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Abstract 23 

The identification of pollen plays an important role in ecology, palaeo-climatology, 24 

honey quality control and other areas. Currently, expert knowledge and reference 25 

collections are essential to identify pollen origin through light microscopy. Pollen 26 

identification through molecular sequencing and DNA barcoding has been proposed 27 

as an alternative approach, but the assessment of mixed pollen samples originating 28 

from multiple plant species is still a tedious and error-prone task.  Next-generation 29 

sequencing has been proposed to avoid this hindrance. In this study we assessed 30 

mixed pollen probes through next-generation sequencing of amplicons from the 31 

highly variable species-specific internal transcribed spacer 2 region of the nuclear 32 

ribosomal DNA. Further, we developed a bioinformatical workflow to analyse these 33 

high-throughput data with a newly created reference database. To evaluate the 34 

feasibility, we compared results from classical identification based on light 35 

microscopy from the same samples with our sequencing results. We assessed in 36 

total 16 mixed pollen samples, 14 originated from honey bee colonies and two from 37 

solitary bee nests. The sequencing technique resulted in higher taxon richness 38 

(deeper assignments and more identified taxa) compared to light microscopy. 39 

Abundance estimations from sequencing data were significantly correlated with 40 

counted abundances through light microscopy. Simulation analyses of taxon 41 

specificity and sensitivity indicate that 96% of taxa present in the database are 42 

correctly identifiable at the genus level and 70% at the species level. Next-43 

generation sequencing thus presents a useful and efficient workflow to identify 44 

pollen at the genus and species level without requiring specialized palynological 45 

expert knowledge. 46 

 47 

  48 
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Introduction 49 

Palynology, the scientific study of pollen and identification of its origin, plays an 50 

important role in studying mechanisms of plant-pollinator interactions (Wilcock 51 

and Neiland, 2002), resource use of flower-visiting animals (Kleijn and Raemakers, 52 

2008; Wcislo and Cane, 1996) and climate-related variation of plant communities 53 

through time (Marchant et al., 2001; Sugita, 1994; Tzedakis, 1993). Pollen grains 54 

often display a species-specific morphology with diverse structure and sculpture. 55 

However, it remains difficult to delineate between closely related species when 56 

using light microscopy (Mullins and Emberlin, 1997). As a result, many pollen types 57 

are simply grouped at genus or family level (Davies and Fall, 2001) and data 58 

analyses on pollen diversity are strongly limited (Bagella et al., 2013). DNA 59 

barcoding, i.e. to identify and classify organisms according to a nucleotide sequence 60 

was often and successfully applied to all major groups of organisms, also plants 61 

including pollen (Chen et al., 2010; Hebert et al., 2003; Zhou et al., 2007). 62 

Accordingly, molecular tools to analyze pollens have also substantially increased in 63 

their application and show great potential especially with difficult, also fossil taxa 64 

and those with low taxonomic knowledge (Bennett and Parducci, 2006; Wilson et 65 

al., 2010; Zhou et al., 2007). 66 

 67 

It is further a promising new approach in ecology to directly determine the diversity 68 

of organisms in environmental samples (Sheffield et al., 2009; Valentini et al., 2009), 69 

i.e. samples that represent a mixture of species, e.g. faeces, soil or pollen collections, 70 

for which identification with classical methods is difficult or incomplete (Wilson et 71 

al., 2010). To analyze mixed sets of pollens originating from different plant 72 

organisms with DNA barcoding however is still a tedious and error-prone task, 73 

requiring manual separation of pollens to taxa, each to be amplified and sequenced 74 

individually. Studies evaluating applicability of high-throughput techniques to 75 

pollen materials are currently lacking (Taylor and Harris, 2012; Wilson et al., 2010) 76 

or are restricted to specific investigations using quantitative real time polymerase 77 

chain reaction (qrtPCR) where prior information about present organisms is 78 
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required (Agodi et al., 2006; Schnell et al., 2010). Palynology would therefore benefit 79 

from species-level determination from mixed samples, larger counts, higher 80 

processing speed, improved objectivity, and automation to be attractive for large 81 

scale studies (Stillman and Flenley, 1996). Molecular methods based on high-82 

throughput DNA-sequencing could provide the requested features to extent and 83 

improve classical pollen determination. Valentini et al. (2010) proposed next-84 

generation sequencing (NGS) as a suitable method for this task. We agree with this 85 

idea and thus evaluated in this study the performance and reliability of the new 86 

sequencing and bioinformatical strategies by directly comparing it with data 87 

obtained by light microscopy.  88 

 89 

Specifically we address the following challenges that emerge in DNA barcoding with 90 

mixed pollen samples. (1) A laboratory routine has to be defined which can be 91 

applied to all major plant clades, requiring universality of amplification priming 92 

regions and adequate length to be suitable for next-generation sequencing while 93 

holding enough sequence variation to differ between species. This routine includes 94 

DNA extraction, amplification, sample multiplexing, library preparation, sequencing 95 

with high-throughput devices and raw-data cleanup. Also, (2) a mapping algorithm 96 

has to be developed which adequately maps obtained sequences in their full length 97 

to references, preferably in a hierarchical progression with confidence values for 98 

each level of taxonomy. Further, this algorithm has to be with good performance to 99 

be able to process high-throughput data on a standard desktop computer and 100 

produce results in reasonable time. (3) A comprehensive reference database is 101 

required to derive the desired taxonomic annotations.  102 

 103 

Several genetic marker regions have been proposed for DNA barcoding in plants 104 

that match the requirements, foremost presence and feasibility to be amplified in all 105 

investigated taxa, as well as low intra-specific but high inter-specific variability to 106 

succeed in being species-specific (Chen et al., 2010; Hebert et al., 2003; 107 

Hollingsworth et al., 2011; Zhou et al., 2007). In this study, we use the internal 108 

transcribed spacer 2 (ITS2) region, which has been shown to be suitable as a 109 
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barcode for plants (92.7% successful identifications in 6,600 samples, Chen et al., 110 

2010; Buchheim et al., 2011). Also the enclosed genetic regions (5.8S and 28S) are 111 

highly conserved throughout the eukaryotes. Thus an universal primer for the 112 

analysis of probes consisting of multiple organisms is applicable with a low risk to 113 

exclude taxa from amplification (Chen et al., 2010; Keller et al., 2009; White et al., 114 

1990). A further reason for choosing this marker is that a comprehensive ITS2 115 

database already exists (Koetschan et al., 2010) helping to prepare reference 116 

sequences suitable for our needs. 117 

 118 

We approached the targeted tasks by combining and adapting existing molecular 119 

and bioinformatical tools to develop new functionalities for DNA barcoding of pollen 120 

samples that consist of multiple taxa. We then evaluated the performance and 121 

quality of the molecular and bioinformatical workflow by comparing our results 122 

with data from classical light microscopy identification of pollen samples. Further, 123 

we tested the applicability for samples with low pollen contents and performed 124 

computer-based simulations to validate that the bioinformatical classification 125 

pipeline is trustable.  126 

Materials and Methods 127 

Pollen collection 128 

The honey-bee pollen samples were collected in twelve different landscapes in the 129 

region around Bayreuth, Germany. The distance between landscapes was at least 3 130 

km leading to diversified pollen inputs depending on the surrounding floral 131 

resources. In the centre of each landscape we established a honey bee colony (Apis 132 

mellifera carnica L.) with a pollen trap in front of the hive entrance. Returning 133 

foragers had to pass a 5 mm grid taking off the pollen loads from their hind legs. 134 

From 21.07.2009-12.08.2009 every one to three days accumulated pollen loads 135 

were removed from the traps and stored as individual samples at -18 °C until the 136 

end of the sampling period. Pollen samples were dried at 30 °C for one week. 137 

Further, to assess variability in resource use of honeybees at one location, samples 138 

from three colonies located at the same study site were separately analysed (in the 139 
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following designated as Samples 12a, 12b and 12c). From each of the fourteen 140 

samples (one per colony) 20% of the collected pollen were randomly taken and 141 

mixed for further analyses. 142 

 143 

We performed NGS as well as microscopic assessment of the samples. The samples 144 

were split into independent aliquots for these separate, blinded analyses. NGS was 145 

performed by AK, GG and MA, whereas the samples were classified through classical 146 

light microscopy by ND with expert guidance by KvO, without knowledge of the 147 

other group’s results.  148 

 149 

Two further pollen samples were obtained from solitary bee nests (Osmia bicornis 150 

L.) in October 2012 by swabbing the cell walls with cotton buds (Keller et al., 2013). 151 

In contrast to the relatively pure pollen samples obtained from honey bees, this 152 

experiment reflects samples strongly contaminated with nest building materials 153 

(soil) and faeces, challenging to analyse with traditional methods. Solitary bee 154 

samples were thus only processed with NGS. 155 

 156 

Classical pollen identification 157 

Pollen samples were first analyzed using light microscopy in the LAVES Institut für 158 

Bienenkunde in Celle, Germany. For the microscopic pollen determination, 10mg 159 

pollen loads of each sample were homogenized in 50ml demineralized water with a 160 

magnetic stirrer for one hour. 15 µl of the solution and 30 µl demineralized water 161 

were transferred to a slide, distributed equally over an area of the size of a cover 162 

glass and embedded in glycerin gelatin after complete dehydration following the 163 

method of Behm et al. (1996). From each sample 500 randomly selected pollen 164 

grains were determined on genus level and where possible to species level. Very 165 

rarely occurring pollen types were not determined (Behm et al., 1996).  166 

 167 

Molecular pollen identification 168 
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Second pollen identification was done by DNA barcoding of the ITS2 region. The 169 

main working steps described below were DNA extraction, amplification, 170 

sequencing, bioinformatic cleanup and taxonomic classification. 171 

 172 

DNA extraction, amplification and sequencing: For each sample, 2 g of pollens were 173 

added to 4 ml of bidest H2O and homogenized with an electronic pistil within a 174 

plastic tube. Of this emulsion, 200 µl (equaling approximately 50 mg of pollens) 175 

were taken for the following extraction. We grinded the aliquot with the TissueLyser 176 

LT (Qiagen, Hilden, Germany) and extracted DNA using the Machery-Nagel (Düren, 177 

Germany) NucleoSpin Food Kit. We followed the special supplementary guidelines 178 

for pollen samples provided by the manufacturer. For polymerase chain reaction 179 

(PCR) amplification we used the primers S2F and ITS4R originally designed by Chen 180 

et al. (2010) and White et al. (1990) to span a mean region of approximately 350bp. 181 

This covers the complete ITS2 region. We adapted those primers to match 454 182 

sequencing purposes and multiplexing by adding the 454 specific Adapters A and B, 183 

the linker key, and a variable multiplex identifier (MID). Thus the forward “fusion” 184 

primer was 5’-CGT ATC GCC TCC CTC GCG CCA TCA GAT GCG ATA CTT GGT GTG AAT 185 

-3’ and the reverse “fusion” primer 5’-5´CTA TGC GCC TTG CCA GCC CGC TCA GXX 186 

XXX XXX XXT CCT CCG CTT ATT GAT ATG C-3’, where the X-region designates a 187 

variable MID. In total, 16 MIDs were taken from the official Roche technical bulletin 188 

(454 Sequencing Technical Bulletin No. 005-2009, April 2009) to be able to process 189 

all our samples with one sequencing chip. 190 

 191 

PCR reaction mixes consisted of 0.25 µl of each forward and reverse primer (each 192 

30µM molar), 3 µl of template DNA and 25µl of Phusion High-Fidelity DNA 193 

polymerase PCR 2x MasterMix (Thermo Scientific, Waltham, MA, USA). Bidest H2O 194 

was added to a reaction volume of 50 µl. Samples were initially denaturated at 94 °C 195 

for 4 min, then amplified by using 37 cycles of 95 °C for 40 s, 49 °C for 40 s and 72 °C 196 

for 40 s. A final extension (72 °C) of 5 min was added at the end of the program to 197 

ensure complete amplification. All samples were amplified in ten separate aliquots 198 

to reduce random effects on the community during PCR amplification (Fierer et al., 199 
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2008). PCR amplicons of these ten replicates were combined, gel-electrophoresed, 200 

trimmed for amplicon length and cleaned with the HiYield PCR Clean-up Kit (Real 201 

Biotech Corporation, Banqiao City, Taiwan) according to the manufacturers 202 

description. Cleaned samples were quantified using a Qubit II Flurometer 203 

(Invitrogen/Life Technologies, Carlsbad, CA, USA) and the dsDNA High-Sensitivity 204 

Assay Kit (also Invitrogen/Life Technologies) as described in the vendors protocol. 205 

We used the BioAnalyzer 2200 (Agilent, Santa Clara, CA, USA) with High Sensitivity 206 

DNA Chips (also Agilent) for verification of fragment length distributions. 207 

Pyrosequencing and library preparation was performed according to the guidelines 208 

for the GS junior (Roche, Basel, Switzerland). Sequencing was performed in-house 209 

with a GS junior device located in the Department of Human Genetics (University of 210 

Würzburg, Germany) with original Roche GS junior titanium chemistry. 211 

 212 

Bioinformatic cleanup: Data was demultiplexed into the different samples using the 213 

MID adapter sequences and the QIIME software (Caporaso et al., 2010; Kuczynski et 214 

al., 2011). During this step, only sequences spanning both priming regions were 215 

further used, i.e. only completely sequenced amplicons. Primers, adapters and MIDs 216 

were trimmed. Chimeric checking and quality filtering was also performed during 217 

this step. We restricted data to high quality reads with a phred score ≥ 27, (Kunin et 218 

al., 2010) and no reads with ambiguous characters were included in the following 219 

downstream analyses.  220 

 221 

Hierarchic classification: Taxonomic assignments were performed with the RDP 222 

(Ribosomal Database Project) classifier (Wang et al., 2007) and an ITS2 specific, 223 

novel reference set created and evaluated as described below. Further, we applied a 224 

bootstrap cut-off at 85% as classification threshold with respect to the maximum f-225 

measure in the training database evaluation (also see below).  226 

 227 

Method comparison statistics 228 

Most of the analyses were performed on a generic level, as both methods yielded 229 

some taxa only assignable to this level. With a generic analysis all identified taxa 230 
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were directly comparable. With this data we compared taxon richness and identified 231 

species overlaps and differences obtained from the two methods. Rarefaction curves 232 

for each plot were generated with R (R Development Core Team, 2010) in the NGS 233 

data to evaluate species richness in relation to sequencing depth. Abundance was 234 

assessed relatively in percent of total number of reads and in percent of 500 pollen 235 

grains (Behm et al., 1996) for NGS and light microscopy, respectively. We used 236 

overall and per-plot abundance of these relative accounts to compare between the 237 

two methodologies by Pearson’s product moment correlation using R (R 238 

Development Core Team, 2010).  239 

 240 

Molecular reference database training 241 

Taxonomic classifications with DNA barcodes are currently mostly done via 242 

phylogenetic analyses (Buchheim et al., 2011), pairwise alignments with specific 243 

reference sequences (Chen et al., 2010) or BLAST searches (Basic Local Alignment 244 

Search Tool) (Altschul et al., 1990) in GenBank (Benson et al., 2010) or other 245 

nucleotide databases. The first both methods require that prior knowledge about 246 

taxonomy is present to select suitable taxa included into the recalculated 247 

phylogenetic tree or alignment. This is not feasible for mixed pollen collections, 248 

where the included taxa are unknown prior to assessment or stem from very 249 

different taxonomic groups. BLAST searches have to be performed very carefully, as 250 

hits may include local alignments and identity calculations may thus be based only 251 

on parts of the query and reference sequences. Further, the raw output of a BLAST 252 

search is often obscured as a lot of hits are not taxonomically annotated or flagged 253 

as “environmental samples”. A novel approach to tackle these drawbacks has been 254 

proposed with a Bayesian classification algorithm (Wang et al., 2007). It provides 255 

hierarchical taxonomic assignments of DNA sequences and is well accepted in the 256 

scientific community as especially high throughput analyses profit from the 257 

efficiency and accuracy of the algorithm (Caporaso et al., 2010). Currently, the only 258 

publicly available training sets are limited to bacterial 16S (Wang et al., 2007) and 259 

fungal large ribosomal subunit (Liu et al., 2012).  260 

 261 
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In this study, a new ITS2 training set was designed for plants. We used the ITS2-262 

Database as an original database which is restricted to structure-validated 263 

sequences (Koetschan et al., 2010). All ITS2 sequences matching the taxonomic 264 

group “Viridiplantae” and with a sequence length between 200 bp and 400 bp were 265 

downloaded, resulting in 73,853 sequences (accessed 3rd March 2013). The 266 

taxonomy for each sequence was assigned using the GI (GenBank Identifier) and the 267 

corresponding NCBI taxonomy (Federhen, 2012) by Perl scripting and reformated 268 

to be usable with the python script “assign taxonomy.py” of the QIIME (Caporaso et 269 

al., 2010) package. Additionally, RDP required formats of these preprocessed files 270 

were generated. Training was performed with the RDP classifier v2.2 (Wang et al., 271 

2007) as implemented in QIIME. Before training of the final set, we evaluated the 272 

performance by varying several parameters of the underlying data to maximize 273 

effectiveness and allow quality estimations of the assignments as described in the 274 

following.  275 

 276 

Pre-clustering evaluation: Due to intraspecific variation (Song et al., 2012) and 277 

sequencing errors in the underlying data (Kunin et al., 2010), pre-clustering of 278 

reference sequences prior to training may prove useful to increase reliability of the 279 

results (Lan et al., 2012). Thus, from the full data-set we generated eleven separate 280 

training sets differing in the pre-clustering threshold of sequences before the actual 281 

training. Clusters of sequences were generated at identity levels of 90%, 91% … 282 

100%, and only the most abundant sequence of each cluster was picked. This also 283 

generated an even distribution of taxonomic units in the sets. To assess the 284 

assignment quality and depth, each sequence was reclassified to the training set. 285 

Then starting from the root of the taxonomy of each sequence, every taxonomic 286 

level of the assignment was compared to the correct taxonomy. If the bootstrap of 287 

an assignment was less than 0.8, the level (and all sub-levels) was considered as 288 

unassignable. If there was a mismatch between assigned taxonomy and expected 289 

taxonomy, the number of remaining sub-levels (plus one), was called erroneous 290 

levels. The number of assigned levels before the first mismatch or unassignable level 291 

was called correct levels. 292 
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 293 

Cut-off and assignment quality evaluation: To estimate assignment qualities, the test 294 

and training data had to be distinct sets. Further, we wanted to evaluate the 295 

effectiveness to identify “new species” that do not have representatives in the 296 

training data (Lan et al., 2012). The complete ITS2 reference data set was thus for 297 

testing purposes artificially split into three sets representing “training data”, “test 298 

data A” with references, and “test data B” without references. This was achieved by 299 

the following procedure: species with multiple sequences were separated into “test 300 

data A” (one sequence) as well as “training data“ (remaining sequences). Species 301 

with only a single deposited sequence were assigned to category “test data B”. For 302 

this evaluation purpose, the algorithm was trained only with the set “training data“ 303 

(36,418 sequences). According to the measures for the RDP classifier evaluation 304 

performed by Lan et al. (2012) for the original 16S dataset we estimated the number 305 

of “true positive” (TP) and “false negative” (FN) assignments by classifying 306 

sequences of “test data A” (10,635 sequences), where references were present in the 307 

“training data”, Only correct assignments were considered as TP, whereas wrong 308 

assignments (to a different species) were added to the list of FNs. Similarly, we 309 

classified sequences of “test data B” (26,800 sequences) to determine the number of 310 

“true negative” (TN) and “false positive”(FP) hits. With that, we calculated 311 

sensitivity 𝑆𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 to identify existing taxa and specificity 𝑆𝑃 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 to leave 312 

sequences without references unclassified. Using these split data-sets, we were able 313 

to estimate SN at species and genus level, whereas SP was only assessable at the 314 

species level. We optimized our assignment bootstrap value for classification by 315 

maximizing the f-measure as the harmonic mean of sensitivity and specificity at 316 

species level =
2∗𝑆𝑁∗𝑆𝑃

𝑆𝑁+𝑆𝑃
 .  317 

 318 

Results 319 

Pollen high-throughput sequencing and classification 320 
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In total, our study produced 14,924 raw sequences for pollen samples passing 321 

Roche’s quality filtering of the 454 junior sequencing device. Of these, 9,310 ITS2 322 

sequences matched our extended quality standards. The remainders were dismissed 323 

as too short (<200 bp), with low quality score  (<27), excessive homopolymers (>5 324 

bp), chimeric or mismatches in primer regions (Caporaso et al., 2010; Kunin et al., 325 

2010). After removal of adapters and primers, mean sequence length was 348,3 bp 326 

(± 28 bp standard deviation), spanning the complete ITS2 region. Individual 327 

samples comprised 219-1,179 reads, with mean read length of 330,5 bp – 363,9 bp 328 

(± 3,8 bp – 68,2 bp standard deviation). Beside plant sequences, we also found 329 

several fungal sequences, belonging to Issatchenkia occidentalis, Cochliobolus sativus, 330 

Phoma sp. and Lewia infectoria, which are regularly inhabiting or infecting plant 331 

tissues.  332 

 333 

Honey bee pollen samples 334 

For the samples collected by honey-bees, 98.9% of all reads were assignable to 335 

genus level with a bootstrap confidence higher or equal than 0.85. At the species 336 

level we were able to classify 61.6% of our reads using the same bootstrap cut-off. 337 

Reducing the filter’s required sequence length to 150 bp did not produce any new 338 

classifiable plant taxa. Taxon richness was not correlated with the number of reads 339 

within a sample (Pearson’s correlation, r = -0.099, df = 12, t = -0.3453, p-value > 340 

0.05). Rarefaction showed that we reached a plateau regarding genera richness in all 341 

samples (Fig. 1A). These observations suggest that the sequencing depth was 342 

adequate to assess the underlying taxon richness.  343 

 344 

We identified a total of 29 different genera of 16 families when we combined the 345 

results from molecular sequencing and microscopy (Tab. 1). Further, 24 taxa were 346 

also identifiable at the species level. With NGS we found 13 genera that were not 347 

identified through microscopy, whereas four genera (Heracleum, Carduus, Phacelia, 348 

Convolvulus) that were identified by light microscopy were missing in the NGS 349 

results although having references in the database. One genus (Vitis) had no 350 
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trustable reference sequence in the database and was thus also not identifiable with 351 

the NGS method. 352 

 353 

From the phenology of the pollens and presence at plots, we assume that a 354 

misidentification of very similar pollens happened with light microscopy which was 355 

revealed by NGS: Tanacetum and Scorzoneroides were both manually misclassified 356 

as Taraxacum. We observed higher intra-generic taxon richness for Trifolium, 357 

Hypochaeris, Chamerion through NGS, yet lesser in Centaurea (Fig. 1B). 358 

Improvement of the taxonomic assignment was found in four genera, where species 359 

levels were obtainable only through NGS. However, Helianthus was only classified at 360 

genus level, whereas microscopy was able to identify it as Helianthus annuus.  361 

 362 

Based on NGS data, taxon richness within the samples ranged from 4 to 12 taxa that 363 

were at least classifiable at genus level (Fig. 1B). Correspondingly, diversity ranged 364 

from 4 to 12 taxa for the microscopy assessment. Pollen diversity collected by the 365 

three colonies from site twelve was 12, 10 and 12 taxa, respectively. The 366 

compositional profile was similar for the dominant pollen taxa in all three samples, 367 

but still showed considerable variation (Fig. 1B).  368 

 369 

Over all samples, we found a strong correlation of abundance estimations between 370 

the two identification methods (Pearson's correlation, r = 0.86, t = 8.71, df = 26, p < 371 

0.001***, Fig. 2). This relationship is also reflected on a per plot basis, yet with lower 372 

correlation coefficient (Pearson's correlation, r = 0.66, t = 17.36, df = 390, p < 373 

0.001***). These results indicate that the abundance estimates of taxa within plots 374 

show relatively high similarity between the two methods. 375 

 376 

Pollens in solitary bee nests 377 

Pollen samples from both solitary bee nests were successfully processed with 100% 378 

of reads identifiable at genus level despite high contamination of the samples with 379 

nesting materials and faeces. Both samples harbored Brassica sp. and Dioscorea sp. 380 
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pollens, the latter most likely Dioscorea (Tamus) communis as the only 381 

representative of the Dioscoreaceae present in the sampling region.  382 

 383 

Molecular reference database training 384 

Pre-clustering of data prior to training of the RDP classifier did not improve the 385 

overall performance of classifications (Fig. 3). This was the case both for depth of 386 

the assignment as well as the mean number of incorrectly assigned levels, which 387 

respectively increase and decrease with higher pre-clustering thresholds. We thus 388 

used a cut-off at 100% sequence identity, which equals unique sequences, for the 389 

final training set. With that, of the 73,853 tested database sequences, 55,028 were 390 

positively identifiable at the species and further 10,518 at the genus level. 391 

Surprisingly, 6,104 sequences were assignable only to phylum level. They likely 392 

represent contaminations in the reference database.  393 

 394 

Regarding determination of the optimal cut-off threshold, specificity and sensitivity 395 

of the novel/known classifications are shown with their dependency of the 396 

bootstrap in Fig. 4. The best classification by means of f-measure is achieved with a 397 

bootstrap cutoff of 0.85. Specificity and sensitivity at this threshold for species level 398 

were both approximately 70%. At the genus level, sensitivity to correctly identify a 399 

genus increased to 96%. We thus recommend this threshold when using the RDP 400 

classifier with the generated training data.  401 

 402 

Currently, all sequences in the reference data-set accumulate to 37,435 different 403 

plant species and 6,162 genera according to NCBI taxonomy (Federhen, 2012). The 404 

complete reference dataset is available for download and public usage at 405 

http://www.dna-analytics.biozentrum.uni-wuerzburg.de. 406 

Discussion 407 

The demand for methods to identify pollen samples at a high-throughput level is 408 

increasing for many applications in ecology and paleo-climatology (Bennett and 409 

Parducci, 2006; Sheffield et al., 2009; Taylor and Harris, 2012; Valentini et al., 2009; 410 
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Wilson et al., 2010; Zhou et al., 2007). DNA barcoding is a frequently and 411 

successfully applied method, yet pollens of mixed samples originating from more 412 

than one source are currently not assessable through standard methods. Valentini et 413 

al. (2010) proposed that next-generation sequencing may counter this deficiency, 414 

i.e. to investigate such mixed samples by identifying all included plant organisms 415 

together without manual separation. The goals of this study were thus to develop, 416 

and moreover evaluate, a molecular laboratory procedure and bioinformatical 417 

analysis for such a task. The complete workflow was applied to pollen samples from 418 

two different studies (in total 16 samples). The resulting gene sequences allowed to 419 

successfully identify taxon richness and abundance of the underlying samples. The 420 

resulting taxonomic resolution is similar or better than results from classical light 421 

microscopy. Details of the performance of each individual step of the workflow and 422 

the resulting methodological and biological relevance are discussed in the following.  423 

 424 

High-throughput pollen sequencing  425 

In general, our laboratory workflow was suitable in processing mixed pollen probes 426 

through next-generation sequencing. However, quality filtering according to our 427 

rigorous restrictions reduced the obtained sequences from approximately 15,000 428 

sequences to 10,000. Most of them were removed due to failure to include both 429 

primer regions and/or multiplex identifier due to low quality scores towards the 430 

end of sequences or short read lengths (Caporaso et al., 2010). The first indicates 431 

that a large proportion of reads was not fully sequenced with sufficient quality, 432 

whereas the latter shows that the primers also amplified shorter fragments than the 433 

intended plant ITS2 region. Not fully sequenced reads are a technical issue that is 434 

regularly improved by increase of read length and quality through new generations 435 

of sequencing devices and chemistry (Metzker, 2009). Improvements are also 436 

expectable by applying paired-end strategies, as quality near the ends will increase, 437 

or to use technologies with general lower sequencing error rates. Shorter, fully 438 

sequenced sequences are project specific problems, but also expectable: as a 439 

drawback of universal primers, they will as well amplify fungal ITS2 (White et al., 440 

1990) ranging from ~100 to 250 bp and even other eukaryotic protists with far 441 
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shorter ITS2 regions (Keller et al., 2009). Further, the existence of non-functional 442 

pseudo-genes is known (Harpke and Peterson, 2008). Thus studies investigating 443 

plant ITS2 sequences should account for a sufficient overhead of estimated 444 

sequences per sample during project design due to sequencing technology and 445 

potential contamination through unwanted organisms (Parameswaran et al., 2007). 446 

The remaining high quality reads showed a high proportion of classifiable 447 

sequences (~99%), whereas reduction of the minimum sequence length had no 448 

impact on plant species diversity. Both observations suggest that the filters are 449 

adequate to concentrate on the data of interest, i.e. plant sequences. 450 

 451 

Classification pipeline 452 

To be able to use the RDP classifier (Wang et al., 2007) for taxonomic assignments 453 

with plants and with the ITS2 marker, we re-trained the algorithm with structurally 454 

verified sequences obtained from the ITS2 database (Koetschan et al., 2010). The 455 

underlying dataset incorporates more than 70,000 different plant sequences and 456 

represents a cross-section throughout the Viridiplantae. Sequences originate from 457 

all biogeographic regions of the world since the primary database is GenBank 458 

(Benson et al., 2010). Currently, all sequences in the reference data-set accumulate 459 

to 37,435 different plant species and 6,162 genera according to NCBI taxonomy 460 

(Federhen, 2012). Exemplarily for the data analysed in this study, the dataset covers 461 

79% of all vascular plant genera and 54% of species known to exist within the 462 

Federal state Bavaria, Germany, where our samples were obtained (comprehensive 463 

plant database http://www.bayernflora.de, accessed 6th November 2013,  464 

Staatliche Naturwissenschaftliche Sammlungen Bayern, 2013). As 99% of reads 465 

were classifiable to genus level and only one genus (Vitis) of the assessed 29 genera 466 

in total was missing in the reference database, most of abundant and bee relevant 467 

plant genera seem to be included. Further, the classifier’s dataset is updateable to 468 

match the constantly increasing numbers of sequences deposited in GenBank and 469 

the ITS2 database in the future (Wang et al., 2007). 470 

 471 
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In the computational evaluation of database and classifier for an ITS2 dataset, we 472 

obtained values comparable to those of existing datasets published for bacteria 473 

(Wang et al., 2007) and fungi (Liu et al., 2012). Taxonomic classifications performed 474 

best regarding sensitivity, i.e. to identify taxa existing in the database, and 475 

specificity, i.e. to restrain from classifying organisms without references, at a 476 

bootstrap threshold level of approximately 0.85 (Lan et al., 2012). Species and genus 477 

level sensitivity to correctly identify sequences with this bootstrap were 70% and 478 

96%, respectively. This is similar to the classifier’s preferred level used to classify 479 

microbial organisms (0.80, Lan et al., 2012; Wang et al., 2007). From a technical 480 

perspective it is thus valid to apply the classification algorithm also for ITS2 481 

sequences of plants. 482 

 483 

Comparison of assessment methods 484 

Using next-generation sequencing, we were clearly able to improve palynology 485 

diversity assessments in comparison with traditional optical microscopy. This 486 

appears in novel taxa that were identified, as well as improvement of classification 487 

of taxa and better possibilities to distinguish species within a genus. Further, some 488 

misidentifications of pollen through microscopy were revealed that were caused by 489 

very similar morphological appearance of closely related species. Also, molecular 490 

assessments were successful for solitary bee nest samples, where swabs included 491 

pollens as well as contaminating materials. Sequencing assessments were 492 

repeatable, identifying similar diversity in samples obtained from different bee 493 

colonies placed within the same landscape.  494 

 495 

However, using the high-throughput approach we also encountered limitations, 496 

which are partly related to the data used for training of the classifier. Regarding the 497 

Vitaceae, the ITS2 database is currently lacking trustable reference sequences. We 498 

validated the only existing sequence, which was considerably short (~200 bp) and 499 

derived from a whole genome shotgun sequencing study (assembled sequence from 500 

short length reads, GenBank ID: AM462492.2, Velasco et al., 2007). Due to intra-501 

genomic variation of the ITS2 (Song et al., 2012), we assume the assembly yielded a 502 
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consensus, stacked ITS2 sequence, unusable for barcoding purposes or that a non-503 

ITS2 region was falsely identified as such by the ITS2 database annotation algorithm 504 

(Keller et al., 2009). We therefore dismissed the sequence as missing within the 505 

reference database. In general, taxa missing or with inadequate sequences in the 506 

underlying database are not identifiable. As shown exemplarily for the geographic 507 

region Bavaria, 22% of known plant genera are missing and thus the current 508 

coverage is far from complete (Staatliche Naturwissenschaftliche Sammlungen 509 

Bayern, 2013). Also, valid sequences with wrong taxonomic annotations may lead to 510 

mis-training of the classification model regarding the respective taxa (Bridge et al., 511 

2003). This is exemplified by a proportion of sequences re-classified in the 512 

evaluation to a different phylum, suggesting wrong taxonomic annotation of 513 

GenBank database sequences. To address limitations of the underlying database 514 

(missing or misclassified sequences) in a given research question, we suggest that 515 

applied studies should consider also reviewing one cross-section pool of all samples 516 

in parallel through optical means to verify the overall richness of taxa relevant for 517 

the study. This will also maintain comparability between studies applying 518 

traditional and molecular approaches. Despite these database-specific drawbacks, 519 

the classifier produced taxonomic assignments that are congruent with light 520 

microscopy, and thus corroborating the positive technical evaluation of the pipeline 521 

above with a direct comparison of biological data. 522 

 523 

Abundance estimations of both methods showed a strong correlation, suggesting 524 

that abundance estimates based on high-throughput sequencing regarding high or 525 

low sequence frequency of taxa within the sample are valid. In our study, we took 526 

care to reduce amplification biases through PCR with ten aliquots of each sample 527 

simultaneously (typical in microbiota studies: three, Fierer et al., 2008)  and a low 528 

number of amplification cycles (Suzuki and Giovannoni, 1996). Still, abundances 529 

retained from PCR amplified DNA samples have to be regarded critically, as 530 

amplification biases through priming preference of specific taxonomic groups, 531 

random effects and the exponential nature of the amplification process are not 532 

excludable (Spooner, 2009; Suzuki and Giovannoni, 1996). Abundances are thus 533 
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likely better interpreted categorical (e.g. high abundance, low abundance) than with 534 

linear association. With the advent of increased sequencing throughput and third-535 

generation single molecule sequencers without need for amplification (Metzker, 536 

2009; Roberts et al., 2013), improved abundance estimations by sequencing are 537 

likely in the near future. 538 

 539 

Expenses per sample were almost equal for both applied methods when considering 540 

time consumption and consumables. As the trend of sequencing technologies goes 541 

rapidly toward higher throughput and resulting multiplexing possibilities (Kozich et 542 

al., 2013; Metzker, 2009), we expect price efficiency per sample with next-543 

generation sequencing to outpace optical assessments in the near future.   544 

 545 

Fields of application 546 

Various applications arise for the proposed method. These include studies of pollen 547 

material from various origins, including plants themselves, pollinators, soil samples 548 

and wind collections. The results of such assessments are of great importance in 549 

identifying the diversity and specialization of plant-pollinator interaction networks 550 

(Bosch et al., 2009) and also in supporting agricultural and ecological management 551 

decisions (e.g. Girard et al., 2012; Odoux et al., 2012). Further, paleo-ecological and 552 

climate-change associated studies investigating fossil pollens may also largely profit 553 

(Bennett and Parducci, 2006). 554 

 555 

Special attention is currently required in quality control of honey-bee products, 556 

including the geographical origin, correct labeling of different varieties based on the 557 

used floral resources and detection of contaminations from genetically modified 558 

(GM) crops (Hemmer, 1997; Picard-Nizou et al., 1995). As pollen is naturally 559 

incorporated into honey and protocols to isolate them are common usage 560 

(Sowunmi, 1976), high-throughput sequencing and classification may contribute 561 

largely to this endeavor by facilitating the analytical process and inclusion of 562 

references from plant taxa throughout the world (Ruoff et al., 2007; Sowunmi, 563 

1976). 564 
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 565 

Furthermore, the methodology may be equivalently applied to other questions not 566 

only related to pollens. Other target samples are naturally occurring communities of 567 

plants, (e.g. green algae), or artificially mixed probes of plant tissue fragments 568 

(Schlumbaum et al., 2008). As the primers used in this study also efficiently amplify 569 

fungal ITS2 sequences, ancillary information is automatically gained about this 570 

group including pathogens as Ascosphaera spp. that may be present in collected 571 

pollen samples and vectorised through harvesting flights of worker bees (Gilliam, 572 

1990; White et al., 1990). 573 

Conclusions 574 

Expert knowledge is essential to identify pollens adequately through traditional 575 

light microscopy and taxonomic expertise is also often restricted to specific plant 576 

groups or geographical regions. Further, mixed samples of pollens from several 577 

plant origins present a problem in current palynology. With this study we evaluated 578 

next-generation sequencing to approach pollen assessments through molecular 579 

techniques including their bioinformatical analysis. The analytical pipeline is 580 

designed for high-throughput data, but also adaptable to single sequences. It is a 581 

useful technique broadening the assessment capabilities from expert labs to all 582 

workgroups with access to standard molecular laboratory equipment. Further, our 583 

results show that this assessment method improves the standard technique with 584 

regard to taxonomical deepness, overall diversity and rectifying misidentifications. 585 
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Tables  770 

Tab. 1: Plant families with their number of genera and number of species assessed 771 

by Next Generation Sequencing (NGS) and optical microscopy.  772 

Figures 773 

Figure 1: A) Rarefaction of genera richness obtained for each honey bee sample with 774 

respect to sequencing depth. B) Plot-based comparison of pollen identification 775 

through optical microscopy and NGS. Taxonomic assignments are illustrated at the 776 

genus level. Positive identification of a taxonomic unit within a sample is indicated 777 

in the community matrix as dark gray for microscopy and light gray for NGS. 778 

Relative abundance estimations are indicated by size at two levels, i.e. >=5% (fully-779 

filled box) and <5% (half-filled box) of total abundance within a sample. Genera 780 

misidentified in optical microscopy were combined for direct comparison and are 781 

indicated by quote marks in abbreviated form (Tar = Taraxacum, Sco = 782 

Scorzoneroides, Tan = Tanacetum). Availability in the reference database is indicated 783 

in the column DB. *For sample 12, three samples were taken from the same study 784 

site but different colonies. All three samples were analyzed using NGS to evaluate 785 

repeatability, yet optical microscopy was only performed for 12a. 786 

 787 
Figure 2: Overall log-scaled relative abundance comparison of genera between the 788 

two classification strategies. Rectangles at the axes represent genera only found 789 

with one of the two sampling techniques. Pearson's correlation r = 0.86, t = 8.71, df = 790 

26, p < 0.001***. 791 

 792 

Figure 3: Pre-clustering evaluation: Starting from the root of the taxonomy of each 793 

sequence, every taxonomic level of the assignment was compared to its correct 794 

lineage.  The overall mean of correct assignments according to the different pre-795 

clustering levels is presented as green dots in the figure (left scale). Similarly, each 796 

sequence was tested for erroneous levels of classification with means displayed as 797 

red squares and the scale on the right side.  798 

 799 
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Figure 4: Dependence of sensitivity and specificity by the bootstrap threshold. 800 

Sensitivity to identify at species level is illustrated with a red and single-dashed line, 801 

whereas generic identification as a red two-dashed line. Specificity is displayed as a 802 

green dotted line. The harmonic mean of both species level measures is displayed by 803 

a solid black curve, maximized at approximately 0.85 as the suggested optimal 804 

classification threshold.  805 


