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ABSTRACT 
To support early model validation, this paper describes a 

method utilizing information obtained from the common 

practice component level validation to assess uncertainties on 

model top level. Initiated in previous research, a generic output 

uncertainty description component, intended for power-port 

based simulation models of physical systems, has been 

implemented in Modelica. A set of model components has been 

extended with the generic output uncertainty description, and 

the concept of using component level output uncertainty to 

assess model top level uncertainty has been applied on a 

simulation model of a radar liquid cooling system. The focus of 

this paper is on investigating the applicability of combining the 

output uncertainty method with probabilistic techniques, not 

only to provide upper and lower bounds on model uncertainties 

but also to accompany the uncertainties with estimated 

probabilities. 

 It is shown that the method may result in a significant 

improvement in the conditions for conducting an assessment of 

model uncertainties. The primary use of the method, in 

combination with either deterministic or probabilistic 

techniques, is in the early development phases when system 

level measurement data are scarce. The method may also be 

used to point out which model components contribute most to 

the uncertainty on model top level. Such information can be 

used to concentrate physical testing activities to areas where it 

is needed most. In this context, the method supports the concept 

of Virtual Testing. 

INTRODUCTION 
Simulation models of physical systems, with or without control 

software, are widely used in the aeronautic industry, with 

applications ranging from system development to verification 

and end-user training. In the effort to reduce the cost of 

physical testing related to the certification process, the 

aeronautic industry strives to expand the usage of modeling and 

simulation (M&S) further by introducing the concept of Virtual 

Testing (VT). While no compact and broadly agreed definition 

of VT has been found, the term VT in this paper refers to the 

structured use of M&S to critically evaluate a product’s design 

against specified requirements. In the case of certification, the 

requirements are set by certification authorities, typically the 

Federal Aviation Administration in the US or the European 

Aviation Safety Agency in Europe [1,2] . When VT is used as 

an Acceptable Means of Compliance in certification, this may 

be termed Virtual Certification (VC). There is an intuitive 

analogy between physical testing and VT in terms of the test 

article and the actual test execution – the test article in physical 

testing corresponds to a validated simulation model in VT, and 

the physical test execution corresponds to the simulation in VT. 

In both cases, it is equally important that test procedures and 

test setups are well defined. 

 At the time of writing, EU funded VT related research 

projects are on-going in all major transportation sectors – from 

the aeronautic sector to the automotive, railway, and maritime 

sectors. One example from the aeronautic sector is the 

CRESCENDO project, in which methodologies and tools 
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intended to enable collaborative design, VT, and VC are being 

developed [3]. It should be emphasized that the CRESCENDO 

VT and VC approaches are intended to support the current 

certification process, and that VT will not replace physical 

testing. Instead, VT is intended to be the means to better plan 

physical testing, to reduce the number of physical tests, and to 

reduce risk associated with physical testing. 

 The importance of Verification and Validation (V&V) of 

simulation models is well known and the V&V research field 

has a long history, see for example Naylor and Finger [4] who 

propose a method named multi-stage verification, and Sargent 

[5] who provides an overview of the subject and describes a set 

of validation techniques. In today’s developments of VT 

towards VC, the challenging task of assessing a model’s 

validity is nonetheless of greater importance than ever. In a 

broader perspective, model validation is only one factor in the 

assessment of the credibility of a M&S activity. For examples 

of credibility assessment methods, see the Credibility 

Assessment Scale proposed in the NASA Standard for Models 

and Simulations [6], the Predictive Capability Maturity Model 

proposed by Sandia National Laboratories [7], and the 

Validation Process Maturity Model proposed by Harmon and 

Youngblood [8]. A brief summary of these three methods is 

provided by Carlsson et al. [9]. 

 With the above credibility scope in mind, this paper zooms 

into model validation, and more specifically into early model 

validation, which here refers to assessment of a model’s 

validity in lack of system level measurement data. A main 

research question is: Is there an industrial applicable way to 

use information on component level uncertainty to draw 

conclusions on model top level uncertainty? As an answer, this 

paper proposes a pragmatic approach to how to utilize 

uncertainty information obtained from the common practice of 

component validation to assess uncertainties on model top 

level. Previous research has shown that the method may result 

in a significant reduction of the number of uncertain parameters 

that require consideration in a simulation model, and the 

method has been tested in combination with a set of 

deterministic techniques [10]. When the number of uncertain 

parameters to take into account has been successfully reduced, 

probabilistic techniques may be considered even for 

computationally expensive models. The method is primarily 

intended for large scale mathematical 1-D dynamic simulation 

models of physical systems with or without control software, 

typically described by Ordinary Differential Equations (ODE) 

or Differential Algebraic Equations (DAE).  

The following section introduces the reader to early model 

validation and provides the context of the proposed method. 

The proposed method is then combined with probabilistic 

techniques and applied in an uncertainty analysis of a 

simulation model of a radar liquid cooling system. The final 

section contains conclusions and recommendations to consider 

when applying the proposed method in uncertainty analysis of 

simulation models. 

EARLY MODEL VALIDATION 
Several definitions of the terms verification and validation 

exist, some of them collected in the Generic Methodology for 

Verification and Validation (GM-VV) [11]. As formulated by 

Balci [12], verification concerns building the model right, i.e. 

determining whether the model is compliant with the model 

specification and if it accurately represents the underlying 

mathematical model. Validation concerns building the right 

model, i.e. determining whether the model is a sufficiently 

accurate representation of the real system of interest from the 

perspective of the intended use of the model. This brief 

description of V&V terminology is in line with definitions used 

by NASA [6], ITOP [13], and the US DoD [14]. 

Balci [12] lists more than 75 techniques for verification, 

validation, and testing (VV&T), divided into four groups; 

informal, formal, static, and dynamic. These are further 

described in Balci [15]. Another well-established set of 

validation techniques is provided by Sargent, see Ref. [16] for 

an up-to-date version. As indicated above, Sargent’s list 

concerns validation techniques only, while Balci’s list contains 

a mix of VV&T techniques, and it is not always easy to 

determine whether a specific technique should be considered to 

be directed towards verification or validation. It is the authors’ 

understanding that informal techniques like face validation and 

reviews are generic and may concern both verification and 

validation. Informal techniques are of great importance and 

often easy to apply, but will not be further discussed in this 

paper. Formal techniques based on mathematical proof of 

correctness may also cover both verification and validation 

aspects. However, as indicated by Balci [15], formal methods 

are rarely applicable where complex simulation models are 

cencerned. Static techniques like interface analysis and 

structural analysis are believed to be directed more towards 

verification than validation. Left are the group of dynamic 

techniques which, as clarified in the sections below, are of most 

interest to this paper. 

V&V of simulation models is sometimes seen as activities 

carried out at the end of the modeling process – in particular the 

validation activity which may require a large amount of 

measurement data from the real system of interest. When using 

M&S to take early model-based design decisions – when no 

physical prototype of the system exists – it is still important to 

assess the uncertainty in the simulation results. In addition to 

this, the authors experience from M&S of aircraft vehicle 

systems is that there tend to be a persistent lack of system level 

measurement data for validation purposes, also in the later 

development stages. In practice, when modeling for example an 

aircraft subsystem, one never has access to system level 

measurement data covering all points in the flight envelope. To 

what extent may the results from the validation against 

measurement data then be interpolated/extrapolated? Since this 

question may be hard to answer, it is important to be able to 

assess model uncertainties with only limited system level 

measurement data available. Such an assessment would 

constitute an important part of early model validation. 
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With the purpose of facilitating early model validation, this 

paper proposes a method based mainly on a combination of the 

dynamic techniques denoted by Balci as sub-model/module 

testing, bottom-up testing, and predictive validation. As 

described in the following sections, the proposed method may 

be combined with sensitivity analysis and/or optimization 

techniques, and applied in deterministic- as well as probabilistic 

frameworks to enable simulation model uncertainty analysis. 

Uncertainty analysis in this paper refers to the process of 

identifying, quantifying, and assessing the impact of 

uncertainty sources embedded along the development and 

usage of simulation models. A few examples of potential 

sources of uncertainty are model parameters, model boundary 

conditions, model simplifications, and the numerical method 

used by the solver. According to Roy and Oberkampf [17], all 

uncertainties originate from three key sources; model inputs, 

numerical approximations, and model form uncertainty. This is 

in line with the definitions provided by Coleman and Steele 

[18]. Commonly, a distinction is made between aleatory 

uncertainty (due to statistical variations, also referred to as 

variability, inherent uncertainty, irreducible uncertainty, or 

stochastic uncertainty) and epistemic uncertainty (due to lack of 

information, also referred to as reducible uncertainty or 

subjective uncertainty). See Padulo [19] for an extensive 

literature review of uncertainty taxonomies. 

THE OUTPUT UNCERTAINTY METHOD 
To help the reader understand the proposed method, a 

simulation model of a radar liquid cooling system is used as an 

industrial application example. The method was originally 

described by Carlsson et al. [10] by the means of a scenario 

description. The following sub-sections introduce the industrial 

application example and describe the method using a short 

version of the scenario. 

Industrial Application Example 
A simulation model of the radar liquid cooling system in a Saab 

Gripen Demonstrator Aircraft is used as an illustrative example. 

The model was developed in the Modelica based M&S tool 

Dymola [20,21]. The main components in the system are pump, 

accumulator, liquid-to-air heat exchanger, piping, and a sub-

system of heat loads including the radar antenna and related 

electronic equipment. The simulation model layout is shown in 

the picture below, which also includes information to 

distinguish between components and sub-models. In the figure 

below, a component is a model of a single piece of equipment 

and a sub-model includes several components. 

 

Figure 1: LAYOUT OF THE RADAR LIQUID COOLING 
SYSTEM. 

 From a system simulation perspective, this model may 

appear fairly simple. Yet it is a component based model of a 

physical system, including a number of components and one 

sub-model. This 1-D dynamic simulation model is used to 

predict pressure, mass flow, and temperature levels at different 

points in the system. The components include equations 

describing pressure variations due to g-loads and fluid thermal 

expansion, internal heat exchange between equipment and 

fluid, external heat exchange between equipment and 

surrounding equipment bays, temperature dynamics in 

equipment and fluid, as well as fluid dynamics due to transport 

delays in the piping arrangement. The model includes 

approximately 200 equations, 100 parameters, and 50 states. 

The radar liquid loop model was developed using a sub-

package of a component library developed at Saab Aeronautics 

and uses a connector interface that includes information about 

pressure, mass flow, and specific enthalpy     ̇   . 

Motivation of Method 
Prior to initiating the development of a simulation model’s 

components and sub-models, there are normally activities such 

as specifying the intended use of the model, deriving model 

requirements, defining model layout and interfaces, and 

producing a V&V plan [9]. In the following short scenario, 

these initial activities are assumed to be completed and we 

move straight on to what one may call the core of model 

development. Briefly described, a typical approach in 

component based modeling is to a) model each component or if 

possible select suitable components from a component library, 

b) perform V&V activities on component level, which is often 

an iterative process including tuning of component parameters, 

and c) assemble sub-models up to model top level. 

Available information on component level typically used 

in steps a) and b) may for example be datasheets, rig test data 

for similar components, or component level CFD simulation 

results. Thus, after carrying out the component V&V activities 

in step b), there is indeed uncertainty information available for 

the individual components and sub-models. However, in the 

authors’ experience this uncertainty information on component 

level is not always utilized at model top level. To summarize 

the problem –  uncertainties of the components are known to 
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some degree, but what is the uncertainty on model top level? 

For example, what is the uncertainty in the pressure at the heat 

load input port in the liquid cooling model? Reasonably, it 

should be possible to utilize our knowledge of the uncertainties 

on component level and sub-model level to estimate the 

uncertainties on top level. 

 Where system level measurement data is unavailable, a 

common approach is to perform a sensitivity analysis, e.g. by 

varying component parameters and performing a simulation for 

each parameter change to determine how different parameters 

affect the model output. However, in the scenario described 

above we have knowledge of the uncertainties of the 

component characteristics (output), but we do not know the 

uncertainties in the component parameters (input). Due to lack 

of information on parameter uncertainty, quantifying 

uncertainties in component parameters is often a difficult task. 

As an example – what is a suitable range of the roughness 

coefficient in component “Pipe 1”, or what does the probability 

density function look like? Quantifying parameter uncertainties 

in models with many parameters is thus not always feasible. 

 From an uncertainty analysis point of view there is a 

drawback if the only thing that is varied in the sensitivity 

analysis is a model’s original component parameters – the 

uncertainties in a model’s original component parameters only 

cover one aspect of the total model uncertainty. In that case, 

other kinds of uncertainties, like uncertainties of underlying 

equations or uncertainties due to model simplifications, are 

ignored. 

 In addition to this, sensitivity analysis applied on models 

with many parameters requires a large number of simulations. 

One approach to mitigate the computational heaviness of the 

sensitivity analysis is to use simplified models, also known as 

meta-models or surrogate models, e.g. response surfaces of 

varying order [22]. By definition there is a discrepancy between 

the surrogate model and the original model of interest. In this 

approach additional V&V tasks therefore need to be performed. 

If a sensitivity analysis is carried out on the surrogate model, 

knowledge is gained of how the parameters affect the surrogate 

model output and not the output of the original model. 

Description of Method 
To answer the question “What is the uncertainty on model top 

level?”, given the constraints regarding large scale physical 

models as well as the lack of system level measurement data, 

this section proposes an approach based on the original model 

components extended with an uncertainty description utilizing 

available information on component output uncertainty. As the 

model components may be legacy code or originate from a 

Commercial Off The Shelf (COTS) component library, it is 

favorable to keep them unmodified. Andersson [23] describes 

how a fault injection block may be implemented in signal flow 

models. At Saab Aeronautics, this kind of fault injection feature 

has proven to be useful for simulation of different kind of faults 

in mid-scale and large-scale simulators, for example sensor 

failures of various kinds. The method proposed in this paper is 

similar to the fault injection feature for signal flow models, 

except that consideration must be given to the power port 

concept commonly used in physical modeling. 

The idea is to develop a new uncertain component by 

including an original component and adding an uncertainty 

description component. The uncertainties are introduced in the 

uncertainty description component by including equations for 

modifying one or more of the variables in the connector 

interface. The uncertainties may be expressed in absolute terms 

or relative to some characteristic of the original component. As 

this approach enables uncertainties to be defined for a 

component’s outputs rather than its inputs, the method is 

termed output uncertainty. A brief description is given below of 

how the method is implemented in the thermal-fluid component 

library used in the liquid cooling model. For  equations and 

further implementation aspects, see Ref. [10]. 

In the component library used for the liquid cooling model, 

the connector interface includes information on pressure, mass 

flow, and specific enthalpy     ̇   . In the aim to achieve an 

intuitive uncertainty description, it has been chosen to add 

uncertainties in terms of pressure and temperature (the latter 

implicitly meaning specific enthalpy). This is appropriate since 

pressure and temperature are two commonly used entities when 

measuring or specifying system characteristics. In line with the 

discussion above, two types of uncertainty descriptions have 

been implemented – absolute and relative. The absolute 

uncertainty component introduces two parameters; pressure 

uncertainty pUC [Pa] and temperature uncertainty TUC [K]. The 

relative uncertainty component uses similar parameters, but 

relative to the pressure difference and temperature difference 

over the original component; relative pressure uncertainty pRUC 

[-] and relative temperature uncertainty TRUC [-]. 

It should be noted that – as when varying for example a 

component’s pressure loss coefficient – varying a component’s 

pressure uncertainty parameter corresponds to a variation of the 

component’s pressure drop characteristics. Thus, introducing 

uncertainties in pressure implies uncertainties in mass flow. 

The figure below shows an example of the pressure drop 

characteristics of a pipe component with absolute and relative 

uncertainty respectively. 

 

Figure 2: ABSOLUTE UNCERTAINTY VERSUS RELATIVE 
UNCERTAINTY. 
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 Based on existing components, a new component library 

with uncertainty descriptions is created. As an example, a new 

component UncertainPipe is created by including an original 

pipe component and a relative uncertainty component, and 

propagating all parameters to component top level. From a user 

point of view, the UncertainPipe looks like the original pipe 

component with the two additional parameters pRUC and TRUC. 

Note that this is done for all flow type components in the model 

(pump, HEX, pipe1, AESA, and pipe2). The figure below shows 

the liquid cooling model updated with the appropriate uncertain 

components, as well as how the uncertainty description 

components are connected with the original components. 

 

Figure 3: RADAR LIQUID COOLING MODEL, UPDATED WITH COMPONENTS INCLUDING AN OUTPUT UNCERTAINTY 
DESCRIPTION. THE TWO NEW PARAMETERS IN THE PARAMETER DIALOG ARE MARKED WITH A RED ELLIPSE. 

Context of Method 
To define the context of the output uncertainty method and to 

clarify the difference compared to alternative methods, Figure 4 

is provided. The figure aims to visualize that uncertainty 

analysis of simulation models may be carried out in several 

different ways, by combining a set of techniques. The figure 

does not claim to show all possible ways of performing an 

uncertainty analysis, but is intended to show alternatives 

closely related to the proposed output uncertainty method. As 

indicated in the figure, one approach to assess simulation model 

uncertainties is to use the nominal (or “original”) model in 

combination with some deterministic or probabilistic technique. 

In the case of sensitivity analysis (SA), simply using upper and 

lower bounds on parameter values would imply a deterministic 

uncertainty analysis, while using probability density functions 

would imply a probabilistic uncertainty analysis. 

 Starting from the top of the figure and following the arrows 

down to the bottom, a set of different tool chains are obtained. 

Naturally, each tool chain has its own benefits and drawbacks 

regarding for example execution time, management effort, 

availability of uncertainty information, and results information 

content. However, assessing the benefits and drawbacks of each 

alternative tool chain is beyond the scope of this paper.
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Figure 4: ALTERNATIVE APPROACHES FOR ASSESSMENT OF SIMULATION MODEL UNCERTAINTY. 

For an example partly exploring the left part of the figure, 

see Persson and Ölvander [24] who compare sampling 

techniques using a simulation model of a dynamic pressure 

regulator as an application example. The following tool chains 

are discussed by Persson and Ölvander, see Figure 4 for 

definitions of abbreviations: 

 

 Nominal Model → Probabilistic Techniques → SA → 

MC 

 Nominal Model → Probabilistic Techniques → SA → 

DOE 

 Nominal Model → Surrogate Model → Probabilistic 

Techniques → SA → MC 

 Nominal Model → Surrogate Model → Probabilistic 

Techniques → SA → DOE 

 

To clarify, the first of the above tool chains refers to using 

the nominal model in a probabilistic analysis of model 

uncertainties by means of an initial sensitivity analysis to locate 

the most significant parameters. These parameters are then 

assigned probability density functions, and Monte Carlo 

sampling is used to find the output distributions. In the second 

of the above tool chains, the Monte Carlo sampling is replaced 

by a more efficient sampling technique, in this case Latin 

Hypercube sampling. The two last of the above tool chains are 

similar to the first two, with the exception that the nominal 

model is replaced by a surrogate model. In these two cases, the 

surrogate model is introduced with the aim of reducing 

execution time. For discussions on the right part of the figure, 

see Carlsson et al. [10] who use the radar liquid cooling model 

to study the following tool chains: 

 

 Nominal Model → Output Uncertainty → 

Deterministic Techniques → OPT 

 Nominal Model → Output Uncertainty → 

Deterministic Techniques → SA 

 Nominal Model → Output Uncertainty → 

Deterministic Techniques → SA → OPT 

 

Common to all three of the above tool chains are that the 

nominal model is extended with component output uncertainty 

descriptions. In the first of the above cases, the output 

uncertainty parameters are used as design variables, and 

optimization is used to find the minimum and maximum values 

for a set of selected system characteristics. In the second, a 

quantitative sensitivity analysis is used to find the minimum 

and maximum system characteristics. The third case is a 

combination using an initial sensitivity analysis to locate the 

most significant parameters. This reduced set of parameters is 
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then used as design variables in the optimization to find the 

minimum and maximum system characteristics. 

In the next section, the output uncertainty method is 

combined with probabilistic techniques as listed below: 

 

 Nominal Model → Output Uncertainty → 

Probabilistic Techniques → MC 

 Nominal Model → Output Uncertainty → 

Probabilistic Techniques → DOE 

 

 In both cases, the nominal model is extended with 

component output uncertainty descriptions. Available 

information from the component validation is utilized to assign 

probability density functions to the output uncertainty 

parameters, and two different sampling techniques (Monte 

Carlo and Latin Hypercube respectively) are then used to find 

the output distributions. 

PROBABILISTIC UNCERTAINTY ASSESSMENT 

Analysis Setup 
To study the applicability of the output uncertainty method in 

combination with probabilistic techniques, the model of the 

liquid cooling system is updated with component output 

uncertainty descriptions according to Figure 3. The system 

characteristics in the five node points of the model are 

considered to be of general interest. Of special interest in this 

analysis are the pressure and temperature levels at the heat load 

input port. The boundary conditions are defined by a static 

flight case and the radar heat load is modeled as a step change. 

The nominal (or “original”) liquid cooling model has 

approximately 100 parameters, but only a subset of 22 

parameters are considered uncertain and thereby of interest for 

the study. These are component parameters affecting pressure 

and temperature levels, such as pressure loss coefficients, pipe 

roughness coefficients, and heat transfer coefficients. Many of 

the parameters that are out of scope for the uncertainty analysis 

are geometry parameters considered to be known. Model inputs 

for specifying load case or “simulation scenario” are also 

treated deterministically. Examples of such model inputs are 

boundary conditions for definition of flight case (e.g. Mach 

number, altitude, g-loads, and atmosphere model) and input 

signals representing cooling air mass flow, cooling air 

temperature, and heat load power. Using the output uncertainty 

method, the number of parameters that require consideration is 

reduced from 22 to 10. This number originates from the fact 

that the model includes five flow type components (pump, 

HEX, pipe1, AESA, and pipe2), with two additional parameters 

each (pRUC, TRUC). To clarify, all original parameters are kept 

with nominal values, but the model has been extended with 10 

new parameters. These 10 parameters are considered uncertain, 

and are assigned probability density functions as described 

below. 

Component validation was performed mainly by 

comparing simulated component characteristics with 

component level rig test data and performance figures obtained 

from datasheets and specifications. Based on the information 

available from the component validation, the 10 output 

uncertainty parameters are assigned symmetric uniform 

distributions with zero mean (an output uncertainty parameter 

value of zero implies nominal component characteristics). In 

this analysis, the uncertainties are mainly due to lack of 

information and are thereby considered epistemic. An 

assessment using different solvers and varying tolerances 

indicates that the numerical error in this type of simulation is 

insignificant compared to other simulation result uncertainties. 

In this analysis, the simulation result uncertainties due to 

numerical approximations are therefore ignored. 

The analysis include a basic comparison of a brute force 

Monte Carlo sampling versus a Latin Hypercube Sampling 

(LHS). The liquid cooling model, which is compiled in 

Dymola, is called from a MATLAB-script managing 

preprocessing, sampling, and post processing. 

Results 
A basic result is that the liquid cooling model extended with 

component uncertainty descriptions simulates and, for the 

verified test cases, behaves as intended. Also, the above 

discussed probabilistic tool chain runs and provides reasonable 

results. 

 As discussed under Analysis Setup in the previous section, 

one main result of extending the nominal model with 

component output uncertainty descriptions is that the number of 

parameters that requires consideration in the uncertainty 

analysis can be reduced from 22 to 10. Moreover, the 

uncertainty quantification of this new reduced set of parameters 

comes to be more intuitive, since information obtained from the 

component V&V activities can be utilized. 

If the study had been carried out in the form of a full 

factorial experiment and each of the 10 input parameters had 

been divided into say 10 discrete numbers, this would require a 

number of 10
10

 simulations. Since each simulation run of a 

simple 500-second flight case takes about 2.1 seconds (on a 

standard PC with an Intel
®
 Core™ i5 CPU), this was not an 

option. Instead, the strategy used is to perform a “sufficiently 

high” number of Monte Carlo samples, and use the results 

obtained for comparisons. To determine what is a “sufficiently 

high” number of samples, one approach is to evaluate the 

convergence of the mean and standard deviation of the 

simulation results. The following figures show the mean of the 

maximum pressure and temperature at the heat load input port, 

for both of the sampling methods used. 
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Figure 5: MEAN VALUE COMPARISON FOR HEAT LOAD INLET PRESSURE AND TEMPERATURE RESPECTIVELY. 

An evaluation of the simulation results by studying mean 

values shows that Monte Carlo sampling requires a 

significantly higher number of samples to converge compared 

to LHS. This result applies to the system characteristics at all 

five node points throughout the model. Naturally, what is 

considered an acceptable convergence limit may differ between 

applications. For the convergence of standard deviations, a less 

clear result is obtained. 

It is also interesting to study how well the distributions 

obtained with LHS correspond to the distributions obtained 

with Monte Carlo sampling. The following figures show the 

distributions of the pressure and temperature at the heat load 

input port, for Monte Carlo sampling with 1.5·10
5
 samples and 

LHS with 250 intervals. It can be noted that the shape of the 

distributions is preserved fairly well even for this low number 

of LHS intervals. 

 

 

Figure 6: OUTPUT DISTRIBUTIONS OF HEAT LOAD INLET PRESSURE AND TEMPERATURE RESPECTIVELY. 

 Probability distributions of system characteristics, like 

those shown in the figure above, constitute useful information 

in the assessment of model top level uncertainties – in 

particular when system level measurement data are scarce. In 

early model validation, it is interesting to evaluate the range of 

the system characteristics with respect to the intended use of 

the model. If the range is deemed too large, a feasible approach 

is to use sensitivity analysis to point out which components 

contribute most to the uncertainty on model top level, and if 

possible try to decrease the uncertainty of those components. 

However, it is important not to confuse variations of system 

characteristics due to flight cases with variations due to 

component uncertainties. A sensitivity analysis using the limits 

of the 10 output uncertainty parameters shows that the pressure 

output uncertainty of the components pump, pipe1, and AESA 

are the three major contributors to the uncertainty on model top 

level. 

 The liquid cooling model is intended to be used separately, 

as a standalone model to facilitate designing and specifying the 

liquid cooling system. Obviously, when specifying for example 

the burst pressure for the radar antenna, it is important to have 

an understanding not only of the nominal pressure levels at the 

antenna inlet port but also of the uncertainties. A useful 

visualization alternative in such cases is the cumulative 

distribution, which provides the probability of a system 

characteristic being less than or equal to a specific value. 
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Figure 7: CUMULATIVE DISTRIBUTIONS OF HEAT LOAD INLET PRESSURE AND TEMPERATURE RESPECTIVELY. 

As another example of intended use, the liquid cooling 

model may be integrated in a simulator environment in which it 

is connected to other simulation models, such as the radar 

model. A simulator may include models of different fidelity, 

and different models typically have different requirements 

regarding input accuracy. Assessing uncertainties at simulator 

level is indeed a difficult task but distributions of system 

characteristics for each model integrated in the simulator would 

be a good starting point. 

DISCUSSION AND CONCLUSIONS 
This paper proposes a method of utilizing information obtained 

from the common practice of component validation to assess 

uncertainties on model top level. Focusing on industrial 

applicability, the method makes use of information normally 

available to engineers developing simulation models of existing 

or not yet existing systems. As this approach enables defining 

uncertainties for a component’s outputs (characteristics) rather 

than its inputs (parameters), this method is here termed output 

uncertainty. 

 The primary use of the output uncertainty method, in 

combination with either deterministic or probabilistic 

techniques, is in the early development phases when system 

level measurement data are scarce. One example is when 

designing a system and specifying its components. Compared 

to specification of system components based on nominal 

simulation results only, having prior knowledge of model top 

level uncertainties would decrease the risk of specification 

errors. Another benefit of the output uncertainty method, which 

is more related to Virtual Testing, is the ability to show which 

model components contribute most to the uncertainty on model 

top level. Such information may be used to better plan physical 

testing, i.e. to concentrate physical testing activities to areas 

where it is needed most. In this context, the output uncertainty 

method to some extent contributes to the aeronautic industry’s 

effort to reduce the cost of physical testing. 

 In the Results section, it is shown that – compared to an 

uncertainty analysis using a model’s original component 

parameters – the method may result in a significant reduction of 

the number of uncertain parameters that require consideration 

in a simulation model. In the industrial application example 

used, the number of uncertain parameters that require 

consideration is reduced by more than 50%. In combination 

with the more intuitive uncertainty quantification of these 

parameters, this implies a substantial improvement in the 

conditions for conducting an assessment of model uncertainties. 

The method has earlier been used in combination with 

deterministic techniques to estimate minimum and maximum 

values of selected system characteristics, see Carlsson et al. 

[10]. 

 If the number of uncertain parameters that require 

consideration can be sufficiently reduced and the simulation 

model and flight cases of interest do not imply too long 

execution time, a probabilistic uncertainty analysis may be 

feasible. On the one hand, compared to the deterministic 

uncertainty analysis, the probabilistic uncertainty analysis is 

more demanding, but on the other hand it gives more in return. 

It is more demanding in terms of both execution time and 

availability and preparation of input data. It gives more in 

return since the resulting system characteristics are expressed 

as probability distributions. This is an obvious difference 

compared to the deterministic uncertainty analysis, which does 

not provide any information on the probabilities of the resulting 

minimum and maximum values. 

For the liquid cooling model in combination with the used 

flight case, the system characteristics obtained with a low 

number of Latin Hypercube samples (250 samples) are in fairly 

good agreement with the system characteristics obtained with a 

high number of Monte Carlo samples (1.5·10
5
 samples). With 

the above benefits and drawbacks in mind, the output 

uncertainty method in combination with efficient sampling 

techniques actually makes a probabilistic uncertainty analysis 

feasible for this type of application. As always, the credibility 

of such an analysis depends on the credibility of the input data. 
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