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Abstract

The structure of RiboNucleic Acid (RNA) has the potential to be altered by a Single Nucleotide Polymorphism

(SNP). Disease-associated SNPs mapping to non-coding regions of the genome that are transcribed into

RiboNucleic Acid (RNA) can potentially affect cellular regulation (and cause disease) by altering the structure of the

transcript. We performed a large-scale meta-analysis of Selective 2’-Hydroxyl Acylation analyzed by Primer Extension

(SHAPE) data, which probes the structure of RNA. We found that several single point mutations exist that

significantly disrupt RNA secondary structure in the five transcripts we analyzed. Thus, every RNA that is transcribed

has the potential to be a “RiboSNitch;” where a SNP causes a large conformational change that alters regulatory

function. Predicting the SNPs that will have the largest effect on RNA structure remains a contemporary

computational challenge. We therefore benchmarked the most popular RNA structure prediction algorithms for

their ability to identify mutations that maximally affect structure. We also evaluated metrics for rank ordering the

extent of the structural change. Although no single algorithm/metric combination dramatically outperformed the

others, small differences in AUC (Area Under the Curve) values reveal that certain approaches do provide better

agreement with experiment. The experimental data we analyzed nonetheless show that multiple single point

mutations exist in all RNA transcripts that significantly disrupt structure in agreement with the predictions.

Background

RNA (Ribonucleic Acid) is a ubiquitous messenger of

genetic information in the cell and plays a central role in

the regulation of molecular processes [1-5]. Unlike DNA,

RNA is generally single stranded and has a high propen-

sity to fold into functionally important structures [6-10].

These structures can be significantly disrupted by muta-

tions including Single Nucleotide Polymorphisms (SNPs)

[11,12]. Genome-Wide Association Studies (GWAS) reg-

ularly identify disease-associated SNPs in non-coding

regions of the genome. Disease-associated SNPs do not

necessarily directly reveal the molecular cause of the dis-

ease and require further analysis [11,13-15].

A majority of the genome is transcribed into RNA

[16,17]; as a result a majority of genetic mutations will also

be transferred to the transcriptome. From a structural

perspective, we distinguish two broad classes of RNA;

highly structured RNAs (e.g. the Ribosome, tRNAs, self

splicing introns, RNAse P) and RNAs that potentially

adopt multiple conformations (e.g. mRNAs and non-cod-

ing RNAs) [3,4,18]. Structured RNAs are under significant

evolutionary pressure to adopt a single, functional confor-

mation [19]. However, mRNAs and non-coding RNAs are

not necessarily evolved to adopt a single conformation but

rather adopt an ensemble of conformations [20-23]. We

have recently found specific disease-associated mutations

that alter the ensemble partitioning of mRNA affecting

gene regulation and thus cause disease [24]. Thus, struc-

ture is likely an important functional feature even in

RNAs traditionally thought of as “unstructured.”

Algorithms to evaluate the structural and functional

consequences of mutations on proteins (e.g. PolyPhen and

SIFT) are commonly used to assess the potential deleter-

ious effects of mutations [25-27]. In addition, several

groups are actively developing web servers to compute the

potential deleterious effects of SNPs on RNA structure
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and function [28,29]. The structural basis for deleterious

mutations to a structured protein is rationalized through

an understanding of protein folding. For example, repla-

cing a hydrophobic residue in the hydrophobic core of a

protein with a hydrophobic amino acid will likely cause

the protein to misfold [26,27]. In RNA however, the phy-

sico-chemical properties of the four-nucleotides are not as

diverse as the amino acids. Furthermore, RNA does not

fold through the formation of a hydrophobic core [4].

Instead the structure is a complex network of base-pairing

and stacking interactions [3,8]. To observe a large confor-

mational change in an RNA, the mutation must not only

disrupt an existing base-pair, but also favor a completely

alternative base-pairing network. The functional conse-

quences of structure disruption depend on whether the

affected region is involved in important regulatory interac-

tions. In certain cases, small local changes in the RNA

structure may have functional consequences [15,30]. In

this manuscript we are interested in identifying the muta-

tions that globally affect RNA structure and are thus likely

to have significant functional consequences.

We initially interrogate high-throughput SHAPE chemi-

cal mapping of multiple non-coding RNAs and associated

single point mutations [31,32]. We aim to determine

whether single point mutations, like in proteins, can signif-

icantly alter the structure of the RNA. We then evaluate

the performance of multiple RNA structure prediction

algorithms to determine the optimal strategy for identify-

ing the mutations that disrupt RNA structure. As GWAS

(Genome Wide Association Studies) continue to focus

more on non-coding regions of the genome, it will become

increasingly important to have accurate algorithms for

assessing the potential deleterious consequences of SNPs

on the transcriptome.

Results and discussion

Single mutations disrupt RNA structure

To better understand the potential effects of SNPs on a

large RNA we consider the Boltzmann sampled subopti-

mal ensemble of the Vibrio vulnificus Adenine Ribos-

witch (Figure 1A) [33,34]. Projecting these structures

onto the first two principal components of their struc-

tural space as described previously [24], reveals four

major clusters (Figure 1A). The Adenine Riboswitch is so

named as the aptamer domain (highlighted in light

magenta in Figure 1A) binds Adenine. It is one of the few

Riboswitches that activates gene expression upon ligand

binding [35-37].

The “on” and “off” conformations of the Riboswitch are

present in the Boltzmann ensemble of the WT sequence

(Figure 1A, green and magenta clusters, respectively). This

is consistent with recent models that suggest that Adenine

riboswitching is kinetically controlled at the transcriptional

level [35]. Moreover, two other conformations (cyan and

red clusters, Figure 1A) are not highly populated in the

WT ensemble. If we repeat the Boltzmann sampling

procedure for a sequence containing the C77G mutation

(Figure 1B), we see a drastic shift in the ensemble favoring

the cyan and red conformations. A majority of mutations,

however, are like the U39A mutation and have very little

effect on the suboptimal ensemble (Figure 1C).

To experimentally validate the prediction made by sub-

optimal sampling made in Figures 1A-C, we queried the

SNRNASM (Single Nucleotide Resolution Nucleic Acid

Structure Mapping) archive as well as the RNA Mapping

Database (RMDB, http://rmdb.stanford.edu) for chemical

mapping data of the Adenine Riboswitch [38]. We found

SHAPE chemical mapping data for the WT, C77G and

U39A transcripts under identical solution conditions (10

mM MgCl2 and 100 mM KCl). This data provides single

nucleotide resolution measurements of base-pairing in

the Riboswitch [39]. A high normalized SHAPE reactivity

indicates high flexibility and thus low probability of base-

pairing, while low reactivity indicates high likelihood of

base-pairing [40,41]. The data in Figure 1D therefore

experimentally validates the predictions made in Figures

1A-C. We see that the C77G (red trace) is significantly

different from the black (WT) and blue (U39A) traces,

consistent with a large shift in the predominant struc-

tures in the ensemble. The significant increase in SHAPE

reactivity in residues 32-43 and 62-68 are consistent with

the hairpin structure represented by cyan cluster.

We compute the experimental Structure Disruption

Coefficient (eSDC) to evaluate the effect of a SNP on the

RNA structure as described in the Methods (Equation 1).

This value measures the disruptive effect of a SNP on an

RNA, the higher it is the greater the structural disruption.

In this case it is 2.0 for C77G and 0.1 for U39A. Further-

more, we can use the multiple repeats of the experiments

to evaluate the statistical significance (p-value) of these

eSDC values, i.e. the probability that we would obtain the

value due to noise in the data. For the C77G, the differ-

ence is statistically significant (p-value < 0.001) while for

U39A it is not (p-value >0.5).

Systematic eSDC analysis of five non-coding RNAs

The SNRNASM and RMDB databases contain 470

SHAPE data sets of RNA sequences with single and/or

double point mutations relative to WT RNA for five

non-coding RNAs under similar monovalent and divalent

salt concentrations. We therefore computed eSDC values

for these 470 mutations and summarize the results in

Figure 2A. In all cases we computed eSDC values relative

to the WT sequence to identify single or double muta-

tions that significantly disrupt RNA structure.

The results of our analyses are plotted on Figure 2A and

reveal that in all cases certain mutations (e.g. U22G.A196G

in FTL, U113A in the Glycine Riboswitch) significantly
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Figure 1 Structural analysis of the Adenine Riboswitch, which is a bacterial regulatory RNA that binds Adenine and controls gene expression

[35,37]. The RNA adopts two major conformations, the “On” state (Adenine bound) forms three stem loops (P1, P2 and P3), while in the “off

state” the site of translation initiation (3’ end of the UTR, near the start codon) is structured effectively disrupting translation initiation. A.)

Boltzmann suboptimal sampling of the ensemble of possible RNA conformations (as predicted by sFold) projected onto the first two principal

components of structure space as determined by a Manhattan distance metric evaluation of the ensemble. Each dot in the diagram is one

alternative structure. Representative structures adorn the diagram, and the aptamer domain of the Riboswitch is highlighted in light magenta.

The Riboswitch is predicted to adopt four structures, characterized by green, purple, cyan and red dots. The “on” and “off” states of the

Riboswitch to the green and magenta cluters, respectively. B.) Boltzmann sampling of the structural ensemble for the C77G containing sequence

which indicates a significant shift in partitioning towards the cyan and red conformations. C.) Boltzmann sampling for the U39A mutation which

is predicted to have no effect on the partitioning compared to WT. D.) Experimental validation using SHAPE chemistry of the predictions made

in A-C, showing that the C77G mutation disrupts the structure of the RNA in a manner consistent with an increase in the population of the cyan

cluster.
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Figure 2 Comprehensive analysis of mutation induced structure disruption in five non-coding RNAs. A.) eSDC (experimental Structure Disruption

Coefficient) for 470 single or double mutatants relative to the RNA’s WT sequence. eSDC is computed as one minus the Pearson correlation

coefficient of the SHAPE profile (mutant to WT) multiplied by the square root of the length of the RNA. We see that most mutations have small

eSDC values indicating that they do not significantly disrupt structure. The five RNAs studied are the human FTL 5’ UTR (FTL), the V. vulnificus

Adenine Riboswitch (Adenine RS), the V. cholera Glycine Riboswitch (Glycine RS with and without Glycine (G) bound), the cyclic di-GMP

Riboswitch (bis-(3’-5’)-cyclic dimeric guanosine monophosphate Riboswitch with and without cyclic-diguanosine-monophosphate (CDM)) and the

P4P6 domain of the L-21 Tetrahymena thermopila group I intron [5,34,35,63]. All data were collected under near physiological solution conditions,

i.e. 10mM MgCl2 and 100 mM monovalent. For FTL, hyperferritinemia associated mutations are indicated in magenta. The eSDC values for ±

ligand for the three Riboswitches are indicated with a green horizontal line and represent a “biological” threshold above which a structure

change is likely to have a functional consequence. This histogram to the right represents a pairwise “within” eSDC calculation for 6-fold repeats

of the SHAPE experiments on the FTL UTR RNA to evaluate the reproducibility and significance (p-value) of eSDC values. B.) SHAPE profiles for

the WT, U32A and U113A (black, blue, and red respectively) Glycine Riboswitch in the presence of Glycine showing that the U113A mutation

very significantly disrupts structure. C.) SHAPE profiles for WT, C128G and C65G (black, blue, and red respectively) P4P6 group I intron transcripts

showing that the C65G globally affects the structure of the RNA.
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disrupt RNA structure. However, a majority of mutations

(e.g. U39A and U32A in the Adenine and Glycine Ribos-

witches) have very small effects on structure. We plotted

representative SHAPE data for structurally disruptive (red)

and non-disrupting mutations for the Glycine Riboswitch

and P4P6 intron in Figures 2B and C, respectively. To eval-

uate the significance of the structural disruption, we com-

puted the “within” distribution for multiple repeats (6-fold)

of the FTL UTR RNA SHAPE data and plot the resulting

histogram to the right of Figure 2A. This allows us to

determine the expected eSDC values due to the noise in

the experimental data, and evaluate the p-value for any

given eSDC. Clearly, single point mutations exist that sig-

nificantly disrupt RNA structure, however a majority of

mutations result in no measurable effect.

The FTL UTR data set is particularly interesting, as this

RNA is a “RiboSNitch,” i.e. an RNA in which specific

SNPs can alter structure and cause disease [24,42]. In this

case, FTL is associated with Hyperferritinemia Cataract

Syndrome, a rare genetic disorder that is characterized by

early onset cataracts due to excess ferritin in the retina

[43,44]. We indicate the disease-associated SNPs as

magenta text in Figure 2A. All the disease-associated

SNPs alter the structure of the RNA significantly (p-value

< 0.001).

Three of the RNAs tested in Figure 2A are Riboswitches

and undergo a conformational change if ligand is present.

We can therefore compute an eSDC value for SHAPE

traces in the presence and absence of ligand. We indicate

these eSDC values with a green horizontal line in Figure

2A. The reason this result is important is that the struc-

tural change caused by ligand binding to a Riboswitch is

sufficient to regulate gene expression [37,45,46]. Thus the

Riboswitch ligand eSDC value (green line Figure 2A)

represents a “biological” threshold above which the struc-

ture change is likely to affect function. A particularly

important result of this analysis is the identification of

multiple SNPs with much larger eSDC values compared to

ligand binding in the Riboswitches. Thus, it is likely that a

majority of these SNPs will have important functional

consequences.

Performance of RNA structure prediction algorithms for

RiboSNitch detection

We chose to benchmark the four software packages illu-

strated in Figure 3 [23,47-49], as they each have various

options to evaluate the ensemble of suboptimal struc-

tures. The precise UNIX commands we used to generate

the predictions are also indicated in Figure 3. It should

also be noted that all of these programs are designed to

predict the best secondary structure, and with the

exception of RNAmutants are not necessarily optimized

for identifying the mutation that most disrupts RNA

structure.

We aim to use RNA structure prediction programs to

predict the eSDC values determined from the SHAPE data

(Figure 4A). Figure 4 illustrates the four metrics applied to

the ensemble of structures from each algorithm and used

to generate pSDC values (predicted Structure Disruption

Coefficients, Equation 4, methods). This metric is analo-

gous to the eSDC as it allows us to rank order SNPs

according to their predicted disruption of RNA structure.

All structure prediction programs we tested can compute

a Minimum Free Energy (MFE) structure. We represent

this as a vector of ones and zeroes, and compute the cor-

relation coefficient between the WT and mutant struc-

tures (Figure 4B). Many structure prediction algorithms

can also compute the probability of base-pairing (which is

more analogous to SHAPE reactivity) by summing the

rows or columns of the predicted partition function matrix

(Figure 4C) [48,50]. We computed the Z Centroid (Figure

4D) of the partition function as well [51]. Finally, for the

algorithms that sample suboptimal structures, we can clus-

ter the resulting ensemble and determine the centroid

structure for the most populated cluster (Figure 4E)

[23,51].

We found that in general pSDC values are larger than

eSDC values. We are most interested in the different

algorithms’ (Figure 3) and metrics’ (Figure 4) ability to

rank and identify the mutations that maximally disrupt

structure. To evaluate each algorithm’s performance we

generated Receiver Operator Characteristic (ROC) curves

based on the ranking of the 470 mutant RNA’s eSDC

values (Figure 2A) compared with those ranked by pSDC.

Figure 5A plots three representative ROC curves and

illustrates that algorithm/SDC metric combinations vary

in their predictive performance. The AUC (Area Under

the Curve) values reported in Figure 5B suggest that the

highest performing algorithm is RNAsubopt using a Z

centroid metric (AUC 0.64). The “partition function” for

RNAsubopt was obtained by computing the pair prob-

abilities for the first 10,000 suboptimal structures. The

AUC values reported in Figure 5B reveal that most algo-

rithm/metric combinations perform similarly and are

within the standard error of 0.03 when the experimental

data is bootstrapped. eSDC values, and SHAPE data for

all mutants analyzed are provided as tables in the addi-

tional files. Additional Files 1-8 correspond to the FTL

199, FTL 226, Adenine RS, Glycine RS NoGlyc, Glycine

RS wGlyc, GMP RS wCDM, GMP RS NoCDM, and

P4P6, respectively.

Conclusions

RNA is a ubiquitous regulatory molecule in the cell and

there is growing evidence that structure is a central com-

ponent of its function [52,53]. The Riboswitches studied in

this manuscript are one of many examples where RNA

structure change regulates bacterial metabolism [46,54,55].
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In the case of the 5’ UTR, disease-associated SNPs disrupt

structure and deregulate Ferritin levels in the eye, resulting

in early onset cataracts [24]. The T. thermophila group I

intron (P4P6) must fold into its correct three-dimensional

structure to self-catalyze its splicing reaction [8,56]. In

these examples, structure change is central to the RNA’s

function in the cell.

The data we present in Figures 1 and 2 reveals the

extent to which a single point mutation can disrupt RNA

structure. Our systematic analysis of 470 mutations on

five RNAs reveals that large scale SNP induced structure

change is common in RNA and can potentially contri-

bute to disease [24]. Interestingly, all RNA secondary

structure prediction algorithms predict that a small sub-

set of mutations will have a large effect on secondary

structure. The data we present in Figures 1 and 2 cover a

relatively comprehensive set of mutations in each RNA,

but are nonetheless limited to five functional molecules.

As such, the generalizability of these results will require

the analysis of larger experimental data sets as they

become available [38].

The mechanism for this change is best illustrated in

Figure 1, where we see how a single mutation (in this

case C77G) can completely alter the thermodynamic

folding landscape of the RNA, favoring an alternative

conformation. The data we present in Figure 2 suggest

that the thermodynamic models used to predict RNA

structure are sound, as we find mutations experimen-

tally in all RNAs studied that disrupt structure. All RNA

structure prediction algorithms predict that certain

Figure 3 Schematic representation of the four software packages we benchmarked for their ability to predict which mutations in an RNA affect

structure most significantly. We chose these packages as they all perform some form of sub-optimal sampling, illustrated with “cartoon” energy

landscapes. We also include the precise UNIX commands used to make the predictions.
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mutations will significantly disrupt structure. In addi-

tion, a recent study of common SNPs in the human

genome revealed that these affect local RNA structure

[57].

An important result in our analysis of the Riboswitch

SHAPE data is the comparison of the eSDC values for

mutations relative to ligand induced conformational change

(see green lines, Figure 2A). For all three Riboswitches,

multiple mutations exist that result in far larger structural

changes (as measured by our SDC metric) than ligand

binding. This is highly relevant, as ligand binding induced

structure change can completely turn on (or off) gene

expression translationally and/or transcriptionally [45].

Thus the mutations above the green lines in Figure 2A

have even greater potential to regulate cellular function.

This means any functional RNA has the potential to be a

“RiboSNitch,” as there exists mutations that can signifi-

cantly disrupt its structure.

Figure 4 Schematic representation of metrics used to compute pSDC (predicted Structural Disruption Coefficients) based on RNA structure

predictions for WT (black) and mutant (magenta). The data here are for the WT, and hyperferritinemia cataract syndrome associated U22G

mutant of the FTL 5’ UTR. A.) SHAPE experimental data for the WT and U22G mutant UTRs revealing a significant effect of the U22G mutation

on the structure of the RNA. An eSDC value of 2.3 is computed for this data. B.) sFold Minimum Free Energy (MFE) probability of base-pairing for

the WT (black) and U22G (magenta) containing sequence, one corresponds to not-base-paired and zero paired. We see that the program

correctly predicts changes in the 40-60 range as measured by SHAPE. C.) Probability of base-pairing computed as the sum of the rows or

columns of the partition function [64]. In this case the partition function is computed using sFold Boltzmann suboptimal sampling and

computing the observed frequency of base-pairing [51]. D.) Z Centroid simplification of the partition function and probability of pairing

computed by summing the rows or column [51]. E.) Probability of pairing assessed as the cluster centroid structure of the most populated

cluster of suboptimal structures, in this case using sFold and k-means clustering as previously described [51].
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The data we present in Figure 2 are ideal for bench-

marking RNA structure prediction algorithms. The ana-

lysis we carried out in this manuscript is different from

previous secondary structure prediction benchmarks,

because we are specifically interested in identifying muta-

tions that globally disrupt a given secondary structure.

We developed metrics based on RNA secondary struc-

ture prediction algorithms analogous to our eSDC calcu-

lations. We can use such an analogy, since SHAPE data is

correlated with base-pair probability. The SDC metrics

are purposefully global, and we did not evaluate algo-

rithms for their ability to predict the specific local

changes in structure, but rather whether they predict that

a specific mutation will disrupt structure relative to

others. Our reasoning for this approach is that for the

analysis of disease-associated SNPs, we are most inter-

ested in identifying the most structurally deleterious

mutations.

Although RNA structure prediction algorithms correctly

predicted that all RNAs are disrupted by certain muta-

tions, it is clear that predicting exactly which mutation will

alter structure remains very challenging. Although there is

some variation in the relative performance of the different

algorithmic and metric combinations we tested, the AUC

values reported in Figure 5B remain relatively low. This

result is not necessarily surprising, as none of the RNA

structure prediction algorithms (other than RNAmutants)

have been optimized to predict which mutations disrupt

structure. In fact, an algorithm’s sensitivity to point muta-

tions is often viewed as a weakness, favoring methods that

are less sensitive to mutation. However, the experimental

data clearly show that SNPs can profoundly change an

RNA’s folding landscape.

The attempts to constantly refine algorithms so as to

have them always converge on a single “correct” RNA

structure may not improve their ability to identify RiboS-

Nitches. Although only anecdotal, mFold’s good perfor-

mance in our benchmark (AUC 0.62, Figure 5B) may

indicate that simpler energy functions, which tend to pre-

dict more alternative structures, may ultimately perform

better for identifying RiboSNitches. Indeed RNAStruc-

ture’s relatively low performance in our benchmark is sur-

prising, since it has the most sophisticated and accurate

energy function and is most accurate in structure predic-

tion [48,50]. Improvements in our ability to predict RiboS-

Nitches will likely require a better understanding of the

suboptimal ensemble and how mutations affect it in addi-

tion to improved energy functions. With the growing

number of sequencing efforts revealing ever more single

nucleotide variants in the non-coding regions of the gen-

ome, accurate algorithms predicting the structural conse-

quences of these mutations are likely to play an important

role in genomic interpretation.

Methods

Data collection and analysis

The SHAPE chemical data used in our analysis were

downloaded in ISATAB format from the SNRNASM

(Single Nucleotide Resolution Nucleic Acid Structure

Mapping) and RMDB web sites (http://snrnasm.bio.unc.

Figure 5 Evaluation of the different pSDC metrics and RNA

structure prediction algorithm’s performances. A.) Receiver Operator

Characteristic (ROC) analysis of three representative metric/algorithm

combinations indicating significant differences in the predictive

performance. The three curves are for the RNAsubopt prediction of

the Z centroid structure (for the first 10,000 structures), base-pair

probability as computed from the partition function of RNAfold, and

the MFE structures predicted by sFold. B.) Summary of all Area

Under the Curve values for ROC analysis of metric/algorithm

combinations. In general, most algorithms perform equivalently for

identifying the mutations that disrupt RNA structure.
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edu and http://rmdb.stanford.edu). The SNRNASM stan-

dard was developed to share the results of high-resolu-

tion and throughput nucleic acid structure mapping data

[58]. We identified RNAs that were probed using SHAPE

chemical mapping under standard conditions (10 mM

MgCl2 and 100 mM NaCl), and where significant muta-

tional information was available. Only RNAs that were at

most two SNPs (or mutations) away from a reference

(WT) sequence were considered. The data were normal-

ized as previously described [59], and for the two Ribos-

witch and P4P6 data sets, manually re-aligned to correct

for frameshift errors due to the automated analysis of the

data using the HiTRACE software [42]. eSDC values

were computed as described by Equation 1:

eSDC CC np   1 (1)

where pCC is the WT/mutant pearson correlation coeffi-

cient and n is the length of the RNA. The eSDC quantita-

tively evaluates the effect of a mutation on RNA structure.

Prior to the calculation of the eSDC, normalized SHAPE

values were capped at one in order to increase the metric’s

ability to reflect changes in structure identified by differ-

ences in the peaking pattern and not minor differences in

peak intensity. Significance testing for structure disruption

was adjusted using a Bonferroni correction.

PCA analysis of the ensemble of structures and clustering

Principal components were calculated (as described pre-

viously) from a total of 10,000 sampled structures gener-

ated equally from a WT sequence and mutants of interest

[24]. The principal components were generated from the

binary representation of these 10,000 structures. These

structures were then projected onto the first two principal

components and subjected to the k-means clustering algo-

rithm to reveal distinct clusters [60]. The centroid struc-

ture of each cluster was identified from the k-means

clustering algorithm and then drawn using R2R [61]. Indi-

vidual mutant structures were then generated (as dis-

cussed in Fig. 3) and projected onto the first two principal

components. Each structure projection is colored accord-

ing to their cluster.

Computation of the partition functions from sampled

structures and calculation of the Z centroid

Partition functions were generated for each ensemble of

structures. Each structure is first transformed to matrix

form as described in [51]. This is accomplished by creating

an NxN matrix where N is the length of the sequence and

placing a 1 at position i,j and j,i if nucleotides i and j are

paired and a 0 if they are not paired. When all the

matrices representing the structures are summed together

and then divided by the total number of structures, the

resulting matrix is the partition matrix. This matrix con-

tains the probability of nucleotide i being paired to j. The

Z centroid is defined as the structure with all the probabil-

ity of pairing for each pair greater than 50%.

ROC analysis of prediction performance

Each of the program/metric combinations were evalu-

ated using a Receiver Operator Characteristic (ROC)

Analysis [62]. The ROC analysis was carried out by cal-

culating the true positive rate (i.e. sensitivity):

TPR
TP

TP FN



(2)

and false positive rate (i.e. 1-specificity):

FPR
FP

FP TN



(3)

from the True Positives (TP), False Positives (FP),

True Negatives (TN) and False Negatives (FN):

pSDC CC npred   1 (4)

Analogously to the eSDC calculation, we compute a

pSDC (predicted Structure Disruption Coefficient) by

computing the Pearson Correlation Coefficient (predCC)

between WT and mutant for each RNA structure pre-

diction algorithm. This value is analogous to the eSDC

in that it allows us to rank order the disruptive effect of

mutations on RNA.

To determine ROC values, the mutations were listed

from highest to lowest according to their eSDC value.

The top 50% of eSDC values were considered to disrupt

the structure while the lowest 50% preserved structure. A

second list was generated using the same mutants but

using the pSDC values instead. A true positive was

defined as having a pSDC value above a cutoff and

experimentally disrupting the structure while a true

negative was defined as having a pSDC below a cutoff

and experimentally preserving a structure. A false posi-

tive or false negative is recorded when the predictions

contrast with the experimental results. The pSDC cutoff

was defined by stepping through the pSDC ranks. The

resulting true positive rates and false positive rates were

then used to generate an ROC curve. The area under the

curve was calculated for each ROC using the trapezoidal

method. This process was bootstrapped for each pro-

gram/metric 5000 times using 20 randomly selected

mutants from each set. Due to the fact that each of the

RNA data sets has a differing number of mutants, the

bootstrapping is done by sampling 20 mutants from each

of the other data sets besides FTL, in order to correct for

any bias that might come up due to one program/metric

Ritz et al. BMC Genomics 2012, 13(Suppl 4):S6
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favoring one data set over another. This results in the

ROC being run on 145 mutants at a time, not the full

470. The average area under the curve was calculated

with the standard deviation between runs generating the

error. The closer the area under the curve was to one the

better the predictive power for a given program/metric.

Precise WT sequences, corresponding mutations

(SNPs), eSDC values and normalized SHAPE data are

provided as separate excel spreadsheets in the additional

files. These data should facilitate further benchmarking

efforts for novel algorithms to predict RNA structure

change.

Additional material

Additional file 1: eSDC and SHAPE data for the FTL 199 nucleotide

length RNA construct.

Additional file 2: eSDC and SHAPE data for the FTL 226 nucleotide

length RNA construct.

Additional file 3: eSDC and SHAPE data for the Adenine Riboswitch

RNA construct.

Additional file 4: eSDC and SHAPE data for Glycine Riboswitch

without Glycine RNA construct.

Additional file 5: eSDC and SHAPE data for the Glycine Riboswitch

with Glycine RNA construct.

Additional file 6: eSDC and SHAPE data for the GMP Riboswitch

with CDM RNA construct.

Additional file 7: eSDC and SHAPE data for the GMP Riboswitch

without CDM RNA construct.

Additional file 8: eSDC and SHAPE data for the P4P6 subdomain of

the Tetrahymena thermophila group I intron RNA construct.

List of abbreviations
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Structure Disruption Coefficient; SHAPE: Selective 2’-Hydroxyl Acylation
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