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Abstract

Background: Robust species delimitations are fundamental for conservation, evolutionary, and systematic studies,

but they can be difficult to estimate, particularly in rapid and recent radiations. The consensus that species

concepts aim to identify evolutionarily distinct lineages is clear, but the criteria used to distinguish evolutionary

lineages differ based on the perceived importance of the various characteristics of evolving populations. We

examined three different species-delimitation criteria (monophyly, absence of genetic intermediates, and

diagnosability) to determine whether currently recognized species of Hawaiian Pritchardia are distinct lineages.

Results: Data from plastid and nuclear genes, microsatellite loci, and morphological characters resulted in various

levels of lineage subdivision that were likely caused by differing evolutionary rates between data sources.

Additionally, taxonomic entities may be confounded because of the effects of incomplete lineage sorting and/or

gene flow. A coalescent species tree was largely congruent with the simultaneous analysis, consistent with the idea

that incomplete lineage sorting did not mislead our results. Furthermore, gene flow among populations of

sympatric lineages likely explains the admixture and lack of resolution between those groups.

Conclusions: Delimiting Hawaiian Pritchardia species remains difficult but the ability to understand the influence of

the evolutionary processes of incomplete lineage sorting and hybridization allow for mechanisms driving species

diversity to be inferred. These processes likely extend to speciation in other Hawaiian angiosperm groups and the

biota in general and must be explicitly accounted for in species delimitation.
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Background
Species are a fundamental unit in biological studies and

their robust delimitation is essential to many fields of

evolutionary biology, particularly systematics, biogeogra-

phy, and conservation biology. Lineage separation and

divergence form a temporal process that may render

populations monophyletic, reproductively isolated, eco-

logically divergent, and/or morphologically distinctive.

These properties serve as operational criteria for sys-

tematists to delimit species and they can occur at differ-

ent times or orders during speciation. De Queiroz [1,2]

proposed that at the root of all modern species concepts

is the general agreement on the fundamental nature of

species: species are separately evolving metapopulation

lineages. The perspective that species are lineages, and

that multiple criteria should be used to identify them,

has been termed the general lineage species concept [1].

Applying this lineage-based framework to species deli-

mitation shifts the focus from a single operational criter-

ion and increases the importance of sampling multiple

lines of evidence. Species delimitation is notoriously dif-

ficult when alternative criteria delimit incongruent spe-

cies boundaries, but this is to be expected in recent

radiations (e.g. [3-5]). Evaluating multiple criteria not

only increases our ability to detect recently separated

lineages, but also can provide stronger support for line-

age separation when they are in agreement [2,6,7].* Correspondence: christinedbacon@gmail.edu
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The difficulty in recognizing species and their limits

(the “species problem” [8]) is particularly compounded

on islands. Because most islands are considerably

younger terrestrial systems than continental areas [9],

there has generally been less time for the completion of

speciation processes. Time is an important factor for

incomplete lineage sorting because the existence of

ancestral polymorphism and differential extinction

thereof can cause bias in phylogenetic inference (e.g.

[10]) and the identification of distinct lineages (e.g.

[11]). Furthermore, the tendency for island colonizers to

quickly fill available habitat often leads to species that

are ecologically isolated but not considerably diverged

genetically, potentially leading to hybridization if mating

barriers are broken down due to secondary contact (e.g.

[12,13]). The evolutionary processes of incomplete line-

age sorting and hybridization cause the “species pro-

blem” to be compounded on young, volcanic islands.

Hawai’i is the longest archipelago on earth and has

developed linearly in a sequential fashion from a volca-

nic hotspot [14]. Recent study of the extant high islands

has shown that the terrestrial biota evolved over the last

29-23 Ma [15] and that they harbor the highest degree

of endemism of any known flora [16,17]. The species

richness of the Hawaiian Islands also contributes to the

Polynesian/Micronesia biodiversity hotspot [18]. Diffi-

culties in delimiting species is not restricted to angios-

perms on the Hawaiian Islands (e.g. [19-24]), but has

also been highlighted in Hylaeus bee [25] and spoon tar-

sus Drosophila [26] studies.

An excellent group within which to address the evalua-

tion of species boundaries based on various delimitation

criteria is the Hawaiian Pritchardia (Arecaceae/Palmae)

radiation. Pritchardia is economically important as a

widely cultivated ornamental palm [27], displays high

endemism, and is a conservation priority for the State of

Hawaii (15 threatened or endangered species [28]).

Pritchardia is one of the most species-rich plant genera

in Hawaii [29] and contains 27 currently recognized, pri-

marily single-island endemic species (Figure 1, [29,30]).

The genus also occurs on small islands in the eastern

Pacific (Cook, Fiji, Niue, Samoa, Solomon, Tonga). Based

on the most recent phylogenetic results Pritchardia is

monophyletic and sister to Copernicia, although defini-

tive generic relationships among Copernicia, Pritchardia,

and Washingtonia were uncertain due to gene-tree

incongruence [31]. Previous work has also shown that

the North American and Caribbean lineage leading to

Pritchardia colonized the eastern Pacific and then dis-

persed to Hawaii between 3.5-8 million years ago (MA;

mean stem-crown ages [31]). Although no explicit spe-

cies concept was applied, Hodel [29] recently revised

Pritchardia using morphological data. Hodel [29] noted

that character states were often difficult to define because

Pritchardia morphology is highly labile based on envir-

onmental conditions (see also [32,33]). Accurate estima-

tion of species limits is important to understanding the

evolution and radiation of Pritchardia species and is

essential to conservation efforts on the Hawaiian Islands.

Species concepts can address both the evolutionary

patterns consistent with evolution along lineages and

the evolutionary processes that are fundamental in

maintaining distinct lineages (e.g. [7]). Under the phylo-

genetic species concept I (PSCI [34]), species are defined

as “the smallest aggregation of populations (sexual) or

lineages (asexual) diagnosable by a unique combination

of character states in comparable individuals” (p. 211

[35]). To apply PSCI, fixed (or mutually exclusive) char-

acter-state differences are used as evidence to infer that

gene flow has ceased between the sampled populations

in population aggregation analysis (PAA [36]). An alter-

nate version of the phylogenetic species concept (PSCII)

requires exclusivity to recognize a species and differs

from PSCI by basing species recognition strictly on

monophyletic groups ([37]; properly exclusive lineages

[38]). A third alternative is the genotypic cluster species

concept (GSC [39]), which defines species as genetic

groups with few or no intermediates between them. The

GSC can be implemented using a variety of clustering

algorithms or assignment tests. Looking across species

delimitation criteria allows for the implementation of

the general-lineage species concept where the greater

the number of criteria satisfied by a putative lineage, the

more likely it is to represent an independent evolution-

ary trajectory [2].

Nihoa
  P. remota

Ni’ihau
  P. remota

Kaua’i
  P. flynnii

  P. hardyi

  P. minor

  P. napaliensis

  P. perlmanii

  P. viscosa

  P. waialealeana

O’ahu
  P. bakeri

  P. kaalae

  P. kahukuensis

  P. lowreyana 

  P. martii

Moloka’i
  P. forbesiana

  P. hillebrandii

  P. lowreyana

  P. munroi

Maui
  P. arecina

  P. forbesiana

  P. glabrata

  P. munroi

  P. woodii

Hawai’i
  P. beccariana

  P. gordonii

  P. lanigera

  P. maideniana

  P. schattaueri

 

Lana’i
  P. glabrata

Niue
Fiji

Solomons

Hawaii

Cook

Samoa

Australia

Pacific

Ocean

P. mitiaroana- Cook

P. pacifica- Niue, Samoa, Solomons

P. thurstonii- Fiji, Tonga

Tonga

Figure 1 The geographic distribution of Hawaiian and eastern

Pacific Pritchardia species according to the most recent

morphological classification [29,30].
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Adaptive radiations are difficult evolutionary scenarios

to evaluate because phylogenetic lineages may be so

recently separated that each species’ alleles have not

coalesced since the time of speciation [40]. Among

recently diverged species, genealogies inferred from

independent genomic regions are likely to disagree due

to the differential sorting of ancestral polymorphism

into daughter lineages such that each inferred gene tree

might differ from the species tree (e.g. [41]). Because

estimation of a coalescent species tree explicitly models

incomplete lineage sorting, its comparison with the

simultaneous-analysis [42,43] allows for the inference of

hybridization from any incongruence between the two

topologies when only orthologous alleles are sampled.

In this study we aim to provide a comprehensive

assessment of species diversity in Pritchardia using a

multifaceted approach and independent sources of plas-

tid, nuclear, and morphological data to assess three spe-

cies-delimitation criteria - monophyly, the absence of

genotypic intermediates, and diagnosability using

mutually exclusive character states. We test whether cur-

rently recognized Pritchardia species merit taxonomic

recognition as distinct evolutionary lineages, particularly

with respect to the accumulation of evidence in favor of

their delimitation. We also take advantage of the power

of the coalescent to infer the species tree to understand

potential conflicts in our results that can be introduced

by incomplete lineage sorting and/or hybridization.

Results
Gene-tree incongruence was detected among five of the

seven loci for the resolution of the sister group of Pritch-

ardia and among two of the seven loci for the sister

group of Hawaiian Pritchardia (Additional file 1). The

analysis 1 (A1) dataset comprised seven genes and five

microsatellite loci for 72 individuals; 134 characters are

variable and 81 are parsimony-informative within Pritch-

ardia (Figure 2). Application of PSCII to the Pritchardia

relationships in our A1 matrix indicated that the three

currently recognized species of eastern Pacific Pritchar-

dia (P. thurstonii, P. pacifica, and P. mitiaroana; Figure

2) are each distinct evolutionary lineages. Despite low

branch support, Hawaiian P. affinis, P. kaalae, and P.

remota were resolved as unique monophyletic groups

and satisfy the PSCII criterion. A monophyletic group of

P. bakeri from Pupukea, O’ahu was also resolved and

likely represents population structure within the Ko’olau

mountain range. A clade that included a subset of P.

glabrata individuals and another clade that included a

subset of P. perlmanii individuals were resolved, consis-

tent with each of these being distinct evolutionary

lineages according to the PSCII criterion.
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Pritchardia thurstonii N [Fiji]
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Figure 2 Analysis 1 (A1) parsimony tree inferred from DNA

sequence and nuclear microsatellite data with which the

phylogenetic species concept II was applied. Currently

recognized species that are supported in this analysis are indicated

with a grey circle; species from the eastern Pacific are in bold font;

and the Fijian species is also indicated.
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The 35 Pritchardia species sampled in the analysis 2

(A2) matrix was reduced to 32 by deleting wildcard taxa

identified from comparisons of the Adams and strict

consensus trees (Figure 3). The reduced A2 matrix has

79 parsimony informative characters. The eastern Pacific

Pritchardia species P. pacifica and P. mitiaroana were

resolved as part of a basal polytomy within Pritchardia,

but there was strong support for monophyly of P.

mitiaroana [100% jackknife support (JK)]. Pritchardia

thurstonii was well supported (81% JK) as the sister spe-

cies to the Hawaiian clade, which was strongly sup-

ported (97% JK) as a monophyletic group. Pritchardia

aylmer-robinsonii and P. remota were strongly sup-

ported as sister species (98% JK), consistent with their

synonymy. Pritchardia affinis and P. maideniana were

well supported (89% JK) as sister taxa, also consistent

with recent synonymy, and P. hillebrandii was weakly

supported (54% JK) as its sister species. Pritchardia

hardyi and P. viscosa were also weakly supported (53%

JK) as sister species.

We explicitly modeled incomplete lineage sorting

through the use of a multispecies coalescent tree for the

sequence data (Figure 4). The topology did not have any

mutually well-supported (≥75% branch support) con-

flicts with the A1 or A2 trees. The congruence between

methods indicates that the trees used for species delimi-

tation (A1) and for inference of inter-specific relation-

ships (A2) is not biased by patterns of lineage sorting.

The *BEAST species tree resolved four moderately sup-

ported groupings of Hawaiian individuals not seen in
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Figure 3 Analysis 2 (A2) parsimony tree inferred from composite taxa constructed from the data in A1 together with isozyme and

morphological data and showing inter-specific relationships where eastern Pacific species are indicated with bold font and the Fijian

species is also indicated.
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the comparable A2 analysis (Figure 3), although this

may be due to inherent differences between parsimony

and Bayesian tree reconstruction and JK support vs. pos-

terior probabilities [44,45]. The recently synonymized P.

affinis into P. maideniana, P. aylmer-robinsonii into P.

remota, and P. limahuliensis into P. napaliensis [29]

were each resolved as monophyletic groups. Although

the posterior probabilities for these cases of synonymy

were modest [between 0.71 and 0.76 posterior probabil-

ity (PP)], these three taxonomic changes based on mor-

phology [29] are consistent with our molecular results.

Significant p-values indicating disequilibrium were

detected in the ‘90’ microsatellite locus for two popula-

tions (P. martii Waianae and P. lanigera 2) and no evi-

dence for stutter, large allele dropout, or null alleles was

detected at any of the loci based on 99% confidence

intervals. Structure analyses resulted in mean LnP(K)

values that appeared to plateau when graphed in Struc-

ture Harvester, making it difficult to identify the most

likely K value for the number of genetic groups present

in the data. Therefore the ∆K method was applied and

the highest probability for the number of groups that

individuals were assigned to (K) was 21 (Mean LnP(K) =

-2802, ∆K = 3.84). Upon visualization of population

assignments from across the Structure iterations, the

presence of genetic intermediates between Pritchardia

species was evident (Figure 5). Levels of admixture were

particularly high in areas of sympatry such as in the

Makaleha and Namolokama ranges in Kaua’i where up

to five species overlap in geographic distribution [P. fly-

nii, P. hardyi, P. perlmanii (albeit to a lesser extent), P.

viscosa, and P. waialealeana] and in the Ko’olau Moun-

tains of O’ahu where three species are sympatric (P.

bakeri, P. kahukuensis, and P. martii). Genetic subdivi-

sion and little admixture between species were detected

among P. affinis, P. aylmer-robinsonii, P. beccariana, P.

forbesiana, P. hardyi, P. lowreyana, P. munroi, and P.

schattaueri and these eight groups meet the necessary

criterion for species delimitation according to the GSC

of high probability of assignment to their respective

genetic groups (> 0.8 membership coefficient). However,

the individual Q matrix of assignment to groups shows

that P. beccariana, P. forbesiana, and P. lowreyana do

not represent distinct evolutionary lineages according to

the GSC because they do not group as unique clusters;

with other individuals in the Q matrix having > 0.8 PP

of falling within those groups. Although the 0.8 cut-off

is arbitrarily defined, the maximum values from the Q

matrices show a discontinuous distribution where indivi-

duals have a membership coefficient of > 0.8, while the

remaining have < 0.5 with few in between. Therefore,

based on our data, only P. affinis, P. aylmer-robinsonii,

P. hardyi, P. munroi, and P. schattaueri meet the neces-

sary and sufficient criteria as distinct evolutionary

lineages without intermediates according to the GSC

(Table 1).

Four distinct lineages were identified within Pritchar-

dia microsatellite data using PAA, 33 in the sequence

data and 12 in morphology, although individuals with

missing data for diagnostic characters were left out of

aggregations to avoid collapsing otherwise distinct

groups (Additional file 2). For example, in the sequence

data seven terminals had missing data for diagnostic

characters and were arbitrarily assigned to a single

group rather than collapsing the otherwise diagnosable

groups. Due to differential sampling only the individuals

sampled for the sequence dataset were used to perform

PAA across the microsatellite and morphological data.

In the three datasets we generated for this study, 43

lineages were indentified that are diagnosable and satisfy

the PSCI. Of the 43 PSCI species, unique combinations

of character states support 18 currently recognized

Pritchardia species (Table 1).

Discussion
The Hawaiian Islands have an unparalleled number of

well-studied examples of adaptive evolution because of

their high ecological heterogeneity, volcanic origin, and

isolation from the nearest continental land mass [46].

Despite the limited time available for diversification in

comparison to ancient landmasses [15,47], the Hawaiian

Islands have the highest degree of endemism of any

known flora [16,32]. Within the Hawaiian Islands, many

Figure 4 Relationships amongst predefined Pritchardia lineages

where resampled posterior species trees as inferred from

*BEAST are in color and posterior probabilities ≥0.5 based on

the single combined tree are overlaid in black. Pritchardia

hillebrandii, which has one of the most restricted distributions in the

genus, is pictured on Huelo Islet (photo and copyright D.R. Hodel).
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angiosperms show evidence for recent and rapid radia-

tions, which frequently make species delimitation diffi-

cult (e.g. [21-26]). We applied three species-delimitation

criteria to identify evolutionary lineages in Hawaiian

Pritchardia. Robust species delimitations are important

for Pritchardia because many of the currently recog-

nized species are of conservation concern and threats

continue to increase due habitat degradation and inva-

sive herbivores and competitors [48].

We applied the criterion of monophyly to test whether

currently recognized Pritchardia species are distinct

evolutionary lineages using PSCII. Maximum parsimony

(MP) analysis of the A1 matrix revealed support for P.

affinis, P. glabrata, P. kaalae, P. perlmanii and P. remota

as clades (Figure 2). Although these are weakly sup-

ported lineages, they satisfy the monophyly requirement

of PSCII [37]. Despite its popularity, monophyly as

inferred from a phylogenetic tree may be a poor indica-

tor of whether evolutionary lineages are distinct in the

presence of gene flow [49,50] or due to the error asso-

ciated with randomly sampling few individuals from a

complex underlying genealogy [51]. Furthermore, decou-

pling hybridization from incomplete lineage sorting on a

phylogeny is difficult in recently diverged species

because both produce the same pattern of few to no

polymorphisms between morphologically identifiable

species [52-54].

The genotypic cluster criterion defines species as “dis-

tinguishable groups of individuals that have few or no

intermediates when in contact” (p. 296 [39]). A Bayesian

assignment test was used to quantify the degree of

admixture (essentially the absence of intermediates)

between species. Although issues can arise with imper-

fect geographical sampling, especially in cases of isola-

tion by distance or environmental gradients (e.g. [55]),

strong signal for the delimitation of P. affinis, P. aylmer-

robinsonii, P. hardyi, P. munroi, and P. schattaueri was

detected with high probability of assignment to unique

populations. A lack of intermediates satisfies this species

criterion and these five groups are distinct evolutionary

lineages according to the GSC. On the other end of the

speciation spectrum, sympatric species appear to have

ongoing gene flow among lineages where the probabil-

ities of membership among some heterogeneous indivi-

duals and populations were shared (Figure 5),

particularly in the mountains of Kaua’i and O’ahu.

Under the criterion of diagnosability, species are iden-

tified as the smallest aggregation of populations diagno-

sable by a unique combination of character states [35].

Using PAA, 43 lineages were identified as diagnosable

and although they conform to PSCI as independent

lineages, we do not advocate their formal recognition as

species. Rather, our goal was to implement the general

lineage species concept using multiple species-delimita-

tion criteria to reach a more stable taxonomic solution

for the Hawaiian Pritchardia. Furthermore, PAA can be

highly sensitive where incomplete sampling of charac-

ters, individuals within populations, or populations can

each lead to incorrect assessment of species [36]. In our

Hawaiian Pritchardia data, the nucleotide sequence
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hardyi, P. munroi, and P. schattaueri as independent lineages. Putative species are labeled below and Hawaiian distributions from the oldest to

the youngest island are indicated above the bar plot.
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matrix had 24% percent missing or ambiguous data,

which was mostly due to a lack of sampling in the

Malate synthase (MS) gene (Additional file 1). The

microsatellite and morphological matrices had only

0.05% missing data. Between one and six individuals

were sampled per population with an average of 1.5

individuals and 1.7 populations per species in the

nucleotide sequences of the A1 matrix. Between one

and 34 individuals were sampled per population with an

average of seven individuals and two populations per

species for the microsatellite matrix. The morphological

matrix comprised character states that were fixed within

currently recognized species and were not typically

scored from the actual specimens used in the sequence-

based and microsatellite analyses. Additionally, ten of

the morphological characters were derived from species

descriptions [29,30] rather than herbarium material.

Certainly no study is immune to these types of weak-

ness, but we recognize that undersampling of individuals

within populations and populations within species have

affected the PAA results in this study by over-splitting

and thus increasing the number of apparent species.

Distinct evolutionary lineages of Pritchardia

As currently defined, Pritchardia species are primarily

recognized by their geographic distributions and a suite

of morphological characters [29,30]. Yet when consider-

ing distinct evolutionary lineages identified in this study,

none of the Pritchardia species satisfy all the species-

delimitation criteria that we applied. Some species-deli-

mitation criteria recognize more lineages than others in

part because criteria are met at different times during

cladogenesis [2]. Furthermore, when considering the

amount of data used in the application of each criterion

to infer species delimitations in Hawaiian Pritchardia

we found the method that uses the most data, PAA, was

the most powerful because it recognized the greatest

number of splits.

Seven Pritchardia lineages satisfy two species-delimita-

tion criteria (P. affinis, P. glabrata, P. hardyi, P. kaalae,

P. munroi, P. remota, and P. schattaueri). The taxo-

nomic status of P. affinis and P. remota are discussed in

the interpretation of the A2 and coalescent species trees

(see below). Pritchardia lanaiensis and P. elliptica were

recently synonymized into P. glabrata [29], yet our

results are inconsistent with this designation because of

the diagnostic grouping of all P. glabrata sensu stricto

individuals in PAA (Additional file 2).

Pritchardia hardyi, P. munroi, and P. schattaueri are

all distinct lineages based on the species-delimitation

criteria of a lack of intermediates and the presence of

diagnostic character states. These results are consistent

with Hodel’s [29] description of morphological autapo-

morphies that define each of these three independent

lineages. Pritchardia kaalae is identified as an indepen-

dent lineage based on the formation of a monophyletic

group and the presence of diagnostic character states.

Despite its distinction as an independent lineage, P. kaa-

lae appears to have significant levels of admixture based

on the Structure results, particularly with Waianae and

central Ko’olau (Waiava) populations of P. martii (Fig-

ure 5). Admixture may be indicative of the Pritchardia-

dominated ancestral forest of the extensive O’ahu plain

that spanned the Waianae and Ko’olau mountains and

facilitated gene flow between ranges [46,56]. The once-

Table 1 Conformance of currently recognized Hawaiian

Pritchardia with three distinct criteria for species

delimitation

Hawaiian
Pritchardia

Monophyletic Genotypic
cluster

Diagnosable

affinis 58% 12; 0.91 No

arecina No 19; 0.71 Yes

aylmer-robinsonii No 18; 0.91 Yes

bakeri Kuliouou No 13; 0.67 No

bakeri Pupukea 62% 17; 0.51 Yes

beccariana No 14; 0.90 No

elliptica Kunoa No 4; 0.48 No

elliptica Lanai City No - No

flynii No 11; 0.40 No

forbesiana No 10; 0.83 Yes

glabrata 76% 20; 0.58 Yes

gordonii - - Yes

hardyi No 7; 0.86 Yes

hillebrandii No 14; 0.59 Yes

kaalae 63% 11; 0.31 Yes

kahukuensis No 21; 0.52 No

lanaiensis No 8; 0.46 No

lanigera No 9; 0.55 No

limahuliensis No 4; 0.78 No

lowreyana No 15; 0.89 Yes

maideniana No - Yes

martii Ewa No 21; 0.44 No

martii Waiawa No 19; 0.54 Yes

martii Waianae No 11; 0.31 No

minor No 4; 0.62 No

munroi No 16; 0.83 Yes

napaliensis No 4; 0.52 No

perlmanii 72% 10; 0.57 No

remota 58% 11; 0.51 Yes

schattaueri No 2; 0.91 Yes

viscosa No 16; 0.40 Yes

waialealeana No 9; 0.50 Yes

woodii - - Yes

Monophyly, as required by the phylogenetic species concept II, is shown as

parsimony jackknife branch support. Genotypic clusters are labeled with their

inferred genetic group and their estimated membership coefficient.

Diagnosability to satisfy the phylogenetic species concept I was determined

by PAA
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contiguous palm forest likely formed an isolation-by-dis-

tance-based cline of gene flow, and extinction of the

intervening lowland populations may have subsequently

formed reproductively isolated lineages.

Eleven Pritchardia lineages satisfy only one species-

delimitation criterion (P. arecina, P. forbesiana, P. gordo-

nii, P. hillebrandii, P. lowreyana, P. maideniana, P. perl-

manii, P. viscosa, P. waialealeana, and P woodii). Some

of these Pritchardia lineages may be recognized as inde-

pendent due to the sampling artifacts described above.

This is particularly a concern with P. gordonii and P.

woodii, which were only sampled for morphology, and

P. hillebrandii, which was not sampled for the sequence

data. Future efforts to tease apart distinct evolutionary

lineages in Pritchardia should focus on these particular

groups, as well as areas of sympatry, with increased

sampling of both individuals within populations and of

populations within species.

Sister-group and inter-specific relationships of Pritchardia

In previous studies the sister group of Pritchardia has

been inferred to be either Copernicia (53% bootstrap,

BS, in maximum representation with parsimony analy-

sis [57]; < 50% JK/BS and 0.89 PP [31]) or Washingto-

nia (52% BS [58]). Our study is consistent with

previous work showing the close relationships among

the three genera (Copernicia, Pritchardia, and

Washingtonia). In the A1 and A2 matrices, Copernicia

and Washingtonia together are inferred to be the sister

group to Pritchardia with strong support (100% JK;

Figures 2 and 3).

We formed composite terminals [59] from the A1

matrix where taxa were combined at a level for which

monophyly is assumed a prior thereby reducing missing

data. Sequence data was augmented with allozyme and

morphological data to construct the A2 matrix for

simultaneous analysis of inter-specific relationships (Fig-

ure 3). The A2 matrix did not incorporate potential

hybrid lineages because of the terminal omission itera-

tions and was compared to the coalescent species tree

to assess effects of incomplete lineage sorting. In the A2

tree, P. thurstonii is sister to the Hawaiian clade, which

is well supported as monophyletic (97% JK) and consis-

tent with Bacon et al. (64% BS/65% JK [31]). Zielger

[60] proposed the sister relationship between Fijian and

Hawaiian Pritchardia based on his hypothesis of an

adaptive shift in fruit size upon colonization of the

Hawaiian Islands. The sister relationship between Fijian

and Hawaiian angiosperms has also been noted in

Cyrtandra [23] and Pittosporum [21,26], but not in taxa

that ultimately descended from American ancestors [61],

such as Pritchardia.

The strongly supported sister relationship P. aylmer-

robinsonii and P. remota (98% JK, Figure 3) is consistent

with their synonymy [29]. Excluding P. remota from

Nihoa and Ni’ihau, the backbone of the Hawaiian clade

is a trichotomy. Weak support was provided for a sister

relationship between P. hardyi and P. viscosa (53% JK),

which had been previously suggested based on their flat

leaf blades, the density of lepidia on the abaxial surface

of the leaf, and their stiff leaf tips [29]. Hodel [29] also

identified a close relationship between P. maideniana

(including P. affinis) and P. hillebrandii based on mor-

phological aspects of the lepidia and inflorescences, for

which we inferred a well-supported P. maideniana

sensu lato (89% JK) that was weakly supported as sister

to P. hillebrandii (54% JK).

The coalescent-species-tree approach has been sug-

gested to be a more accurate estimation of lineage split-

ting than concatenation because it can model the

stochastic forces that drive population divergence

[40,62-64]. Yet missing data and other issues with spe-

cies-tree estimation such as mutational and coalescent

variance can have detrimental effects on modeling

incomplete lineage sorting (e.g. [65]). Another important

consideration with species-tree estimation is that species

are defined a priori and the coalescent model assumes

species are monophyletic. This can be highly unlikely in

recent radiations where ancestral species are still extant.

Despite these issues, the advantage of directly modeling

intraspecies polymorphism and incomplete lineage sort-

ing makes species-tree estimation an important

approach to data exploration in the identification of

evolutionary lineages, especially in rapid species radia-

tions [62].

The coalescent-species-tree topology provided moder-

ate branch support for three clades that are consistent

with recent synonymy [P. aylmer-robinsonii (0.75 PP), P.

maideniana (0.76 PP), and P. napaliensis (0.71 PP); Fig-

ure 4]. The species tree identified P. flynnii and P. waia-

lealeana as sister taxa, which together are sister to P.

minor (Figure 4). Lastly, individuals planted by early

Hawaiian naturalist George Munro in Lana’i City, Lana’i

had been hypothesized to represent the extinct P. ellip-

tica lineage (R.W. Hobdy, pers. comm. 2008), but are

here shown to be consistent with a P. marti source

from O’ahu (0.76 PP; see also Additional file 3) and

separated from P. elliptica individuals collected from

natural populations in Kunoa Valley by eight branches,

one of which is highly supported (1.0 PP; Figure 4). Sec-

ondly, the species tree was used to test for congruence

with the simultaneous-analysis A2 topology. Because the

two distinct methods generally resolved the same well-

supported clades, we can infer that the extrapolation

from the gene trees to the phylogenetic tree is likely

accurate in the simultaneous analysis. This is not to say

that the process of lineage sorting has not occurred, but

rather we have no evidence that it has confounded the
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species-level relationships inferred from the simulta-

neous-analysis tree.

Incomplete lineage sorting, the tempo of radiation, and

hybridization in Pritchardia

The identification of distinct evolutionary lineages is a

necessary precursor to the delimitation of species [2].

Satisfaction of multiple species criteria can ensure accu-

rate, stable, and uncontroversial species delimitations (e.

g., [4,7]). For taxa of conservation concern, accurate

identification of lineages may facilitate management

efforts by focusing on distinct species, rather than

ambiguous groups. Our results, which are based on data

from both the plastid and nuclear genomes, show little

sequence differentiation among most Pritchardia spe-

cies. The lack of differentiation may be due to incom-

plete lineage sorting, the tempo of the Pritchardia

radiation, and/or hybridization between sympatric spe-

cies, and distinguishing between these factors can be

difficult.

Incomplete lineage sorting is one hypothesis for gene-

tree incongruence and a lack of resolution within island

radiations. Differential lineage sorting can bias species

inference and may be further compounded by the esti-

mated long generation time for other tropical unders-

tory palms that have undergone island colonization (e.g.,

68-year mean in the Fijian endemic Balaka microcarpa

[66]). Large ancestral effective population sizes have

been hypothesized from fossil evidence and Pritchardia

has been shown to be the dominant component of pre-

human Quaternary forests on the Hawaiian Islands (2.6

Ma-822 year before present [67,68]). Despite this, coa-

lescence times for Hawaiian Pritchardia species are

likely to be shorter than their continental tribal counter-

parts. Congruence between the simultaneous and spe-

cies-tree analyses together with information on

coalescence times suggests that differential lineage sort-

ing did not drive current diversity patterns within

Pritchardia.

A general trend emerging from this and other phylo-

genetic studies on the Hawaiian flora is the difficulty in

estimating relationships among woody and long-lived

groups [e.g., Cyrtandra [19], lobeliads (e.g. [69]), Meli-

cope [20]; Metrosideros [21,70]; Pittosporum [22,23];

Pyschotria [71]; Santalum [24], Schiedea [5], and the sil-

versword alliance (e.g. [72])]. Another example is Hawai-

ian Pritchardia. Aside from the sympatric species, the

lack of resolution may be caused by the insufficient time

for divergence between lineages. Because of the age of

the oldest extant Hawaiian Island (Nihoa; 7.3 Ma

[14,15,47]) and because the Pritchardia colonization of

the Hawaiian Islands was estimated to occur between

3.5-8 Ma (mean stem to crown-stem ages [31]), an aver-

age of three new species would have had to form every

million years to account for the 24 currently recognized

species in the radiation. Clearly this rapid rate of clado-

genesis has not allowed for much divergence within the

Hawaiian Pritchardia radiation.

We also suggest that hybridization has played a key

role in the diversification of Hawaiian Pritchardia

lineages from geographic regions of sympatry of Kaua’i

(P. flynnii, P. limahuliensis, P. minor, P. napaliensis, P.

waialealeana, and P. viscosa) and O’ahu (P. bakeri, P.

kahukuensis, and P. martii). Removing wildcard term-

inals through the use of Adams consensus trees may be

biased towards deletion of hybrids given that they are

expected to be resolved as basal lineages [73] and our

iterative exclusion process is consistent with the exclu-

sion of hybrids because 66% (22 of the 33) of the

excluded terminals were from areas of high sympatry

such as in the Makaleha and Namolokamain ranges in

Kaua’i and in the Ko’olau Mountains of O’ahu. Exami-

nation of the character conflict present was hampered

by a general lack of resolution in the gene trees (each

nDNA versus the single cpDNA tree; Additional files 4

and 5). Despite this, review of the parsimony-informa-

tive sequence characters revealed six polymorphisms

found on both forward and reverse sequence reads that

suggest introgression in two genes given how different

the alleles are (nuclear MS amongst P. perlmanii indivi-

duals and plastid trnD-trnT amongst P. hardyi indivi-

duals). Although widespread hybridization has been

observed in cultivation [74,75], it has been difficult to

detect in the field due to the high phenotypic plasticity

that characterizes Pritchardia [29,32].

Conclusions
The ability to hybridize is common among island spe-

cies (e.g. [9]) and has likely been a major force in shap-

ing other Hawaiian angiosperm lineages such as

Metrosideros [21,70], Pittosporum [22,23], and silver-

swords (e.g. [76]). Outside of the lack of reproductive

barriers or incompatibility mechanisms, anthropogenic

change on the archipelago may have caused a break-

down of species boundaries. For example, native Hawai-

ians cultivated Pritchardia species in coastal settlements

and although they had a variety of ethnobotanical uses

(reviewed in [77]), the leaves and fibers were primarily

used for thatching. The movement of plants by humans

could have introduced new genotypes into existing

coastal native species and admixed with other cultivated

species. Also, the likely extinction of natural pollinators

and dispersers and the introduction of invasive species

that generally have higher mobility and efficiency [78]

may also facilitate gene flow between populations and

species.

Research at the interface of population genetics and

phylogenetics is greatly expanding, as seen in the
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increasing numbers of publications on coalescent meth-

ods to infer species trees (e.g. [40,62-64]). A limitation

to the current implementations of species-tree methods

is the assumption of lack of gene flow among lineages,

yet in empirical studies this assumption is often violated,

especially at the taxonomic level these methods are

designed for. Although there are methods that model

gene flow as well as the coalescent (i.e., the isolation-

with-migration model of Hey & Nielsen [79] or the hier-

archical approximate Bayesian computation approach of

Huang et al. [80]), these approaches do not provide an

estimate of a species tree under a model of divergence

with gene flow and may be less powerful than species-

tree estimates because they require such strong priors

(e.g., on migration rates [62]). To best address species

delimitation in rapid radiations, especially in island

groups like Pritchardia palms, methods that allow for

simultaneously capturing vertical and horizontal inheri-

tance of genetic information are needed, but are not yet

available ([81] but see [82]).

Methods
Phylogenetic analyses

Total genomic DNA was extracted from silica-gel dried

leaves following Alexander et al. [83]. Sequences for

three plastid (matK, ndhF, and trnD-trnT) and four

nuclear loci (CISPs 4 and 5, MS, and RPB2) were gener-

ated ([84-88] respectively). Amplified products were

purified using Qiagen PCR purification kits and

sequenced by the Cancer Research Center DNA Sequen-

cing Facility at the University of Chicago or at Macro-

gen. All 502 new sequences generated in this study have

been deposited in GenBank under accession numbers

JF904936 to JF905438 (Appendix A).

Two phylogenetic analyses were conducted within

Pritchardia. A1 included sequence data generated from

seven loci and microsatellite data coded as multistate

characters with heterozygous individuals coded as subset

polymorphisms. Sampling for A1 included all previously

recognized Pritchardia species except for P. gordonii

and P. woodii, which are both recently described species

with highly restricted distributions and are considered

endangered [29]. Based on a recent tribal-level analysis

[31] two species of each of the most closely related gen-

era (Copernicia and Washingtonia) and three other Cor-

yphoideae (Cryosophila, Phoenix, and Sabal) were

sampled as outgroups. The initial simultaneous analysis

included 105 terminals.

Preliminary nucleotide alignments were obtained inde-

pendently for each of the seven loci using default para-

meters in MUSCLE v3.6 [89] and manual adjustments

were performed in MacClade v4.03 [90] following Sim-

mons [91]. Each parsimony-informative character was

confirmed by rechecking chromatograms in Aligner

(CodonCode Corp., MA). MP tree searches were con-

ducted using 1,000 random addition tree-bisection-

reconnection (TBR) searches in PAUP* v4.0b10 [92]

with a maximum of ten trees held per replicate. MP JK

analyses [93] were conducted using PAUP* and 1,000

replicates were performed with 100 random addition

TBR searches per replicate. Maximum likelihood (ML

[94]) analyses of nucleotide and microsatellite characters

from each of the molecular data matrices were per-

formed. jModeltest v0.1.1 [95] was used to select the

best-fit likelihood model for each data matrix using the

Akaike Information Criterion [96] without considering

invariant-site models following Yang [97]. Searches for

optimal ML trees and 1,000 BS replicates [98] in the

CIPRES Portal v2.2 used the RAxML-HPC2 algorithm

[99,100]. Adams consensus trees [101] from parsimony

analyses were examined using the A1 dataset to identify

wildcard terminals [102] of uncertain phylogenetic posi-

tion that were then omitted. Iterations were conducted

until a trade-off was reached between sacrificing taxono-

mically important terminals and gaining resolution in

the strict consensus tree. A total of 72 of the original

105 terminals were included in the final A1 matrix.

A2 incorporated the A1, morphological, and isozyme

data and was reduced to 35 composite terminals repre-

senting all putative Pritchardia species. Nine discrete

morphological characters of flower and fruit morphology

were measured from specimens at BISH, NY, PTBG,

and US and ten morphological characters were derived

from species descriptions ([29,30] Table 2). To include

lineages that are not currently recognized as species

[29,30] morphological character states were extrapolated

from recognized species to now synonymous entities.

We did not incorporate the preliminary morphological

matrix from Gemmill [77] because of scoring inconsis-

tencies. A matrix of seven variable isozymes was derived

from Gemmill [77]. Three terminals (Pritchardia gordo-

nii, cultivated ‘elliptica’ from Lana’i City, Lana’i, and P.

minor) were omitted from the A2 matrix following the

iterative procedure outlined above. The two simulta-

neous analyses (A1 and A2; TreeBase study accession

11604) were performed and the trees subsequently

examined to determine the degree of support for mono-

phyletic species (A1; PSCII) and for inferring robust

inter-specific relationships due to decreased missing

data and the use of all available characters (A2).

Coalescent-species-tree analysis

The coalescent species tree was inferred using *BEAST

in BEAST v1.6.1 [62,103]. *BEAST infers coalescent spe-

cies trees from multilocus data and has been shown to

have advantages in computational speed and accuracy

over similar methods when applied to rapid radiations

[62] Coalescent-species-tree methods estimate each gene
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genealogy independently and assume that conflict

between gene trees is due exclusively to incomplete line-

age sorting. The sequence data from the A1 matrix was

analyzed to avoid the inclusion of any potential hybrids.

Each of the seven sequenced loci was unlinked to allow

for variation in substitution models and the clock mod-

els for the chloroplast loci were linked to account for its

presumed single hierarchical history. The analysis was

run using a Yule species tree prior and the GTR+Γ

model of nucleotide substitution with four rate cate-

gories. The Markov chains were run for 50 million gen-

erations and repeated 10 times to test for Markov chain

Monte Carlo chain convergence and to ensure effective

sample sizes (ESS) exceeded 200. Burn-in was deter-

mined in Tracer v1.5 based on ESS and parameter tra-

jectories and was then removed in LogCombiner v1.6.1.

Tree files were summarized in biopy v0.1.2 [104], the

posterior was resampled, and the variance among 100

random resampled species trees was visualized in Densi-

Tree [105]. We also estimated a single coalescent spe-

cies tree in FigTree v1.3.1 by combining all tree files in

LogCombiner v.1.6.1 [102]. We compared the coalescent

species tree with the simultaneous analysis to determine

whether accounting for incomplete lineage sorting

resulted in a different topology. The coalescent species

tree and the A1 and A2 topologies also allowed for test-

ing of recent synonymy of species ([29]; Pritchardia affi-

nis into P. maideniana, P. aylmer-robinsonii into P.

remota, P. elliptica and P. lanaiensis into P. glabrata,

and P. limahuliensis into P. napaliensis).

Population structure analyses

To test for the presence of intermediates between

Hawaiian Pritchardia species, five microsatellite markers

[106] were amplified in 197 individuals representing all

28 of the previously recognized species. PeakScanner

software was used for allele calling and FlexiBin v2 was

used to bin alleles [107]. GenoDive v20b19 [108] was

used to test for Hardy-Weinberg equilibrium within

populations with the default settings. Using the default

settings, Microchecker v.2.2.3 [109] was used to check

for stutter, large-allele dropout, or evidence for null

alleles based on a 99% confidence interval. A Bayesian

procedure (Structure v2.3.2 [110]) was used that mini-

mizes the deviation from Hardy-Weinberg and linkage

equilibrium within each putative cluster by the fractional

assignment of individual genomes to K populations. The

admixture model was implemented with correlated allele

frequencies and without the use of a priori information

from populations of origin. Simulations included 10

iterations for each K value from K = 1 to 30, with a

100,000-generation burn-in and 100,000 chain length.

The most probable number of genetically homogeneous

groups (K) was determined by the ∆K statistical

Table 2 List of the Pritchardia morphological characters

that were included in analysis 2

Character Character State

1. Hastula shape 0 = rounded

1 = triangular, apiculate

2. Degree of panicle branching 0 = two orders

1 = three orders

3. Inflorescence length 0 = shorter than petioles

1 = equal

2 = longer than petioles

4. Petiole fiber density 0 = scare to moderate

1 = abundant

5. Abaxial leaf blade folds 0 = glaucous

1 = cottony, mealy indumentum

6. Abaxial leaf blade cover 0 = green

1 = silvery-gray

7. Leaf blade shape 0 = nearly circular

1 = diamond

8. Leaf blade with waxy, glaucous
bloom

0 = absent

1 = present

9. Leaf blade surface 0 = flat

1 = nearly flat, undulate

10. Leaf tips 0 = drooping

1 = stiff

11. Lepidia density 0 = absent

1 = incompletely covered

2 = completely covered

12. Rachillae tomentum 0 = glabrous

1 = velutinous

2 = floccose, lanate

13. Rachillae viscosity 0 = absent

1 = present

14. Style - ovary ratio 0 = equal

1 = style longer

2 = style shorter

15. Outer calyx venation 0 = absent

1 = conspicuous

2 = present near opening with
finer lines

16. Calyx indumentum 0 = glabrous

1 = tomentose

2 = viscous

17. Fruit ridges 0 = absent

1 = present

18. Fruit shape 0 = globose

1 = ellipsoid

2 = ovoid

3 = obovoid

4 = oblate

19. Fruit length 0 = < 3 cm

1 = > 3 cm

Characters states were identified from herbarium specimens at BISH, NY,

PTBG, and US and derived from the most recent review of the genus [30].
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procedure [111] as implemented in Structure Harvester

v0.6 [112]. Multimodality across the 10 replicate itera-

tions of the Structure analysis was addressed by permut-

ing 1,000 times using the greedy algorithm and

averaging across membership coefficients in CLUMPP

[113]; the results were graphically displayed using Dis-

truct v1.1 [114].

Population aggregation analysis

Mutually exclusive character states were used to test if

gene flow had ceased between the sampled populations

[35]. To examine whether previously recognized species

were diagnosable and satisfy the PSCI, character-state

differences were identified using PAA. As more popula-

tions are incorporated into PAA, each is compared to

all species previously delimited. Each time a species pro-

file is aggregated due to the inclusion of another popula-

tion, the new profile is compared to all other species

profiles to check if further aggregation is needed. We

used PAA for the microsatellite, morphological, and

sequence data independently of each other (because of

differences in which terminals were sampled), and then

performed PAA across all three data types to detect

diagnosable groups. Missing and ambiguous data were

treated as polymorphic for all states present, but these

entries were not used to collapse otherwise diagnosable

groups in PAA (J. I. Davis, pers. comm. 2011).

Appendix A
List of taxa sampled with taxonomic authorities, voucher

information, and GenBank accession numbers for new

sequences generated for this study. Fairchild Tropical

Botanical Garden and National Tropical Botanic Garden

are abbreviated as FTBG and NTBG respectively.

Pritchardia affinis Becc.- C. Gemmil 83 (PTBG),

FTBG DNA Bank 1850, Hawai’i; CISP4 JF904936, CISP5

JF905062, matK JF905351, ndhF JF905121, RPB2

JF905197, trnDT JF905269. P. affinis Becc.- S. Perlman

13745 (PTBG), FTBG DNA Bank 1851, Hawai’i; CISP4

JF904937, CISP5 JF905023, matK JF905352, ndhF

JF905122, RPB2 JF905198, trnDT JF905270. P. arecina

Becc.- K. Wood 7991 (PTBG), FTBG DNA Bank 1853,

Maui; CISP4 JF904938, matK JF905353, ndhF JF905123,

RPB2 JF905199, trnDT JF905271. P. arecina Becc.-

Baker 1183 (K), Royal Botanic Gardens, Kew DNA Bank

15960, Maui; CISP4 JF904939, CISP5 JF905024, matK

JF905354, ndhF JF905124, RPB2 JF905200, trnDT

JF905272. P. aylmer-robinsonii H.St.John- FTBG Live

Collection 85184C, FTBG DNA Bank 14, Ni’ihau; CISP4

JF904940, CISP5 JF905025, matK JF905355, ndhF

JF905125, RPB2 JF905201, trnDT JF905273. P. aylmer-

robinsonii H.St.John-NTBG Live Collection, Ni’ihau;

CISP4 JF904941, CISP5 JF905026, matK JF905356, ndhF

JF905126, RPB2 JF905202, trnDT JF905274. P. bakeri

Hodel-Bacon Pupukea1 SN, O’ahu; CISP4 JF904942,

RPB2 JF905203. P. bakeri Hodel-Bacon Pupukea2 SN,

O’ahu; CISP4 JF904943, CISP5 JF905027, RPB2

JF905204. P. bakeri Hodel-Bacon Pupukea3 SN, O’ahu;

CISP4 JF904944. P. bakeri Hodel-Bacon Pupukea4 SN,

O’ahu; CISP4 JF904945. P. bakeri Hodel-Bacon

Kuliouou3 SN, O’ahu; CISP4 JF904989, matK JF905402,

MS JF905094, ndhF JF905164, trnDT JF905316. P.

bakeri Hodel-Bacon Kuliouou5 SN, O’ahu; CISP4

JF904990, matK JF905403, MS JF905095, ndhF

JF905165, trnDT JF905317. P. bakeri Hodel-Bacon

Kuliouou8 SN, O’ahu; CISP4 JF904991, matK JF905404,

MS JF905096, ndhF JF905166, RPB2 JF905244, trnDT

JF905318. P. beccariana Rock- J. Horn 4953 (PTBG),

FTBG DNA Bank 1863, Hawai’i; CISP4 JF904946, CISP5

JF905063, matK JF905357, ndhF JF905127, RPB2

JF905205, trnDT JF905275. P. beccariana Rock-Wood

8911 (PTBG), Hawai’i; CISP4 JF904947, CISP5

JF905028, matK JF905358, RPB2 JF905206, trnDT

JF905276. P. elliptica Rock & Caum-cultivated 320

Mahana St. Lana’i City, Lana’i; CISP4 JF904948, matK

JF905361. P. elliptica Rock & Caum-cultivated 452

Lana’i St. Lana’i City, Lana’i; CISP4 JF904949, CISP5

JF905029, matK JF905362, ndhF JF905128, RPB2

JF905207, trnDT JF905277. P. elliptica Rock & Caum-

cultivated 712 Puulani St. Lana’i City, Lana’i; CISP4

JF904950. P. elliptica Rock & Caum-Oppenheimer SN1,

Kunoa Valley, Lana’i; CISP4 JF904951, CISP5 JF905030,

matK JF905363, ndhF JF905129, RPB2 JF905208, trnDT

JF905278. P. elliptica Rock & Caum-Oppenheimer SN6,

Kunoa Valley, Lana’i; CISP5 JF905031, matK JF905359,

ndhF JF905130, trnDT JF905279. P. elliptica Rock &

Caum-Oppenheimer SN7, Kunoa Valley, Lana’i; CISP4

JF904952, CISP5 JF905032, matK JF905364, ndhF

JF905131, trnDT JF905280. P. elliptica Rock & Caum-

Oppenheimer SN8, Kunoa Valley, Lana’i; CISP4

JF904953, CISP5 JF905033, matK JF905360, RPB2

JF905209. P. flynnii Lorence & Gemmill-Wood 12718B

(PTBG), Kaua’i; CISP4 JF904954, matK JF905366, MS

JF905087, RPB2 JF905210. P. flynnii Lorence & Gem-

mill-Wood 12718C (PTBG), Kaua’i; CISP4 JF904955,

matK JF905365. P. flynnii Lorence & Gemmill-NTBG

Live Collection, Kaua’i; CISP4 JF904956, CISP5

JF905034, matK JF905367, ndhF JF905132, RPB2

JF905211, trnDT JF905281. P. flynnii Lorence & Gem-

mill-Tangalin 1476 (PTBG), Kaua’i; CISP4 JF904957,

matK JF905368, MS JF905097, RPB2 JF905212, trnDT

JF905282. P. flynnii Lorence & Gemmill-Tangalin 1478

(PTBG), Kaua’i; CISP4 JF904958, CISP5 JF905035, matK

JF905369, ndhF JF905133, RPB2 JF905213, trnDT

JF905283. P. flynnii Lorence & Gemmill-Tangalin 1480

(PTBG), Kaua’i; trnDT JF905284. P. forbesiana Rock- J.

Horn 4948 (FTBG), FTBG DNA Bank 1798, Maui; matK

JF905370, ndhF JF905134, RPB2 JF905214, trnDT
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JF905285. P. forbesiana Rock-NTBG Live Collection,

Maui; CISP4 JF904959, CISP5 JF905036, matK

JF905371, ndhF JF905135, RPB2 JF905215, trnDT

JF905286. P. glabrata Becc. & Rock-FTBG DNA Bank

824, Maui; CISP4 JF904960, CISP5 JF905037, matK

JF905372, ndhF JF905136, RPB2 JF905216. P. glabrata

Becc. & Rock-Oppenheimer SN1, Maui; CISP4

JF904961, CISP5 JF905038, matK JF905373, RPB2

JF905217, trnDT JF905287. P. glabrata Becc. & Rock-

Oppenheimer SN4, Maui; CISP4 JF904962, CISP5

JF905039, matK JF905374, MS JF905098, ndhF

JF905137, RPB2 JF905218, trnDT JF905288. P. glabrata

Becc. & Rock-Oppenheimer SN5, Maui; CISP4

JF904963, CISP5 JF905040, matK JF905375, MS

JF905099, ndhF JF905138, RPB2 JF905219, trnDT

JF905289. P glabrata Becc. & Rock-Oppenheimer SN6,

Maui; CISP4 JF904964, matK JF905376, ndhF JF905139,

RPB2 JF905220, trnDT JF905290. P. hardyi Rock-

Trauernicht 428 (PTBG), Kaua’i; CISP4 JF904965, matK

JF905377, RPB2 JF905221, trnDT JF905291. P. hardyi

Rock-Trauernicht 429 (PTBG), Kaua’i; matK JF905378,

ndhF JF905140. P. hardyi Rock-Trauernicht 430

(PTBG), Kaua’i; CISP4 JF904966, matK JF905379, ndhF

JF905141. P. hardyi Rock- J. Horn 4938 (PTBG), Kaua’i,

FTBG DNA Bank 1848; CISP4 JF904967, CISP5

JF905064, matK JF905380, MS JF905088, ndhF

JF905142, RPB2 JF905222, trnDT JF905292. P. hardyi

Rock-J. Horn 4951 (PTBG), FTBG DNA Bank 1858,

Kaua’i; CISP4 JF904968, CISP5 JF905065, matK

JF905381, MS JF905089, ndhF JF905143, RPB2

JF905223, trnDT JF905293. P. hardyi Rock-Tangalin

1705 (PTBG), Kaua’i; trnDT JF905294. P. hillebrandii

Becc.-FTBG Live Collection 2000301A, FTBG DNA

Bank 646, Moloka’i; CISP4 JF904969, CISP5 JF905041,

matK JF905382, ndhF JF905144, RPB2 JF905224, trnDT

JF905295. P. hillebrandii Becc.-S. Zona 1006 (FTG),

FTBG DNA Bank 834, Moloka’i; CISP4 JF904970, CISP5

JF905042, matK JF905383, ndhF JF905145, RPB2

JF905225, trnDT JF905296. P. kaalae Rock-S. Zona

1008 (FTG), FTBG DNA Bank 835, O’ahu; CISP4

JF904973, CISP5 JF905043, matK JF905386, ndhF

JF905148, RPB2 JF905228, trnDT JF905299. P. kaalae

Rock-K. Wood 300 (PTBG), FTBG DNA Bank 1833,

O’ahu; CISP4 JF904971, CISP5 JF905066, matK

JF905384, ndhF JF905146, RPB2 JF905226, trnDT

JF905297. P. kaalae Rock-S. Perlman 16710 (PTBG),

FTBG DNA Bank 1847, O’ahu; CISP4 JF904972, CISP5

JF905067, matK JF905385, ndhF JF905147, RPB2

JF905227, trnDT JF905298. P. kahukuensis Caum-

Kawelo SN (BISH), O’ahu; CISP4 JF904974, CISP5

JF905044, matK JF905387, ndhF JF905149, RPB2

JF905229, trnDT JF905300. P. lanaiensis Becc. & Rock-

Bacon 88, Lana’i; CISP4 JF904975, CISP5 JF905045,

matK JF905388, ndhF JF905150, RPB2 JF905230, trnDT

JF905301. P. lanaiensis Becc. & Rock-Bacon 126,

Lana’i; CISP4 JF904976, CISP5 JF905068, matK

JF905389, ndhF JF905151, RPB2 JF905231, trnDT

JF905302. P. lanaiensis Becc. & Rock-S. Perlman 16385

(PTBG), FTBG DNA Bank 1845, Lana’i; CISP4

JF904977, CISP5 JF905069, matK JF905390, MS

JF905100, ndhF JF905152, RPB2 JF905232, trnDT

JF905303. P. lanaiensis Becc. & Rock-Perlman 19968

(PTBG), Lana’i; CISP4 JF904978, CISP5 JF905046, matK

JF905391, ndhF JF905153, RPB2 JF905233, trnDT

JF905304. P. lanigera Becc.-K. Wood 7611 (PTBG),

FTBG DNA Bank 1846, Hawai’i; CISP4 JF904979, CISP5

JF905070, matK JF905392, MS JF905101, ndhF

JF905154, RPB2 JF905234, trnDT JF905305. P. limahu-

liensis H.St.John- J. Horn 4947 (PTBG), FTBG DNA

Bank 1831, Kaua’i; CISP4 JF904980, matK JF905393, MS

JF905102, ndhF JF905155, RPB2 JF905236, trnDT

JF905307. P. limahuliensis H.St.John-NTBG Live Col-

lection, Kaua’i; CISP4 JF904981, CISP5 JF905071, matK

JF905394, MS JF905103, ndhF JF905156, RPB2

JF905235, trnDT JF905308. P. lowreyana Rock ex

Becc.- J. Horn 4943 (PTBG), FTBG DNA Bank 1794,

Moloka’i; CISP4 JF904982, CISP5 JF905072, matK

JF905395, ndhF JF905157, RPB2 JF905237, trnDT

JF905309. P. lowreyana Rock ex Becc.-Wood 9236

(PTBG), Moloka’i; CISP4 JF904983, CISP5 JF905047,

matK JF905396, ndhF JF905158, RPB2 JF905238, trnDT

JF905310. P. martii (Gaudich.) H.Wendl.- Bakutis

Waianae SN1, O’ahu; CISP4 JF904984, CISP5 JF905048,

matK JF905397, ndhF JF905159, RPB2 JF905239, trnDT

JF905311. P. martii (Gaudich.) H.Wendl.- Bakutis

Waianae SN2, O’ahu; CISP4 JF904985, CISP5 JF905049,

matK JF905398, MS JF905090, ndhF JF905160, RPB2

JF905240, trnDT JF905312. P. martii (Gaudich.) H.

Wendl.- Bacon Waiava1, O’ahu; CISP4 JF904988, CISP5

JF905052, matK JF905401, ndhF JF905163, RPB2

JF905243, trnDT JF905315. P. martii (Gaudich.) H.

Wendl.- Bacon Waiava7, O’ahu; CISP4 JF904986, CISP5

JF905050, matK JF905399, MS JF905104, ndhF

JF905161, RPB2 JF905241, trnDT JF905313. P. martii

(Gaudich.) H.Wendl.- Bacon Waiava15, O’ahu; CISP4

JF904987, CISP5 JF905051, matK JF905400, ndhF

JF905162, RPB2 JF905242, trnDT JF905314. P. martii

(Gaudich.) H.Wendl.- J. Horn 4937 (PTBG), FTBG DNA

Bank 1855, O’ahu; CISP4 JF904992, CISP5 JF905073,

matK JF905405, ndhF JF905167, RPB2 JF905245, trnDT

JF905319. P. martii (Gaudich.) H.Wendl.- J. Horn 4954

(PTBG), FTBG DNA Bank 1859, O’ahu; CISP4

JF904993, CISP5 JF905074, matK JF905406, ndhF

JF905168, RPB2 JF905246, trnDT JF905320. P. martii

(Gaudich.) H.Wendl.-NTBG live collection, O’ahu;

CISP4 JF904994, CISP5 JF905053, matK JF905406, ndhF

JF905169. P. minor Becc.-Trauernicht 432 (PTBG),

Kaua’i; matK JF905408. P. minor Becc.-Trauernicht 434
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(PTBG), Kaua’i; CISP4 JF904995, matK JF905409, ndhF

JF905170. P. minor Becc.-Trauernicht 435 (PTBG),

Kaua’i; CISP4 JF904996, matK JF905410, MS JF905105,

ndhF JF905171, trnDT JF905321. P. minor Becc.-J. Horn

4946 (PTBG), FTBG DNA Bank 1797, Kaua’i; CISP4

JF904997, CISP5 JF905075, matK JF905411, ndhF

JF905172, RPB2 JF905247, trnDT JF905322. P. minor

Becc.- S. Zona 1033 (FTG), FTBG DNA Bank 845,

Kaua’i; CISP4 JF904998, CISP5 JF905054, matK

JF905412, ndhF JF905173, RPB2 JF905248, trnDT

JF905323. P. minor Becc.- -Tangalin 1708 (PTBG),

Kaua’i; trnDT JF905324. P. mitiaroana J.Drans. & Y.

Ehrh.- S. Perlman 19346 (PTBG), FTBG DNA Bank

1857, Cook Islands; CISP4 JF904999, CISP5 JF905076,

matK JF905413, MS JF905091, ndhF JF905174, RPB2

JF905249, trnDT JF905325. P. mitiaroana J.Drans. & Y.

Ehrh.-Perlman 19346 (PTBG), Cook Islands; CISP4

JF905000. P. cf. mitiaroana J.Drans. & Y.Ehrh.-Meyer

SN ‘pericularum’, French Polynesia; CISP4 JF905006,

CISP5 JF905057, matK JF905419, MS JF905108, ndhF

JF905181, RPB2 JF905254, trnDT JF905332. P. cf.

mitiaroana J.Drans. & Y.Ehrh.-Meyer SN ‘vuylstekeana’,

French Polynesia; CISP4 JF905019, CISP5 JF905085,

matK JF905434, MS JF905118, ndhF JF905193, RPB2

JF905265, trnDT JF905346. P. munroi Rock- J. Horn

4942 (PTBG), FTBG DNA Bank 1832, Moloka’i; CISP4

JF905001, CISP5 JF905077, matK JF905414, ndhF

JF905175, RPB2 JF905250, trnDT JF905326. P. munroi

Rock- S. Zona 1036 (FTG), FTBG DNA Bank 841,

Moloka’i; CISP4 JF905002, CISP5 JF905055, matK

JF905415, ndhF JF905176, RPB2 JF905251, trnDT

JF905327. P. napaliensis H.St.John- S. Perlman 11297

(PTBG), FTBG DNA Bank 1860, Kaua’i; CISP4

JF905003, CISP5 JF905078, matK JF905416, MS

JF905106, ndhF JF905177, RPB2 JF905268, trnDT

JF905328. P. napaliensis H.St.John-Wood 9087 (PTBG),

Kaua’i; CISP4 JF905004, CISP5 JF905056, matK

JF905417, MS JF905092, ndhF JF905178, trnDT

JF905329. P. pacifica Seem. & H.Wendl.- FTBG Live

Collection 93691D, FTBG DNA Bank 18, Fiji; CISP4

JF905005, CISP5 JF905079, ndhF JF905179, RPB2

JF905252, trnDT JF905330. P. pacifica Seem. & H.

Wendl.-J. Horn 4952 (PTBG), FTBG DNA Bank 1861,

Fiji; CISP5 JF905080, matK JF905418, MS JF905107,

ndhF JF905180, RPB2 JF905253, trnDT JF905331. P.

perlmanii Gemmill-Wood 7331 (PTBG), Kaua’i; CISP4

JF905007, matK JF905421, MS JF905109, ndhF

JF905183, trnDT JF905333. P. perlmanii Gemmill-

Wood 8091 (PTBG), Kaua’i; CISP4 JF905008, CISP5

JF905058, matK JF905422, MS JF905110, ndhF

JF905184, RPB2 JF905255, trnDT JF905334. P. perlma-

nii Gemmill-NTBG Live Collection, Kaua’i; matK

JF905420, MS JF905111, ndhF JF905182, trnDT

JF905335. P. remota (Kuntze) Becc.- J. Horn 4955

(PTBG), FTBG DNA Bank 1844, Nihoa; CISP4

JF905009, CISP5 JF905081, matK JF905423, ndhF

JF905185, RPB2 JF905256, trnDT JF905336. P. remota

(Kuntze) Becc.-J. Horn 4936 (PTBG), FTBG DNA Bank

1865, Nihoa; CISP4 JF905010, CISP5 JF905082, matK

JF905424, ndhF JF905186, RPB2 JF905257, trnDT

JF905337. P. remota (Kuntze) Becc.-Montgomery Bota-

nical Center Live Collection 29, Nihoa; CISP4 JF905011,

matK JF905425, MS JF905112, RPB2 JF905258, trnDT

JF905338. P. schattaueri Hodel-J. Horn 4939 (PTBG),

FTBG DNA Bank 1843, Hawai’i; CISP4 JF905012, CISP5

JF905083, matK JF905426, MS JF905113, ndhF

JF905187, RPB2 JF905259, trnDT JF905339. P. schat-

taueri Hodel- S. Zona 1001 (FTG), FTBG DNA Bank

839, Hawai’i; CISP4 JF905013, CISP5 JF905059, matK

JF905427, MS JF905114, ndhF JF905188, RPB2

JF905260, trnDT JF905340. P. thurstonii F.Muell. &

Drude-NTBG Live Collection, Fiji; CISP4 JF905014,

CISP5 JF905060, matK JF905428, MS JF905115, ndhF

JF905189, RPB2 JF905261, trnDT JF905341. P. viscosa

Rock- J. Horn 4943 (PTBG), FTBG DNA Bank 1795,

Kaua’i; CISP4 JF905015, CISP5 JF905084, matK

JF905429, ndhF JF905190, RPB2 JF905262, trnDT

JF905342. matK JF905430, ndhF JF905191. P. viscosa

Rock-Tangalin 1693 (PTBG), Kaua’i; CISP4 JF905016,

matK JF905431, MS JF905116, RPB2 JF905263, trnDT

JF905343. P. viscosa Rock-Tangalin 1694 (PTBG),

Kaua’i; CISP4 JF905017, matK JF905432, MS JF905117,

RPB2 JF905264, trnDT JF905344. P. viscosa Rock-Perl-

man 16679A (PTBG), Kaua’i; CISP4 JF905018, matK

JF905433, MS JF905093, ndhF JF905192, trnDT

JF905345. P. waialealeana Read-Trauernicht 423

(PTBG), Kaua’i; matK JF905436, trnDT JF905347. P.

waialealeana Read-Lorence 8446 (PTBG), Kaua’i;

CISP4 JF905021, matK JF905435, ndhF JF905194, trnDT

JF905348. P. waialealeana Read- J. Horn 4950 (PTBG),

FTBG DNA Bank 1863, Kaua’i; CISP4 JF905020, CISP5

JF905086, matK JF905437, MS JF905119, ndhF

JF905195, RPB2 JF905266, trnDT JF905349. P. waialea-

leana Read-NTBG Live Collection, Kaua’i; CISP4

JF905022, CISP5 JF905061, matK JF905438, MS

JF905120, ndhF JF905196, RPB2 JF905267, trnDT

JF905350.

Appendix B

Additional material

Additional file 1: Figure S1. Parsimony strict consensus trees of all the

sequence data summarized to show only the inter-generic relationships

and Pritchardia from different island chains. Parsimony jackknife support

values above, and likelihood bootstrap values below each branch of each

gene individually, the plastid partition, and the simultaneous analysis.

Additional file 2: Table S1. Mutually exclusive character states were

used to test if gene flow had ceased between the sampled
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populations using population aggregation analysis for each of the

three datasets listed in columns with spaces between each of the

independent lineages. In the sequence dataset, terminals with

missing data for diagnostic characters were arbitrarily assigned to a

single group rather than collapsing the otherwise diagnosable

groups and are indicated with *.

Additional file 3: Figure S2. Parsimony simultaneous analysis and

strict consensus tree of all the 105 terminals sampled for

nucleotide data with parsimony jackknife values shown.

Additional file 4: Figure S3. The individual nuclear gene trees

estimated for Pritchardia species delimitation as shown in the

parsimony strict consensus with parsimony jackknife values above

and likelihood bootstrap values below each branch.

Additional file 5: Figure S4. The individual plastid gene trees and

the plastid simultaneous-analysis estimated for Pritchardia species

delimitation with jackknife branch support values above and

bootstrap values below each branch.
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