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1. Introduction

For many medical conditions there are several treatment options available to the patient.

For example, carpal tunnel syndrome (CTS) can be treated surgically or with conservative

therapy that includes physical therapy and anti-inflammatory medications. Conservative

therapy is less invasive and less expensive than surgery and is preferable from those points of

view. However, it is probably not as effective as surgery, at least in some patients. A simple

randomized trial to compare surgery and conservative therapy is currently underway at the

University of Washington. All patients in the trial receive magnetic resonance neurographic

imaging (MRNI) at baseline. Although the MRNI does not influence treatment within the

clinical trial, it is thought that the MRNI score may be an indicator of which patients are

likely to benefit more from surgery and could be used in the future to select patients for

surgery versus conservative therapy.

This paper addresses statistical techniques to evaluate the capacity of a measure, denoted

by Y , to assist in treatment selection. The issue is important not only for our study but

more generally and particularly in this era of rapidly expanding biotechnology. One of the

promises of new biotechnologies, including gene expression arrays and imaging modalities,

is to provide information for the purpose of selecting optimal treatment of disease (Elmer-

Dewitt et al., 2001). It is clearly important that appropriate statistical techniques are in

place to critically evaluate the technologies before they are adopted for widespread use.

In Section 2 we present a graphical display, the selection impact (SI) curve that directly

describes the performance of the measure Y for treatment selection. We contrast this with

existing approaches. Next we propose methods for estimating the SI curve with data from

a randomized trial. A nonparametric estimator described in Section 3 and a parametric

estimator described in Section 4 are contrasted in the following two sections, using asymptotic

theory and small sample simulation studies. Data, simulated to reflect anticipated results
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from the CTS randomized trial, are analyzed in Section 7. We close in Section 8 with

suggestions for future research.

2. The Selection Impact Curve

1. Definition and Purpose

First we define some notation. Let T be a binary variable that denotes treatment. For

simplicity we suppose that there are two treatment options available in the population,

A and B. Let T = 1 for A and T = 0 for B. Using the notion of potential responses

(Rubin, 1974, 1978; Holland, 1986), for t = 0, 1, we define Dt as the response if a subject

receives treatment T = t. It is impossible to observe D0 and D1 on the same subject;

instead, D = TD1 + (1 − T )D0 is observed. In this paper, we consider the case that Dt

is dichotomous, Dt = 1 for success and Dt = 0 for failure. Extensions to nondichotomous

outcomes are discussed in Section 8. We assume that an individual’s response to treatment

does not depend on the assignment mechanism or the assignments or responses of other

individuals to treatments, i.e., the SUTVA assumption of Rubin (1986) holds. The measure

Y , potentially used in the future for selecting patient treatment, is measured on a continuous

scale and larger values of Y are potentially associated with better performance of treatment

A versus B. (Y can be recoded if necessary to achieve this).

Consider the following treatment policy based on a patient’s

marker measure Y exceeding a threshold to determine which treatment the patient re-

ceives:

Y > c : select treatment A,

Y ≤ c : select treatment B.

We focus on simple thresholding criteria because, at least in our experience, criteria of this
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form are most often implemented in clinical protocols. (Consider some common examples

such as serum creatine > 1.3 mg/dL, cholesterol > 200 mg/dL, fasting blood glucose > 126

mg/dL and serum PSA > 4.0 ng/mL). The population response rate corresponding to this

policy is

θ = P[D = 1|(Y > c and T = 1) or (Y < c and T = 0)]

= P[D1 = 1|Y > c] P[Y > c] + P[D0 = 1|Y < c] P[Y < c] (1)

That is, θ is the proportion of subjects in the population who respond if the treatment policy

in effect is to assign a subject to treatment A if his marker value exceeds c but to assign

him to treatment B otherwise. Observe that when c = −∞, the policy is that all patients

receive treatment A and none receive B, while for c = ∞ all patients receive treatment B.

As c increases from −∞ to ∞, the proportion of subjects assigned to treatment B increases

from 0 to 1. Figure 1 displays a schematic illustration of the population response rate as

c varies from −∞ to +∞. In the illustration, the overall response rate is higher when all

patients are on treatment A than when all are on treatment B. The curve indicates however

that a policy that assigns 40% of patients to treatment B and 60% to treatment A on the

basis of Y , can perform almost as well as one that assigns 100% of patients to treatment A.

If treatment B is substantially less expensive or invasive than A, as is the case in the CTS

study, then this represents a better treatment policy.

The SI curve shows the impact on population response rates of treatment selection criteria

based on Y exceeding a threshold. We show the curve, θ(v), as a function of v = P[Y < c]

rather than as a function of c itself. There are two reasons for this. First, in evaluating a

treatment policy of this sort, it will be important to know the fractions of subjects potentially

assigned to treatment A versus B by the policy, 1 − v and v, respectively. Indeed it is the
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trade-off between the overall population response rate achieved and v that is of key interest.

If satisfactory operating points are found, (v, θ(v)), then one can ascertain the corresponding

thresholds to implement the policy. Second, the display on this scale allows one to compare

policies based on different markers. SI curves for two hypothetical markers are shown in

the right panel of Figure 1. The measurement units of the two markers, Y1 and Y2, say, are

irrelevant for the purposes of comparing selection policies based on them. Rather, policies

that assign equal fractions of the patient populations to treatment B more naturally compare

the markers. We see in Figure 1 that when the thresholds for the two markers, c1 and c2,

are chosen so that P[Y1 < c1] = P[Y2 < c2] = v, the marker Y1 yields better performance.

In summary, the SI curve provides a natural common scale for comparing response rates

achieved with treatment selection policies based on different markers.

Receiver operating characteristic curves that are used to evaluate and compare operating

characteristic of diagnostic tests are motivated by similar notions (Pepe 2003). Test positive

criteria are defined by thresholding the test result and consequent sensitivity and specificity

values are plotted. This provides a practically relevant scale for evaluating tests and an

appropriate common scale for comparing tests.

In summary, we propose the SI curve as a simple graphical device that shows the popu-

lation response rates potentially achieved with treatment assignment policies based on the

marker exceeding a threshold or not. It can be used to determine if, by using the marker,

there is potential to treat fewer patients with an invasive expensive treatment while main-

taining the overall proportion of subjects responding at or above that achieved by sending

all patients to that treatment. It can suggest an optimal threshold value. Finally, it provides

a natural common scale on which to compare different treatment selection markers.

4
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A traditional statistical approach to evaluating differential treatment benefit is to use

binary regression models for the response variable D with treatment, T , and the measure,

Y , as covariates. See Byar (1985) and references therein. In this traditional framework

an interaction between Y and T is interpreted to mean that Y informs about the relative

performance of the treatments. Suppose for example we fit the model

logitP[D = 1|Y, T ] = α1 + α2Y + α3T + α4Y T

and consider the coefficient α4 for interaction. The quantity exp(α4) is the increase in the

odds ratio associated with treatment A versus B per unit increase in Y . This seems a few

steps removed from quantifying the potential impact on the population of using Y to select

treatment. The SI curve does this more directly. Moreover, one can find settings where

there is no statistical interaction between Y and T in the regression model, but the marker

is informative (see setting 7 of Figure 2). This is because the definition of interaction in a

regression model depends on the metric on which the linear predictor is defined. Thus data

that yield an interaction when a logistic link function is used may yield no interaction when

another link function is used. The SI curve does not depend on the somewhat arbitrary

definition of interaction that the regression framework does. It simply shows the population

response rates according to treatment selection criteria based on Y exceeding a threshold.

2. Other Features of the SI Curve

We write yv for the vth quantile of Y in the population so that v = P[Y < yv]. The

SI curve also shows the following entities that are important measures of the value of the

5
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treatment policy that uses the threshold yv for deciding on patient treatment:

d+(v) = P[D = 1|Y > yv, T = 1] − P[D = 1|Y > yv, T = 0]

= P[D1 = 1|Y > yv] − P[D0 = 1|Y > yv],

d−(v) = P[D = 1|Y < yv, T = 0] − P[D = 1|Y < yv, T = 1]

= P[D0 = 1|Y < yv] − P[D1 = 1|Y < yv].

The first, d+(v), relates to the advantage of assigning treatment A versus B to patients who

score above the vth quantile of Y . Correspondingly d−(v) is the difference in response rates

for patients below the vth quantile when they are given treatment B versus A. Ideally, the

threshold yv is chosen so that both groups of patients benefit by the policy, i.e., d+(v) > 0

and d−(v) > 0. To see d+(v) from the SI curve, observe from (1) that

θ(v) = (1 − v)P[D1 = 1|Y > yv] + vP [D0 = 1|Y < yv]

Moreover, we can write

θ(0) = P[D1 = 1] = P[D1 = 1, Y > yv] + P[D1 = 1, Y < yv]

= (1 − v)P[D1 = 1|Y > yv] + vP [D1 = 1|Y < yv]

It follows that

θ(v) − θ(0) = vd−(v).

Similar arguments show that

θ(v) − θ(1) = (1 − v)d+(v).

Thus the distances between the SI curve and the upper and lower horizontal lines in Figure 1,

show separately the potential consequences of the treatment policy to the 2 groups of patients
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with marker measurements Y that are above and below the threshold yv. In the left panel

of Figure 1, using the threshold y0.4 to decide on treatment, we see that the response rate of

subjects with Y > y0.4 is greatly improved with treatment A versus treatment B, d+(0.4) =

θ(0.4)−θ(1)
1−0.4

= 0.69. On the other hand, for the group with Y < y0.4 the response rate with

treatment B is reduced but not by very much relative to treatment A, d−(0.4) = θ(0.4)−θ(0)
0.4

=

−0.09.

An uninformative marker is one that does not identify subsets of patients that benefit

more than others do by their assigned treatment. That is, an uninformative marker is defined

as one for which

P[D1 = 1|Y > yv] − P[D0 = 1|Y > yv] = P[D1 = 1] − P[D0 = 1]

for all v. Thus, for the uninformative marker d+(v) = θ(0) − θ(1). Similarly, for the

uninformative marker, d−(v) = θ(1) − θ(0). Since in general θ(v) = θ(1) + (1 − v)d+(v)

it follows that θ(v) is a straight line connecting θ(1) to θ(0) for the uninformative marker.

This serves as a baseline SI curve against which others can be compared. Observe that the

uninformative marker may be associated with treatment response. It simply does not inform

about which patients are likely to benefit more than the average from treatment A versus B

or vice versa.

Our SI curve displays d+(v) and d−(v), the differences in response rates with treatments

A and B for the population that meets the criterion Y > yv and that which does not. In

setting forth a treatment policy for a population, consideration of the population as a whole

that meets the criterion (or not) is most relevant. Nevertheless, an individual patient with

marker value Y = y, will be more interested in his/her own probabilities of response with

7
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the two treatments. We write

d(v) = P[D = 1|Y = yv, T = 1] − P[D = 1|Y = yv, T = 0].

With knowledge of the risks and costs associated with treatments A versus B and the differ-

ence in response probabilities d(v), an individual patient and caregiver may decide on which

treatment to select. However, in our experience such individual decision making is a luxury

not always afforded by the healthcare system and, as mentioned earlier, simple dichotomous

criteria such as Y exceeding a percentile threshold are often used to make medical deci-

sions. Policy makers will be interested in the impact of such criteria on the overall response

probabilities, i.e., the quantities shown in the SI curve, θ(v), d+(v) and d−(v).

In addition, we will see that d(v) is much more difficult to estimate from data than are

the cumulative versions

d+(v) = (1 − v)−1

∫ 1

v

d(v)dv and d−(v) = −v−1

∫ v

0

d(v)dv.

Estimating d(v) is akin to estimating a density while estimating d+(v), d−(v) and θ(v), is akin

to the much simpler task of estimating a cumulative distribution function. For example, a

completely nonparametric estimator of θ(v) is proposed in Section 3 while the nonparametric

estimation of d(v) requires smoothing techniques as shown in the data analysis of Section 7.

We also discuss parametric estimation of θ(v) in Section 4 using parametric modeling of

P[D = 1|T, Y ] as the key stepping stone. In essence, we estimate the components of d(v),

P[D = 1|T = 1, Y ] and P[D = 1|T = 0, Y ], parametrically in this approach. Although

somewhat more efficient than the nonparametric method (Table 1) and yielding d(v) as

a byproduct, we do not ultimately advocate the parametric approach because it can give

misleading results under a misspecified model.
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3. Nonparametric Estimation

We now turn to estimation of θ(v). Data from a randomized trial conducted in the population

can be used for estimation if some intuitively reasonable conditions are met. These include:

(i) subjects enrolled in the trial are a simple random sample from the population of interest;

(ii) response to treatment observed for an individual in the trial, Di, reflects the potential

response of an individual in the population assigned to that treatment, as discussed in

Section 2. That is, Di = TD1
i + (1− T )D0

i ; (iii) treatment assignment or care of the patient

in the trial does not depend on his marker value Y measured at enrollment. We discuss

these conditions later in Section 8 but for now proceed with estimation methods assuming

that they hold.

Suppose that we have independent observations (Di, Yi, Ti) for i = 1, . . . , n subjects.

Observe that

θ(v) = (1 − v)
GD

1 (yv)

G1(yv)
+ v

GD
2 (yv)

G2(yv)
,

where GD
1 (y) = Pr(D = 1, Y > y, T = 1), G1(y) = Pr(Y > y, T = 1), GD

2 (y) = Pr(D =

1, Y ≤ y, T = 0), and G2(y) = Pr(Y ≤ y, T = 0). Thus, substituting the empirical

estimators for the probabilities, a natural nonparametric estimator for θ(v) is

θ̂np(v) = (1 − v)
GD

1n(ŷv)

G1n(ŷv)
+ v

GD
2n(ŷv)

G2n(ŷv)
,

where ŷv = F−1
n (v), Fn(y) = n−1

∑n
i=1 I(Yi ≤ y) is the empirical distribution function

for F (y) = Pr(Y ≤ y), and GD
1n(y) = n−1

∑n
i=1 I{Di = 1, Yi > ŷv, Ti = 1}, G1n(y) =

n−1
∑n

i=1 I{Yi > ŷv, Ti = 1}, GD
2n(y) = n−1

∑n
i=1 I{Di = 1, Yi ≤ ŷv, Ti = 0}, G2n(y) =

n−1
∑n

i=1 I{Yi ≤ ŷv, Ti = 0} are the empirical estimators for GD
1 (y), G1(y), GD

2 (y) and G2(y),

respectively. Basically, we determine the empirical quantile ŷv and calculate the proportion

9
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of subjects on treatment A with Y > ŷv who respond and the proportion on treatment B

with Y ≤ ŷv who respond. The weighted average is the empirical nonparametric estimator

of θ(v).

Using the empirical process theory, we can show that
√

n{θ̂np(v) − θ(v)} converges to

a Gaussian process Z(v) with cov{Z(v1), Z(v2)} = AT (v1)Σ(yv1
, yv2

)A(v2), where A(·) and

Σ(·) are given in Appendix A. The asymptotic variance for θ̂np(v) therefore is Vnp(v) =

n−1AT (v)Σ(yv, yv)A(v). In Section 5 we calculate the large sample variance of θ̂np(v) in

various settings using this expression. In applications, we can use the bootstrap method to

calculate the standard error and confidence band for θ(v) for v ∈ [a, b] (0 < a < b < 1). A

detailed proof and arguments to justify bootstrapping are given in Appendix A.

4. Parametric Estimation

An alternative approach to estimating θ(v) is based on regression modeling. Suppose we use

a model of the form

logit P[D = 1|Y = yv, T ] = logit P[D = 1|F (Y ) = v, T ] = αT R(v, T ) (2)

where R(v, T ) is a q-dimensional function of v and T . It is useful to write the model in terms

of v, since θ(v) is considered a function of v for the reasons mentioned earlier. For example

we might use the model

logit P[D = 1|F (Y ) = v, T ] = α1 + α2R(v) + α3T + α4R(v)T (3)

where R(v) is some function of v. We can write

P[D = 1|Y > yv, T = 1] = P[D = 1|F (Y ) > v, T = 1] =

∫ 1

v
P[D = 1|F (Y ) = w, T = 1]dw

(1 − v)

and

P[D = 1|Y < yv, T = 0] =

∫ v

0
P[D = 1|F (Y ) = w, T = 0]dw

v
.
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Therefore if estimates of α are available we can substitute them into the expression for θ(v)

θ(v) =

∫ 1

v

(1 + exp{−αT R(w, 1)})−1dw +

∫ v

0

(1 + exp{−αT R(w, 0)})−1dw.

One possibility is to use the maximum likelihood estimates of α based on the model (2),

denoted by α̂. The corresponding estimator for θ(v) is denoted θ̂p(v). Note that this assumes

that F is known in advance and can be used to calculate vi = F (Yi) in fitting the model (2).

More often the distribution function F will be estimated empirically from the n observations

available. We write α̃ for the estimator that solves the likelihood score equations but with

v̂i = F ∗
n(Yi) = n

n+1
Fn(Yi) substituted for vi = F (Yi). The resulting estimator of θ(v) is

denoted by θ̃p(v).

Now we consider the asymptotic properties of the estimators. We show in Appendix B

that
√

n{θ̂p(v) − θ(v)} and
√

n{θ̃p(v) − θ(v)} converge to Gaussian processes with mean 0

and covariance structures Λ(v1, v2; Vα) and Λ(v1, v2; Ṽα), respectively, where Λ(·), Vα and Ṽα

are given in Appendix B. Moreover, and not surprisingly, Λ(v, v; Ṽα) >pd Λ(v, v; Vα); that

is Λ(v, v; Ṽα) − Λ(v, v; Vα) is positive definite. By analogy to the nonparametric case, in

practice, we can use the bootstrap method to compute estimates of the standard errors and

confidence bands for θ(v).

5. Asymptotic Relative Efficiencies

The three estimators θ̂np, θ̃p, and θ̂p require increasingly stronger assumptions to hold. θ̂p

assumes that the regression model (2) holds and that F is known. Although θ̃p requires (2),

it does not need F to be known since it uses the data to estimate F . Finally, θ̂np, the empir-

ical estimator, is completely nonparametric. Using the asymptotic variance expressions we

calculated the relative efficiencies of the estimators in settings where all three are consistent,

i.e., with (2) holding and F correctly specified for θ̂p. As expected, the estimators that
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Hosted by The Berkeley Electronic Press



assume more are more efficient asymptotically (Table 1).

Figure 2 displays the SI curves for the various settings considered. The settings differ by

varying the coefficients (α1, α2, α3, α4) and the function R(v) in the model (3) for the response

probability P[D = 1|F (Y ) = v, T ], where v is the percentile value of Y . It appears that

although treatment A is better overall, we do not need to treat all patients with treatment A

in some of the settings. For example, in setting 2, with R(v) = Φ−1(v), and α = (0, 1, 1, 1),

about 30% can be treated with treatment B. In setting 3, with R(v) = 10Φ−1(v), treating

subjects who score at or below the 40th percentile of Y with treatment B yields an overall

response rate that slightly exceeds that when all patients are given treatment A.

The most important comparison between the estimators is between θ̂np and θ̃p since F

will almost never be known in practice. Efficiency gains of 20–30% are achieved routinely

with θ̃p relative to θ̂np in the scenarios we studied, although greater and lesser gains were

also seen. Interestingly for the parametric estimator, knowledge of F further increases its

efficiency, sometimes substantially. When R(v) = 10Φ−1(v) for example, θ̂p is generally more

than two times as efficient as θ̃p. This suggests that in practice parametric estimators of F

may yield more efficient estimators of θp(v) than that we employed, which are based on the

empirical estimator of F .

6. Simulations

To assess the performance of the estimators in moderate sample sizes we conducted extensive

simulation studies. We generated data for n = 200 subjects in a randomized trial with

P[T = 1] = 0.5 and response variable D from the logistic model (3) with R(v) = v and

R(v) = Φ−1(v), and α = (0, 1, 1, 1). Again we refer to Figure 2 for the corresponding SI

functions. The estimated standard errors were computed by the bootstrap method using

12
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100 resampled data sets. For each estimator, 95% Wald confidence intervals were computed

based on the logit transformation. The results are shown in Table 2. All the estimators

exhibit negligible bias. In addition the estimated standard errors track the true standard

deviations of the estimators well. Therefore the coverage probabilities are close to their

nominal levels. We are comfortable recommending that normal theory inference can be used

with any of the estimators. Interestingly, although we used bootstrap estimates of standard

errors we note that they are close to the asymptotic theory based values. Thus conclusions

about the relative efficiencies of the estimators applied to moderate sized datasets are the

same as conclusions stated earlier in Section 5 based on asymptotic theory.

7. Application to CTS Data

The CTS study seeks to enroll 200 patients randomized to either median nerve decom-

pressive surgery or conservative therapy with splinting, physical therapy and nonsteroid

anti-inflammatory drugs (NSAIDS). Subjects for the study are nonpregnant, 18 years of age

or older with no more than 4 months of wrist pain characteristic of CTS. To be eligible for

randomization they must have failed to respond adequately to a 2-week course of minimal

conservative therapy with splinting and NSAIDS. Three clinical sites in Seattle are currently

enrolling subjects. The primary outcome measure is the functional status index derived from

the Carpal Tunnel Syndrome Assessment Questionnaire (CTSAQ) at 12 months after ran-

domization compared with baseline. The change in functional status will be dichotomized

as indicating a clinically meaningful improvement or not.

At enrollment individuals undergo MRNI of the median nerve, the results of which are

blinded to the patient and personnel involved with his medical care during the trial. The

early stages of CTS are thought to be caused by compression of the median nerve by fluid

13
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accumulating in the narrow space around it. Flatness of the nerve observed on MRNI is

thought to be a good marker for patients likely to benefit from surgery that cuts ligaments

around the nerve allowing space for it to decompress. This MRNI “flatness” score is measured

on a continuous scale and constitutes the proposed treatment selection marker Y to be

studied after the trial is completed.

Since the CTS trial is not yet completed, we performed a simulation to reflect the sort of

dataset that might occur. Responses were generated from the following model: logitP[D =

1|T, Y = yv] = α1 + α2v + α3T + α4TvI(v > 0.5) with α1 = logit(0.3), α2 = logit(0.1) −

logit(0.3), α3 = 0 and α4 = logit(0.8) − (α1 + α2). This model stipulates that subjects

have poorer response rates with conservative therapy if their MRNI scores are high. On

conservative therapy a subject with the lowest possible MRNI score (v = 0) has a 30%

chance of response while a subject with the highest (v = 1) has a 10% chance of response.

On the other hand, surgery works very well for subjects with high MRNI scores. A subject

with the highest possible score (v = 1) has a response rate of 80%. Subjects with MRNI

scores above the median benefit from surgery, with the benefit being an increasing function

of Y .

The true SI function derived from this model is shown in Figure 3. Estimates of it

calculated from the simulated data are also shown. The nonparametric estimate conveys the

message that one can assign about 50% with the lowest values of the MRNI to conventional

therapy, and retain the response rate in the population at about that achieved by sending

all subjects to surgery. The parametric estimator θ̃p that correctly specified the model

for P[D = 1|T, Y = yv] conveys the same result. It is essentially a smoothed version of

θ̂np. Interestingly the pointwise confidence intervals and confidence bands obtained with

14

http://biostats.bepress.com/uwbiostat/paper206



θ̃p are not substantially more narrow than those of the nonparametric estimator. That is,

there is not much to be gained in this example by using the parametric approach except

an esthetically more pleasing smooth curve. We fit a second parametric estimator θ̃∗p to the

data where the model for P[D = 1|T, Y = yv] was misspecified as logitP[D = 1|T, Y = yv] =

α1 + α2v + α3T + α4vT . This estimator is clearly biased and demonstrates the reliance of

the parametric method on correct model specification. In this dataset the nonparametric

approach is probably best.

Figure 4 illustrates the difference measures d+(v) and d−(v) defined in Section 2. The

measures can also be inferred from Figure 3. Estimators are calculated using the relationships

d+(v) = {θ(v) − θ(1)}/(1 − v) and d−(v) = {θ(v) − θ(0)}/v and substituting estimators of

θ(v), θ(1) and θ(0). It is not surprising that the nonparametric estimator of d+(v) is unstable

for v close to 1, since there are very few observations for Y > yv. A similar phenomenon

exists for the nonparametric estimator of d−(v) for v close to 0. Since d+(v) is positive and

d−(v) is negative for v > 0.5, it is clearly advantageous to treat subjects with MRNI values

above the median with surgery rather than with conventional therapy. We see that the gain

is more for subjects with the highest MRNI values, i.e. for large v. On the other hand d−(v)

is approximately 0 for v < 0.5, so treating subjects with MRI values below the median with

conventional therapy is as good as treating them with surgery.

In Figure 5 we display estimators of d(v) = P[D = 1|Y = yv, T = 1] − P[D = 1|Y =

yv, T = 0] that conditions on an individual’s marker value rather than on their meeting the

dichotomous treatment assignment criterion Y > yv or Y < yv. Noting that d(v) = dη(v)
dv

,

where η(v) = −vd−(v) = v
{

1−GD
1

(yv)

1−G1(yv)
− GD

2
(yv)

G2(yv)

}
, a nonparametric estimator of d(v) is

(2τ)−1{η̂(v+τ)−η̂(v−τ)} with η̂(v) = v
{

1−GD
1n(ŷv)

1−G1n(ŷv)
− GD

2n(ŷv)

G2n(ŷv)

}
for some small τ > 0. We used
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τ = 0.01. The true curve clearly displays important interesting information. The benefit of

treatment A is essentially restricted to those above the median value for Y . However, vari-

ability in the nonparametric estimate of d(v) masks the result and the parametric estimator

is biased to the point of being misleading when the model for logitP [D = 1|Y = yv, T ] is

misspecified as linear in v. Therefore, as mentioned earlier, estimating θ(v) rather than d(v)

is a more tenable task. Moreover, the bottom line of how to set the treatment assignment

policy using a threshold criterion derives easily from the SI curve.

8. Discussion

We have proposed calculating the SI function, θ(v) = P[D = 1|(Y > yv, T = 1) or (Y <

yv, T = 0)], to evaluate the impact of a treatment selection policy based on the criterion

“Y > yv.” The curve shows the range of operating characteristics that can be achieved

across different thresholds yv, where operating characteristics are defined in terms of the

overall population response rate, i.e., θ(v), and the proportion of the population assigned

to treatment B, i.e., v. We have mentioned that there are some similarities with receiver

operative characteristic (ROC) curves used to evaluate diagnostic tests (Pepe 2000), but the

purpose and application is very different. A potentially important use of the curve is for

comparing different markers in regards to their capacities for selecting treatments. We have

not addressed formal methods for making comparisons in this paper but propose to develop

methods for such purposes in the future.

This paper has focused on a binary outcome variable D and a continuous selection marker

Y . If the potential response D0 and D1 were continuous, then the SI function could be defined
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in terms of expectations:

θ(v) = E(D|(T = 1, Y > yv) or (T = 0, Y < yv))

= (1 − v)E(D1|Y > yv) + vE(D0|Y < yv),

and estimation methods analogous to those described in this paper, θ̂np(v) and θ̃p(v), could

be pursued. Alternative definitions for θ(v) are also possible of course, using quantiles

instead of expectations, for example. If the selection marker Y is discrete, the SI curve is

a discrete function. Again procedures described here already can be used to estimate θ(v).

Comparisons between markers are less straightforward with discrete Y however than they

are for continuous Y . In particular, decision criteria based on F1(Y1) > v and F2(Y2) > v,

may not yield comparable proportions of subjects assigned to treatment A, where subscripts

here denote markers 1 and 2 respectively.

We have noted that there are several important assumptions that must be made about

the clinical trial for valid estimation of the population response rate θ(v) from it. These

are listed as items (i), (ii) and (iii) in Section 3. Item (i) is violated if subjects enrolling in

the trial are not a simple random sample from the population. Although eligibility criteria

attempt to define the population, this may not succeed, particularly if subjects self select

to the study. This limits the generalizability of trial results to the “eligible” population and

therefore applies to our problem of estimating the population SI curve too. If characteristics

of the trial population simply differs from the population of interest in the distribution of

some known covariates, one could reweight the data according to the population distribution

and proceed with estimation. In the CTS study, one of the 3 study clinics is the Seattle

Veterans Affairs Medical Center. Therefore, males will likely be over represented in the

study. A reweighting scheme could be employed to adjust for this. The condition item (ii)
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relates to the response of patients observed in the trial being reflective of their response to

treatment offered in the population setting. If patient care or compliance in the trial differs

from what occurs in the population then this condition will not be met. Again, this is a

general issue regarding the interpretation of trial results for populations and highlights the

need to conduct trials in ways that reflect general practice. The final requirement, item (iii),

is that in the trial, Y is not used to select treatment or to dictate any aspect of patient care.

This is ensured in the CTS study by having the MRNI performed by personnel not involved

in patient care and storing the images until after the patient has completed the 12 month

study.

Although the SI curve is one perspective from which to evaluate treatment selection

markers, selection markers could be evaluated using other summary statistical measures

too. For example, a utility function that incorporates notions of cost and benefit might be

employed. A referee suggests the criterion to assign treatment A if the probability of benefit

on A given Y > y exceeds that on B by a critical amount δ, i.e., if d+(v) > δ. We hope

that this paper will at a minimum stimulate statisticians to think critically and in new ways

about the general problem of how to evaluate treatment selection markers.
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Appendix A

Large sample properties of θ̂np(v)

Asymptotic distribution theory for θ̂np(v) follows from that of the component empirical pro-

cesses. The empirical process
√

n{(Fn, GD
1n, G1n, GD

2n, G2n)− (F,GD
1 , G1, G

D
2 , G2)} converges

to a tight, zero-mean Gaussian process H = (F, GD
1 , G1, G

D
2 , G2) with covariance structure

Σ(y, x) = cov{H(y), H(x)} = cov{h(y), h(x)},

where

h(y) =




I(Y ≤ y) − F (y)
I(Y > y, T = 1, D = 1) − GD

1 (y)
I(Y > y, T = 1) − G1(y)

I(Y ≤ y, T = 0, D = 1) − GD
2 (y)

I(Y ≤ y, T = 0) − G2(y)




.

With some straightforward algebra, letting ∆G(y, x) = G(y) − G(x), we can show

Σ(y, x) =



F (y ∧ x) I(y > x)∆GD
1 (y, x) I(y > x)∆G1(y, x) GD

2 (y ∧ x) G2(y ∧ x)
I(x > y)∆GD

1 (x, y) GD
1 (y ∨ x) GD

1 (y ∨ x) 0 0
I(x > y)∆G1(x, y) GD

1 (y ∨ x) G1(y ∨ x) 0 0
GD

2 (y ∧ x) 0 0 GD
2 (y ∧ x) GD

2 (y ∧ x)
G2(y ∧ x) 0 0 GD

2 (y ∧ x) G2(y ∧ x)





−Q(y)Q(x),

where Q(y) = (F (y), GD
1 (y), G1(y), GD

2 (y), G2(y))T . As a functional of (F,GD
1 , G1, G

D
2 , G2),

θ is Hadamand-differentiable and the derivative can be derived by the chain rule (van der

Vaart and Wellner 2000, §3.9). Let f(y) = dF (y)
d(y)

. For v ∈ [a, b] (0 < a < b < 1) such that

f(y) > 0 on the interval [F−1(a) − ǫ, F−1(b) + ǫ] for some positive ǫ, using the functional
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delta method,
√

n{θ̂np(v) − θ(v)} converges to a Gaussian process Z where,

Z(v) = (1 − v)

[
G

D
1 (yv) − gD

1 (yv)F(yv)/f(yv)

G1(yv)
− GD

1 (yv){G1(yv) − g1(yv)F(yv)/f(yv)}
G2

1(yv)

]

+v

[
G

D
2 (yv) − gD

2 (yv)F(yv)/f(yv)

G2(yv)
− GD

2 (yv){G2(yv) − g2(yv)F(yv)/f(yv)}
G2

2(yv)

]

= AT (v)H(yv),

where gD
j (y) =

dGD
j (y)

dy
, gj(y) =

dGj(y)

dy
, j = 1, 2,

A(v) =




−
{

(1−v)gD
1

(yv)

G1(yv)
− (1−v)GD

1
(yv)g1(v)

G2

1
(yv)

+
vgD

2
(yv)

G2(yv)
− vGD

2
(yv)g2(v)

G2

2
(yv)

}
1

f(yv)
1−v

G1(yv)

− (1−v)GD
1

(yv)

G2

1
(yv)

v
G2(yv)

−vGD
2

(yv)

G2

2
(yv)




,

and cov(Z(s), Z(t)) = AT (s)Σ(ys, yt)A(t). The asymptotic variance for θ̂np(v) therefore is

Vnp(v) = n−1AT (v)Σ(yv, yv)A(v).

In applications, we can use the bootstrap method to calculate a confidence band for θ(v)

for v ∈ [a, b] (0 < a < b < 1). This follows from theory for the bootstrap given in van der

Vaart and Wellner (2000, §3.9.3). Let Zi = (Di, Yi, Ti), Θ = (Z1, . . . , Zn) be the observed

data set and ΘB = (Z1(B), Z2(B), . . . , Zn(B)) be the Bth resampling bootstrap dataset,

B = 1, 2 . . . ,K. Let θ̂B
np be the estimator based on ΘB. Then supv∈[a,b] |θ̂B

np(v)− θ̂np(v)| given

Θ is asymptotically equivalent to supv∈[a,b] |θ̂np(v) − θ(v)|. Let cα be the 1 − α quantile of

supv∈[a,b] |θ̂B
np(v)−θ̂np(v)|, then a level α confidence band for θ(v) is (θ̂B

np(v)−cα, θ̂B
np(v)+cα). It

may be preferable to calculate confidence bands after a logit transformation. When θ(v) > 0

on [a, b],
√

n{logit(θ̂)−logit(θ)} converges to a Gaussian process by the delta method. Letting

c̃α be the 1−α quantile of supv∈[a,b] |logit{θ̂B
np(v)}− logit{θ̂np(v)}|, a level α confidence band

for θ(v) is logit−1({logit{θ̂B
np(v)} − c̃α, logit{θ̂B

np(v)} + c̃α).
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Appendix B

Large sample properties of θ̂p(v) and θ̃p(v)

Let α0 be the true value of α. Since
√

n(α̂ − α0) is asymptotically normal with mean 0 and

variance the inverse expected information denoted by Vα, and ∂θ/∂α is bounded under the

assumption that
∫ 1

0
|R(u)|du < ∞, by the functional delta method, we have the following

theorem.

Theorem 2.
√

n{θ̂p(v)− θ(v)} converges to a Gaussian process Zp with covariance structure

Λ(v1, v2; Vα) = cov{Zp(v1), Zp(v2)} =
∂θ(v1; α0, F )

αT
Vα

{
∂θ(v2; α0, F )

αT

}T

.

Now we consider θ̃p(v). First, we derive the large sample properties of α̃. For technical

reasons we restrict estimation of α̃ to F ∗
n(Yi) ∈ (a, b), a proper subset of (0,1), and assume

that R(v, t) has uniformly continuous and bounded partial derivatives R(1)(v, t) in the interval

(a−ǫ0, b+ǫ0), 0 < a < b < 1, for some positive ǫ0. If this fails at some interior points, we can

restrict estimation to the union
⋃S

s=1(as, bs) where the condition does hold. Let Wi = F (Yi),

Ŵi = Fn(Yi), Zi = (Di,Wi, Ti)
T , Ẑi = (Di, Ŵi, Ti)

T . The estimator α̃ is the solution to the

following estimating equations

Ũ(α; Z) = n−1

n∑

i=1

I
{

Ŵi ∈ (a, b)
}

φ(α; Zi) = 0,

where φ(α; Zi) =
[
Di − exp{αT R(Wi,Ti)}

1+exp{αT R(Wi,Ti)}

]
R(Wi, Ti).

1. Consistency of α̃

First we show
√

n{F ∗
n − F} converges to a tight Gaussian process. Note

√
n{F ∗

n − F} =

√
n{Fn − F} +

√
n{F ∗

n − Fn}. The empirical process
√

n{Fn − F} converges to a tight
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Gaussian process, and

sup
y∈R

|
√

n{F ∗
n(y) − Fn(y)}| =

n1/2

n + 1
sup
y∈R

|Fn(y)| ≤ n1/2

n + 1
= op(1),

since |Fn(y) ≤ 1|. Hence the result follows.

Let Wi = F (Yi), Zi = (Di,Wi, Ti)
T , and Ẑi = (Di, Ŵi, Ti)

T . Denote the true value of α

by α0. The estimator α̃ maximizes the concave function of α

l(α; Ẑi) = n−1

n∑

i=1

I
{

Ŵi ∈ (a, b)
}(

DiR(Ŵi, Ti) − log
[
1 + exp

{
αT R(Ŵi, Ti)

}])
.

By the Median Value Theorem,

∣∣∣l(α; Ẑi) − l(α; Zi)
∣∣∣

=

∣∣∣∣∣n
−1

n∑

i=1

I
{

Ŵi ∈ (a, b)
}[

Di −
exp{αT R̃i}

1 + exp{αT R̃i}
α

]
{R(Ŵi, Ti) − R(Wi, Ti)}

∣∣∣∣∣ ,

(B.1)

where R̃i is on the line segment between R(Ŵi, Ti) and R(Wi, Ti). Since supy∈R
|F ∗

n(y) −

Fn(y)| < ǫ → 0, for any ǫ > 0, there exists Nǫ such that supy∈R
|F ∗

n(y) − Fn(y)| < ǫ for

n > Nǫ. Thus Ŵi ∈ (a, b) implies Wi ∈ (a − ǫ0, a + ǫ0) and hence I
{

Ŵi ∈ (a, b)
}

≤

I {Wi ∈ (a − ǫ0, b + ǫ0)} for n > Nǫ0 . Replacing the right side of (B.1) by its upper bound,

we have, for n > Nǫ0 ,

∣∣∣l(α; Ẑi) − l(α; Zi)
∣∣∣ ≤ (1 + ‖α‖) sup

i

[
I {Wi ∈ (a − ǫ0, b + ǫ0)}

∣∣∣R(Ŵi, Ti) − R(Wi, Ti)
∣∣∣
]

≤ (1 + ‖α‖) max
t∈{0,1}

sup
F (y)∈(a−ǫ0,b+ǫ0)

∣∣n−1
√

n[R{F ∗
n(y), t} − R{F (y), t}]

∣∣

= op(1),

The last equality follows from that
√

n[R{F ∗
n , t}−R{F, t}] converges to a Gaussian process by

delta method under the assumption (I) on v ∈ (a− ǫ0, b + ǫ0), and hence n−1
√

n[R{F ∗
n , t}−
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R{F, t}] converges to 0 in distribution by Slutsky theorem for t = 0, 1. Coupled with

l(α; Zi)
P→ η(α) = E

[
I {Wi ∈ (a, b)}

(
DiR(Wi, Ti) − log[1 + exp{αT R(Wi, Ti)}]

)]
(central

limit theorem), we have l(α; Ẑi)
P→ η(α). By Corollary II.2 of Andersen and Gill (1982), the

consistency of α̃ follows.

2. Asymptotic normality of α̃

By a Taylor series expansion,

√
n{Ũ(α0; Ẑ) − Ũ(α0; Z)}

= n−1/2

n∑

i=1

I
{

Ŵi ∈ (a, b)
}

λ1(α0; Zi){R(Ŵi, Ti) − R(Wi, Ti)} (B.2)

+Q(α0; Zi, Ẑi) (B.3)

where

λ1(α0; Zi) = − exp{αT R(Wi, Ti)}
[1 + exp{αT R(Wi, Ti)}]2

R(Wi, Ti)α
T +

{
Di −

exp{αT R(Wi, Ti)}
1 + exp{αT R(Wi, Ti)}

}
Iq,

and Iq is a q × q identity matrix, and Q(α0; Zi, Ẑi) is a q dimensional vector with the mth

element equal to

Qm(α0; Zi, Ẑi) = n−1

n∑

i=1

I
{

Ŵi ∈ (a, b)
}
{R(Ŵi, Ti) − R(Wi, Ti)}T

×λ2(α0; R̃
∗
i )[

√
n{R(Ŵi, Ti) − R(Wi, Ti)}],

λ2(α0; R̃
∗
i ) =

1

2


−

exp{αT R̃∗
i }

[1 + exp{αT R̃∗
i }]2

R̃∗
imααT +

2
{

exp(αT R̃∗
i )

}2

{1 + exp(αT R̃∗
i )}3

R̃∗
imααT

− 2 exp{αT R̃∗
i }

{1 + exp{αT R̃∗
i }}2

E

]
,

R̃∗
i is on the line segment between R(Ŵi, Ti) and R(Wi, Ti), R̃∗

im is the mth element of R̃∗
i ,

E is a q × q matrix with the mth column equal to α and all other columns equal to 0. Now
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we show Qm(α0; Zi, Ẑi) = op(1). With simple algebra, we can show that there exists a q × q

matrix M with finite positive elements such that

sup
{z=(d,w,t):d,t=0,1,w∈(a−ǫ,b+ǫ)}

|λjlm(α0; z)| < M

for j = 1, 2, where “<” holds elementwisely. Hence

Qm(α0; Zi, Ẑi) ≤ sup
i

(
I

{
Ŵi ∈ (a, b)

} ∣∣∣{R(Ŵi, Ti) − R(Wi, Ti)}T
∣∣∣

× M
∣∣∣
√

n{R(Ŵi, Ti) − R(Wi, Ti)}
∣∣∣
)

≤ sup
i

(
I {Wi ∈ (a − ǫ0, b + ǫ0)}

∣∣∣[R{F ∗
n(Yi), Ti} − R{F (Yi), Ti}]T

∣∣∣

× M
∣∣∣
√

n [R{F ∗
n(Yi), Ti} − R{F (Yi), Ti}]

∣∣∣
)

≤ max
t∈{0,1}

sup
F (y)∈(a−ǫ0,b+ǫ0)

∣∣∣[R{F ∗
n(y), t} − R{F (y), t}]T

∣∣∣

× M
∣∣∣
√

n
[
R{F ∗

n(y), t} − R{F (y), t}T
]∣∣∣

= op(1).

The last equality follows from that
√

n [R{F ∗
n , t} − R{F, t}] converges to a Gaussian process

on (a − ǫ0, b + ǫ0) by the delta method and hence [R{F ∗
n , t} − R{F, t}] converges in proba-

bility to 0 and then use the Slutsky theorem. Hence (B.3) = op(1). Next, by adding and

subtracting a term, (B.2) can be expressed as

n−1/2

n∑

i=1

I
{

Ŵi ∈ (a, b)
}

λ1(α0; Zi)R
(1)(Wi, Ti)(Ŵi − Wi) (B.4)

+n−1

n∑

i=1

I
{

Ŵi ∈ (a, b)
}

λ1(α0; Zi)
√

n
[
{R(Ŵi) − R(Wi)} − R(1)(Wi, Ti)(Ŵi − Wi)

]
.

(B.5)
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(B.5) is bounded by

M sup
i

I {Wi ∈ (a − ǫ0, b + ǫ0)}

×
∣∣∣
√

n
([

R{F ∗
n(Yi), Ti} − R{F (Yi), Ti}

]
− R(1){F (Yi), Ti}{F ∗

n(Yi) − F (Yi)}
)∣∣∣

≤ M max
t∈{0,1}

s∈{1,...,S}

sup
F (y)∈(a−ǫ0,b+ǫ0)

∣∣∣
√

n
(
[R{F ∗

n(y), t} − R{F (y), t}]

− R(1){F (Yi), Ti}{F ∗
n(y) − F (y)}

)∣∣∣

= M max
t∈{0,1}

sup
F (y)∈(a−ǫ0,b+ǫ0)

∣∣∣
√

n
([

R{F ∗
n(y), t} − R(1){F (y), t}F ∗

n(y)
]

−
[
R{F (y), t} − R(1){F (y), t}{F ∗

n(y) − F (y)}
])∣∣∣

= op(1).

The last equality follows from that the process

√
n

([
R{F ∗

n , t} − R(1)(F, t)F ∗
n

]
−

[
R{F, t} − R(1)(F, t)F

])

converges to 0 on (a − ǫ0, b + ǫ0) by the delta method. Now we show (B.4) is equal to

n−1/2

n∑

i=1

I {Wi ∈ (a, b)}λ1(α0; Zi)R
(1)(Wi, Ti)(Ŵi − Wi) + op(1). (B.6)
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For any ǫ < ǫ0 and n > Nǫ,

∣∣∣∣∣n
−1/2

n∑

i=1

[
I

{
Ŵi ∈ (a, b)

}
− I {Wi ∈ (a, b)}

]
λ1(α0; Zi)R

(1)(Wi, Ti)(Ŵi − Wi)

∣∣∣∣∣

≤ n−1/2

n∑

i=1

[
I

{
Ŵi ∈ (a, b)

}
I {Wi /∈ (a, b)} + I

{
Ŵi /∈ (a, b)

}
I {Wi ∈ (a, b)}

]

× |I {Wi ∈ (a − ǫ, b + ǫ)}λ1(α0; Zi)R
(1)(Wi, Ti)(Ŵi − Wi)|

≤ n−1

n∑

i=1

[
I

{
Ŵi ∈ (a, b)

}
I {Wi /∈ (a, b)} + I

{
Ŵi /∈ (a, b)

}
I {Wi ∈ (a, b)}

]

× sup
i

|I {Wi ∈ (a − ǫ, b + ǫ)}λ1(α0; Zi)R
(1)(Wi, Ti)

√
n(Ŵi − Wi)|

≤ n−1

n∑

i=1

[I {Wi ∈ (a + ǫ, b − ǫ)} I {Wi /∈ (a, b)}

+I {Wi /∈ (a − ǫ, b + ǫ)} I {Wi ∈ (a, b)}]

× M max
t∈{0,1}

sup
w∈[a−ǫ,b+ǫ]

|R(1)(w, t)| sup
y∈R

|
√

n{F ∗
n(y) − F (y)}|

≤ n−1

n∑

i=1

[I {Wi ∈ [a − ǫ, a] ∪ [b, b + ǫ]} + I {Wi ∈ (a, a + ǫ) ∪ [b − ǫ, b]}]

× M max
t∈{0,1}

sup
w∈[a−ǫ,b+ǫ]

|R(1)(w, t)| sup
y∈R

|
√

n{F ∗
n(y) − F (y)}|

≤ 2n−1

n∑

i=1

I {Wi ∈ [a − ǫ, a + ǫ] ∪ [b − ǫ, b + ǫ]}

× M max
t∈{0,1}

sup
w∈(a−ǫ,b+ǫ)

|R(1)(w, t)| sup
y∈R

|
√

n{F ∗
n(y) − F (y)}| (B.7)

By the strong law of large number,

n−1

n∑

i=1

I {Wi ∈ [a − ǫ, a + ǫ] ∪ [b − ǫ, b + ǫ]} a.s.→ Pr(Wi ∈ [a − ǫ, a + ǫ] ∪ [b − ǫ, b + ǫ]) ≤ 4ǫ.

(B.8)

And

sup
w∈(a−ǫ0,b+ǫ0)

|R(1)(w, t)| < M ∗ for some M ∗ (q × 1). (B.9)
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By DKW inequality (van der Vaart, 2000, P268),

Pr

{
sup
y∈R

|
√

n{F ∗
n(y) − F (y)}| >

√
log(2/ǫ)

}
< ǫ (B.10)

Combining (B.7-B.10)), for n > max(Nǫ),

Pr

{∣∣∣∣∣n
−1/2

n∑

i=1

[
I

{
Ŵi ∈ (a, b)

}
− I {Wi ∈ (a, b)}

]
λ1(α0; Zi)R

(1)(Wi, Ti)(Ŵi − Wi)

∣∣∣∣∣

> 8SMM ∗ǫ
√

log(2/ǫ)

}
< ǫ.

Hence

n−1/2

n∑

i=1

[
I

{
Ŵi ∈ (a, b)

}
− I {Wi ∈ (a, b)}

]
λ1(α0; Zi)R

(1)(Wi, Ti)(Ŵi − Wi) = op(1),

and (B.6) holds. Therefore

√
n{Ũ(α0; Ẑ)−Ũ(α0; Z)} = n−1/2

n∑

i=1

I {Wi ∈ (a, b)}λ1(α0; Zi)R
(1)(Wi, Ti)(Ŵi−Wi)+op(1).

(B.11)

Now substituting Ŵi = n−1
∑n

j=1 I(Yj ≤ Yi) in (B.11), we have

√
n{Ũ(α0; Ẑ) − Ũ(α0; Z)}

= n−3/2

n∑

i=1

n∑

j=1

I {Wi ∈ (a, b)}λ1(α0; Zi)R
(1){F (Yi), Ti}{I(Yj ≤ Yi) − F (Yi)} + op(1)

=
1

2

√
n

{
1

n2

n∑

i=1

n∑

j=1

q(α0; Zi, Zj)

}
+ op(1),

where

q(α0; Zi, Zj) = I {Wi ∈ (a, b)}λ1(α0; Zi)R
(1){F (Yi), Ti}{I(Yj ≤ Yi) − F (Yi)}

+I {Wj ∈ (a, b)}λ1(α0; Zj)R
(1){F (Yj), Tj}{I(Yi ≤ Yj) − F (Yj)}.

29

Hosted by The Berkeley Electronic Press



Note

ξ =
1

n2

n∑

i=1

n∑

j=1

q(α0; Zi, Zj)

is a V-statistic with mean 0. It is easy to show ξ has finite variance. Hence
√

nξ has the

same asymptotic distribution as
√

nξ∗ (Serfling, 1967, §5.7.3), where

ξ∗ =
1(
n
2

)
n∑

i=1

n∑

i<j

q(α0; Zi, Zj)

is the corresponding U-statistic. And
√

nξ∗ is equivalent to (van der Vaart, 2000, §12.1)

2n−1/2

n∑

i=1

q1(α0; Yi) + op(1),

where

q1(α0; y) = E{q(α0; z, Z2)}

= E
[
I {W2 ∈ (a, b)}λ1(α0; Z2)R

(1)(W2, T2){I(y ≤ Y2) − F (Y2)}
]

= −E

[
I {W2 ∈ (a, b)} exp{αT R(W2, T2)}

[1 + exp{αT R(W2, T2)}]2
R(W2, T2)α

T R(1)(W2, T2)

× {I(y ≤ Y2) − F (Y2)}
]
, (B.12)

and z = (d, y, t)T , with the last two equalities in (B.12) follow from conditional expectation

arguments. Hence

√
nŨ(α0; Ẑ) =

√
nŨ(α0; Z) + n−1/2

n∑

i=1

q1(α0; Yi) + op(1)

= n−1/2

n∑

i=1

[I {Wi ∈ (a, b)}φ(α0; Zi) + q1(α0; Yi)] + op(1).

By the central limit theorem,
√

nŨ(α0; Ŷ ) is asymptotically normal with mean 0 and variance

C = var [I {Wi ∈ (a, b)}φ(α0; Zi) + q1(α0; Yi)]

= var [I {Wi ∈ (a, b)}φi(α0; Zi)] + var{q1(α0; Yi)}.
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The last equation follows from

cov [I {Wi ∈ (a, b)}φ(α0; Zi), q1(α0; Yi)]

= E
[
I {Wi ∈ (a, b)}φ(α0; Zi)q1(α0; Yi)

T
]

= E
(
E

[
I {Wi ∈ (a, b)}φ(α0; Zi)q1(α0; Yi)

T
∣∣∣Yi, Ti

])

= E
[
I {Wi ∈ (a, b)}E{φ(α0; Zi)|Yi, Ti}q1(α0; Yi)

T
]

= 0.

Now by another Taylor series expansion,

0 =
√

nŨ(α̃; Ẑ) =
√

nŨ(α0; Ẑ) + Γ̂(α∗; Ẑ)
√

n(α̃ − α0),

where α∗ is on the line segment between α and α0, and

Γ̂(α; Z) =
∂Ũ(α; Z)

∂α
= −n−1

n∑

i=1

I {Wi ∈ (a, b)} exp{αT R(Wi, Ti)}
[1 + exp{αT R(Wi, Ti)}]2

R(Wi, Ti)R(Wi, Ti)
T .

Let Γ(α) = E
{

∂Ũ(α;Z)
∂αT

}
. Using similar arguments as those for proving

∣∣∣l(α; Ẑi) − l(α; Zi)
∣∣∣ =

op(1), we have supα

∣∣∣Γ̂(α; Ẑ) − Γ̂(α; Z)
∣∣∣ = op(1). Also

∣∣∣Γ̂(α; Z) − Γ̂(α0; Z)
∣∣∣ = op(α − α0) by

a Taylor series expansion, and
∣∣∣Γ̂(α0; Z) − Γ(α0)

∣∣∣ = op(1) by law of large number. In light

of the consistency of α̃ and hence α∗, Γ̂(α∗, Z) converges to Γ(α0) in probability. Therefore,

√
n(α̃ − α0) is asymptotically normal with variance

Ṽα = Γ−1(α0)CΓ−1(α0),

which is equal to

−Γ−1(α0) + Γ−1(α0)var{q1(α0; Yi)}Γ−1(α0)
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by noting var [I {Wi ∈ (a, b)}φ(α0; Zi)] = −Γ(α0). Since

var{φ(α0; Zi)} = E{φ⊗2(α0; Zi)} ≥pd E
[
I {Wi ∈ (a, b)}φ⊗2(α0; Zi)

]

= var [I {Wi ∈ (a, b)}φ(α0; Zi)] ,

where δ⊗2 = δδT , we have −Γ−1(α0) = (var [I {Wi ∈ (a, b)}φ(α0; Zi)])
−1 ≥pd [var{φ(α0; Zi)}]−1 =

Vα. Thus Ṽα >pd Vα.

The large sample properties of θ̃p then follow by an application of the functional delta

method.

Theorem 3.
√

n{θ̃p(v)− θ(v)} converges to a Gaussian process Z̃p with covariance structure

Λ(v1, v2; Ṽα).

And the following theorem follows from Ṽα >pd Vα.

Theorem 4. Λ(v1, v2; Ṽα) >pd Λ(v1, v2; Vα).
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Table 1

Relative efficiencies of θ̂p, θ̃p, and θ̂np when the logistic model holds:

logit¶0[D = 1|F (Y ) = v, T ] = α1 + α2R(v) + α3T + α4R(v)T .

Setting α R(v) v
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 (0, 1, 1, 1) v RE(θ̂p, θ̂np) 1.33 1.36 1.28 1.20 1.17 1.17 1.17 1.16 1.11

RE(θ̃p, θ̂np) 1.31 1.34 1.26 1.19 1.16 1.15 1.16 1.14 1.10

2 (0, 1, 1, 1) Φ−1(v) RE(θ̂p, θ̂np) 1.64 1.67 1.62 1.55 1.48 1.42 1.36 1.30 1.24

RE(θ̃p, θ̂np) 1.24 1.28 1.29 1.28 1.27 1.25 1.22 1.17 1.13

3 (0, 1, 1, 1) 10Φ−1(v) RE(θ̂p, θ̂np) 3.84 3.58 3.35 2.89 2.28 2.04 2.03 2.08 2.16

RE(θ̃p, θ̂np) 1.49 1.35 1.23 1.19 1.22 1.24 1.25 1.28 1.32

4 (0, 1, 1, 1) −log(v) RE(θ̂p, θ̂np) 1.58 1.69 1.52 1.35 1.23 1.16 1.12 1.11 1.10

RE(θ̃p, θ̂np) 1.49 1.59 1.45 1.29 1.18 1.12 1.08 1.06 1.05

5 (0, 0, 10, 8) Φ−1(v) RE(θ̂p, θ̂np) 2.56 1.71 1.42 1.29 1.22 1.18 1.15 1.11 1.07

RE(θ̃p, θ̂np) 1.57 1.70 1.42 1.29 1.22 1.18 1.15 1.11 1.07

6 (0, 3, 20, 15) Φ−1(v) RE(θ̂p, θ̂np) 6.47 4.23 2.34 1.86 1.79 1.87 1.95 2.00 2.08

RE(θ̃p, θ̂np) 1.25 3.42 1.89 1.41 1.27 1.25 1.25 1.27 1.31

7 (1, 2, 1, 0) Φ−1(v) RE(θ̂p, θ̂np) 1.59 1.68 1.69 1.68 1.68 1.66 1.63 1.61 1.60

RE(θ̃p, θ̂np) 1.24 1.29 1.28 1.27 1.26 1.25 1.23 1.22 1.22
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Table 2

Results of simulation studies. ASD, standard deviation calculated using asymptotic theory; SD, empirical

standard deviation across simulated data sets ; SE, average of estimated standard errors; CP, coverage

probability of the 95% Wald confidence interval.

R(v) v θ θ̂np θ̂p θ̃p

est ASD SD SE CP est ASD SD SE CP est ASD SD SE CP

v 0.1 0.844 0.844 0.035 0.034 0.036 0.966 0.845 0.030 0.031 0.030 0.951 0.845 0.030 0.031 0.030 0.947
0.2 0.819 0.819 0.036 0.036 0.036 0.957 0.820 0.031 0.031 0.030 0.943 0.820 0.031 0.032 0.031 0.942
0.3 0.794 0.794 0.037 0.038 0.038 0.953 0.794 0.033 0.034 0.033 0.942 0.794 0.033 0.034 0.033 0.947
0.4 0.768 0.768 0.038 0.041 0.039 0.946 0.767 0.035 0.037 0.035 0.939 0.767 0.035 0.037 0.035 0.940
0.5 0.742 0.740 0.040 0.042 0.041 0.944 0.741 0.037 0.039 0.037 0.935 0.741 0.037 0.039 0.037 0.936
0.6 0.716 0.715 0.042 0.043 0.042 0.941 0.714 0.039 0.041 0.039 0.932 0.714 0.039 0.041 0.039 0.936
0.7 0.691 0.690 0.043 0.045 0.044 0.942 0.689 0.040 0.042 0.041 0.933 0.689 0.040 0.042 0.041 0.932
0.8 0.666 0.665 0.045 0.047 0.046 0.940 0.664 0.042 0.044 0.042 0.937 0.664 0.042 0.044 0.042 0.937
0.9 0.643 0.640 0.047 0.048 0.047 0.946 0.640 0.045 0.046 0.045 0.938 0.640 0.045 0.046 0.045 0.938

Φ(v) 0.1 0.654 0.651 0.046 0.050 0.047 0.935 0.653 0.036 0.038 0.036 0.931 0.652 0.042 0.044 0.041 0.926
0.2 0.655 0.652 0.045 0.047 0.046 0.935 0.654 0.034 0.037 0.035 0.933 0.652 0.039 0.042 0.039 0.930
0.3 0.647 0.647 0.043 0.045 0.044 0.948 0.647 0.034 0.035 0.033 0.939 0.645 0.038 0.040 0.038 0.938
0.4 0.632 0.630 0.042 0.045 0.043 0.946 0.631 0.033 0.035 0.033 0.940 0.630 0.037 0.039 0.037 0.938
0.5 0.611 0.610 0.041 0.044 0.043 0.947 0.610 0.034 0.035 0.034 0.951 0.609 0.037 0.039 0.037 0.932
0.6 0.586 0.587 0.042 0.044 0.043 0.947 0.585 0.035 0.037 0.035 0.937 0.584 0.038 0.040 0.038 0.932
0.7 0.560 0.560 0.044 0.046 0.044 0.936 0.559 0.037 0.039 0.038 0.941 0.559 0.040 0.042 0.040 0.934
0.8 0.536 0.535 0.046 0.048 0.046 0.942 0.535 0.040 0.042 0.040 0.940 0.534 0.042 0.045 0.042 0.937
0.9 0.514 0.513 0.048 0.051 0.048 0.934 0.513 0.043 0.044 0.043 0.944 0.513 0.045 0.048 0.045 0.941
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v = P( Y < c ) = P( assigned to B )

0.0 0.4 1.0

θ(v)

0

1

all assigned to A

all assigned to B

40% assigned to B

0.0 1.0

0

1

not very useful tool (Y
2
)

uninformative tool

better tool
(Y

1
)

Figure 1. A schematic diagram of the selection impact (SI) curve, θ(v) = P{D = 1|(y >
c, T = 1) or (Y < c, T > 0)}.
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Figure 2. θ(v) for the settings described in Table 1.
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Figure 3. The SI curve estimated from the Carpal Tunnel Syndrome study. True θ(v),
solid curve; nonparametric estimate θ̂np, dashed curve; parametric estimate θ̃p, dash-dotted
curve; misspecified parametric estimate θ̃∗p, dotted curve. 95% confidence bands are shown
with the outer curves, 95% pointwise confidence intervals are shown with the intermediate
curves, the estimates themselves are shown with the center curves.
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Figure 4. d(v) = P [D = 1|Y = yv, T = 1] − P [D = 1|Y = yv, T = 0] estimated from the
Carpal Tunnel Syndrome study. Truth, solid curve; nonparametric estimate, dashed curve;
parametric estimate, dash-dotted curve; misspecified parametric estimate, dotted curve.
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