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ABSTRACT Although genetic approaches are the standard in microbiome analysis,

proteome-level information is largely absent. This discrepancy warrants a better un-

derstanding of the relationship between gene copy number and protein abundance,

as this is crucial information for inferring protein-level changes from metagenomic

data. As it remains unknown how metaproteomic systems evolve during dynamic

disease states, we leveraged a 4.5-year fecal time series using samples from a single

patient with colonic Crohn’s disease. Utilizing multiplexed quantitative proteomics

and shotgun metagenomic sequencing of eight time points in technical triplicate,

we quantified over 29,000 protein groups and 110,000 genes and compared them to

five protein biomarkers of disease activity. Broad-scale observations were consistent

between data types, including overall clustering by principal-coordinate analysis and

fluctuations in Gene Ontology terms related to Crohn’s disease. Through linear re-

gression, we determined genes and proteins fluctuating in conjunction with inflam-

matory metrics. We discovered conserved taxonomic differences relevant to Crohn’s

disease, including a negative association of Faecalibacterium and a positive associa-

tion of Escherichia with calprotectin. Despite concordant associations of genera, the

specific genes correlated with these metrics were drastically different between met-

agenomic and metaproteomic data sets. This resulted in the generation of unique

functional interpretations dependent on the data type, with metaproteome evidence

for previously investigated mechanisms of dysbiosis. An example of one such mech-

anism was a connection between urease enzymes, amino acid metabolism, and the

local inflammation state within the patient. This proof-of-concept approach prompts

further investigation of the metaproteome and its relationship with the meta-

genome in biologically complex systems such as the microbiome.

IMPORTANCE A majority of current microbiome research relies heavily on DNA

analysis. However, as the field moves toward understanding the microbial functions

related to healthy and disease states, it is critical to evaluate how changes in DNA

relate to changes in proteins, which are functional units of the genome. This study

tracked the abundance of genes and proteins as they fluctuated during various in-

flammatory states in a 4.5-year study of a patient with colonic Crohn’s disease. Our

results indicate that despite a low level of correlation, taxonomic associations were

consistent in the two data types. While there was overlap of the data types, several

associations were uniquely discovered by analyzing the metaproteome component.

This case study provides unique and important insights into the fundamental rela-
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tionship between the genes and proteins of a single individual’s fecal microbiome

associated with clinical consequences.

KEYWORDS colonic Crohn’s disease, inflammatory bowel disease, metagenomics,

metaproteomics, microbiome, multiomics, tandem mass tags, time series, gut

inflammation, proteomics

Due to the growing evidence for a connection between microbial communities and

human health, exploration of the microbiome has rapidly expanded in the past

decade. To date, the primary avenue for studying the microbiome has been through

genomic technologies (1–3). These techniques help provide an understanding of what

and how abundant the microbial constituents are and can define their associated

metabolic potential. However, gene copy numbers are not representative of protein

levels due to the complex systems governing when and how much of a given protein

should be present (4). Further, RNA expression has been well documented to have

limited correlation to protein abundance within many eukaryotes and bacteria (5).

These relationships have not been thoroughly investigated in the context of the

complex communities inhabiting the human gut microbiome, thus limiting the utility

of DNA-based (or even RNA-based) analyses for understanding microbiome function.

Metaproteomics is an emerging technique that directly characterizes proteins from

multispecies matrices. There has been over a decade of development of the field (6–9),

though most studies have been limited in scope due in part to complex technical

hurdles, including a lack of proteome coverage (8), sample sizes typically below 20

samples (9), limited reference database selection (10–12), and peptide assignment to

proteins of similar identity (10). The introduction of new methods and instruments for

use in mass spectrometry (MS) has dramatically increased the number of quantifiable

peptides and proteins, allowing a greater-than-20-fold increased coverage of the

metaproteome in the past few years (8, 13). Here, we leveraged tandem mass tag (TMT)

technology, allowing higher throughput by combining up to 11 samples within one MS

experiment, without the necessity of culturing (14). In addition, TMT workflows utilize

synchronous precursor selection (SPS) and liquid chromatography-tandem mass

spectrometry/triple-stage MS (LCMS2/MS3)-based quantitation workflow to increase

accuracy and reduce the sparsity associated with label-free proteomics (15). This

combination has enabled unprecedentedly deep characterization of proteomes at large

scales (16–18). In comparison to current metagenomic technology, the metaproteome

field is still limited in depth of coverage and throughput. Nevertheless, performing

direct protein-level analysis through advances in MS may provide new insights into

complex biological systems.

Here we utilized these technical advances to better understand the relationship

between fluctuations in microbiome protein expression and fluctuations in microbiome

gene content. Crohn’s disease (CD), a subtype of inflammatory bowel disease (IBD),

represents a chronic autoimmune condition associated with large fluctuations in the

microbiome (19–22). A study published in 2012 was the first to integrate the meta-

genome and metaproteome in the context of IBD (23). The results indicated that in six

Crohn’s disease patients, ileal Crohn’s disease (ICD) had a unique metaproteome

distinct from that associated with colonic Crohn’s disease (CCD) (23). Subsequently, a

meta-analysis of human single nucleotide polymorphisms from 30,000 IBD patients

corroborated the split between ICD and CCD (24). While further metaproteome studies

have been conducted on the human gut microbiome of IBD (13, 25, 26), few have

integrated and compared results from metagenome and metaproteome data.

A distinguishable aspect of our study is a shift from contrasting IBD cohorts and

healthy subjects to exploring a time series perspective from a single patient. Previous

studies investigated metaproteome stability in the context of healthy subjects (27, 28);

however, those studies were limited to time periods at or below 1 year. Here, we

tracked the disease activity of our patient through the abundances of several subcom-

ponents of the immune system which form the basis of several clinical tests used to
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monitor IBD disease activity (29–32). These proteins include C-reactive protein (CRP),

lysozyme, secretory immunoglobulin A (S-IgA), calprotectin, and lactoferrin (Table 1).

Our experimental design includes one patient and eight time points, with a focus on

the comparisons between metagenomic and metaproteomic data. By tracking IBD

episodic dynamics through the metagenome and metaproteome, we identified a set of

bacterial taxa and a set of functional groups that were found to be time-correlated with

immunological biomarkers in our patient. Further, we evaluated metagenomic predic-

tion of the metaproteome and identified unique aspects of function accessible through

metaproteomics.

RESULTS

Patient information. The n � 1 patient was a nonsmoker male. He was diagnosed

in 2011, at age 63, with CCD by William J. Sandborn at the University of California

Health System. The inflamed region of the colon was determined, via colonoscopy and

abdominal magnetic resonance imaging (MRI) analysis, to be confined to 6” to 8” of the

sigmoid colon. Specifically, a 2012 colonoscopy revealed that this region had extensive

diverticulosis and inflammatory focal ulceration, inflammatory pseudopolyps, and

patchy friability not associated with the diverticular orifices. During the time interval

covered in this work (28 December 2011 to 22 May 2016), the patient had one period

of antibiotic therapy, which consisted of ciprofloxacin 500 mg administered twice daily

and metronidazole 250 mg administered three times daily for 1 month starting 31

January 2012. During that period, the patient was also taking 40 mg prednisone daily.

In another 4-month period from August through November 2013, the patient had

simultaneous courses of mesalamine (Lialda; anti-inflammatory) and budesonide (Uce-

ris) administered at 9 mg daily. During the reported period, the patient had episodic

symptoms of rectal bleeding, abdominal cramps, bloating, and malaise. Lastly, there

was no surgery performed on the patient during the time period covered by this work.

Selection of immunological proteins of interest. The immunological proteins

fecal C-reactive protein (CRP), lysozyme, S-IgA, calprotectin, and lactoferrin were se-

lected for their unique properties and clinical applications in IBD. We observed similar

expression patterns over time for calprotectin, lactoferrin, and S-IgA (Fig. 1a). Lactofer-

rin and S-IgA abundances were the most strongly correlated to calprotectin (Pearson

r � 0.96 and 0.50, respectively), which led to overlapping results in downstream

analysis. Because calprotectin is more widely used for the assessment of IBD (29), we

focused primarily on the relationships found with calprotectin rather than on those

found with lactoferrin and S-IgA.

Technical comparisons between –omic types and protein database methodol-

ogy. As discussed above, eight fecal samples from our patient representing a wide

range of disease activity were collected over a time period from 2011 to 2016. Samples

TABLE 1 Roles of immunological proteins of interesta

Protein Role

CRP An acute-phase response protein produced by the liver upon stimulation by IL-6, TNF-�, and IL-1-� and a common clinical
marker of general inflammation (32); it is found in both human blood serum and stool

Lysozyme A glycoside hydrolase used in the innate immune system for hydrolysis of cell walls of Gram-positive bacteria (84);
measurements of lysozyme in the stool of patients with IBD have shown some correlation to disease activity in colonic
IBD (84)

Secretory IgA The most abundant antibody in the human colon; helps tightly control the relationship between commensal microbes and
the host by delaying or abolishing the ability of microbes to adhere to the epithelium (49)

Calprotectin An antimicrobial protein that sequesters manganese to prevent the growth of pathogenic microbes that require these metals
(85); consisting of two subunits, S100A8 and S100A9, calprotectin is a molecule that is important to the innate immune
system, constituting 40% of the cytoplasmic proteins in neutrophils; fecal calprotectin levels have been described as a
stronger indicator of endoscopic activity than CRP levels, and its presence has potential for identifying endoscopic
remission (29, 31, 50)

Lactoferrin An antimicrobial glycoprotein and a major component of the secondary granules of neutrophils (50), the antimicrobial
properties of lactoferrin represent the result of iron sequestration and have potential for both discriminatory and activity
tests in the clinic (31, 50)

aIL-6, interleukin-6; TNF-�, tumor necrosis factor alpha.
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were processed in technical triplicate through the use of shotgun metagenomic

sequencing and a proteomic workflow using TMT-mediated liquid chromatography

triple-stage MS (LC-MS3) (Fig. 1b).

To address the lack of a standardized database methodology (10, 11), two different

protein reference database approaches were used for analysis of LC-MS3 data. Our first

approach utilized the shotgun metagenomic reads generated within the study to

create a personalized database (pDB) containing 1.3 million protein-coding regions

(23). Through alignment of our protein-coding regions to taxonomic and functional

databases, the pDB provided genus-level annotations for 80% of the genes and

functional annotations to KEGG orthologous (KO) groups for 15% of genes. The pDB

approach was crucial for comparison between metagenomic and metaproteomic data
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FIG 1 Study design. (a) Immune markers associated with samples. Mass-spectrometry-based relative abundances of fecal calprotectin,
CRP, lysozyme, lactoferrin, and secretory IgA are plotted as indicated on the left y axis for each of the eight time points in this study. (b)
Workflow schematic describing omic methods. Shotgun sequencing and metaproteomic methods were performed in parallel for the
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as it provided a shared reference for gene and protein abundances. For comparison, we

separately performed a two-step method (12) for searches of the MS data using a public

database of gut microbial genes (the Integrated Gene Catalog [IGC]) (33). Our methods

resulted in 123,806 predicted open reading frames (ORFs) from the pDB with DNA

quantification and 29,370 with protein quantification (see Fig. S1a in the supplemental

material). A search through both databases yielded similar numbers of peptides and

proteins, with a total of 113,373 unique peptides and 72.5% of peptides shared

between the pDB and the IGC database methodology (Fig. S1b). The degree of overlap

in peptides was consistent with previous findings (12).

Notably, a lack of sequences shared between samples is a known trait of micro-

biome studies (34). We observed that the TMT-based metaproteomic methods pro-

vided quantification measurements within all samples for larger percentages of pro-

teins (52% of proteins identified from the pDB and 65% of proteins identified from the

IGC) than the metagenomic techniques provided for gene quantifications (4%)

(Fig. S1a). This increased overlap was likely a result of the TMT multiplexing methods,

which are known to reduce sparsity in comparison to label-free MS (35). Our methods

also enabled parallel quantifications of nearly 1,000 human proteins (Fig. S1a). Human

protein quantification is an important advantage of metaproteomics, especially in light

of recent results showing the ability of human proteins to distinguish IBD patients from

controls (13). Note that the use of different databases for protein assignment can result

in different functional annotations. For example, we observed that the IGC approach

identified 83% more unique KEGG orthologous (KO) groups than the pDB approach

(Fig. S1c). This discrepancy in peptide matching is an ongoing area of investigation in

computational biology (10–12, 36).

The technical and biological variability within each data set was assessed through

principal-coordinate analysis (PCoA) using the Bray-Curtis distance metric (37). To

overcome the problem of the presence of structural artifacts from the missing values

within TMT experiments, only the proteins common to all samples were used in this

analysis. After this adjustment, a comparison between our data sets was performed

using Procrustes analysis and a Mantel test (Fig. 2a). The Procrustes analysis transforms

two distance matrices from corresponding samples to compare distributions. These

tests showed minimal technical variability and a strong association between the two

data types (Mantel test P � 0.001). We also observed clustering based on the presence

of a state of high or low inflammation (Fig. 2a). Group differences between high- and

low-inflammation states were not statistically significant, likely a result of the small

number of samples analyzed. Though the data were not significant, the metaproteome

showed a stronger association with the inflammation state than the metagenome

(pseudo-F � 1.54 for metaproteome, pseudo-F � 1.19 for metagenome) (Fig. S1d).

To investigate the relationship between gene-level and protein-level fluctuations,

the data were subsetted to the 3,598 ORFs with quantitation in both the metagenome

and metaproteome. Spearman correlations between the protein and gene abundances

in each of the samples were assessed. Overall, the Spearman correlations were normally

distributed around � � 0.317 (Fig. 2b). This limited correlation highlights the added

value that a metaproteomic approach can present in cases such as CD, where disease

severity is associated with fluctuations in the microbiome (19). We next investigated

comparisons of data types from a functional perspective by summing abundances by

Gene Ontology (GO) and KO annotations and performing Spearman analyses of corre-

lations between the genes and the protein abundances. This analysis resulted in an

approximately normal distribution near � � 0.140 for both annotation types (Fig. S1e

to f). These weak correlations might have been expected given that our approach was

based on comparing DNA to protein, as even RNA abundances are often weakly

correlated to protein abundance (38).

We further investigated differences in data types by comparing the distributions of

dynamic ranges and standard deviations. Ratios of maxima to minima showed that

both data types demonstrated a normal distribution centered around 4.4 for proteins

and 11 for gene copy numbers (Fig. 2c). The maximum-to-minimum ratios reached
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9,400 for proteins and 129 million for gene copy number (Fig. 2c), indicating a much

greater dynamic range for the latter. These dynamic ranges may indicate the extent to

which microbial genes and proteins can change over time within an individual.

However, this result may be influenced by the differences in the depth of coverage,

with the metagenome approaching more complete coverage than the metaproteome,

and the less-abundant genes detected only by the metagenomic methods may have a

greater dynamic range. The standard deviations of the genes and proteins were

normally distributed but displayed differences in averages and variances (Fig. 2d). The

metagenome had larger variance in the distribution of standard deviations, potentially

indicating more variability within that platform (variances of 0.36 and 0.074 for the

Microbial Genomes [MG] database and pDB). Still, this result may also be influenced by

the differences in the depth of coverage. The values corresponding to maxima to

minima for the GO and KO sums shared similar distributions between data types

(Fig. S1g and h). The largest fluctuations in GO terms were greater than 100-fold for

proteins and 1,000-fold for genes (Fig. 2e). Large changes were observed in categories

of interest such as drug binding for proteins and methanogenesis (39) for genes. This

was likely the result of the presence and then absence of two archaeal methanogens,

Methanobrevibacter smithii and Methanosphaera stadtmanae (40), whose genes were,

on average, 15 times more abundant at the time point of the first collection (28

December 2011) than any other sample. These results give some indication of the

fundamental dynamics of genes and proteins but were surely influenced by the

techniques used in the study design.

Copy number prediction of protein abundances by functional categories. Be-

cause proteins have consistent roles (41), we expected that certain functional catego-

ries would show a stronger correlation between gene content and protein expression.

We tested this hypothesis using several different functional databases for a compre-

hensive analysis. After removing human proteins and subdividing individual genes by

functional category (evolutionary genealogy of genes: nonsupervised orthologous

groups [eggNOG]), the distribution of the data representing gene-to-protein Spearman

correlations was largely consistent with the overall mean � value of �0.3 (Fig. 3a).

Categories with the largest number of features shared, such as “Energy production and

conversion,” “Carbohydrate transport and metabolism,” and “Translation, ribosomal

structure, and biogenesis,” all had distributions centered near the Spearman � value of

�0.3. Other categories with fewer features had more variability in their average

correlation values. Less-abundant categories included “Cell cycle control,” which had a

lower average correlation, and “Inorganic ion transport and metabolism,” which had a

higher average correlation (Fig. 3a; see also Table S1 in the supplemental material). This

indicates that there were no broad-scale functional group differences distinguishable

from the overall low but positive correlation observed between all genes and proteins.

In addition to individual gene correlations, we also evaluated inter-omic relation-

ships between the abundances of entire gene categories. We assessed these relation-

ships through summing protein and gene abundances by GO annotation and perform-

ing Spearman correlations (Table S2). There was large variability (� � 0.445) in the

correlations of different functional groupings with an average Spearman � value of

0.135. Despite the low overall correlation, themes of GO categories with similar

correlations were present. Several GO terms related to polysaccharide, formate, and

anaerobic respiration all had strong positive correlations above � � 0.6 (Fig. 3b). Other

categories had consistently low or even negative correlations below � � 0.2. Cell wall

FIG 2 Legend (Continued)

data, and the y axis displays the number of gene-protein pairs within a range of Spearman correlation values. (c) Dynamic range comparison.
Histograms fitted with a Gaussian kernel density estimate are displayed at the gene and protein levels. The log 10 values representing the
maximum value for each protein or gene divided by the minimum value are plotted on the x axis. The numbers of proteins corresponding to
each maximum/minimum (Max/Min) range are plotted on the y axis. (d) Variability comparison. The analyses were performed as described for
panel c but according to the standard deviation of each gene or protein. (e) GO categories with the largest fluctuations. Proteins and genes were
summed according to their GO categories, and the maximum values were compared to the minimum values. The highest metagenomic
fluctuations for each category are recorded at the top, and the highest metaproteomic fluctuations are displayed at the bottom.
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and membrane proteins and metal binding proteins and chaperones were among the

categories with poor correlations (Fig. 3c). These results suggest that there are some

categories of genes that better represent protein expression levels, which may be the

result of constitutive versus inducible expression. However, the techniques used also

influence particular categories, such as membrane proteins, whose hydrophobic nature

presents a challenge to MS workflows (42). All of the described categories had greater

than 200 proteins and genes contributing to these relationships, which indicates that

the findings was not related to differences based on the presence of high- or low-

abundance proteins.

Taxonomic correlations with inflammatory markers are largely shared at the

protein and gene levels.We next sought to determine whether fluctuations related to

inflammatory markers were conserved between genes and proteins. Taxonomic assign-

ments for the pDB database were assigned based on the protein sequences to ensure

consistent assignments for both data sets. Genus-level compositions were significantly

different in the metagenome but not in the metaproteome (Friedman test P � 8.9e�5

and 0.69, respectively) (Fig. 4a and b). Dominant genera included Escherichia, Bacte-

roides, Faecalibacterium, and Alistipes (Fig. 4a). For easier interpretation of the abun-

dances used for metagenome comparisons, the metaproteome composition was in-

tentionally not adjusted for the lowest common ancestor of the peptides (43).

Metaproteome taxonomic composition plots adjusted for lowest common ancestor

also displayed stable compositions, though certain genera, such as Blautia, had a

notably different composition after the adjustment (Fig. S2a-b).

To evaluate the relationship between species related to inflammation in CD and our

biomarkers of interest, we evaluated each immune protein against a previously defined

microbial dysbiosis index (19). This index was developed using hundreds of samples

from both Crohn’s disease patients and healthy controls to predict CD severity through

analysis of log ratios of the species that were increased and decreased in abundance

within CD (19). Nineteen of the species defined in the index were found in our data set.

These included Escherichia coli and Fusobacterium nucleatum, which are increased in

abundance in CD, and Faecalibacterium prausnitzii, Eubacterium rectale, and Bacteroides

vulgatus, which are decreased in abundance in CD. After summing gene and protein

abundances and determining the relationship between log ratios and each biomarker,

fecal calprotectin was found to have the strongest association with the microbial

dysbiosis index in both the metagenome and metaproteome. This result was not

statistically significant, which was likely a result either of the small sample size or of the

extrapolation of methods developed from hundreds of patients for use with a single

subject (Fig. S2c).

Linear regression analyses were performed against inflammatory markers on each

gene and protein. To evaluate our results, we compared the positively and negatively

associated genes with large effect sizes (44) (correlation coefficient, |r| � 0.7). Interest-

ingly, most of the individual genes and proteins associated with each of the inflam-

matory markers were unique, with only 0.5% (188/34,836) of associations shared

between data types (Fig. 4c). Accounting for only the genes and proteins quantified in

both data sets, 10% (188/1,814) of the strong associations were shared between data

sets (Fig. S3).

Despite the lack of overlap in the individual identities of the genes and proteins

correlated with each clinical marker, we observed consistent trends in the taxonomic

annotations among the correlated genes and proteins. With over 800 genes and

proteins strongly correlated to each marker (|r| � 0.7), we contrasted the taxonomic

compositions of the positive and negative correlations. Several genera had �30-fold

differences between compositions (Fig. 4d). Genus-level differences were largely con-

served between data types in both direction and magnitude of association (Fig. 4d).

Akkermansia and Anaerostipes had the strongest proinflammatory relationship whereas

Faecalibacterium and Butyricicoccus had the largest anti-inflammatory relationship as

assessed through the number of proteins positively or negatively correlated to calpro-

tectin (Fig. 4d). Several genus-level trends such as those corresponding to Alistipes,
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Anaerostipes, Faecalibacterium, and Lachnospira were conserved between CRP and

calprotectin, while lysozyme had largely different associated genera. Contextually, the

number of proteins and genes used to generate these associations is important for the

interpretation of these results as some associations were based on very few observa-

tions (Table S3).

Lysozyme is a component of the innate immune response that targets Gram-

positive cell walls. Interestingly, proteins and genes correlated with lysozyme levels had

large phylum-level changes (Fig. S4a). Bacteroidetes is a Gram-negative phylum, while

Firmicutes is largely a Gram-positive phylum (45). The Gram-positive Firmicutes were

enriched 1.4-fold among negative associations with lysozyme in both gene and pro-

teins, while the Gram-negative Bacteroidetes were enriched 4.3-fold and 8.9-fold among

positively correlated proteins and genes, respectively (Fig. S4a). Even though there

were more than 800 genes and proteins from Firmicutes and Bacteroidetes that were

correlated to lysozyme, very few from other phyla, such as the Gram-negative Proteo-

bacteria and Gram-positive Actinobacteria, were observed. To validate these observa-

tions at the genus level, Gram staining information was cross-referenced (46). Although

there were genera with both Gram-negative and Gram-positive species, the genus-level

associations with lysozyme largely reflected the phylum-level observations (Fig. S4b).

Comparing functional interpretations of the genes and proteins associated

with immunological biomarkers. Using the same identifications from linear regres-

sions that provided the genus-level results, we next compared broad-scale functional

groupings. The broad-scale functional associations were weaker than the genus asso-

ciations. This observation may represent the effects of broad-scale categorization

versus fine-scale categorization. Illustrating this point, the largest difference among the

associations of genera was 90-fold, while the largest difference between functional

groupings using assignments to the eggNOG database was 12-fold (Fig. 4d; see also

Fig. 5a). Analyzing a broader taxonomic category, we observed that the maximum

difference among comparisons of phyla was 8.9-fold (Fig. S4a), considerably closer to

the 12-fold maximum for eggNOG categories. An additional consideration with respect

to this result is the annotation rate for functional assignments. Only 15% of observed

ORFs had an identifiable function, and this lower annotation rate may bias the results.

Despite the weaker associations of functional categories, several functional relation-

ships with the disease markers were of interest. In total, 19 eggNOG categories (12 from

the metaproteome, 7 from the metagenome) had differences of 3-fold or greater

(Fig. 5a). Comparing the categories with associations with different immune markers

provided insight into how different data types might influence functional interpreta-

tion. For example, metagenomic data had several strong functional associations that

were not confirmed by protein abundances. One such category, “Nucleotide transport

and metabolism,” had 147 genes positively correlated with CRP and 0 genes negatively

correlated, indicating a positive association with CRP. The metaproteome data for this

category had almost no association with CRP (Fig. 5a), with 6 proteins negatively

correlated and 38 proteins positively correlated. We suspect that nucleotide metabo-

lism undergoes protein expression in a manner independent of inflammatory condi-

tions. The underlying reasons for this observation need to be further investigated.

Biologically relevant relationships were observed in the metaproteome that were

not detectable in the metagenome. Free amino acids and urease enzymes have

previously been associated with gut dysbiosis and Crohn’s disease (47). Interestingly,

the metaproteome data identified a functional association of amino acid metabolism

proteins with calprotectin, while this observation was absent in the metagenomic data

FIG 4 Legend (Continued)

with respect to clinical markers based on linear regression. (d) Genera associated with clinical markers. The associated proteins with genus-level
taxonomy analyzed as described for panel c were compared by determining the log ratios of the compositions of proteins with positive and
negative associations. The log ratio is plotted on the x axis for each clinical marker, and bars represent the association with each genus.
Metaproteome values are plotted in red, andmetagenome values are plotted in black. The numbers of genes and proteins included in this analysis
are listed in Table S2.
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FIG 5 Functional associations with clinical markers. (a) Functions associated with clinical markers. Linear regressions to clinical markers were performed and
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(Fig. 5a). This observation included several urease proteins, as well as transporters for

free amino acids, many of which were derived from the genera that had positive

associations with inflammation (Fig. 5b). These ureases and transporters thus represent

interesting targets for further investigation and represent further evidence of a previ-

ously established connection (47).

Another observation that was exclusively related to the metaproteome data was the

relationship of chaperone proteins to several of the inflammatory metrics. There were

15 chaperone proteins with similar trends in expression with respect to CRP (Fig. 5b).

This corresponded to posttranslational modification and chaperone proteins having

3.2-fold-higher representation in positively associated proteins and 1.9-fold-lower rep-

resentation in genes (Fig. 5a). This unique observation from our patient’s fecal meta-

proteome is a potential indication of microbial stress occurring in response to the acute

phase response and may indicate a need for the microbiome to refold proteins.

Because lysozyme targets Gram-positive cell walls, we expected correlated genes

and proteins to be influenced by taxonomy and to have functions related to cell walls

or membranes. However, cell wall proteins were underrepresented in the metapro-

teomic data set relative to their occurrence in the metagenomic data set (Table S4). Of

the cell wall proteins associated with lysozyme, two (COG1088 and COG0463) were

related to cell wall biosynthesis, encoding a glycosyl transferase and a dTDP-glucose

4-6-dehydratase. In this case, the binding of lysozyme to peptidoglycan may have

disrupted the binding of these cell wall/membrane/envelope biogenesis proteins,

leading to the observed negative correlation. Even though we were not able to detect

many membrane or cell wall proteins related to lysozyme, 19 negatively correlated

proteins from the butyrate-producing (48), Gram-positive genera Faecalibacterium and

Butyrivibrio were identified (Fig. 5b). These proteins included 6 ribosomal proteins,

which may indicate decreased translation occurring in the presence of lysozyme.

In addition to analyzing calprotectin, CRP, and lysozyme levels, we also evaluated

S-IgA and lactoferrin levels. Secretory IgA is secreted in large quantities in the intestine

to maintain favorable microbial compositions (49), and lactoferrin sequesters iron as an

antimicrobial response (50). We observed similar expression patterns of lactoferrin,

S-IgA, and calprotectin (Fig. S5a). The similar expression patterns resulted in minimal

differences in both genus and functional relationships between calprotectin, lactoferrin,

and S-IgA (Fig. S5b and c). Proteins positively associated with lactoferrin (|r| � �0.7)

had a larger portion of GO terms related to iron (15.5% of 470 positive associations and

10% of 233 negative associations). Many of these proteins were pyruvate oxidoreduc-

tases, which are used in anaerobic bacteria for forming acetyl-coenzyme A (acetyl-CoA)

from pyruvate (51) (Fig. S5d). These are crucial enzymes for certain anaerobic bacteria

and have been suggested as potential drug targets (51). This result suggests that a

connection exists between the iron-sequestering host proteins and the microbial

proteins in our patient that are dependent on iron as a cofactor.

DISCUSSION

Our investigation of the fundamental relationship between changes in the metag-

enome and the metaproteome revealed important considerations for interpreting

these data types. Currently, studies using shotgun metagenomics to dissect the func-

tions of the microbiome are becoming more prevalent (52), and the current study

showed that differences at the gene level may not reflect differences at the protein

level. Though discordance between RNA and protein expression is widely acknowl-

edged for individual species (4), the relationships between DNA and protein content in

the complex ecology of the microbiome are less understood. As these systems have

rarely been studied in parallel, it is possible that communities of microbes influence the

fundamental relationships between genes and proteins that had been previously

established in monoculture settings. Although the metaproteomics field is improving in

depth of coverage (8) and scope (13), the technical hurdles that MS presents often

make DNA-based studies a more practical, higher-throughput solution. That being the
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case, functional insight from metagenomic studies requires a consideration of the

relationship between protein abundances and metagenomic copy numbers.

Our results, although limited to a single patient, suggest that there is a degree of

general agreement between changes in the metagenome and changes in the meta-

proteome. However, the relationship for individual genes/proteins is weak overall (our

average Spearman � � 0.3). In the single-species context, bacterial systems have

generally shown correlations between mRNA and proteins to range from � � 0.5 to 0.6

(38). Our experimental estimates indicate that DNA-to-protein correlations in complex

microbial systems are notably lower. These associations do not appear to have obvious

biases between large-scale functional groupings but do show certain trends in finer-

resolution functional groupings such as individual GO terms. Representing an impor-

tant notion in the field of IBD, formate- and nitrate-related categories had large

fluctuations and consistent trends between the two data types. Formate oxidation has

been implicated as a metabolic signature of inflammation-associated dysbiosis (53),

indicating that metagenomic studies may predict protein abundances within this

system. We do not believe that the consistency of the relationship between formate

oxidation genes and proteins is a result of constitutive expression, as, at least in E. coli,

related genes such as formate hydrogenase genes are regulated by the presence of

formate (54). Nitrate-based anaerobic respiration is implicated in promoting the growth

of facultative anaerobes such as the Enterobacteriaceae, which can lead to microbial

dysbiosis and intestinal inflammation (45). Tables of the identified eggNOG and GO

terms are provided and indicate how well the metagenomic copy number predicted

the protein abundances within each identified category.

Identifying the genes and proteins with similar expression trends with respect to

certain inflammatory and immune markers revealed that there were large differences in

genus-level associations that were biologically relevant and generally consistent be-

tween data types. Faecalibacterium is a genus depleted in IBD (19, 55) and appears to

have anti-inflammatory effects, possibly mediated by butyrate production (56). Both

data types had a strong negative correlation in numerous Faecalibacterium proteins to

our biomarker for local inflammation, calprotectin. While it was previously shown that

there were consistent trends between these data types showing increased Faecalibac-

terium in healthy patients (23), our results show these relationships can occur within a

patient through time in a manner that corresponds to the current level of inflammation.

Other trends were also found for well-documented genera with inflammatory roles in

IBD (19), including E. coli, which is of particular interest because of its adherent-invasive

properties in CD (57, 58). Interestingly, these shared trends were found with almost

entirely different genes. This may indicate that the underlying bacterial abundance

influences both of these data types but that the individual proteins expressed at certain

times are not directly associated with the amount of corresponding genetic material

present. If this is the case, it is possible that functional associations made through some

broad-scale categories, such as eggNOG, may have different results depending on the

data type. This concept is supported by our results that indicate less-extensive and

less-consistent associations with broad-scale groupings than with associations at the

genus level.

Our analysis of clinical biomarkers was useful for understanding the biology asso-

ciated with each immune component. As calprotectin had the strongest association

with the microbial dysbiosis index (19), the results suggests that the level of calpro-

tectin may be a better indication of microbial imbalances. Interestingly, CRP has been

reported to represent a less useful diagnostic tool than fecal calprotectin for intestinal

inflammation (29). CRP levels may be a better indication of systemic inflammation, and

we observed here that the levels of many bacterial chaperone proteins may be

increased in correspondence. We observed taxonomic trends with the abundances of

lysozyme that were consistent with its biological function of acting upon cell walls. In

general, predominately Gram-positive genera and phyla had a larger portion of anti-

correlated genes and proteins, while Gram-negative bacteria had an opposite associ-

ation.
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Our observed discrepancies between gene and protein levels may have large

implications for data interpretation, but it is important to replicate these results in a

larger cohort of IBD patients. As certain GO categories present strong correlations

between data types, it suggests that it may be possible to develop a metagenomic-

metaproteomic reference guide for creating stronger functional hypotheses. This guide

may be used to outline which groups of genes have a strong or weak association with

protein abundances.

The relationship between genes and proteins may be influenced by several factors.

Correlation between DNA and protein abundances might reflect the presence of DNA

from dormant or dead cells (59), which may lead to a higher level of correlation

(because the cells are not actively producing or secreting proteins). Other factors may

include constitutive versus inducible genes or the stability of the proteins. For example,

chaperone proteins were found in high abundance which may be a result of their high

stability and of their stable concentrations within the cell (60). Ultimately, the associ-

ations between -omic data sets are influenced by the nature of the data collection

techniques and normalization, and further benchmarking is necessary. Although, there

are significant challenges in integrating multi-omic data types (61), further understand-

ing these relationships is of paramount importance as the microbiome field progresses.

Our study presents several technical findings of interest. Leverage of the modern

TMT-based LC-MS3 quantification platform provided a highly accurate quantification

method for comparison with gene counts. Our workflow designed for mediating

comparisons between metagenomic and metaproteomic data expands our knowledge

of data type differences and acts as a bioinformatic and technological update to

previous studies (23). Additionally, the use of technical triplicates validates the repro-

ducibility of these methods and helped increase our confidence in the quantification

values at both the metagenomic and metaproteomic levels. However, outside valida-

tion from other technological pipelines may be necessary to further understand these

biological systems. Our results are also derived from a small number of samples from

one patient, and the time points were spread over large time spans. This design

provided unique opportunities but limits our interpretation of the data to a single

individual.

From a biological perspective, our results provide evidence that certain proteins and

genera are correlated or anticorrelated with immunoprotein markers of inflammation.

While the taxonomic insights that we observed were conserved between data types,

our functional interpretations differed. This personalized perspective also demonstrates

the extent of variability occurring within an individual, an important consideration to

control for in studies with larger cohorts. Taking the results together, our study

investigated the relationships between metagenomic and metaproteomic methods

and highlighted important considerations for interpretation of meta-omic data.

MATERIALS AND METHODS

Ethics statement. The patient had stool samples collected by consent under two protocols: HRPP

141853 (American Gut Project) and HRPP 150275 (Evaluating the Human Microbiome). Both protocols

were approved by the Human Research Protection Program (HRPP) of the University of California, San

Diego. Written informed consent obtained from the patient concerning dissemination and scientific

publication of the results is also included in the approved protocols.

Longitudinal sample collection. Naturally passed fecal samples were collected and immediately

stored without buffer at �80°C. Eight samples were selected. A personal symptom log entry was

generated at the time that each fecal sample was passed. Additionally, the weight and body mass index

(BMI) of the patient were determined on the day associated with each sample.

Generation of metagenomic reads. Samples were extracted according to the Earth Microbiome

Project (2) protocol using a Qiagen MagAttract PowerSoil DNA kit as previously described (62). Briefly,

swabbed fecal material was plated into 96-well PowerBead DNA plates containing garnet beads. DNA

extraction was performed once on each of the eight samples according to the manufacturer’s instruc-

tions, with an additional incubation at 65°C for 10 min following the addition of lysis solution and

immediately prior to shaking (Qiagen TissueLyser II; Qiagen catalogue 85300). Magnetic DNA purification

was performed using a KingFisher Flex purification system. Then, whole-genome shotgun libraries were

made using a Nextera DNA library preparation kit (Illumina, San Diego, CA, USA) and a 1:10 miniaturized-

reaction volume. Unique barcodes were used per triplicate totaling 24 metagenomic samples. The
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median insert sizes by sample ranged from 183 bp to 366 bp. Libraries were sequenced using Illumina

MiSeq paired-end (2 by 250 bp) sequencing, filling a total of one lane.

Processing of metagenomic reads for a shared reference library (pDB). Because typical metag-

enomics and metaproteomics workflows require a reference database, it was necessary to use a minimal

approach to create from scratch a single reference database that could be used for both metagenomics

and metaproteomics from the individualized data. All reads from the technical triplicates of each sample

were concatenated. Next, the MEGAHIT alignment program (63) was utilized for assembling short reads

into larger contigs. Assembled contigs were searched for possible coding regions through the program

Prodigal (64). Next, the program Diamond (65) was used for gene alignment to the uniref50 database

(66). Finally, the most likely uniref50 entry, determined through bitScore, was used for the functional

annotations. KEGG orthology annotations were cross-referenced using GhostKOALA (67). Taxonomic

assignments were determined by Diamond alignment (65) to an in-house library of microbial genomes.

Taxonomy was assigned from the translated amino acid sequence of each predicted ORF in the pDB. This

database was used as a reference database for both mass spectrometry data and sequencing data.

Scripts used for data processing are available online (https://github.com/knightlab-analyses/Crohns-MG

-MP-Comparisons).

Generating copy numbers of metagenomic genes. The program Salmon (68) was applied to

determine the reads present for each gene from the pDB. First, an index was created with Salmon,

inputting the pDB fasta file. Next, reads were aligned to this index in quasimapping mode for each of the

24 metagenomic samples. The results were represented in counts per million sequences, with missing

values padded as zeroes.

Protein abundances from the shared reference library (pDB). The generation of mass spectra data

is described below. Spectral data were searched against the pDB with a concatenated human reference

library (https://www.uniprot.org/; accessed 28 November 2016) using Proteome Discoverer 2.1 (Thermo

Fisher Scientific). Further data processing is described below.

Protein digestion and TMT labeling. Fecal samples were measured out to �0.5 g and suspended

in 10 ml of ice-cold, sterilized Tris-buffered saline (TBS). Samples were suspended through vortex mixing

and homogenized through the use of a blender apparatus. A Steriflip (Millipore) filter (20 �M vacuum)

was used to remove particulate from the samples. Cells were pelleted through centrifugation at

4,000 rpm for 10 min. Next, cells were lysed in 2 ml of buffer containing 75 mM NaCl (Sigma), 3% sodium

dodecyl sulfate (SDS; Fisher), 1 mM NaF (Sigma), 1 mM beta-glycerophosphate (Sigma), 1 mM sodium

orthovanadate (Sigma), 10 mM sodium pyrophosphate (Sigma), 1 mM phenylmethylsulfonyl fluoride

(PMSF; Sigma), 1� Complete Mini EDTA free protease inhibitors (Roche), and 50 mM HEPES (Sigma), pH

8.5 (69). An equal volume of 8 M urea–50 mM HEPES (pH 8.5) was added to each sample. Cell lysis was

achieved through two 10-s intervals of probe sonication at 25% amplitude. Proteins were then reduced

with dithiothreitol (DTT; Sigma), alkylated with iodoacetamide (Sigma), and quenched as previously

described (70). Proteins were then precipitated via chloroform-methanol precipitation, and the protein

pellets were dried (71). Protein pellets were resuspended in 1 M urea–50 mM HEPES (pH 8.5) and

digested overnight at room temperature with LysC (Wako) (72). A second, 6-h digestion was performed

using trypsin at 37°C, and the reaction was stopped through addition of 10% trifluoroacetic acid (TFA;

Pierce). Samples were then desalted through the use of C18 Sep-Paks (Waters) and eluted with 40% and

80% acetonitrile solutions containing 0.5% acetic acid (73). Concentrations of desalted peptides were

determined with a bicinchoninic acid (BCA) assay (Thermo Scientific). Aliquots (50 �g) of each sample

were dried in a SpeedVac, additional bridge channels consisting of 25 �g from each sample were created,

and 50-�g aliquots of this solution were used in duplicate per TMT 10-plex as previously described (16).

These bridge channels were used to control for labeling efficiency, interrun variation, mixing errors, and

the heterogeneity present in each sample (74). Each sample or bridge channel was resuspended in 30%

dry acetonitrile–200 mM HEPES (pH 8.5) for TMT labeling with 7 �l of the appropriate TMT reagent (14).

Reagents 126 and 131 (Thermo Scientific) were used to bridge between MS runs. The remaining reagents

were used to label samples in random order. Labeling was carried out for 1 h at room temperature and

quenched by adding 8 �l of 5% hydroxylamine (Sigma). Labeled samples were acidified by adding 50 �l

of 1% TFA. After TMT labeling, the products of the 10-plex experiments were combined, desalted through

the use of C18 Sep-Paks, and dried using a SpeedVac.

Basic pH reverse-phase liquid chromatography sample fractionation. Sample fractionation was

performed by basic pH reverse-phase liquid chromatography with concatenated fractions as previously

described (75). Briefly, samples were resuspended in 5% formic acid–5% acetonitrile and separated over

a C18 column (Thermo Scientific) (4.6 mm by 250 mm) on an Ultimate 3000 high-performance liquid

chromatography (HPLC) system fitted with a fraction collector, degasser, and variable-wavelength

detector. The separation was performed over a 22% to 35%, 60-min linear gradient of acetonitrile–10 mM

ammonium bicarbonate (Fisher) at 0.5 ml/min. The resulting 96 fractions were combined as previously

described (75). Fractions were dried under vacuum and resuspended in 5% formic acid–5% acetonitrile

and analyzed by liquid chromatography (LC)-MS2/MS3 for identification and quantitation.

LC-MS2/MS3 for protein identification and quantitation. All LC-MS2/MS3 experiments were carried

out on an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) with an in-line EASY-nLC 1000

instrument (Thermo Fisher Scientific) and a chilled autosampler. Separation and acquisition settings were

as previously defined (76).

Proteomic data processing. Data were processed using Proteome Discoverer 2.1 (Thermo Fisher

Scientific). MS2 data were searched against the pDB and Uniprot human database (https://www.uniprot

.org/; accessed 28 November 2016). The Sequest searching algorithm (77) was used to align spectra to

database peptides. A precursor mass tolerance of 50 ppm (78, 79) and 0.6-Da tolerance were specified for
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the MS2 fragments. Static modification of TMT 10-plex tags on lysine and peptide N termini

(�229.162932 Da), carbamidomethylation of cysteines (�57.02146 Da), and variable oxidation of methi-

onine (�15.99492 Da) were included in the search parameters. Raw data were searched at a peptide and

protein false-discovery rate (FDR) of 1% using a reverse-database-search strategy (80–82).

TMT reporter ion intensities were extracted from MS3 spectra for quantitative analysis, and signal-

to-noise values were used for quantitation. Additional stringent filtering was used, removing any

moderate-confidence peptide spectral matches (PSMs) or ambiguous PSM assignments. Additionally, any

peptides with a spectral interference level above 25% were removed, as well as any peptides with an

average signal-to-noise ratio of less than 10. In accordance with false discovery rate benchmarking (83),

proteins matching only one high-confidence PSM were not removed. As metaproteome data contain a

high degree of similarity in levels of identity between proteins, several decisions were made to reduce

false assignments. Standardized methods in Proteome Discoverer (Version 2.1) preferentially assign

peptides to proteins that had previously had peptides reported. If this does not resolve the assignment,

the peptide is assigned to the longest protein. Additionally, a duplicate peptide filter was applied

according to the Proteome Discoverer report. Normalization occurred as previously described (76).

Briefly, relative abundances are normalized first to the pooled standards for each protein and then to the

median signal across the pooled standard. An average of these normalizations was used for the next step.

To account for slight differences in the amounts of protein labeled, these values were then normalized

to the median of the entire data set and reported as final normalized summed signal-to-noise ratios per

protein per sample.

Use of an integrated gene catalog for reference library comparison. The integrated reference

catalog was downloaded from http://meta.genomics.cn/meta/home (accessed 22 December 2016). A

two-step database search method was utilized (12). Briefly, the full database was used as a first-pass

screen. Second, both forward and reverse database identifications were used to create a study-specific

database. This database was used to search mass spectrometry data, and identifications were filtered at

a 1% FDR for peptides and proteins.

Data analysis. Data analysis was performed in python version 3.5 (https://www.python.org/), and

records of the code are available in corresponding Jupyter Notebooks for this project (https://github

.com/knightlab-analyses/Crohns-MG-MP-Comparisons). All displayed metaproteomic data were gener-

ated using the pDB metaproteomic data unless otherwise specified. Qiime was used for principal-

coordinate analysis (37). Spearman correlations were performed through the use of the pandas python

package (http://pandas.pydata.org/). Linear regressions were performed on metagenome sums and

metaproteome averages against the metaproteome abundances of each of the biomarker abundances.

Protein and gene associations were ranked by the associated coefficient of correlation, and taxonomic

and functional annotations of the top associated genes and proteins (|r| � 0.7) were compared. Linear

regressions were performed using the python package scipy (https://www.scipy.org). Friedman tests

were also performed through scipy, comparing genus compositions within the metagenome and

metaproteome between samples.

Data availability. Proteomic data and supplementary files are available online at https://massive

.ucsd.edu/ProteoSAFe/static/massive.jsp (study identifier [ID] MSV000082113). Metagenomic data are

available through the European Bioinformatics Institute (EBI) (https://www.ebi.ac.uk/ena) under the study

identifier PRJEB28712 (ERP110957).
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