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Abstract

Background: Shotgun metagenomics based on untargeted sequencing can explore
the taxonomic profile and the function of unknown microorganisms in samples, and
complement the shortage of amplicon sequencing. Binning assembled sequences
into individual groups, which represent microbial genomes, is the key step and a
major challenge in metagenomic research. Both supervised and unsupervised
machine learning methods have been employed in binning. Genome binning
belonging to unsupervised method clusters contigs into individual genome bins by
machine learning methods without the assistance of any reference databases. So
far a lot of genome binning tools have emerged. Evaluating these genome tools is
of great significance to microbiological research. In this study, we evaluate 15
genome binning tools containing 12 original binning tools and 3 refining binning
tools by comparing the performance of these tools on chicken gut metagenomic
datasets and the first CAMI challenge datasets.

Results: For chicken gut metagenomic datasets, original genome binner MetaBat,
Groopm2 and Autometa performed better than other original binner, and MetaWrap
combined the binning results of them generated the most high-quality genome
bins. For CAMI datasets, Groopm2 achieved the highest purity (> 0.9) with good
completeness (> 0.8), and reconstructed the most high-quality genome bins among
original genome binners. Compared with Groopm2, MetaBat2 had similar
performance with higher completeness and lower purity. Genome refining binners
DASTool predicated the most high-quality genome bins among all genomes binners.
Most genome binner performed well for unique strains. Nonetheless, reconstructing
common strains still is a substantial challenge for all genome binner.

Conclusions: In conclusion, we tested a set of currently available, state-of-the-art
metagenomics hybrid binning tools and provided a guide for selecting tools for
metagenomic binning by comparing range of purity, completeness, adjusted rand
index, and the number of high-quality reconstructed bins. Furthermore, available
information for future binning strategy were concluded.
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Background
Microorganisms are everywhere in the world and play an important role in geochemical

cycles. In the past, culture-dependent microbiology is commonly used to study micro-

bial ecology but it encountered a bottleneck as the majority of microorganisms are

difficult to culture and isolate in laboratory [1]. As the advance of sequencing through-

put and the decrease of sequencing cost, amplicon sequencing is one of the main

strategies to research microbial communities’ taxonomic profiles for reasonable price,

lower computing resource consumption. At the same time, some sophisticated bio-

informatic tools such as usearch [2], mothur [3], dada2 [4] and qiime2 [5] were

developed by trained bioinformaticians, making amplicon sequencing data analysis,

including 16 s rRNA used for prokaryotic and internal transcribed spacer (ITS) used for

fungal species, is friendly to most laboratory microbiologists who are unfamiliar with

bioinformatic methods. One popular pipeline is amplicon sequencing analysis cooper-

ates with PICRUST [6], which not only can get the species richness and abundance

from environment samples but also can predicate function profiles of microbial com-

munities. Nonetheless, amplicon sequencing has certain limitations owing to only

phylogenetic marker genes or their parts are sequenced by specific primers, which can

only provide species abundance information or limited microorganisms function contri-

bution to microbial ecology. Besides, conventional primers may not be bound to some

special 16 s rRNA [7] . The solution to the defects of marker gene sequencing is the

whole metagenome shotgun sequencing. Shotgun metagenomics is untargeted sequencing

(‘shotgun’) for all present microbial genomes (‘meta’) in samples [8]. The combined analysis

of amplicon sequencing and PICRUST mentioned above is a cost-effective means of under-

standing microbial diversity. Nevertheless, PICRUST’s potential functional prediction of

microbial communities is based on a comprehensive reference database of marker genes,

which means it cannot predict species that are not in available databases and their potential

functions. Shotgun metagenomics can address the loss of information about unknown

species, such as obtaining draft genomes of uncultivated microbes, and supplement the low

abundance species information that is hard to get in marker gene sequencing.

To date, metagenomics was applied to explore microbiologically diverse environ-

ments such as soil [9], gut [10], oceans [11], wastewater [12]. Undoubtedly, the micro-

bial community is an important part of the ecosystem. The connection between

microbial taxonomic composition and microorganisms function in the sample has

always been one of the research hotspots of metagenomics [13–15]. The number of

microbial cells in adults exceeds 100 trillion, which is as 10 times as the number of

human somatic cells [16]. Therefore, applying metagenomics to study human micro-

biota affects our understanding of human health. Lately, Paul I Costea et al. [17] revis-

ited the concept of enterotypes by re-analyzing accumulated data and discussed new

enterotypes applications in ecological and medical contexts. The main purpose of shot-

gun metagenomics is to profile microbial community taxonomic composition, exploit

unknown microorganisms, recover the part core or whole genome of special microbes

and reveal how unknown microorganisms are involved in the metabolism of microbial

communities in the environment [18]. For instance, metagenomic research can infer

undescribed knowledge on antimicrobial resistance, virulence factors, and genes in-

volved in enzyme synthesis, which may have important implications in public health,

biotechnology, and pharmaceutical industries [19, 20].
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Consequently, clustering or ‘bin’ assembled sequences into individual groups that

represent microbial genomes is the key step and a major challenge in metagenomic

research. Binning approach can be divided into taxonomic-dependent binning and

taxonomic-independent binning, also called taxonomy binning and genome binning.

Taxonomy binning is a supervised method to compare metagenomic sequences against

a database of genomic sequences by making use of aligning algorithms such as blast

[21], bowtie [22], bwa [23], minimap [24] or pre-computed databases (k-mers) of previ-

ously sequenced microbial genetic sequences. Nonetheless, taxonomy binning approach

is limited by incomplete reference databases especially when focusing on understanding

the metabiotic and functional contributions of unknown microorganisms contained in

the sample. Genome binning approach is an unsupervised method to cluster contigs

into individual genome bins by machine learning methods according to the feature pat-

terns of sequences and linkage patterns between sequences without the assistance of

any reference databases. Given the parameters used in cluster algorithms, genome bin-

ning approach can be divided into three types [20, 25, 26]: (i) sequence composition

based; (ii) differential abundance based; (iii) hybrid methods that combine the sequence

composition and differential abundance. Sequence composition-based binning strat-

egies presume the sequence features from different genomes are distinct whereas the

sequence features of a genome are similar. %G + C, nucleotides frequency [27] (k-mers

frequency, typically 4 nt in length), essential single copy genes [20], are common used

as sequence composition features. A basic condition for sequence composition-based

methods is that the sequence length is the longer the better genome signature extracted

from it. Moreover, the sequence number of low abundance species is lower, so their

genome signature may not be representative and that low abundance species would be

clustered into high abundance taxon [25]. Besides, discriminating closely related

genomes is a significant challenge to sequence composition-based methods as closely

related genomes have similar sequence features. With the current availability of

advanced NGS (next generation sequencing) machines and increasing sequencing

depth, microbial population coverage information is more reliable to obtain high

quality microbial genome from metagenomic datasets. Differential abundance-based

binning strategies presume that the sequences belonging to the same genome have

parallel abundance in the same sample, and the sequences belonging to the same

species have similar abundance distribution pattern across multiple samples, which can

be used to separate closely related organisms. Meanwhile, the progress of metagenomic

assemblers based on de bruijin graph make the improvement of the length of contigs

or scaffolds and the number of predicated genes and incorporated sequences [28]. Not

only can long contigs or scaffolds with less error by utilizing modern assembly tools

can reduce the loss of sequence features but also make employing the co-abundance of

taxon across multiple samples possible in genome binning. Combining sequence

composition-based and abundance-based methods to complement each other with

improved algorithm can get more accurate and completed binning results [29, 30], so

that hybrid binning methods has gradually become the mainstream [31–35].

Indeed, reconstructing genomes from environmental samples is a major challenge in

metagenomics, one of the reason is the lack of accurate quality evaluation reports of

binning results. To make a robust inference and optimize the binning algorithm, a

general standard for comparing binning results is necessary. The Critical Assessment of
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Metagenome Interpretation (CAMI) is a community-led initiative to help compare

metagenomic tools independently and comprehensively [36, 37]. Several genome bin-

ning tools have previously been evaluated in the first CAMI [38], but newer tools and

newer version of classic binning tools requires ongoing evaluation. Here, we have evalu-

ated 15 genome binning tools comprising of 12 original binning tools and 3 refining

binning tools by comparing the performance of these tools on a chicken gut dataset (4

faecal samples) and the first CAMI challenge datasets.

Results
In this study, we evaluated 12 original genome binning tools containing GroopM [32],

MetaBat [35], MaxBin [33], SolidBin [39], Vamb [40], MetaWatt [41], Binsanity [42],

Autometa [43], BMC3C [44], COCACOLA [34], CONCOCT [29], MyCC [45] and 3

refining binning tools (metaWRAP refinement module [46], Binning-refiner [47], DAS

Tool [48] (Table 1)). DASTool, Binning-refiner and MetaWRAP refinement module are

three metagenomic refining binner combining the results of different metagenomic

original binner.

The binning results of real metagenomic dataset

Yanan et al. [51] generated the chicken gut metagenomic datasets from live poultry

markets that were used for evaluation of above metagenomic genome binner. The data

comprise more than 50,000 Mbp clean data after quality controlling and host genome

removing. Then more than 110,000 contigs whose N50 was 12,243 were generated after

co-assembled by metaSPAdes [52] and the contigs less than 3000 bp were dropped. Exist-

ing evaluation methods for real metagenomic binning usually examine the single-copy

core genes discovered in most microbial genomes like tRNA synthetases or ribosomal

proteins and their positional information to assess the completeness and contamination

of recovered genomes [53, 54]. In this study, we used CheckM [53] to evaluated the com-

pleteness and contamination of reconstructed bins. To investigate the quality distribution

of reconstructed genome bins, we calculated the F1-score representing the harmonic

mean of completeness (recall) and purity (precision).

We compared the results of above-mentioned fifteen binning predictions from the

chicken gut datasets. Matawatt and Vamb predicated the greatest number of genome

bins (1908 and 1545) from the real metagenomic datasets (Fig. 1), and the top 2 of

average purity of recovered bins also were Matawatt and Vamb (Figure S1). Nonethe-

less, the average F1-score of binning results predicated by them were the lowest two

(Fig. 1), which were influenced by their lower completeness (Figure S2). It indicated

that Matawatt and Vamb focused on reconstructing a lot of small but pure genome

bins, which may benefit the reconstruction of low-abundance microbial genome. More-

over, Vamb reconstructed 59 high-quality genome bins, reaching the intermediate level

among all genome binner.

For genome original binning tools, the top 3 of the F1-socre of binning results were

Groopm2, Maxbin2 and Autometa. The binners recovering the greatest number of

high-quality bins were Metabat (version 1 and 2), Groopm and Autometa (87, 83 and

73 high-quality bins were recovered by Metabat, Groopm and Autometa, respectively).

Generally, the more high-quality bins were combined by genome refining binner, the
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Table 1 Summary of twelve original genome binner and three refinning genome binner
Genome
binner

Parameters Model Version
to validate

Publication Last
update

Resources

MaxBin k-mer frequencies,
coverage, single-
copy genes

Expectation-maximization,
bin number estimated
from single-copy marker
gene analysis

2.2.6 2014 2019 https://sourceforge.net/
projects/maxbin

MetaBat 4-mer frequencies,
coverage

Modified K-medoids
algorithm

1&2.13 2015 2020 https://bitbucket.org/
berkeleylab/metabat/src/
master

Groopm coverage, contig’s
length,
tetranucleotide
frequency

Two way clustering,
Hough partitioning,
self-organizing map

2 2014 2017 https://github.com/
timbalam/GroopM

CONCOCT k-mer frequencies,
coverage

Gaussian mixture models,
bin number determined
by variable Bayesian

1.0.0 2014 2019 https://github.com/
BinPro/CONCOCT

MyCC k-mer frequencies,
coverage (optional),
universal single-copy
genes

Affinity propagation 1 2016 2017 https://sourceforge.net/
projects/sb2nhri

MetaWatt tetranucleotide
frequency, coverage

Firstly clustering by
empirical relationship of
the average standard
deviation at
tetranucleotide frequency
mean, then employing
interpolated Markov
models

3.5.3 2012 2016 https://sourceforge.net/
projects/metawatt

BMC3C frequency variation
of oligonucleotides,
coverage, codon
usage

Ensemble k-means,
construct a weigh graph
and partition it by
Normalized cuts [49, 50]

\ 2018 2018 http://mlda.swu.edu.cn/
codes.php?name= BMC3C

Binsanity coverage,
tetranucleotide
frequency, percent
GC content

Affinity propagation 0.2.8 2017 2020 https://github.com/
edgraham/BinSanity

Autometa sequence homology,
single-copy genes,
5-mer frequency,
coverage, single-
copy genes

Lowest common ancestor
analysis, DBSCAN
algorithm, supervised
decision tree classifier
recruite unclustered
contigs

\ 2019 2020 https://bitbucket.org/
jason_c_kwan/autometa/
src/master

COCACOLA k-mer frequency,
coverage,
co-alignment,
paired-end read
linkage

K-means based on L1
distance, non-negative
matrix factorization with
sparse regularization,
hierarchical clustering

\ 2017 2017 https://github.com/
younglululu/COCACOLA

SolidBin-
naive

single-copy mark
genes,
tetranucleotide
frequencies,
coverage, pairwise
constraints

Semi-supervised spectral
Normalized cut

1.1 2019 2020 https://github.com/
sufforest/SolidBin

Vamb tetranucleotide
frequencies,
coverage

Variational autoencoders,
iterative medoid clustering
algorithm

2.0.1 2018 2020 https://github.com/
RasmussenLab/vamb

DAS Tool original binner
output bin sets

Refine bins according
shared contigs between
two original binner results

1.1.1 2018 2019 https://github.com/cmks/
DAS_Tool

MetaWrap original binner
output bin sets

Separating every pair of
contigs in different bins,
selecting the best bin
sets according completion
and contamination

1.2.2 2018 2019 https://github.com/bxlab/
metaWRAP

Binning_
refiner

original binner
output bin sets,
single-copy genes

Scoring bins based on
single-copy genes and
picking up high-score bins
iteratively

1.4.0 2017 2019 https://github.com/
songweizhi/Binning_
refiner

Yue et al. BMC Bioinformatics          (2020) 21:334 Page 5 of 15

https://sourceforge.net/projects/maxbin
https://sourceforge.net/projects/maxbin
https://bitbucket.org/berkeleylab/metabat/src/master
https://bitbucket.org/berkeleylab/metabat/src/master
https://bitbucket.org/berkeleylab/metabat/src/master
https://github.com/timbalam/GroopM
https://github.com/timbalam/GroopM
https://github.com/BinPro/CONCOCT
https://github.com/BinPro/CONCOCT
https://sourceforge.net/projects/sb2nhri
https://sourceforge.net/projects/sb2nhri
https://sourceforge.net/projects/metawatt
https://sourceforge.net/projects/metawatt
http://mlda.swu.edu.cn/codes.php?name=BMC3C
http://mlda.swu.edu.cn/codes.php?name=BMC3C
https://github.com/edgraham/BinSanity
https://github.com/edgraham/BinSanity
https://bitbucket.org/jason_c_kwan/autometa/src/master
https://bitbucket.org/jason_c_kwan/autometa/src/master
https://bitbucket.org/jason_c_kwan/autometa/src/master
https://github.com/younglululu/COCACOLA
https://github.com/younglululu/COCACOLA
https://github.com/sufforest/SolidBin
https://github.com/sufforest/SolidBin
https://github.com/RasmussenLab/vamb
https://github.com/RasmussenLab/vamb
https://github.com/cmks/DAS_Tool
https://github.com/cmks/DAS_Tool
https://github.com/bxlab/metaWRAP
https://github.com/bxlab/metaWRAP
https://github.com/songweizhi/Binning_refiner
https://github.com/songweizhi/Binning_refiner
https://github.com/songweizhi/Binning_refiner


(a)

(b)

(e) (f)

(g) (h)

(c) (d)

Fig. 1 (See legend on next page.)
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better the refining results were got. Hence, the bins recovered by Metabat2, Groopm

and Autometa were chosen as the input of DASTool, Binning-refiner and MetaWrap

(refinement module). The average F1-score of binning results from DASTool and

MetaWrap was 0.89 and 0.93, exceeding all other binners, and MetaWrap achieved the

greatest number of high-quality genome bins (110) from chicken gut metagenomic

datasets (Table 2).

The binning results on CAMI datasets

We investigated the performance of recovering genome bins of genome binners on the

first CAMI challenge datasets with different complexity. For each genome binner, we

used two quality weight ways to calculate average purity, one is weighted by bin size,

and the other is that all bins have the same weight. The first criterion is affected by the

size of recovered genome bins so that as long as the more high-abundance taxa are re-

constructed, the higher purity we get. The second criterion reflect the average purity

among all the predicated bins, regardless of the size of them.

For genome bins, purity (from 0 to 1) weighted by bin sizes and average completeness

(from 0.4 to 1) varied considerably. For original genome binner, Groom2 had the highest

purity with good completeness (> 0.9 purity, > 0.8 completeness) in three datasets,

followed by MetaBat2, which had little higher completeness and lower purity (Table S5).

Other two acceptable genome binner were SolidBin and MetaWatt that did excellent

work in the first CAMI challenge. Besides, MaxBin2 had similar performance with

Groopm2 in medium-complexity dataset. While MaxBin2 had good purity being greater

than 0.9, the completeness of MaxBin2 was only 0.476 in high-complexity dataset. Re-

markably, Vamb had the highest completeness with good purity (> 0.95 completeness, >

0.75 purity) in high-complexity dataset. Other programs performed well in low-

complexity and medium-complexity datasets, but dealing with high-complexity dataset is

a challenge to them. For three refining genome binner, DAS Tool did the best work since

the purity is greater than 0.99, and the completeness varied from 0.72 to 0.96 in three

datasets (Table S5). MetaWRAP also performed well as DAS Tool, while the complete-

ness of MetaWRAP is little lower than DASTool. Compared to MetaBat2, the complete-

ness of Binning-refinement was lower, but the purity was greater in CAMI datasets.

When focusing on low-abundance microorganisms, whose sequence composition fea-

tures are more inconspicuous than high-abundance genomes in samples, investigating the

average purity with the premise that all bins has same weight is a reasonable choice. As

shown in Fig. 1f, genome binners such as Groopm2, MetaBat2, DASTool, MetaWRAP,

SolidBin (in high-complexity and medium-complexity datasets) and MaxBin2 (in

medium-complexity and low-complexity datasets) performing well as aforementioned

(See figure on previous page.)
Fig. 1 Performance of genome binning tools in chicken gut metagenomic datasets and CAMI datasets. F1-
score of binning results by genome binning tools in (a) chicken gut metagenomic datasets and in the first
CAMI challenge (b) high, (c) medium and (d) low-complexity datasets. (e) Average purity (weighted by bin
sizes) and average completeness (genomes reconstructed) by genome binning tools. (f) Average purity (all
bins have same weight) and average completeness (genomes reconstructed) by genomes binning tools. (g)
ARI (The adjusted rand index) in connection with the segment of common strains (ANI (Average nucleotide
identity)≥ 95%) assigned by genome binning tools. (h) ARI in connection with the segment of common
strains (ANI<95%) assigned by genome binning tools
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were in the first echelon (completeness from 0.7 to 0.85, purity from 0.85 to 1). The com-

pleteness of some genome binners like Vamb and MetaWatt has declined, meaning that

they were better at reconstructing high-abundance taxa, and the performance of cluster-

ing low-abundance taxa need to be improved, which we also mentioned in aforemen-

tioned evaluation to chicken gut metagenomic datasets.

To investigate how well predicated genome bins represent the reference genomes,

we calculated the adjusted rand index (ARI) of recovered bins and the number of

high quality bins (< 5% contaminations; > 90% completeness). For unique strains,

most genome binner performed well. The percentage of assigned base pairs for all

genome binner were greater than 60%, and most of them were greater than 80%.

Meanwhile, the adjusted rand index for all genome binners is between 0.45 and

0.95. For original genome binner, MaxBin2 performed best with the highest ARI in

high, medium and low-complexity datasets (0.884, 0.786 and 0.911). In addition,

MaxBin, MetaBat2 and MetaWatt also had good performance across three CAMI

datasets, while the other binning programs met the obstacle in high-complexity

dataset. For common strains, the adjusted rand index of all genome binners de-

clined substantially (< 0.4) comparing with unique strains, whose ARI were above

0.6. On the other hand, the percentage of assigned base pairs of genome binners

deceased significantly as well. Among genome binners, Groopm2, MetaBat2, Solid-

Bin, Vamb and DASTool performed relative well. The highest ARI in high-

complexity dataset is 0.441 from Groopm2, in medium-complexity dataset is 0.444

from MetaBat2 and in low-complexity dataset is 0.386 from DASTool. Only

Groopm2 and DASTool reconstructed more than half gold standard high-quality

genome bins in medium and low complexity datasets. As aforementioned, the bin-

ning results from original binners recovering the top 3 number of high-quality gen-

ome bins were combined as the input of genome refining binners. DASTool

produced maximum high-quality genome bins (439, 94 and 29) among all genome

binners for three CAMI datasets (Table 2).

Refining of original binning results

In our study, the bin sets generated by MaxBin2, MetaBat2, Groopm2 and Solidbin

are used as the input of refining genome binner to obtain high quality bin sets

(Table 2). DASTool, Binning-refiner and MetaWRAP (refinement module) are three

published and first-class genome binning programs for refining original binning

results by consolidating and improving bin sets. For instance, for CAMI high-

complexity dataset, the number of high contamination (> 0.4) bins for MetaBat2,

Groopm2 and Solidbin exceeded 65, after refining by DASTool and MetaWrap, the

number of contaminated bins were much lower than the original binning results (Figure S3);

for CAMI medium-complexity datasets, the heatmap of confusion matrices of binning results

from Groopm2, MetaBat2 and Solidbin showed that even the predicated bins were generated

by the first-class original genome binner, a considerable part of which is a combination of

contigs from different microbial strains, that is, contaminated genome bins (Table S5a, S5b

and S5c), after refining by DASTool and MetaWrap, the number of contaminated bins were

greatly reduced (Table S5d and Table S5e).
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Discussion
For chicken metagenomic datasets, original genome binner MetaBat, Groopm2 and Auto-

meta performed good than other original binners, and MetaWrap combined the binning

results of them generated the most high-quality genome bins. For CAMI datasets, the latest

iterative versions of classic original binning tools such as Groopm2 and MetaBat2 show the

top-ranking performances, indicating their adaptability and flexibility to different complexity

data sets. In contrast to MetaBat1 in the first CAMI challenge, the performance of MetaBat2

has been improved a lot, including an increase in the number of reconstructed genome bins,

the purity of predicated bins, and the completeness of underlying genome. Newly published

genome binning tools, such as SolidBin and Vamb, have similar performance compared with

forefront genome binning tools in CAMI medium and high complexity data sets. Whether

reconstructing large or small size genomes are required, Groopm2, MetaBat2 provided best

performance metrics in recall, purity and the number of high-quality genome bins. DASTool,

metaWRAP (refinement module) and Binning-refiner can reduce the contamination and in-

crease the completeness of genome bin. DASTool generated the most high-quality genome

bins among all genome binner for CAMI high, medium and low-complexity datasets. With

regards to recover diverse strains, more than half of binning programs performed very well

when dealing with unique genomes in CAMI three datasets. Nevertheless, dealing with com-

mon strains complicates all of binning tools. For example, over 90% of unique genomes with

high quality were recovered by Groopm2 in high-complexity data set. Instead, less than 46%

of common genomes with high-quality were recovered.

One of the deficiencies in our study is the absence of validating genome binners on

diverse environmental samples. A genome binning strategy satisfying all the require-

ments in realistic study is unpractical. In diverse environment, the performance of the

genome binners would be distinct. The second round of CAMI challenges was already

been in progress and provided several multi-sample data sets from different environ-

ments to validate metagenomic tools [49].

In a recent study by Simon H. Ye et al. [50], the authors reported that only a small

percentage of the first CAMI data sets were able to be classified at species or genus levels

by taxonomy binning tools. When a high-resolution view on natural microbial communities

are required, de novo assembly and genome binning of metagenomes are appropriate strat-

egies. As aforementioned, reconstructing more higher resolution draft genomes, i.e. closely

related strains, is one of the biggest challenges for current binning programs. Nucleotide

frequency, %G+C profiles, single-copy genes and microbial population abundance informa-

tion are the main features used by current state-of-the-art hybrid binning algorithms, which

achieve considerable high-quality genome bins at unique strain level. To reconstruct com-

mon strains deriving from microbial communities, employing other parameters is necessary.

Among the methods evaluated here, BMC3C is a pioneer in the use of codon usage

features; Autometa separate contigs from metagenome into kingdom bins based on se-

quence homology as pretreatment before clustering, which can reduce eukaryotic contam-

ination and increase the precision of genome bin; COCACOLA takes co-alignment and

paired-end read linkage information to improve binning; SolidBin, a semi-supervised

method, employed additional biological information such as dependable taxonomy assign-

ment of some contigs to improve contig binning. Using above and other extra information

would increase the computational burden and make the binning model more complex but

could be a feasible way for future binning research.
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Conclusions
In conclusion, we tested a set of currently available, state-of-the-art metagenomics hybrid

binning tools to evaluate their performances by applying them to chicken gut metagenomic

datasets and the first CAMI high, medium and low complexity datasets. Original genome

binner Groopm2, MetaBat2 and refining binner DASTool, MetaWrap achieved excellent

performance across real and simulated datasets. As the spectacular technological and meth-

odological advances, integrative omics analysis including marker gene sequencing, metage-

nomics, metatranscriptomics, metaproteomics, and metabolomics arises at the historic

moment. Combining metagenomic assemblers and metagenomic binner into integrative

omics analysis, which is the key to comprehensively understand the composition and func-

tion of microbial communities, is an irresistible trend.

Methods
Datasets

To address the lack of consistency in metagenomic genome binning software evaluation,

CAMI provides three datasets with different complexity: (i) high-complexity datasets con-

sisting of 5 time series samples with 596 genomes and 478 circular elements; (ii) medium-

complexity datasets consisting of 4 samples in two different abundance and two different

insert size; (iii) low-complexity datasets consisting of 1 sample with small insert size. In

addition, gold standard assembly results and mapping results were provided by CAMI,

which could be the input file of genome binning tools. Gold standard of assembly and

binning can minimize chimera errors caused by assembly tools and reduce biases in evalu-

ation of the performance of each genome binning tool.

The chicken gut metagenomic datasets (4 chicken faecal samples) were quality controlled

by fastp [55] (−-cut_tail, −-length_required = 50, −-correction) to remove low quality se-

quences and aligned to chicken genome to remove host genome. After that, metagenomic

clean reads co-assemblied with metaSPAdes [52].

Evaluation criteria

We used AMBER [56] to calculate four representative evaluation metrics, recall (also

known as completeness), precision (also known as purity), F1-score and Adjusted Rand

Index (ARI), for evaluating the binning results. The classification of pairs of contigs fall

into 4 cases: TP (Ture Positive) and FP (False Positive) represent the number of pair-

wise contigs belonging to the same genomes clustered into the same and different clus-

ters, respectively. FN (False Negative) and TN (True Negative) represent the number of

pairwise contigs belonging to different genomes clustered into the same and different

clusters, respectively. Recall, precision and F1-score are calculated as:

completeness ¼ recall ¼ TP
TP þ FN

purity ¼ precision ¼ TP
TP þ FP

contamination ¼ 1 − purity

F1 ¼ 2� precision�recall
precisionþ recall
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Following the first CAMI [38] and AMBER [56], we calculated a truncated average

precision value by removing 1% of the smallest predicted bins since their purity is

much lower than that of large bins, and small and large bins contribute equally to the

average precision. In order to allow assessment of the performance of recovering differ-

ent abundant genomes for genome binning tools, the average purity per base pair and

completeness per base pair were calculated. In addition, average precision of bins

weighted by bin sizes were also calculated. Besides, underlying genomes in samples

were divided on the basic of their average nucleotide identity (ANI) [57] into ‘unique

strains’ (genome with ANI ≥ 95% to other genome) and ‘common strains’ (genome with

ANI<95% to other genome) for assessing the effect of strain diversity to the genome

binner [38]. Average precision (purity), truncated average precision, average precision

per base pair, average recall (completeness) and average recall per base pair are calcu-

lated as:

average precision ¼ 1
Mp

XMp

i¼1

precisioni

truncated average precision ¼ 1
Mr;a

Xmr

i¼1

precisioni

average precisionbp ¼
P

x∈XTPxP
x∈XTPx þ FPx

average recall ¼ 1
Mr

XMr

i¼1

recalli

average recallbp ¼
P

y∈YTPyP
y∈YTPy þ FNy

where Mp is the number of all predicated bins, Mr is the number of real bins in data-

sets, Mr;a is the number of bins passing the a percentile bin size threshold, X is the

predicated bin sets and Y is the underlying genomes.

In addition, a K × S matrix can be constructed A ¼ n ij , n ij indicate the number of

assignments to the i th bin and j th genome as Alneberg J et al. did [29]. Let N be the

number of contigs from underlying genomes assigning to predicated genome bins.

Adjusted rand index is calculated as:

ARI ¼

P
i; j

ni; j
2

� �
−

P
i

ni;�
2

� �P
j

n�; j
2

� �

N
2
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2
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2
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þ
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j

n�; j
2
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−
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As the underlying genomes of the real metagenomic datasets were unknow, we evalu-

ated the completeness and contamination of the recovered bins from original and refin-

ing binners by the lineage workflow of CheckM based on presence of marker gene per

bin [53].
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