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ABSTRACT 
This paper examines how six online multiclass text classification 

algorithms perform in the domain of email tagging within the 

TaskTracer system. TaskTracer is a project-oriented user interface 

for the desktop knowledge worker.  TaskTracer attempts to tag all 

documents, web pages, and email messages with the projects to 

which they are relevant. In previous work, we deployed an SVM 

email classifier to tag email messages.  However, the SVM is a 

batch algorithm whose training time scales quadratically with the 

number of examples. The goal of the study reported in this paper 

was to select an online learning algorithm to replace this SVM 

classifier.  We investigated Bernoulli Naïve Bayes, Multinomial 

Naïve Bayes, Transformed Weight-Normalized Complement 

Naïve Bayes, Term Frequency – Inverse Document Frequency 

counts, Online Passive Aggressive algorithms, and Linear 

Confidence Weighted classifiers.  These methods were evaluated 

for their online accuracy, their sensitivity to the number and 

frequency of classes, and their tendency to make repeated errors. 

The Confidence Weighted Classifier and Bernoulli Naïve Bayes 

were found to perform the best.  They behaved more stably than 

the other algorithms when handling the imbalanced classes and 

sparse features of email data. 

1. INTRODUCTION 
The TaskTracer system [4] is an intelligent activity management 

system that helps knowledge workers manage their work based on 

two assumptions: (a) the user's work can be organized as a set of 

ongoing activities such as “Write TaskTracer Paper” or “CS534 

Class”, (b) each activity is associated with a set of resources.  

“Resource” is an umbrella term for documents, folders, email 

messages, and so on.  The key function of TaskTracer is to tag 

resources according to the activities to which they are relevant.  

Once resources are tagged, TaskTracer can help the knowledge 

worker recover from interruptions, re-find previously-visited 

resources, and triage incoming email. 

Most resources are tagged at the time they are visited by the user 

based on the “current project” of the user. However, because 

email arrives asynchronously, it requires a different approach. In 

previous work [12], we developed and deployed a hybrid learning 

system that classifies email messages as they arrive. This employs 

a standard SVM classifier to make classifications.  A companion 

Bernoulli Naive Bayes classifier provides a confidence estimate, 

which is employed to decide whether to use the SVM’s 

prediction.  The hybrid classifier is integrated into Microsoft 

Outlook via a VSTO Addin. 

While our hybrid classifier is reasonably accurate, it is quite slow.  

The SVM is trained via the standard batch (SMO) algorithm, 

which scales approximately quadratically with the number of 

examples.  Hence, as more and more email arrives, the classifier 

requires unacceptably large amounts of time to train.  In addition, 

batch training requires storing all training examples, which is 

undesirable for practical and policy reasons. 

The goal of this research was to compare six state-of-the-art 

online classifiers to determine which would be best to deploy 

within TaskTracer.  In our work, we made several assumptions: 

• Email messages are associated with exactly one class.  

• There are hundreds of classes. 

• The classifier must be trained online in time linear in the size 

of the email message and linear in the number of classes. 

• The set of classes changes over time as different activities 

rise and fall in importance. 

2. ALGORITHMS 
Six different text classification algorithms were examined:  

Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Transformed 

Weight-Normalized Complement Naïve Bayes, Term Frequency-

Inverse Document Frequency Counts, Online Passive Aggressive, 

and Confidence Weighted. 

Bernoulli Naïve Bayes (BNB) is the standard Naïve Bayes 

classification algorithm frequently used in text classification [10].  

BNB estimates for each class c and boolean feature w 

representing each word, P(w | c) and P(c), where w is 1 if the 

word appears in the document and 0 otherwise.  A document is 

predicted to belong to the class c that maximizes P(c) Πw P(w | c), 

where the product is taken over all words in the lexicon.   

Multinomial Naïve Bayes (MNB) is a variation on Bernoulli 

Naïve Bayes [3] in which w is a multinomial random variable that 

indexes the words in the lexicon, so P(w|c) is a multinomial 

distribution.  We can conceive of this as a die with a ‘face’ for 

each word.  A document is generated by first choosing the class 

according to P(c) and then rolling the die for class c once to 

generate each word in the document.  A document is predicted to 

belong to the class c that maximizes P(c) Πw P(w | c), but now the 

product w is over all appearances of a word in the document.  

Hence, multiple occurrences are captured.  
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Rennie et al. introduced the Transformed Weight-Normalized 

Complement Naïve Bayes (TWCNB) algorithm [9]. This 

improves MNB through several small adaptations.  It transforms 

the feature count to pull down higher counts while maintaining an 

identity transform on 0 and 1 counts.  It uses inverse document 

frequency to give less weight to words common among several 

different classes. It normalizes word counts so that long 

documents do not receive too much additional weight for repeat 

occurrences. Instead of looking for a good match of the target 

email to a class, TWCNB looks for a poor match to the class’s 

complement.  It also normalizes the weights.  

Term Frequency-Inverse Document Frequency (TFIDF) is a set of 

simple counts that reflect how closely a target email matches a 

class by dividing the frequency of a feature within a message by 

the log of the number of times the feature appears in messages 

belonging to all other classes.  A document is predicted to belong 

to the class that gives the highest sum of TFIDF counts [3].  

Crammer et al [3] introduced the Online Passive Aggressive 

Classifier (PA), the multiclass version of which uses TFIDF 

counts along with a shared set of learned weights.  When an email 

message is correctly predicted by a large enough margin, the 

weights are not changed (“passive”).  When a message is 

incorrectly predicted, the weights are aggressively updated so that 

the correct class would have been predicted by a margin of 1. 

Confidence Weighted Linear Classification (CW) is an online 

algorithm introduced by Dredze et al [5].  It makes use of a 

weight vector, which is updated more aggressively for parameters 

in which the classifier has less confidence and less aggressively 

for parameters in which it has more confidence. 

3. PREVIOUS RESEARCH 
Many researchers have studied email classification, particularly in 

the context of email foldering.  Bekkerman et al. [1] compared a 

variety of algorithms (including MNB and SVMs) on the Enron 

and SRI/CALO email corpora. Of these, only MNB was a fully 

online algorithm. They found that SVMs performed the best, with 

logistic regression (maxent) second, wide-margin Winnow third, 

and MNB worst. Many authors have studied the performance of 

Naïve Bayes, SVMs, and Ripper on email classification tasks 

including Cohen [2], Provost [7], Rennie [8], Kiritchenko and 

Matwin [6], and Segal and Kephart [11].  To our knowledge, no 

previous work has compared the broad set of online algorithms 

evaluated in this paper. 

4. DATA SET 
The data set consists of email received and tagged (using the 

TaskTracer user interface) by the second author.  Previous 

research has shown that email folder structures can be difficult to 

predict, because their semantics can vary greatly.  One potential 

advantage of TaskTracer tags is that they correspond to on-going 

activities which are likely to be more stable and more predictable 

than arbitrary user-defined folders.  The dataset contains almost 

21,000 examples from 380 classes, ranging in size from a single 

message to 2500 messages.   

Feature extraction is performed as follows.  One boolean feature 

is defined for each unique sender/recipient email address, for each 

unique set of recipients as a proxy for the “project team”, and for 

each unique word in the email subject and body.  No stemming is 

performed.  There were a total of 84,247 features.  We will refer 

to this as the Full data set. Many tests are run on a smaller feature 

set, which omits the words in the body.  This yields 21,827 

features, and we will call it the NoBody data set.  The data sets 

are otherwise the same, based on the same email messages. 

5. EXPERIMENTAL PROTOCOL 
We ran each of the different algorithms on the Full and NoBody 

data sets. We follow the standard online learning protocol:  

Messages are processed in the order received.  Each message is 

first predicted by the algorithm and that prediction is scored as 

correct/incorrect.  We retain the confidence of each prediction so 

that we can produce precision/coverage curves.  After prediction, 

the message with its correct class label is given to the online 

algorithm to update the classifier.   

We compute several measures of performance.  First, we plot the 

precision versus the coverage.  This is performed by varying a 

confidence threshold and scoring accuracy  of predictions where 

the confidence was above the threshold.  Second, we plot the 

cumulative error rate at 100% coverage.  Third, we performed a 

series of analyses to understand how accuracy relates to the 

number of training examples in each class.  Finally, we calculate 

the number of times algorithms make “the same” error repeatedly. 

6. RESULTS 
Figures 1 and 2 show the tradeoff between precision and coverage 

for each algorithm. On the Full dataset, CW attains the highest 

accuracy across the range of coverage.  On the NoBody dataset, 

BNB performs slightly better than CW at 100% coverage, but CW 

is still better at lower coverage levels.  MNB performs badly until 

coverage is very low. TWCNB, PA, and TFIDF all perform very 

similarly, each performing best among the three at different times, 

but never outperforming either CW or BNB. 

Interestingly, instead of improving across the board with the 

inclusion of additional data from the email bodies, the results are 

mixed.  On NoBody, the accuracy of BNB increases throughout 

the range of coverage compared to Full. While CW has higher 

accuracy at 100% coverage on Full, at lower coverage CW 

performs better without the bodies.  The other algorithms have 

similarly mixed results, some improving with the use of the 

bodies and others not. 

 

Figure 1 – Precision versus coverage graph for predictions 

made on the Full dataset, showing the decrease in precision as 

the prediction confidence threshold is lowered. 



 
Figure 2 – Precision versus coverage graph for predictions 

made on the NoBody dataset. 

These results indicate that CW with the bodies gives the highest 

precision. In particular, if we are interested in 90% precision, 

CW+Full can achieve this with 72% coverage, whereas 

BNB+NoBody can only achieve this with 67% coverage. 

 
Figure 3 – Progressive results graph comparing how many 

examples have been seen to the cumulative accuracy to that 

point on the Full dataset. 

 
Figure 4 – Progressive results graph comparing how many 

examples have been seen to the cumulative accuracy up to 

that point on NoBody dataset. 

Figures 3 and 4 show the cumulative accuracy of each classifier 

on Full and NoBody.  On Full, CW begins with a lead, which it 

maintains throughout the entire course of examples, showing that 

CW learns relatively quickly in addition to its ability to use the 

bodies of the email.  Backing this conclusion up, on NoBody, CW 

still shows a very slight initial lead in accuracy, despite BNB’s 

overall lead on NoBody.  PA also demonstrates an ability to learn 

quickly on Full—it is more accurate than BNB for the first 5000 

examples before BNB eventually overtakes it.  Even on NoBody, 

PA shows an early advantage over TFIDF and TWCNB after a 

few hundred examples, which lasts until several thousand 

examples have been seen.  This strengthens the argument that PA 

learns quickly, despite disadvantages in the long run.  

To determine to what extent the number of classes affects the 

performance of each algorithm, we created a smaller subset of the 

data in which we retain only data from the 25 most populous 

classes.  The results for the Full and NoBody datasets appear in 

Figures 5 and 6.  

 
Figure 5 – Precision versus coverage graph for the 25 most 

populous classes in Full. 

 
Figure 6 – Precision versus coverage graph for the 25 most 

populous classes in NoBody. 

As expected, all algorithms improve when measured on only the 

most populous classes.  Their relative ordering is essentially the 

same as on the complete datasets, but some algorithms perform 

relatively better.  For example, PA performs better, suggesting 

that it is more sensitive to large numbers of classes than the other 

algorithms. This makes sense, because the version of multiclass 

PA that we are using just learns a global reweighting of the class-

specific TFIDF scores. This apparently breaks down when there 

are large numbers of classes. 

With classes ranging in number of examples from 1 to more than 

2500, there is a large variation in how much training each class 

receives.  We examine how the size of each class affects 

algorithm accuracy by tracking online the average (instantaneous) 

size of the true class for correct predictions and incorrect 

predictions, as well as the average (instantaneous) size of the 

incorrectly predicted class for incorrect predictions.  The results 

are displayed in Table 1.  The results show that MNB and TFIDF 

have a much higher average size for predictions made—they tend 

to predict the popular classes. TWCNB also shows this same 

tendency, but to a lesser extent, which makes sense given that this 

is one of the problems that Rennie’s modifications are supposed 

to overcome. BNB and CW have relatively even average sizes 



between the correct task and predicted task in incorrect 

predictions, showing resilience to class size in predictions made. 

Table 1 – Average sizes of classes at the time that predictions 

are made for each of the different algorithms. 

 Avg Size of 

Correctly 

Predicted 

Class 

Avg Size of 

Correct Class in 

Incorrect 

Predictions 

Avg Size of 

Predicted Class 

in Incorrect 

Predictions 

TFIDF 346 81 532 

PA 310 145 314 

BNB 280 171 196 

MNB 413 68 682 

TWCNB 333 91 354 

CW 288 146 195 

 

Our final analysis focuses on the problem of repeated errors.  In 

the current TaskTracer system, we sometimes observe that the 

email predictor seems to have a “favorite class of the day” such 

that it repeatedly predicts a particular class c regardless of the true 

class of the email message.  We also notice cases where all 

messages belonging to class c are repeatedly misclassified as 

various other classes. This pattern of repeated error persists even 

as the user is continually giving corrective feedback. To 

determine if algorithms were making predominately the same 

mistakes, we define a repeated error as two messages that both 

belong to true class c both being predicted to belong to a different 

class c’. Figure 7 plots the number of repeated errors as a function 

of the temporal separation between the pairs of email messages. 

Specifically, if two misclassified messages are within window 

size W messages of each other, then they are included in the plot. 

 

Figure 7 – Graph showing repeated errors within a window of 

examples, compared to the window size for each algorithm. 

This graph shows that MNB, TFIDF and NWCNB are 

significantly more likely than the other algorithms to make 

repeated errors. The results suggest that multiclass PA—despite 

its attractive theoretical basis—does not do all that well at 

avoiding repeated errors,  but CW’s performance is impressive. 

7. CONCLUSION 
CW and BNB show the most promise for email classification, 

with CW generally giving the best performance. Both perform 

very well on our email data set, showing good performance on 

both frequent and sparse classes. They also both avoid repeated 

errors. Conversely, MNB and TFIDF show themselves to be poor 

choices.  The generality of these conclusions is limited by the fact 

that we only have data from one user, but the size and complexity 

of this data set provide a basis for eliminating some algorithms 

from further consideration. We plan to deploy CW, BNB, and PA 

in a publically-distributed version of TaskTracer later this year. 
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