

of D45, the upper canopy of the high drought tolerance 

group grew quickly and became close to the medium 

drought tolerance group (Fig.  9c). �e lower canopy 

of all three groups remained close to each other. At the 

stage of D60, the upper canopy for the medium and high 

drought tolerance groups remained relatively unchanged 

compared to the previous stage, but that for the low 

drought tolerance group continued to grow (Fig.  9d). 

�e upper level PAD for the low drought tolerance group 

became the highest among all three groups at this stage. 

At the stage of D70, both the upper and lower canopy 

PAD began to decrease for all three groups, but only the 

shape of the PAD profile for the high drought tolerance 

group stayed relatively stable (Fig. 9e). �e PAD for the 

most top layer of the low drought tolerance group had 

no significant changes, but that for the second top layer 

Fig. 8 Statistic tests between phenotypes of one growth stage and other growth stages. L1, L2 and L3 represents the three drought tolerance 

levels in Fig. 6
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Fig. 9 The PAD vertical distribution at different height strata of the growth stage a D20, b D35, c D45, d D60, e D70, and f D95. The five height layers 

correspond to the five layers in Fig. 2, and L1, L2 and L3 represent the corresponding drought tolerance group in Fig. 6
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decreased significantly. As to the medium drought toler-

ance group, the third top layer had the smallest decrease 

in PAD which made it be the layer with the highest PAD. 

At the stage of D95, the PAD of all layers for all three 

groups continued to decrease, and the vertical structure 

profiles became more random (Fig. 9f ).

Discussion
Sensitivity of maize phenotypes to drought stress

All phenotypes showed quick increases in the early 

growth stages and decreases in the final two growth 

stages. �e decrease of plant height in the final two stages 

was caused by the fact that the loss of water in the rip-

ening stages made the tassel branches could be easily 

broken [20]. �e decreases of PLA and PAI in the final 

two stages were possibly caused by the fact that the loss 

of water in the ripening stages resulted in the rolling 

of leaves [20]. Since the broken of tassel branches was 

mostly random in the last two growth stages, but the roll-

ing of leaves was systematic, the relative change of the 

plant height was the smallest compared to the relative 

decreases of PLA and PAI (Fig. 7).

�e tasseling stage (D60) is the key maize growth stage 

which has the highest demand of moisture [18]. �ere-

fore, it is the most sensitive stage of maize to drought 

stress. Figure  10 demonstrated the comparison of the 

three phenotypes of each drought tolerance group at the 

stage of D60. As can be seen, compared to plants with 

low drought tolerance, plants with high drought toler-

ance tended to keep a lower plant height and PAI. Lower 

plant height and PAI could reduce the transpiration 

and therefore reduce the demand for moisture during 

drought stress at the key growth stage [68]. Meanwhile, 

the PLA of maize plants with high drought tolerance 

stayed close to that of plants with low drought toler-

ance, which could help to ensure their light use efficiency 

for photosynthesis. �e combining effect of these three 

phenotypes might be one of the reasons leading the high 

drought tolerance group to have higher yields.

From the 3D view, the PAI decrease at the key growth 

stage of D60 for the high drought tolerance group was 

caused by the relatively small PAD at the upper two 

height layers. As can be seen from Fig. 9d, the PAD of the 

upper two canopy layers become the lowest for the high 

drought tolerance group, while that of the lower canopy 

layers was close to each other. Although the upper levels 

of the high drought tolerance group had a similar num-

ber of leaves as the low drought tolerance group, the size 

of individual leaf at the upper levels of the high drought 

tolerance group was around 20% smaller than that of the 

low drought tolerance group. Zhang et al. [68] found that 

the transpiration rate and stomatal conductance of maize 

lower canopy in northern China was smaller than those 

of higher maize canopy due to the shading effect. �ere-

fore, reducing the upper canopy PAD might be more effi-

cient for maize plants to reach the goal of reducing water 

demand [54].

Considering the changing patterns of plant height, PLA 

and PAI of different drought tolerance groups across the 

growth period, the combination of low plant height and 

Fig. 10 The distribution of average plant height, PAI and PLA of maize varieties with different drought tolerance levels at the growth stage of D60. 

L1, L2 and L3 represent the corresponding drought tolerance group in Fig. 6
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low PAI (especially at the upper level canopy) at the tas-

seling stages might be a good indicator to identify maize 

varieties with high drought tolerance level and predict 

the maize yield under drought stress. However, in this 

study, the yield of each individual maize had weak cor-

relations with all three phenotypes (R2 < 0.3). �e maize 

varieties selected in this study had different yield poten-

tials. As can be seen in Fig.  11, although certain maize 

varieties fell in the group of low drought tolerance (e.g., 

No. 2 variety in L1), their corresponding yields were still 

higher than certain maize varieties of high drought toler-

ance group. To develop of a robust model for predicting 

maize yield from phenotypes at different growth stages, 

more strict control experiment on maize varieties and 

environmental conditions needs to be conducted in the 

future.

The potential of lidar in �eld-based phenotyping practices

�is study showed that lidar can provide accurate estima-

tions of plant height and PLA. Although the estimation 

accuracy of PAI was relatively low compared to the other 

two phenotypes, the estimation accuracy still reached 

70% and the RMSE only counted for around 10% of the 

average PAI value. �e relatively low accuracy of PAI esti-

mations might be caused by the following two reasons. 

First, there was a mismatch between field-based PAI 

measurements and lidar-derived PAI estimations. �e 

stem, tassel and leaf sheath were very hard to be scanned, 

and it was difficult to break off leaves at the exact height 

threshold in the field if a leaf intersected with two height 

layers, which could possibly bring errors to the field-

based PAI measurements. Second, some leaves of one 

maize plant might grow into the cubic space of another 

plant, and some maize point clouds from the individual 

maize segmentation step were incomplete because of the 

occlusion of leaves, which might bring uncertainty in the 

lidar-derived estimations. Recently, Jin et al. [35] proved 

that the deep learning technique can reach an accuracy 

of over 90% in individual maize segmentation from lidar 

data, which has a great potential to further improve the 

phenotype estimation accuracy at the individual plant 

level [36].

�e non-destructive and high-accuracy characteristics 

made lidar technology an ideal tool in phenotyping appli-

cations. Especially, lidar technology is not influenced by 

light conditions, and therefore it can be used in field phe-

notyping practices. However, currently, the methods to 

acquire lidar data are still very limited [29]. Although the 

terrestrial lidar sensor can collect lidar point cloud with 

high accuracy and high point density, the data collection 

and preprocessing (e.g., registration among lidar scans) 

could be very time-consuming and complicate. Moreo-

ver, the fusion of lidar with other remote-sensing sensors 

(e.g., thermal sensor, solar-induced fluorescence sensor, 

and hyperspectral sensor) are needed to acquire physi-

ology-related phenotypes beyond 3D structures [5, 27, 

59, 60]. �erefore, a new platform that can automatically 

collect and register multi-source remote sensing data for 

high-throughput field-based phenotyping practices is in 

great need [29].

Conclusion
�is study used terrestrial lidar technology to extract 

temporal maize phenotypes. Overall, lidar showed a 

strong capability in estimating plant height and PLA 

non-destructively and accurately. Although the accuracy 

of PAI estimation from lidar was not as high as plant 

height and PLA estimations, it still reached a R2 of 0.70 

and a RMSE of 0.15  m2/m2. �rough the whole growth 

period, the three phenotypes of all 17 maize varieties 

showed a pattern of increasing first and then decreas-

ing. In the heading and ripening stages, maize varieties 

with high drought tolerance tended to keep a low plant 

height and PAI without reducing PLA, which may help 

to both reduce the demand of water resources and ensure 

the photosynthesis rate. �e relative low plant height and 

PAI at the tasseling stage would be useful indicators to 

identify maize varieties with high drought tolerance level 

during the growth period. Moreover, maize plants with 

high drought tolerance tended to keep lower upper level 

PAD than maize plants with low drought tolerance so 

that they could reduce the transpiration more efficiently.
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