
Evaluating Online Text Classification Algorithms

for Email Prediction in TaskTracer
Victoria Keiser

baileyvi@eecs.oregonstate.edu
Thomas G. Dietterich

tgd@eecs.oregonstate.edu
Department of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331

ABSTRACT
This paper examines how six online multiclass text classification

algorithms perform in the domain of email tagging within the

TaskTracer system. TaskTracer is a project-oriented user interface

for the desktop knowledge worker. TaskTracer attempts to tag all

documents, web pages, and email messages with the projects to

which they are relevant. In previous work, we deployed an SVM

email classifier to tag email messages. However, the SVM is a

batch algorithm whose training time scales quadratically with the

number of examples. The goal of the study reported in this paper

was to select an online learning algorithm to replace this SVM

classifier. We investigated Bernoulli Naïve Bayes, Multinomial

Naïve Bayes, Transformed Weight-Normalized Complement

Naïve Bayes, Term Frequency – Inverse Document Frequency

counts, Online Passive Aggressive algorithms, and Linear

Confidence Weighted classifiers. These methods were evaluated

for their online accuracy, their sensitivity to the number and

frequency of classes, and their tendency to make repeated errors.

The Confidence Weighted Classifier and Bernoulli Naïve Bayes

were found to perform the best. They behaved more stably than

the other algorithms when handling the imbalanced classes and

sparse features of email data.

1. INTRODUCTION
The TaskTracer system [4] is an intelligent activity management

system that helps knowledge workers manage their work based on

two assumptions: (a) the user's work can be organized as a set of

ongoing activities such as “Write TaskTracer Paper” or “CS534

Class”, (b) each activity is associated with a set of resources.

“Resource” is an umbrella term for documents, folders, email

messages, and so on. The key function of TaskTracer is to tag

resources according to the activities to which they are relevant.

Once resources are tagged, TaskTracer can help the knowledge

worker recover from interruptions, re-find previously-visited

resources, and triage incoming email.

Most resources are tagged at the time they are visited by the user

based on the “current project” of the user. However, because

email arrives asynchronously, it requires a different approach. In

previous work [12], we developed and deployed a hybrid learning

system that classifies email messages as they arrive. This employs

a standard SVM classifier to make classifications. A companion

Bernoulli Naive Bayes classifier provides a confidence estimate,

which is employed to decide whether to use the SVM’s

prediction. The hybrid classifier is integrated into Microsoft

Outlook via a VSTO Addin.

While our hybrid classifier is reasonably accurate, it is quite slow.

The SVM is trained via the standard batch (SMO) algorithm,

which scales approximately quadratically with the number of

examples. Hence, as more and more email arrives, the classifier

requires unacceptably large amounts of time to train. In addition,

batch training requires storing all training examples, which is

undesirable for practical and policy reasons.

The goal of this research was to compare six state-of-the-art

online classifiers to determine which would be best to deploy

within TaskTracer. In our work, we made several assumptions:

• Email messages are associated with exactly one class.

• There are hundreds of classes.

• The classifier must be trained online in time linear in the size

of the email message and linear in the number of classes.

• The set of classes changes over time as different activities

rise and fall in importance.

2. ALGORITHMS
Six different text classification algorithms were examined:

Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Transformed

Weight-Normalized Complement Naïve Bayes, Term Frequency-

Inverse Document Frequency Counts, Online Passive Aggressive,

and Confidence Weighted.

Bernoulli Naïve Bayes (BNB) is the standard Naïve Bayes

classification algorithm frequently used in text classification [10].

BNB estimates for each class c and boolean feature w

representing each word, P(w | c) and P(c), where w is 1 if the

word appears in the document and 0 otherwise. A document is

predicted to belong to the class c that maximizes P(c) Πw P(w | c),

where the product is taken over all words in the lexicon.

Multinomial Naïve Bayes (MNB) is a variation on Bernoulli

Naïve Bayes [3] in which w is a multinomial random variable that

indexes the words in the lexicon, so P(w|c) is a multinomial

distribution. We can conceive of this as a die with a ‘face’ for

each word. A document is generated by first choosing the class

according to P(c) and then rolling the die for class c once to

generate each word in the document. A document is predicted to

belong to the class c that maximizes P(c) Πw P(w | c), but now the

product w is over all appearances of a word in the document.

Hence, multiple occurrences are captured.

CEAS 2009 – Sixth Conference on Email and Anti-Spam, July 16-17,

2009, Mountain View, California USA

Rennie et al. introduced the Transformed Weight-Normalized

Complement Naïve Bayes (TWCNB) algorithm [9]. This

improves MNB through several small adaptations. It transforms

the feature count to pull down higher counts while maintaining an

identity transform on 0 and 1 counts. It uses inverse document

frequency to give less weight to words common among several

different classes. It normalizes word counts so that long

documents do not receive too much additional weight for repeat

occurrences. Instead of looking for a good match of the target

email to a class, TWCNB looks for a poor match to the class’s

complement. It also normalizes the weights.

Term Frequency-Inverse Document Frequency (TFIDF) is a set of

simple counts that reflect how closely a target email matches a

class by dividing the frequency of a feature within a message by

the log of the number of times the feature appears in messages

belonging to all other classes. A document is predicted to belong

to the class that gives the highest sum of TFIDF counts [3].

Crammer et al [3] introduced the Online Passive Aggressive

Classifier (PA), the multiclass version of which uses TFIDF

counts along with a shared set of learned weights. When an email

message is correctly predicted by a large enough margin, the

weights are not changed (“passive”). When a message is

incorrectly predicted, the weights are aggressively updated so that

the correct class would have been predicted by a margin of 1.

Confidence Weighted Linear Classification (CW) is an online

algorithm introduced by Dredze et al [5]. It makes use of a

weight vector, which is updated more aggressively for parameters

in which the classifier has less confidence and less aggressively

for parameters in which it has more confidence.

3. PREVIOUS RESEARCH
Many researchers have studied email classification, particularly in

the context of email foldering. Bekkerman et al. [1] compared a

variety of algorithms (including MNB and SVMs) on the Enron

and SRI/CALO email corpora. Of these, only MNB was a fully

online algorithm. They found that SVMs performed the best, with

logistic regression (maxent) second, wide-margin Winnow third,

and MNB worst. Many authors have studied the performance of

Naïve Bayes, SVMs, and Ripper on email classification tasks

including Cohen [2], Provost [7], Rennie [8], Kiritchenko and

Matwin [6], and Segal and Kephart [11]. To our knowledge, no

previous work has compared the broad set of online algorithms

evaluated in this paper.

4. DATA SET
The data set consists of email received and tagged (using the

TaskTracer user interface) by the second author. Previous

research has shown that email folder structures can be difficult to

predict, because their semantics can vary greatly. One potential

advantage of TaskTracer tags is that they correspond to on-going

activities which are likely to be more stable and more predictable

than arbitrary user-defined folders. The dataset contains almost

21,000 examples from 380 classes, ranging in size from a single

message to 2500 messages.

Feature extraction is performed as follows. One boolean feature

is defined for each unique sender/recipient email address, for each

unique set of recipients as a proxy for the “project team”, and for

each unique word in the email subject and body. No stemming is

performed. There were a total of 84,247 features. We will refer

to this as the Full data set. Many tests are run on a smaller feature

set, which omits the words in the body. This yields 21,827

features, and we will call it the NoBody data set. The data sets

are otherwise the same, based on the same email messages.

5. EXPERIMENTAL PROTOCOL
We ran each of the different algorithms on the Full and NoBody

data sets. We follow the standard online learning protocol:

Messages are processed in the order received. Each message is

first predicted by the algorithm and that prediction is scored as

correct/incorrect. We retain the confidence of each prediction so

that we can produce precision/coverage curves. After prediction,

the message with its correct class label is given to the online

algorithm to update the classifier.

We compute several measures of performance. First, we plot the

precision versus the coverage. This is performed by varying a

confidence threshold and scoring accuracy of predictions where

the confidence was above the threshold. Second, we plot the

cumulative error rate at 100% coverage. Third, we performed a

series of analyses to understand how accuracy relates to the

number of training examples in each class. Finally, we calculate

the number of times algorithms make “the same” error repeatedly.

6. RESULTS
Figures 1 and 2 show the tradeoff between precision and coverage

for each algorithm. On the Full dataset, CW attains the highest

accuracy across the range of coverage. On the NoBody dataset,

BNB performs slightly better than CW at 100% coverage, but CW

is still better at lower coverage levels. MNB performs badly until

coverage is very low. TWCNB, PA, and TFIDF all perform very

similarly, each performing best among the three at different times,

but never outperforming either CW or BNB.

Interestingly, instead of improving across the board with the

inclusion of additional data from the email bodies, the results are

mixed. On NoBody, the accuracy of BNB increases throughout

the range of coverage compared to Full. While CW has higher

accuracy at 100% coverage on Full, at lower coverage CW

performs better without the bodies. The other algorithms have

similarly mixed results, some improving with the use of the

bodies and others not.

Figure 1 – Precision versus coverage graph for predictions

made on the Full dataset, showing the decrease in precision as

the prediction confidence threshold is lowered.

Figure 2 – Precision versus coverage graph for predictions

made on the NoBody dataset.

These results indicate that CW with the bodies gives the highest

precision. In particular, if we are interested in 90% precision,

CW+Full can achieve this with 72% coverage, whereas

BNB+NoBody can only achieve this with 67% coverage.

Figure 3 – Progressive results graph comparing how many

examples have been seen to the cumulative accuracy to that

point on the Full dataset.

Figure 4 – Progressive results graph comparing how many

examples have been seen to the cumulative accuracy up to

that point on NoBody dataset.

Figures 3 and 4 show the cumulative accuracy of each classifier

on Full and NoBody. On Full, CW begins with a lead, which it

maintains throughout the entire course of examples, showing that

CW learns relatively quickly in addition to its ability to use the

bodies of the email. Backing this conclusion up, on NoBody, CW

still shows a very slight initial lead in accuracy, despite BNB’s

overall lead on NoBody. PA also demonstrates an ability to learn

quickly on Full—it is more accurate than BNB for the first 5000

examples before BNB eventually overtakes it. Even on NoBody,

PA shows an early advantage over TFIDF and TWCNB after a

few hundred examples, which lasts until several thousand

examples have been seen. This strengthens the argument that PA

learns quickly, despite disadvantages in the long run.

To determine to what extent the number of classes affects the

performance of each algorithm, we created a smaller subset of the

data in which we retain only data from the 25 most populous

classes. The results for the Full and NoBody datasets appear in

Figures 5 and 6.

Figure 5 – Precision versus coverage graph for the 25 most

populous classes in Full.

Figure 6 – Precision versus coverage graph for the 25 most

populous classes in NoBody.

As expected, all algorithms improve when measured on only the

most populous classes. Their relative ordering is essentially the

same as on the complete datasets, but some algorithms perform

relatively better. For example, PA performs better, suggesting

that it is more sensitive to large numbers of classes than the other

algorithms. This makes sense, because the version of multiclass

PA that we are using just learns a global reweighting of the class-

specific TFIDF scores. This apparently breaks down when there

are large numbers of classes.

With classes ranging in number of examples from 1 to more than

2500, there is a large variation in how much training each class

receives. We examine how the size of each class affects

algorithm accuracy by tracking online the average (instantaneous)

size of the true class for correct predictions and incorrect

predictions, as well as the average (instantaneous) size of the

incorrectly predicted class for incorrect predictions. The results

are displayed in Table 1. The results show that MNB and TFIDF

have a much higher average size for predictions made—they tend

to predict the popular classes. TWCNB also shows this same

tendency, but to a lesser extent, which makes sense given that this

is one of the problems that Rennie’s modifications are supposed

to overcome. BNB and CW have relatively even average sizes

between the correct task and predicted task in incorrect

predictions, showing resilience to class size in predictions made.

Table 1 – Average sizes of classes at the time that predictions

are made for each of the different algorithms.

 Avg Size of

Correctly

Predicted

Class

Avg Size of

Correct Class in

Incorrect

Predictions

Avg Size of

Predicted Class

in Incorrect

Predictions

TFIDF 346 81 532

PA 310 145 314

BNB 280 171 196

MNB 413 68 682

TWCNB 333 91 354

CW 288 146 195

Our final analysis focuses on the problem of repeated errors. In

the current TaskTracer system, we sometimes observe that the

email predictor seems to have a “favorite class of the day” such

that it repeatedly predicts a particular class c regardless of the true

class of the email message. We also notice cases where all

messages belonging to class c are repeatedly misclassified as

various other classes. This pattern of repeated error persists even

as the user is continually giving corrective feedback. To

determine if algorithms were making predominately the same

mistakes, we define a repeated error as two messages that both

belong to true class c both being predicted to belong to a different

class c’. Figure 7 plots the number of repeated errors as a function

of the temporal separation between the pairs of email messages.

Specifically, if two misclassified messages are within window

size W messages of each other, then they are included in the plot.

Figure 7 – Graph showing repeated errors within a window of

examples, compared to the window size for each algorithm.

This graph shows that MNB, TFIDF and NWCNB are

significantly more likely than the other algorithms to make

repeated errors. The results suggest that multiclass PA—despite

its attractive theoretical basis—does not do all that well at

avoiding repeated errors, but CW’s performance is impressive.

7. CONCLUSION
CW and BNB show the most promise for email classification,

with CW generally giving the best performance. Both perform

very well on our email data set, showing good performance on

both frequent and sparse classes. They also both avoid repeated

errors. Conversely, MNB and TFIDF show themselves to be poor

choices. The generality of these conclusions is limited by the fact

that we only have data from one user, but the size and complexity

of this data set provide a basis for eliminating some algorithms

from further consideration. We plan to deploy CW, BNB, and PA

in a publically-distributed version of TaskTracer later this year.

8. ACKNOWLEDGEMENTS
This material is based upon work supported by the Defense

Advanced Research Projects Agency (DARPA) under Contract

No. FA8750-07-D-0185/0004. Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

the DARPA, or the Air Force Research Laboratory (AFRL). This

work was also partially funded by a gift from Intel Corporation.

9. REFERENCES
[1] Bekkerman, R., McCallum, A., and Huang, G. Automatic

Categorization of Email into Folders: Benchmark

Experiments on Enron and SRI Corpora. CIIR Technical

Report IR-418, UMass Amherst, 2004.

[2] Cohen, W. W. Learning rules that classify e-mail.

Proceedings of AAAI Spring Symposium on Machine

Learning and Information Retrieval, 1996.

[3] Crammer, K., Dekel, O.,Keshet, J., Shalev-Shwartz, S. and

Singer, Y. Online Passive-Aggressive Algorithms. JMLR 7

(2006), 551-585.

[4] Dragunov, A. N., Dietterich, T. G., Johnsrude, K.,

McLaughlin, M., Li, L., Herlocker, J. L. TaskTracer: A

Desktop Environment to Support Multi-tasking Knowledge

Workers. IUI2005, 75-82.

[5] Dredze, M., Crammer, K., and Pereira, F. In ICML2008,

(Helsinki, Finland) 2008.

[6] Kiritchenko, S. and Matwin, S. Email classification with co-

training. Proceedings of the 2001 Conference of the Centre

for Advanced Studies on Collaborative Research, 2001.

[7] Provost, J. Naive-Bayes vs. rule-learning in classification of

email. Technical Report AI-TR-99-284, University of Texas

at Austin, Artificial Intelligence Lab, 1999.

[8] Rennie, J. ifile: An application of machine learning to e-mail

filtering. Proceedings of KDD-2000 Workshop on Text

Mining, 2000.

[9] Rennie, J.D.M., Shih, L., Teevan, J. and Karger D.R.

Tackling the Poor Assumptions of Naïve Bayes Text

Classifiers. In ICML2003 (Washington D.C.), 2003.

[10] Russell, S., and Norvig, P. Artificial Intelligence: A Modern

Approach. Prentice Hall, 2003..

[11] Segal, R. and Kephart, J. Incremental learning in swiftfile.

ICML2000, 2000.

[12] Shen, J., Li, L., Dietterich, T., and Herlocker, J. A Hybrid

Learning System for Recognizing User Tasks from Desktop

Activities and Email Messages. IUI2006, 86-92 (Sydney,

Australia), 2006

