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Introduction

LHCb experiment:

One of the large LHC experiments

Difference in Matter and Antimatter (CP Violation)

B Physics

Reconstruction

Simulation

HLT Stripping
500 collisions/s ∼ 10 billion events

per year

∼ 1 billion events
per year

11 million
collisions/s
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Introduction

Main Problem: Memory Footprint

Two trends:

Memory per core

Currently: 0.5 bytes/flop

Foreseen: < 0.1 bytes/flop

LHC parameters

Larger events ( 30 kB in 2009 up to 60 kB in 2012)

Complexity of reconstruction
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Introduction

Sharing of datasets:

Detector description
Magnetic fieldmap

Conditions
XML DB elements

The more processes the larger the overall memory reduction:
(n − 1) · SharedMemory
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Scheduling and multicore jobs

Scheduling becomes more complex

One more dimension: Number of processes

Example: Worker node with 8

0

cores available for 1 day

What to do?

Run each job with all cores available → reasonable if good scaling

Mix jobs in an appropriate way
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Scheduling and multicore jobs

How to use multicore CPUs more efficiently:

Reduce gaps in schedule

Limit loss due to non linear speedup

→ Use moldability of jobs to optimize objective function

Main Problem: Run time prediction

What does run time rely on?

Can it be predicted within a given range?

How large is the introduced error?
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Example

Input: Certain number of jobs and cores
Test: All possible combinations

Figure : Used total CPU-time with different mixtures of parallel jobs

Can the optimum be predicted?
How is the result influenced by errors in run time prediction?
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Example - How to find an optimum?

NP hard problem

Iterative approaches:

Assign an additional core to the most worthy job

Job which looses less CPU time due to non linear speedup

Required input:

Speedup

Run time prediction
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Speedup prediction

Downey Speedup Model:

S(n) =



An
A+σ(n−1)/2 1 ≤ n ≤ A

An
σ(A−1/2)+n(1−σ/2) A ≤ n ≤ 2A− 1

A n ≥ 2A− 1

0 5 10 15 20 25 30

5

10

15

20

25

30

Number of processes

S
p

ee
d

u
p

Reconstruction with A=43.0 and σ=0.57

measured
σ = 0
σ = inf
σ = 0.57

0 5 10 15 20 25 30

5

10

15

20

Number of processes

S
p

ee
d

u
p

Simulation with A=21.93 and σ = 0.85

measured
σ = 0
σ = inf
σ = 0.85

0 5 10 15 20 25 30

5

10

15

20

25

Number of processes

S
p

ee
d

u
p

Stripping with A=29.52 and σ = 0.61
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Figure : A = Average parallelism and σ = variance in parallelism
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Run time prediction

Using historical information

Clustering

Grid Site

CPU-type

Eventtype

Production

Workernode

Distribution of datasets: CPU-work per event (CPU-time ·
HEPSPEC-value)

RunTime = nEvt ·MaxLikelihood/PowerOfMachine
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Run time prediction - Stripping
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Figure : Stripping jobs of reprocessing 2011 versus 2012
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Run time prediction - Reconstruction
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Figure : Reconstruction jobs of reprocessing 2011 versus 2012
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Run time prediction - Simulation step
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Figure : Maximum likelihoods of MC11 jobs with different event types and from
different productions
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Back to the example

Run time predicted as:

Workloadmin = MaxLikelihood − x · σ

Workloadmax = MaxLikelihood + x · σ

(a) Confidence interval of 0σ (b) Confidence interval of 2σ

Figure : Decision found by an iterative approach
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Outcome

Difficult to predict the optimum

Theoretical optimum must not be the real one:

Jobs can influence each other (concurrent accesses)

Uncertainties in the prediction (LHC configuration)

Iterative approaches tend get stuck in local optima

Approximation of global optimum already sufficient
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