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August 11, 2004

Abstract

The paper describes RETINA and brie�y discusses how it works and

what the performance claims are. Their Matlab implementation of the code is

explained, then the two programs are compared on the data in Perez-Amaral,

Gallo andWhite (2004), `A Comparison of Complementary Automatic Mod-

elling Methods: RETINA and PcGets', and that used by Hoover and Perez

(1999). Monte Carlo simulation results assess the size and power properties

of the PcGets model selection process in the presence of non-linear functions.

1 Introduction

Advances in automatic model selection procedures have been swift in recent years

with impressive results. Despite the controversy surrounding many model selec-

tion strategies and the multitude of diverse approaches in the literature, automatic

procedures have been developed which show remarkably `good' properties. Two

such procedures are PcGets and RETINA. PcGets is based on a general-to-speci�c

search strategy, starting with a general model capturing the underlying characteris-

tics of the data and testing downwards, ensuring validity of the reductions at each

stage to result in a congruent parsimonious undominated model. RETINA differs

from PcGets in that the general-to-speci�c methodology is not its main tenet. The

model uses a speci�c-to-general approach whereby variables are added into the

model depending on a given criteria. RETINA aims to identify a parsimonious

�I am indebted to David Hendry for helpful comments and suggestions and to Teodosio Perez-

Amaral, Giampiero Gallo, Halbert White and Christian Brownlees for the RETINA code. Financial

support from the Economic and Social Research Council under grant RES 015 270035 is gratefully

acknowledged.
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set of variables that are likely to be relevant for predicting out-of-sample. Both

approaches have elements in common although they differ in many ways includ-

ing their objectives, general strategy, selection criteria and the use of sub-samples.

Both have a high level of success; automatic model selection procedures bring

about gains in terms of power and ef�ciency that had previously been inconceiv-

able.

The structure of the paper is as follows. Section 2 outlines the RETINA al-

gorithm and discusses its objectives and performance claims. Section 3 brie�y

outlines the PcGets algorithm and notes the development that PcGets can han-

dle more variables than observations. Section 4 reviews the differences between

the two approaches. Section 5 examines various applications including the results

from Perez-Amaral, Gallo and White (2004) which compares PcGets and RETINA

on cross sectional data and a comparison of the two procedures on time series data

including data from Hoover and Perez (1999) and an arti�cial GUM and DGP as

outlined in Krolzig and Hendry (2001). Section 6 presents a range of Monte Carlo

experiments assessing the size and power of automatic model selection procedures

when there are non-linear functions in the GUM, both when the non-linear func-

tions enter the DGP and when the DGP is linear. Finally section 7 concludes,

reviewing the importance of automatic model selection procedures and assessing

their use in a non-linear framework.

2 RETINA

RETINA (Relevant Transformation of the Inputs Network Approach) is a method

of model selection along the lines of neural network models and is designed to

identify a parsimonious set of regressors to predict out-of-sample. The model is

outlined in Perez-Amaral, Gallo and White (2003). RETINA is useful when the

functional form of the conditional mean of the dependent variable is unknown,

testing for non-linearities and interaction effects within the model procedure. Con-

cavity of the likelihood is achieved by imposing linearity in the parameters. The

method relies on a sub-sample cross validation scheme to ensure parsimony. Rather

than doing an exhaustive model search, which would require the evaluation of 2m

models, the number of models is narrowed down by including variables sequen-

tially in rank order. Collinearity is controlled by ensuring the R2 between the
included variables and the additional variable lies below a speci�ed threshold pa-

rameter, �. This section describes RETINA and brie�y discusses how it works.
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2.1 The Selection Algorithm

There are 4 main stages in the RETINA algorithm, including data building and sort-

ing, isolating a candidate model, the search strategy and model selection. Initially,

a set of potentially relevant variables, X, that are thought to contain information

about the conditional mean of the dependent variable, y, are identi�ed and labelled
�level 0 transforms�. A set of transformed variables, � (X) = fW1; :::;WMg ; are
generated and denoted �level 1 transforms�. There are numerous possible transfor-

mations which capture both non-linearities and interactions and RETINA uses the

transformations given by � (X) = X�
i;hX

�
i;j for �; � = �1; 0; 1, which results in a

set ofM potential predictors, i.e. squares, inverses, squared inverses, cross prod-

ucts, cross inverses and ratios.1 Note that further iterations of the transformations

can be implemented and appended to the level 0 and level 1 transforms.

The sample is divided into 3 disjoint sub-samples. The observations in the �rst

sub-sample, Wj for j = 1; :::;M are ranked according to a relevance measure.

RETINA uses the sample correlation with y, denoted
��b�j
��. Starting with a constant

and the �rst variable,W1, which has the highest absolute sample correlation, suc-

cessive variables are added in their ranked order until the R2 of the regression of
the last added variable on the subset already included lies below a speci�ed thresh-

old parameter, � (0 � � � 1), i.e. include Wj if R
2
j � �p where R

2
j is derived

from the regression of Wj;i = �0 +
Pj�1
k=1 �kWk;i + �i for i = 1; :::; N . This

will result in a set of variables selected on the basis of �p. Repeating the process
for a grid of values for �, a set of models will be retained, denoted by �p (X) for
p = 1; :::; �, where p determines the value of �. The � models are estimated in
sub-sample 1 and cross-validated in sub-sample 2 using Mean Square Prediction

Error to determine the `candidate' model. The � varies in increments of approxi-
mately 0.1, resulting in � � 9: The optimal �� is chosen on the basis of MSPE and
the model given by �� is denoted the local best model (i.e. has the lowest MSPE
in sub-sample 2).

The search strategy aims to select a more parsimonious model by searching

over all other possible models. Using the regressors in the local best model, the

regressors are added in sequentially, starting with the highest ranked variable and

estimated over the second sub-sample, resulting in S models where S = the number
of regressors in the local best model. These regressors are also ranked based on cor-

relations in the second sub-sample and included sequentially, giving S � 1 models
if the rankings differ. The AIC is computed for these models on sub-sample 3 and

the resulting preferred model is chosen on the basis of lowest AIC. The process

is repeated over different combinations of the sub-samples resulting in 6 repeti-

1Some transformations may be excluded in practice because of numerical problems. For example,

the inverse ofXj will be excluded if at least one observation is equal to 0.
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tions. A candidate model is chosen for each ordering and the preferred model is

chosen on the basis of out-of-sample AIC. Parsimony is achieved by creating new

models with a different number of regressors using the regressors of a candidate

model derived from MSPE criteria and by judging the models using the AIC on

the third sub-sample. The use of disjoint subsamples is a powerful mechanism for

controlling size.

RETINA cannot handle more level 1 transformations than observations and so

the regressors in the candidate model set depend on the order of inclusion of the

transformations. This is determined by absolute correlations with y. The program
can be run using all level 1 transformations including those that are linearly depen-

dent (note that the candidate model will only contain regressors that are linearly

independent because of the collinearity index) ensuring that any transformation

can be potentially included. In the situation where there are more level 1 transfor-

mations than observations a regressor will only be included if it is ranked in the

�rst N � 1 variables. RETINA can also be run just using the level 0 regressors,
providing a base model to check the properties under the null for experiments in

which the DGP contains no non-linear terms. A third setting for RETINA enables

the program to be run excluding all the cross terms, i.e. the level 1 transformations

are given by � (X) = X�
i;hX

�
i;h for �; � = �1; 0; 1, thereby removing interactions

but allowing for non-linearities in individual regressors.

RETINA is available as Matlab code and full instructions are given as to how to

implement the code. The code can be downloaded fromwww.ds.uni�.it/ctb/projects.html.

3 PcGets

PcGets is a procedure for automatic model selection which is designed to select a

parsimonious undominated representation of a general initial model (denoted the

GUM). Krolzig and Hendry (2001) examine the properties of this model selection

procedure in a linear framework. The data generating process is found almost as

often commencing from a general model as from the DGP itself and false rejection

frequencies of null hypotheses can be controlled, correct rejections of alternatives

are close to the theoretical upper bound and model selection is consistent. The

selected estimates have the appropriate reported standard errors and can be bias

corrected if desired. PcGets is described brie�y below. See Hendry and Krolzig

(2001) for details.
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3.1 The Selection Algorithm

There are 4 stages in the PcGets algorithm, including estimation and testing of

the GUM, the pre-search process, the multipath search procedure and �nally post-

search evaluation. PcGets uses a general-to-speci�c strategy in which the GUM is

formulated based on theory, previous evidence and institutional knowledge, which

is suf�ciently general to nest the DGP. The GUM is tested for congruence and

pre-search reduction tests are undertaken to remove insigni�cant variables. Note

that this is done at loose signi�cance levels. Then an exhaustive search across

all paths is undertaken from each feasible deletion, checking the diagnostics at

each reduction to ensure congruence. The resulting models are denoted terminal

models, which are tested against their union until a unique undominated congruent

model is selected.2 Finally, two overlapping sub-samples are used to validate the

signi�cance of variables retained in the �nal model.

Various search strategies are available in PcGets including the liberal strategy,

the conservative strategy and the expert users strategy. The liberal strategy reduces

the non-selection probability whereas the conservative strategy reduces the non-

deletion probability. A conservative strategy is recommended if there are highly

signi�cant variables amongst many insigni�cant variables. If there are fewer re-

gressors and the signi�cant variables have smaller t-values, a liberal strategy is
suggested. Both are examined in the empirical examples below.

An important development is that PcGets can handle more variables, n, than
observations, T . This enables a greater �exibility when examining non-linear mod-
els with a larger number of potential regressors. The GUM cannot be estimated

initially. Instead, the variables are divided into J groups (we take J = 2 in this ex-
position but the analysis is easily generalized) in which the dimensions of the two

groups are strictly smaller than T . PcGets selects the �rst terminal model from the
�rst subset of variables and likewise the second terminal model from the second

subset. The 2 terminal models are combined and used as the GUM in the second

estimation stage by PcGets, resulting in a �nal terminal model. The critical values

are adjusted at each stage, starting with fairly loose values to ensure marginally rel-

evant variables are retained, and undertaking the �nal stage with stringent critical

values due to the large number of initial variables that are irrelevant. If the variables

are not orthogonal, it is recommended that the variables are `crossed-over'. This

requires the 2 groups of variables, x1;t and x2;t; to be partitioned into 2 halves, x
a
j;t

and xbj;t for j = 1; 2; and cross-paired, giving 2C4 combinations which are denoted

the GUMs for the search procedure outlined above.3

2In the case in which a unique model does not emerge and the models are mutually encompassing

and undominated, selection of the preferred model is made on the basis of selection criterion.
3The `crossed pairs' would include xa1x

b
1, x

a
1x

a
2 , x

a
1x

b
2, x

b
1x

a
2 , x

b
1x

b
2 and x

a
2x

b
2 for J = 2:
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It is also worth noting the distinction between the costs of search and the costs

of inference. The costs of search arise because the GUM is overly general and

is tested down to �nd a congruent undominated model. The costs of inference,

on the other hand, are unavoidable and are due to non-zero signi�cance levels.

They arise because the true speci�cation is unknown and must therefore be tested

for, even if the econometrician starts with the DGP. The costs of search are small

in comparison to the costs of inference, refuting many criticisms aimed at model

selection strategies.

4 A comparison of the two approaches

Whilst RETINA and PcGets have many similar characteristics, a brief look at their

selection algorithms reveals fundamentally different search strategies. A compar-

ison of the two programs is provided in Perez-Amaral, Gallo and White (2004).

This section brie�y assesses the differences between the two models, noting poten-

tial criticisms and counter arguments.

Firstly, RETINA was developed with the aim of �nding a model that has good

out-of-sample predictive ability whereas PcGets selects a congruent dominant in-

sample model, aiming to locate the DGP which is nested within the GUM. The

problem with selecting models for forecasting purposes is that forecasting mod-

els require entirely different characteristics to in-sample models. For time series

models in particular, a good forecasting model is one that is robust to breaks, see

Clements and Hendry (1999). In fact, models that are non-linear in the parameters

seem likely to be less robust than linear models because the interactions between

variables are also likely to be subject to breaks. Whilst RETINA does not insure

against non-stationarities and structural breaks the properties of RETINA as an

out-of-sample forecasting tool are shown to be successful in cross sectional appli-

cations. The problems of breaks in time series tend to be mitigated in cross sections

and so the two approaches are complementary, depending on the problem at hand.

The question regarding which non-linear terms to include depends on the de-

gree of interpretability that the modeller wishes to retain. PcGets speci�es the

GUMbased on the econometrician's knowledge and experience, institutional knowl-

edge, past evidence and economic theory. If the econometrician deems any non-

linear terms to be relevant then they should be included in the GUM. On the other

hand, RETINA automates this decision, including all transformations that have

been speci�ed by the program. There are advantages to both procedures although

a degree of economic interpretation is lost in RETINA. As the goal is out-of-sample

prediction this property is not as fundamental as it is for PcGets. The development

of the `Quick Modeller' which automatically selects the lag length for the vari-
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ables in the GUM has advanced the automatic procedures embodied in PcGets,

and automation in specifying non-linear terms in the GUM may well prove to be a

fruitful avenue of research. As there are an in�nite number of non-linear transforms

an arbitrary cut-off point will always be needed. More research into the types of

functions that best approximate economic data, such as squashing functions, poly-

nomials, Fourier transforms and many others, is also needed.

RETINA uses a speci�c-to-general approach in which variables are added into

the model sequentially whereas PcGets uses a general-to-speci�c approach that

tests downwards from the GUM. There are numerous problems with the simple-

to-general approach, see Hendry (1995) for a discussion. The speci�c-to-general

methodology refutes the ideas behind encompassing and models chosen by RETINA

could easily miss the DGP. The theory of model selection for forecasting does not

currently shed any light on whether a speci�c-to-general approach could be plau-

sible for a model aiming to predict out-of-sample, although intuition suggests a

general-to-speci�c approach would be most advantageous.

PcGets performs an exhaustive search ensuring that all paths are checked whereas

RETINA uses a selective search determined by correlations. This is particularly

relevant when there are more potential regressors than observations as the candi-

date models will depend on the order of inclusion of variables. Thus, RETINA

could miss potentially relevant variables. RETINA does emphasise the problems

of collinearity by controlling for the collinearity of variables. Obviously, an orthog-

onal speci�cation of the GUM is preferable in PcGets but the program can handle

collinearity, although there is a loss in power and the size grows. See Hendry

and Krolzig (2004) for Monte Carlo evidence on collinearity. For forecasting time

series, controlling for collinearity as RETINA does will certainly help due to the

interactions of collinearity with breaks.

RETINA uses 3 disjoint sub-samples which are used to cross validate the vari-

ables selected. The PcGets approach performs a post selection reliability check

using sub-samples to evaluate whether signi�cance is substantive or due to chance.

There is a clear size gain in the RETINA procedure due to the use of sub-samples.

However, Lynch and Vital-Ahuja (2003) show that the use of sub-samples for

model selection delivers no gain over using a smaller nominal size. This is be-

cause there is a trade-off between size and power. The power function is highly

non-linear and depends on the DGP. Thus, the key question is whether a size re-

duction for the whole sample which is equivalent to the size gain due to the use of

sub-samples will result in an increase or decrease in power. Hendry and Krolzig

(2003b) examine the case of non-overlapping sub-samples. With 3 equal partitions

as in RETINA, de�ning t0 as the full sample t-value and tj as the j
th sub-sample
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t-value:

t0 ' 0:58
3X

j=1

tj :

Hence, with marginally signi�cant sub-sample t-values of 2, the full sample t-
value will be 3.5. The use of sub-sample rules in model selection procedures does

imply that it will be more dif�cult to �nd the DGP. A direct relationship between

the average squared t-value on the full sample and sub-samples is given by:

E
�
t2j
�
' 1

J
 2

where  is the non-centrality parameter. There is a reduction in the information
content of the sub-sample t-tests which Hendry and Krolzig (2003b) refer to as the
`curse of sub-samples'.

When the data is non-stationary the results will differ. If the breakpoints are

known substantial gains could be achieved by analysing sub-sample information.

On the other hand, the best in-sample �t in one sub-sample may well differ to

that in a second sub-sample due to structural breaks. In this case the use of cross-

validation would be more appropriate for post-sample evaluation as opposed to

informing model selection.

Whilst PcGets controls the size and power of the test battery, RETINA does not

address the question of costs of search and costs of inference. Krolzig and Hendry

(2001) examine the properties of PcGets and show that, even for small samples,

the size and power of the t-tests are nearly at their theoretical levels based on a

t-test from the true model. Distinguishing between individual signi�cance levels,

�, and the overall signi�cance level of a test battery of n mis-speci�cation tests,
the overall rejection probability under the null is given by 1� (1� �)n, which can
be controlled. RETINA does not employ any hypothesis testing. As no diagnostics

are performed the �nal model could be mis-speci�ed. Variables are chosen on the

basis of out-of-sample MSPE rather than statistical tests, re�ecting the differing

objectives of the two procedures.

5 Applications

This section assesses some evidence on RETINA and PcGets. Firstly, the results

of PcGets and RETINA on the cross section data reported in Perez-Amaral, Gallo

andWhite (2004) (hereafter referred to as PGW) are summarised. Two times series

applications are also assessed, including data from Hoover and Perez (1999) and

an arti�cial DGP taken from Krolzig and Hendry (2001).

8



Figure 1: Cross sectional data including INTRA, bus; hun and sales.

5.1 Cross Sectional Data: The demand for business toll telephone ser-

vices.

PGW assess the two programs using data from a cross section of US �rms regard-

ing the demand for business toll telephone services in 1997. The authors model the

duration of intra-lata (Local Access and Transport Area) calls with the explanatory

variables including the number of business lines (bus), hunting lines (hun), sales
of the company (sales), number of employees working locally (emt), total number
of employees for the business (emh), physical size of the business proxied by ft2 of
the premises (sqft) and population of the business area location (pop). The sample
size is 1217 and the data are initially rescaled to avoid large differences in the mag-

nitudes of the variables. The data are recorded in �gures (1) and (2). Observations

are randomly assigned to the three sub-samples and the models are assessed on

the basis of two criteria; AIC and Cross-Validated Mean Square Prediction Error

(CMSPE).4

Prior to implementing the non-linear transforms, the linear model was com-

4CMSPE is computed by using two of the three sub-samples for estimation and the third for

cross-validation. The overall CMSPE is obtained by summing the MSPEs from each of the three

rotations.
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Figure 2: Cross sectional data including emt; emh; sqft and pop:

pared. Four models were computed, including a simple linear regression, two

PcGets models using the liberal and conservative strategies respectively and RETINA

in levels. The GUM consisted of a constant and the 7 explanatory variables. PGW's

results are reported in table 1.

RETINA performs best on out-of-sample prediction criterion whereas the lib-

eral PcGets model has the lowest AIC. The results highlight many problems with

the data. In comparison to the conservative strategy, RETINA is retaining hun
rather than emt, which dramatically improves CMSPE but worsens AIC. There
are two substantial outliers in emt (see �gure 2, panel a) at observations 107 and
701 which are driving the results. Rather than include intercept dummies for these

observations they are removed from the data set, reducing the sample size to 1215.5

Secondly, the non-constancy of the data is likely to lead to the problem of nonsense

regressions. A plot of INTRA when it is ordered by emt clearly shows the data
is non-constant. Whilst the linear models are unlikely to pass all diagnostics be-

cause of the non-linearities and interaction terms that are found to be signi�cant,

PcGets aims to �nd a congruent model given the GUM. The GUM should initially

5The two outliers were removed rather than dummied out to ensure the CMSPE that was com-

puted was an accurate estimate of the forecast error.
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be tested and when found to fail the diagnostics as in this case the procedure should

be to re-formulate the GUM rather than proceed with the search strategy. Hence,

the results for the linear models should be considered as hypothetical comparisons

only.

Results for the linear models excluding the 2 outliers are reported in table 2.

The models differ substantially from those reported in table 1. Firstly, the adjusted

R2 is reduced by approximately 0.22 for all models, indicating that the 2 outliers
were driving the results. In the benchmark linear model, the coef�cients on emt
and emh have changed substantially. This has a strong impact on the models cho-
sen by PcGets and RETINA. The inclusion of emh (with a t-statistic of 7 when
emt is included) is solely driven by the outliers and becomes insigni�cant when
these are removed. It was effectively acting as an intercept dummy. The signi�-

cance of emt substantially increases when the outliers are removed.
The CMSPE and AIC results now provide a much more coherent explanation

of the data. Both PcGets strategies retain the same variables. The PcGets model

marginally outperforms RETINA on both CMSPE and AIC criterion due to the in-

clusion of sqft which is highly signi�cant. Note that the RETINA model selection
procedure excludes a variable that has a t-statistic of 6.3, suggesting that the size
properties of RETINA are very stringent. The use of sub-samples controls the size

and hence achieves parsimony but it does have a detrimental effect on retaining

highly signi�cant variables.

To examine the performance of the programs when the non-linear functions

were generated, table 3 reports the models selected with the GUM including all

level 1 transformations. Including the non-linear and interaction terms improves

the performance of all models in comparison to table 2. Parsimony is lost moving

to the non-linear model for PcGets but not for RETINA. With 7 explanatory vari-

ables, the GUMwill contain 113 variables including a constant, 7 levels, 7 squares,

7 inverses, 7 squared inverses, 7C2 = 21 cross products, 7C2 = 21 cross inverses
and 7P2 = 42 ratios. However, there are numerical problems with some transfor-
mations, namely bus and hun contain some zeros and therefore ratios and inverses
cannot be computed. Hence, 27 level 1 transformations are excluded, resulting in

a GUM containing 86 variables.

RETINA retains just 4 variables including a constant, bus, emh and (bus� sqft).
PcGets retains more variables, including a number of squares, inverses products

and ratios.6 PcGets does outperform RETINA both in terms of CMSPE and AIC,

even though RETINA is designed to forecast whereas PcGets is not primarily de-

signed as a forecasting tool. The non-linear and interaction terms yield improve-

ments for both models, suggesting that a move towards models which are linear in

6Full details of all the models are available on request.
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the parameters but with non-linear functions should be considered in applications

of this type. The minimum AIC falls from 5.4 to 4.8 when moving from a linear

to non-linear speci�cation and forecast accuracy increases. The non-linear models

reported in PGW are reproduced in table 4 for comparison. The substantial fore-

casting gains exhibited in this table are reduced by removing the 2 outliers. This is

driven by the non-linear terms acting as intercept dummies for the two outliers. By

removing these, fewer non-linear terms are retained by RETINA but more variables

are retained by PcGets.

The costs of searching for a non-linear model are small for RETINA and sug-

gest that if it is unknown whether the DGP will contain non-linearities and inter-

action terms the use of RETINA will be informative. The costs of PcGets appear

slightly higher in terms of size, but this can be controlled. Monte Carlo evidence on

the size properties of PcGets when there are non-linearities is examined in section

6.

5.2 Time Series Data: Hoover and Perez (1999)

To assess both programs on time series data we apply both RETINA and PcGets to

a drawing from the Hoover and Perez (1999) data set. Hendry and Krolzig (1999)

undertake Monte Carlo experiments to assess how well PcGets recovers the DGP.

These results are also brie�y presented. The data is outlined in table 5. The DGP

for various speci�cations are given in equations (1) to (15). Note that models y20,
y70, y80 and y90 are equivalent to models y2, y7, y8, and y9 with lags eliminating
the autoregressive parameter in the error process.

y1t = 130ut (1)

y2t = 130u�t (2)

y20t = 0:75y20t�1 + 85:99ut (3)

ln y3t = 0:395 ln y3t�1 + 0:3995 ln y3t�2 + 0:00172ut (4)

y4t = 1:33�FM1DQt + 9:73ut (5)

y5t = �0:046�2GGEQt + 0:11ut (6)

y6t = 0:67�FM1DQt � 0:023�2GGEQt + 4:92ut (7)

y6At = 0:67�FM1DQt � 0:32�2GGEQt + 4:92ut (8)

y6Bt = 0:67�FM1DQt � 0:65�2GGEQt + 4:92ut (9)

y7t = 1:33�FM1DQt + 9:73u
�

t (10)

y70t = 0:75y70t�1 + 1:33�FM1DQt � 0:9975�FM1DQt�1
+9:73ut (11)
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y8t = �0:046�2GGEQt + 0:11u�t (12)

y80t = 0:75y80t�1 � 0:046�2GGEQt + 0:00345�2GGEQt�1
+0:073ut (13)

y9t = 0:67�FM1DQt � 0:023�2GGEQt + 4:92u�t (14)

y90t = 0:75y90t�1 + 0:67�FM1DQt � 0:5025�FM1DQt�1
�0:023�2GGEQt + 0:01725�2GGEQt�1 + 3:25ut (15)

where:

ut � N [0; 1] (16)

u�t = 0:75u�t�1 + ut
p
7=4: (17)

The GUM for RETINA and PcGets in levels includes a constant, variables

dated t and t � 1 of �DCOINC; �2GD; �2GGEQ; �GGFEQ; �2GGFR;
�GNPQ;�GYDQ;�GPIQ;�2FMRRA;�2FMBASE;�FM1DQ;�FM2DQ;
�FSDJ; �FY AAAC; �LHC; �LHUR; �MU; �2MO; �GCQ; and the
lagged dependent variable giving a total of 40 regressors. The sample extends

from 1960q2-1995q1, resulting in 140 observations. The GUM for RETINA and

PcGets with the level 1 transformations includes the GUM as outlined for levels

and the level 1 transformations given by the squares, inverses, and inverses of the

squares. The interaction terms including cross products, cross inverses and ratios

are excluded due to the size of the data set. In total there are 154 regressors in

the GUM for the non-linear model. Including the interaction terms would increase

the number of regressors to 334. The 154 regressors are partitioned into 4 groups

and all pairwise combinations of the groups are implemented as GUMs, resulting

in 6 combinations. The speci�c models are then combined to produce the �nal

GUM. As there is some evidence of heteroscedasticity in the errors, the selection

was checked by switching off the diagnostics to enable a clearer comparison with

RETINA. If the results differ substantially, both models are reported.

The resulting model speci�cations are reported in tables 6 to 17 for the var-

ious model speci�cations listed above. As well as assessing how well each se-

lection procedure �nds the DGP, the models are compared on information crite-

ria (AIC) and out-of-sample forecasting ability using Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE). The forecasts were de-

rived from the full-sample model speci�cation that was �tted over the �rst 100

observations and 1-step static forecasts were computed over the last 40 observa-

tions. As the model speci�cation uses ex-post information the forecast errors will

be biased downwards.

Table 18 summarises the results. `Relevant' refers to the number of relevant

variables retained and `irrelevant' refers to the number of irrelevant variables that
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are retained. Note that RETINA always retains the constant and therefore it will

always retain 1 irrelevant variable given the DGP speci�cations.

As a general overview of the results, RETINA shows no evidence of over�t-

ting and the models rarely retain any non-linear terms that are not included in the

DGP. The sub-sample cross-validation method used in RETINA is successful in

avoiding the problems of retaining too many non-linear terms. In particular, one

concern was that RETINA uses 3 sub-samples for cross-validation which would

indicate that a large sample is needed. However, even with only 140 observations,

the results are promising. One must restrict the number of non-linear transforma-

tions used in smaller sample sizes though. PcGets tends to retain more irrelevant

variables, although less are retained when the signi�cance levels are adjusted and

the diagnostics are switched off.

PcGets tends to over�t slightly, although the number of variables retained is

close to what would be expected given the size and power of the program under the

liberal and conservative strategies. Even with the substantially larger GUM for the

non-linear models, PcGets does not retain many more regressors than in the linear

case. This appears to be driven by the use of pairwise groupings for the GUM. It is

essential that the data passes diagnostics as non-linear terms may be kept to ensure

congruence, even if they are insigni�cant.

Overall, very few non-linear terms were retained. The data may need to be

standardized, for example by taking logs, as the non-linear terms are very erratic

and may be acting like dummies. Also, we have not looked at the interaction terms,

cross products, cross inverses and ratios, which may exhibit different behaviour.

To understand the results in context, the results of Hendry and Krolzig (1999)

are brie�y reported in table 19, which look at 1000 replications of the DGP with

a sample size of 100 for equations (1), (2), (10) and (14). Table 2 in Hendry and

Krolzig (1999) reports the full results. In model y7, the DGP is found 59% and 11%
of the time at 0.01 and 0.05 signi�cance levels respectively. The drawing examined

above found the DGP using the conservative strategy. The probability of including

non-DGP variables is 41% at the 0.01 signi�cance level, and accordingly, no non-

DGP variables were retained in the model. However, in the case where non-linear

variables were included in the GUM, non-DGP variables were retained. Section

6.2 examines the results of similar Monte Carlo experiments in this case.

To conclude, the results of both PcGets and RETINA are promising. RETINA

tends to under�t, which may be useful for forecasting purposes as parsimonious

models may be more robust. This is not necessarily the case, a less parsimonious

model could be made robust by differencing for example. Simplicity in itself is

not a necessary element of forecasting models but robustness is. Most importantly,

RETINA does not retain numerous irrelevant non-linear terms which is useful if

testing whether a model may contain non-linear functions or otherwise. The prop-
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erties of PcGets are well documented and results reported here accord with the

Monte Carlo evidence on PcGets.

5.3 Arti�cial Time Series Data: Krolzig and Hendry (2001)

As well as examining the DGP outlined in Hoover and Perez (1999), a white noise

DGP is appraised. We follow the DGP outlined in Krolzig and Hendry (2001) in

which the orthogonality of regressors enables an easier analysis and the problems

of heteroscedasticity that arise in the Hoover and Perez DGP are avoided. The

DGP is given by:

yt =

5X

k=1

�k;0xk;t + "t; "t � IN [0; 1] (18)

xt = vt; vt � IN10 [0; I10] for t = 1; :::; T . (19)

where �1;0 = 2=
p
T ; �2;0 = 3=

p
T ; �3;0 = 4=

p
T ; �4;0 = 6=

p
T ; �5;0 = 8=

p
T :

Two sample sizes are examined, including T = 100 and T = 1000: Because of
orthogonality, the non-zero population t-values are 2,3,4,6 and 8.
Prior to including the non-linear transformations, the levels GUM is an ADL(1,1)

model which includes as non-DGP variables the lagged endogenous variable yt�1,
the strongly exogenous variables x6;t; :::; x10;t and the 1

st lags of all regressors:

yt = �0;1yt�1 +
10X

k=1

1X

i=0

�k;ixk;t�i + �0;0 + ut; ut � IN
�
0; �2

�
(20)

In equation (20) 17 out of the 22 regressors are nuisance.

We then examine the case in which the non-linear terms and interaction terms

are included in the GUM. Due to the number of level 1 regressors that will be

generated, we discard the non-linear transformations for the strongly exogenous

variables x6;t; :::; x10;t: The GUM is given by:

yt = �0;1yt�1 + �0;0 +

10X

k=1

1X

i=0

�k;ixk;t�i +

5X

k=1

1X

i=0

k;ix
2
k;t�i

+

5X

k=1

1X

i=0

�k;i

�
1

xk

�

t�i

+

5X

k=1

1X

i=0

�k;i

�
1

x2k

�

t�i

+
4X

j=1

5X

l=j+1

1X

i=0

�k;i (xjxl)t�i +
4X

j=1

5X

l=j+1

1X

i=0

�k;i

�
1

xjxl

�

t�i

+

4X

j=1

5X

l=j+1

1X

i=0

�k;i

�
xj
xl

�

t�i

+ ut; ut � IN
�
0; �2

�
(21)
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In equation (21) there are a total of 112 regressors, 107 of which are nuisance.

These include a constant, the lagged dependent variable, 10 `levels' variables and

their lags and the non-linear terms including 5 squared regressors, 5 inverses, 5

squared inverses, 10 cross products, 10 cross inverses and 10 ratios, plus the lags

of all non-linear terms. Note that RETINA will also include the non-linear trans-

formations of the lagged dependent variable, resulting in 18 additional regressors.

Additional terms could be included by implementing all 5P2 ratios. For the sample
size of 100, PcGets will be run using 6 GUMs. The 112 regressors will be parti-

tioned into 4 groups of 28 and all possible pairwise combinations of these groups

shall be implemented as the GUM. The resulting speci�c models are then merged

and used as the GUM for the �nal search procedure.

Table 20 compares the results of PcGets and RETINA using the GUM outlined

in equation (20). A linear OLS model is included as a benchmark and the results of

both the liberal and conservative strategies of PcGets are reported. Evaluating the

models in-sample, the PcGets liberal strategy delivers the model with the lowest

AIC, both for T = 100 and T = 1000. This model also retains the most relevant
variables (4 out of 5 for both sample sizes). A summary of the number of relevant

and irrelevant variables that are retained is given in table 22. RETINA delivers a

more parsimonious model, retaining just x4;t and x5;t for both sample sizes.
None of the models exactly identify the DGP but all models retain the two most

signi�cant variables in the DGP. All of the coef�cient estimates for x5;t differ to
their populations values by more than 1 standard error (other than the OLS model

for T = 100), with smaller estimates for sample size 100 and larger estimates than
the population values for sample size 1000. Only the liberal strategy of PcGets for

the large sample size picks up x3;t with a population t-value of 4, which is some-
what surprising. Monte Carlo evidence from Krolzig and Hendry (2001) shows

that, for � = 0:05, � = 0:01 and T = 100, the probability of including x3;t with a
population t-value of 4 lies above 95%.7

As RETINA is primarily a forecasting tool, the RMSE and the MAPE is also

reported. The model speci�cation derived from the full sample was used, but the

coef�cients were re-estimated over the in-sample period (i.e. T = 67 and 667) and
1-step static forecasts were computed over the last third of the sample. Note that

this is a purely theoretical exercise. A true forecasting model would be developed

using only ex-ante information. Our forecast errors will be biased downwards

because the model speci�cations were chosen ex-post. RETINA does use out-

of-sample forecasts when looking at the sub-sample local best models. However,

to ensure a fair comparison the forecasts from the �nal best model delivered by

7� is the signi�cance level of the simpli�cation tests whereas � is the signi�cance level of the

diagnostic tests.

16



RETINA are reported.

For a sample size of 100, the liberal and conservative strategies of PcGets per-

form best on RMSE and MAPE respectively. For the larger sample size of 1000,

RETINA delivers the best forecasts. Note that there is no lagged information in the

DGP and so forecasting the DGP given in equation (18) will be dif�cult unless the

contemporaneous exogenous variables are assumed to be known.

Examining the case in which non-linear terms are included, the results of test-

ing from the GUM outlined in equation (21) are reported in table 21. On the basis

of minimum AIC, the liberal strategy of PcGets produces the best model at both

sample sizes. Interestingly, more variables are retained in the smaller sample size.

3 non-linear terms are retained but x3;t is not retained. For the larger sample, only 4
variables are retained including 1 non-linear term. RETINA only retains the most

signi�cant variable (population t-value of 8) at both sample sizes. Comparing
this with table 20, the inclusion of level 1 transformations results in x4;t not being
retained in the selected model.

With regard to forecasting properties, for a sample size of 1000, the conserva-

tive strategy of PcGets delivers the lowest RMSE and the smallest MAPE. For the

smaller sample size, the liberal strategy of PcGets delivers the lowest RMSE but

RETINA produces the best forecasts in terms of MAPE.

To summarize, RETINA tends to select more parsimonious models than PcGets.

This is driven by the use of disjoint sub-samples and the search strategy stage in

which variables from the local best model are sequentially added in and chosen on

the basis of AIC. Note that AIC does tend to overselect asymptotically. RETINA

did not retain any non-linear transformations, suggesting that the costs of using

such a model when the DGP is linear are very small. As such, the program is

useful in indicating whether a non-linear model should be considered when mod-

elling. PcGets tended to retain more relevant variables than RETINA. The costs

of search are easily computed for PcGets. The number of variables retained in

selection t-testing is given by:

n =
kP
i=0

i
k!

i! (k � i)!�
i (1� �)k�i = ka:

Hence, when � = 0:05; n = 1:1 for k = 22 but n = 5:6 for k = 112. A
larger GUM (due to the inclusion of non-linear terms) will lead to more irrelevant

variables being retained. Campos, Hendry and Krolzig (2003) observe the need

for signi�cance levels to vary with both sample size and the number of candidate

variables. One interesting feature of the results is that more variables were retained

in the smaller sample size, suggesting that small sample properties outweigh the

problems of retaining irrelevant variables on average.
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6 Monte Carlo Results for Non-Linearmodels using PcGets

Whilst the above experiments are informative for the individual problems assessed,

a formal evaluation of the properties of non-linear model selection is needed. This

section aims to measure the `size' and `power' properties of the PcGets model se-

lection process along the lines of Krolzig and Hendry (2001) when non-linear terms

enter the GUM. Evidence in section 5 suggests that the inclusion of a substantial

number of non-linear terms in the GUM may result in over-parameterization. This

could be driven by `inference fragility', whereby the model is sensitive to keeping

one variable which may have low signi�cance. Once the marginal variable is re-

moved the signi�cance of other correlated variables tends to fall. Note that some

non-linear terms may be acting like intercept dummies. There are a multitude of

non-linear and interaction terms that could be examined but these experiments con-

centrate on those terms that produce the level 1 transformations for RETINA.

6.1 Design of the Monte Carlo

The design of the Monte Carlo experiment is kept simple for tractability and is

outlined in section 5.3. Three cases are analysed below. These include the linear

DGP and GUM given in equations (18), (19) and (20). This experiment is identical

to Krolzig and Hendry (2001) and the results are reported for comparison with the

non-linear models. Secondly, we retain the linear DGP in equations (18) and (19)

but assess PcGets on a non-linear GUM similar to equation (21). The inverses of

the squares are excluded from the GUM as the inverse of the square of a WN pro-

cess with mean 0 will contain very large values, resulting in numerical problems.

We also exclude the 1st lags of the level 1 transformations to reduce the parame-

ters in the GUM. The GUM is given in equation (22) and there are a total of 62

regressors, 57 of which are nuisance.

yt = �0;1yt�1 + �0;0 +
10X

k=1

1X

i=0

�k;ixk;t�i +
5X

k=1

k;tx
2
k;t

+
5X

k=1

�k;t

�
1

xk

�

t

+
4X

j=1

5X

l=j+1

�k;t (xjxl)t

+
4X

j=1

5X

l=j+1

�k;t

�
1

xjxl

�

t

+
4X

j=1

5X

l=j+1

�k;t

�
xj
xl

�

t

+ ut; (22)

ut � IN
�
0; �2

�
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Finally, we assess the properties of the PcGets model selection procedure when

there are non-linearities and interaction terms in the DGP. Maintaining orthogonal-

ity of the regressors enables easier analysis and so, with 5 white noise processes,

the non-linear terms include a square and 2 cross products, resulting in the DGP

given in equations (23) and (24).

yt =
5X

k=1

�k;0xk;t + �6;0 (x1)
2
t + �7;0 (x2x3)t + �8;0 (x4x5)t + "t; (23)

"t � IN [0; 1]

xt = vt; vt � IN5 [0; I5] for t = 1; :::; T . (24)

We can determine the �0s by specifying the t-values and backing out the �0s due to
orthogonality. A t-test of H0 : �k = 0 versus H1 : �k 6= 0 is given by:

tk =
b�k
b��k

:

Because of orthogonality, b�k = (X 0X)�1 (X 0y) = b�xky=b�2xk and b�
2
�k
= b�2" (X 0X)�1 =

b�2"=
�
Tb�2xk

�
: This implies:

tk =
b�k
b��k

=
b�kq

b�2"=
�
Tb�2xk

� =
p
T b�k

b�xk
b�"

:

As b�" = 1 and b�xk for xk; t-values of 2,3,4,6 and 8 result in �1;0 = 2=
p
T ;

�2;0 = 3=
p
T ; �3;0 = 4=

p
T ; �4;0 = 6=

p
T ; and �5;0 = 8=

p
T respectively:

For �6;0 we need to determine b�2xk : This is given by:

b�2xk = E

"
TX

t=1

(x1t)
2

#2
= 3T 2b�4xk

) tk =
p
3T b�k

and so we shall set �6;0 = 4=
p
3T for a t-value of 4:

For �7;0 and �8;0:

b�xkxj = E

"
TX

t=1

(x1tx2t)

#2
= T

) tk =
p
T b�k
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Figure 3: Non-linear transformations of a white noise process including the square,

the cross product of two WN processes, the inverse and the ratio of two WN pro-

cesses.

and so we shall set �7;0 = 3=
p
T and �8;0 = 4=

p
T for t-values of 3 and 4

respectively. Note that various t-values were assessed for the non-linear terms but
were not reported for brevity.

To characterize the non-linear terms, �gure 3 records the square of a WN pro-

cess, the cross product of two WN processes, the inverse and the ratio of two WN

processes in panels a to d respectively.

6.2 Results for the Monte Carlo Experiments

Prior to reporting the results for the non-linear models, results from Krolzig and

Hendry (2001) are brie�y reported. As noted in their paper, the portmanteau and

hetero-x diagnostic tests do not exhibit satisfactory behaviour and are therefore ex-
cluded from the test battery that PcGets uses. The empirical distributions of the test

statistics are unaffected by strongly exogenous nuisance regressors. Earlier exper-

iments suggested that the calibration of the heteroscedasticity tests was poor but a

correction for degrees of freedom leads to a substantial improvement, see Hendry
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and Krolzig (2003a).8 The DGP contains 5 variables and the GUM contains 22.

The number of replications, M , is 1000. An overview of the selection proba-
bilities is given in table 23 along with the results for the non-linear experiments.

DGP found refers to the probability that the exact DGP is found. The liberal strat-

egy �nds the DGP marginally more often than the conservative strategy, which has

more dif�culty retaining signi�cant variables with t-statistics of 2 or 3. The smaller

sample size has a higher probability of �nding the DGP. The liberal strategy has

a much higher probability of retaining non-DGP variables compared to the con-

servative strategy. The trade-off is that the probability that a DGP variable is not

included is higher for the conservative strategy. The �nal 2 rows refer to whether

the DGP and the speci�c model is dominated. The probability that the speci�c

model is dominated by the true model is almost 0 for all models, suggesting that

the models derived by PcGets are good representations of the true model.

Table 24 records the selection probabilities for the non-central t-statistics given
a linear GUM and DGP, along with the results from a simulated model when the

DGP is known. There is very little difference in selection probabilities between

searching for the DGP using PcGets and starting with a known DGP. There is a

small difference for t-values of 2 with small sample sizes when PcGets actually
has a higher retention rate than starting with the DGP. The last 4 columns record

the average coef�cients with standard errors in parentheses. All of the speci�c

model coef�cients lie within 1 standard error of the true coef�cients, other than

the conservative model for a t-value of 2 at T = 1000. The results are promising
and show that the costs of search are small compared to the costs of inference.

Figure 4 plots the probability of retaining variables in the GUM. The size for all

non-DGP variables is fairly constant all probabilities lie well below 0.1, suggesting

that starting with an overly general GUM will not be costly in the linear model.

We next examine the case using the same DGP but the GUM is extended to

include non-linear terms. Results are recorded in table 25 and �gure 5 plots the

retention probabilities of the variables in the GUM.9 The results are encouraging.

The inclusion of a substantial number of non-linear and interaction terms does

not dramatically alter the results and does not lead to the problem of `inference

fragility' which was a possibility. The exact DGP is found less often than the lin-

ear case in accordance with a larger GUM (62 variables as opposed to 22 variables).

Also, the probability of not retaining a DGP variable increases, as does the proba-

bility of including non-DGP variables. A sensible way to proceed when analysing

8Diagnostic tests are not reported but can be found in Krolzig and Hendry (2001) and Hendry and

Krolzig (2004).
9The number ordering on the x-axis proceeds in the order; lagged dependent variable, levels

and their lags, squares, inverses, cross products, cross inverses, ratios and �nally the constant. The

interaction terms are ordered x1x2; x1x3;..., x2x3;... etc. in logical order.
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Figure 4: Probability of retaining the variable in the speci�c model, linear GUM

and linear DGP.

this type of problem would be to tighten signi�cance levels in direct correlation

to the number of variables in the GUM. See Campos, Hendry and Krolzig (2003)

for a discussion on optimal selection strategies. There is no evidence of different

behaviour for non-linear terms in which a large number of variables are retained

due to their interdependence.

Finally we assess the case in which there are non-linear terms contained in the

DGP. Results are recorded in table 26 and �gure 6 plots the retention probabilities

as before. The non-linear terms in the DGP are numbered 22 for x21; 36 for x2x3
and 41 for x4x5. The results are very similar to those for the linear DGP, although
the probability that a DGP variable is not retained is higher. Comparing the non-

linear terms with t-statistics of 4 to the linear variable with a t-statistic of 4, there
does appear to be some differences between the regressors, with the cross product

having the highest retention probability. Comparing the results to simulations given

the known DGP, for smaller t-values there are some costs of search. However, the
behaviour of the non-linear variables is not dramatically different to that of the

linear variables.

The Monte Carlo evidence suggests that we can treat problems that are non-

linear in the variables (but linear in the parameters) in exactly the same way as
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Figure 5: Probability of retaining the variable in the speci�c model, non-linear

GUM and linear DGP.

we treat linear problems although the size of the tests will need to be controlled

if starting with an overly general GUM. There is no strong evidence of inference

fragility but both the cross section and time series applications suggest that certain

types of non-linear functions may exhibit different behaviour. The results presented

in this section are entirely dependent on the DGPs examined and a further avenue

of research would be to assess the Monte Carlo evidence for non-linear models that

are not based on white noise processes.

7 Conclusions

The aim of the paper was to assess two automatic model selection procedures,

PcGets and RETINA, and undertake a horse race between the two programs to

see how they perform on both cross section and time series data. The results are

promising; automated methods of model selection have a high level of success and

should be dominant in econometric modelling in the future. RETINA is a method

of model selection designed primarily to forecast and its predominant feature is the

parsimony it can achieve from a highly over-parameterized GUM. PcGets aims to
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Figure 6: Probability of retaining the variable in the speci�c model, non-linear

GUM and non-linear DGP.

�nd a congruent undominated representation of an overly general model. RETINA

achieves parsimony via the use of 3 disjoint sub-samples and in all applications

considered delivered a more parsimonious model than PcGets. The trade-off is

that it often fails to retain highly signi�cant variables. Both programs are useful for

modelling and forecasting. The ease with which the signi�cance of non-linearities

can be tested with relatively low cost is most useful. The cross section results high-

light the need to check for outliers. Non-linear functions may simply be re�ecting

a few outliers and vastly different results may be obtained by removing these ob-

servations. The Monte Carlo evidence shows that the size and power properties of

PcGets does not differ substantially due to the inclusion of non-linear functions of

white noise processes, although one must control the size. Further investigation

into the types of non-linear functions that should be tested for is needed.
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Linear Model
(Benchmark)

PcGets
(Liberal)

PcGets
(Conservative)

RETINA
(Level 0 regressors)

CMSPE 909.88 896.11 903.08 770.86

AIC 5.443 5.440 5.446 5.459

Adj. R2 0.603 0.603 0.600 0.595

Parameters 8 6 5 5

Const �3:945
(0:717)

�3:907
(0:678)

�3:278
(0:649)

�4:086
(0:684)

Bus 2:508
(0:207)

2:492
(0:183)

2:579
(0:182)

2:571
(0:185)

Hun 0:089
(0:031)

0:091
(0:030)

0:083
(0:030)

Sales �7:972
(41:852)

Emt 0:472
(0:093)

0:472
(0:093)

0:458
(0:093)

Emh 0:930
(0:132)

0:933
(0:130)

0:921
(0:131)

1:438
(0:085)

Sqft 0:450
(0:061)

0:450
(0:061)

0:462
(0:061)

0:481
(0:061)

Pop 0:033
(0:184)

Table 1: RETINA and PcGets: Linear models from PGW.

Linear Model
(Benchmark)

PcGets
(Lib and Cons)

RETINA
(Level 0 regressors)

CMSPE 772.595 732.852 754.414

AIC 5.390 5.387 5.417

Adj. R2 0.385 0.386 0.366

Parameters 8 5 4

Const �3:365
(0:709)

�3:403
(0:667)

�2:044
(0:641)

Bus 2:374
(0:202)

2:301
(0:178)

2:461
(0:179)

Hun 0:096
(0:031)

0:096
(0:029)

0:106
(0:029)

Sales �16:017
(41:23)

Emt 1:682
(0:179)

1:522
(0:122)

1:730
(0:119)

Emh �0:429
(0:360)

Sqft 0:389
(0:061)

0:380
(0:060)

Pop 0:039
(0:179)

Table 2: RETINA and PcGets: Linear models for PGW excluding 2 outliers.
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PcGets
(Liberal)

PcGets
(Conservative)

RETINA
(AIC)

CMSPE 694.315 719.138 722.839

AIC 4.799 4.812 5.258

Adj. R2 0.666 0.661 0.460

Parameters 33 29 4

Table 3: RETINA and PcGets: Non-linear models from PGW excluding two out-

liers.

PcGets
(Liberal)

PcGets
(Conservative)

RETINA
(AIC)

RETINA
(CMSPE)

CMSPE 507.42 498.63 572.01 518.00

AIC 4.839 4.839 4.932 4.947

Adj. R2 0.785 0.784 0.757 0.756

Parameters 19 18 9 9

Table 4: RETINA and PcGets: Non-linear models from PGW.

Variable
Times differenced
for Stationarity

Name

Index of four coincident indicators 1 DCOINC

GNP price de�ator 2 GD

Government purchases of goods and services 2 GGEQ

Federal purchases of goods and services 1 GGFEQ

Federal government receipts 2 GGFR

GNP 1 GNPQ

Disposable personal income 1 GYDQ

Gross private domestic investment 1 GPIQ

Total member bank reserves 2 FMRRA

Monetary base (federal reserve bank of St. Louis) 2 FMBASE

M1 1 FM1DQ

M2 1 FM2DQ

Dow Jones stock price 1 FSDJ

Moody's AAA corporate bond yield 1 FYAAAC

Labour force (16 years+, civilian) 1 LHC

Unemployment rate 1 LHUR

Un�lled orders (manufacturing, all industries) 1 MU

New orders (manufacturing, all industries) 2 MO

Personal consumption expenditure 1 GCQ

Table 5: Hoover and Perez (1999) data set. Sample: 1959q1-1995q1.
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y1
Linear Models Non-linear Models

PcGets
Conservative

RETINA
PcGets

Conservative
PcGets Cons.
exc. diags

RETINA

Parameters retained 3 2 8 1 2

Adj. R2 0.2836 0.2174 0.3915 0.2210 0.2174

AIC 9.9771 10.0585 9.8527 10.0511 10.0585

b� 145.17 151.74 134.08 151.71 151.74

RMSE 150.3 153.4 130.74 153.4 153.4

MAPE 165.36 166.26 326.8 164.59 166.26

Const �1:9981
(12:82)

�1:9981
(12:82)

�yt�1 �0:4395
(0:073)

�0:4728
(0:075)

�0:3756
(0:068)

�0:4713
(0:075)

�0:4728
(0:075)

�DCOINCt �6566:05
(2173:65)

�DCOINCt�1 7319:924
(2430:58)

7857:69
(2465:68)

�2GGEQt�1 �3002:94
(1005:92)

�GNPQt�1 �8491:573
(2311:95)

�8024:86
(2241:43)

�GCQt 8644:30
(1969:64)h

1
(�2GGEQ)2

i
t�1

�0:00001
(0:0000)

(�FSDJ)2t �3837:43
(1525:09)

Table 6: Results for Hoover and Perez (1999) Model 1.
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y3
Linear Models Non-linear Models

PcGets
Conservative

RETINA
PcGets

Conservative
RETINA

Parameters retained 2 2 2 2

Adj. R2 0.2296 0.2156 0.2527 0.2156

AIC -12.7193 -12.7054 -12.7498 -12.7054

b� 0.0017 0.0017 0.0017 0.0017

RMSE 0.0017 0.0017 0.0017 0.0017

MAPE 142.47 134.20 134.86 134.20

Const �0:00002
(0:0001)

�0:00002
(0:0001)

y3t�1 �0:46216
(0:075)

�0:4728
(0:076)

�0:4609
(0:074)

�0:4728
(0:076)

�GNPQt�1 �0:0213
(0:013)

�2GD �0:0930
(0:035)

Table 8: Results for Hoover and Perez (1999) Model 3.
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y4
Linear Models Non-linear Models

PcGets
Conservative

RETINA
PcGets

Conservative
RETINA

Parameters retained 5 3 8 2

Adj. R2 0.5716 0.4384 0.6195 0.4158

AIC 4.8445 5.1014 4.7462 5.1338

b� 11.075 12.6807 10.437 12.933

RMSE 11.966 13.354 10.930 13.600

MAPE 425.66 340.38 287.11 295.08

Const 2:3182
(1:406)

0:1016
(1:129)

y4t�1 �0:4192
(0:074)

�0:4183
(0:070)

�FM1DQt 870:692
(93:893)

843:633
(82:46)

1008:74
(94:73)

840:699
(84:10)

�FM1DQt�1 419:812
(113:632)

326:448
(109:45)

�GNPQt�1 �678:563
(178:411)

�305:678
(119:5)

�767:272
(171:73)

�DCOINCt�1 572:174
(187:244)

671:472
(180:31)

�2FMBASEt �482:087
(146:27)�

1
�FY AAAC

�
t

0:00896
(0:00332)h

1
(�2GGEQ)2

i
t�1

�0:000
0:000

[t=-2.44]

Table 9: Results for Hoover and Perez (1999) Model 4.
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y5
Linear Models Non-linear Models

PcGets Cons
(with diags)

PcGets Cons
(without diags)

RETINA
PcGets

Conservative
RETINA

Parameters retained 8 6 2 10 2

Adj. R2 0.7951 0.7831 0.6984 0.8188 0.6984

AIC -3.5549 -3.5114 -3.2096 -3.6643 -3.20964

b� 0.1644 0.1692 0.1995 0.1547 0.199506

RMSE 0.1885 0.1984 0.1949 0.1814 0.1949

MAPE 67.448 69.447 59.323 79.089 59.323

Const �0:1228
(0:017)

�0:1304
(0:028)

�0:1228
(0:017)

�GGFEQt �6:861
(1:440)

�7:4972
(1:463)

�15:7400
(0:876)

�6:2898
(1:375)

�15:7400
(0:876)

�GGFEQt�1 �6:203
(1:513)

�6:2784
(1:556)

�7:1747
(1:454)

�2GGEQt �22:207
(2:953)

�20:754
(2:993)

�23:265
(2:827)

�2GGEQt�1 �5:017
(1:430)

�5:3250
(1:465)

�6:0158
(1:357)

�GNPQt�1 �29:453
(4:886)

�18:025
(1:954)

�18:333
(3:347)

�GPIQt�1 4:025
(0:717)

2:6698
(0:471)

1:6698
(0:542)

�FM1DQt �2:661
(1:126)

�DCOINCt�1 16:086
(3:590)

�LHURt�1 1:3465
(0:477)

�GCQt�1 10:189
(3:757)�

�2MO
�2
t�1

12:659
(5:470)

Table 10: Results for Hoover and Perez (1999) Model 5.
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y6
Linear Models Non-linear Models

PcGets
Conservative

RETINA
PcGets

Conservative
RETINA

Parameters retained 5 3 8 2

Adj. R2 0.5695 0.4356 0.6173 0.4126

AIC 3.4829 3.7398 3.3856 3.7728

b� 5.6065 6.4193 5.2859 6.5491

RMSE 6.0419 6.748 5.5183 6.8675

MAPE 429.71 347.76 348.24 299.29

Const 1:1082
(0:712)

�0:0217
(0:572)

y6t�1 �0:4180
(0:074)

�0:4172
(0:070)

�FM1DQt 434:616
(47:515)

424:420
(41:75)

504:273
(47:965)

422:924
(42:59)

�FM1DQt�1 214:150
(57:482)

167:099
(55:437)

�GNPQt�1 �348:077
(90:238)

�155:817
(60:48)

�392:799
(86:908)

�DCOINCt�1 286:058
(94:755)

336:151
(91:290)

�2FMBASEt �243:164
(74:075)�

1
�FY AAAC

�
t

0:0045
(0:002)h

1
(�2GGEQ)2

i
t�1

�0:000
(0:000)

[t=-2.44]

Table 11: Results for Hoover and Perez (1999) Model 6.
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Model Linear Models Non-linear Models

PcGets
(Conservative)

RETINA
PcGets
(Conservative)

RETINA

y1 [0] Relevant
Irrelevant

-
3

-
2

-
8 (1)

-
2

y2 [0] Relevant
Irrelevant

-
0

-
2

-
0

-
2

y20 [1] Relevant
Irrelevant

0
0

0
2

0
0

0
2

ln y3 [1]* Relevant
Irrelevant

1
1

1
1

1
1

1
1

y4 [1] Relevant
Irrelevant

1
4

1
2

1
7

1
1

y5 [1] Relevant
Irrelevant

1 (1)
7 (5)

0
2

1
9

0
2

y6 [2] Relevant
Irrelevant

1
4

1
2

1
7

1
1

y6A [2] Relevant
Irrelevant

2
5

1
2

0
7

1
1

y6B [2] Relevant
Irrelevant

2
6

1
2

2
7

1
1

y7 [1] Relevant
Irrelevant

1
0

1
1

1
2

1
1

y70 [3] Relevant
Irrelevant

2
6

2
1

2
10

1
1

y8 [1] Relevant
Irrelevant

1
7

0
2

1
8

0
2

y80 [3] Relevant
Irrelevant

3
7

1
3

3
7

1
2

y9 [2] Relevant
Irrelevant

1
0

1
1

1
0

1
1

y90 [5] Relevant
Irrelevant

1
2

1
1

1
5

1
1

Table 18: RETINA and PcGets: Summary of results for DGP based on Hoover
and Perez (1999). [.] denotes the number of variables in the DGP. (.) denotes results for
models in which the diagnostics were switched off. * indicates that the second lag of the

dependent variable in the DGP was not included in the GUM.
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Linear Model
(Benchmark)

PcGets
(Liberal)

PcGets
(Conservative)

RETINA
(Level 0 regressors)

Sample 100 1000 100 1000 100 1000 100 1000

Parameters 22 22 7 5 5 3 3 3

Adj. R2 0.5775 0.1211 0.5656 0.1208 0.5164 0.1076 0.4415 0.1018

AIC 0.2752 0.0068 0.1787 -0.0097 0.2673 0.0033 0.3921 0.0098

b� 1.0427 0.9926 1.0572 0.9927 1.1155 1.0002 1.1988 1.0034

RMSE 1.3008 1.0245 1.0873 1.0173 1.1423 0.9945 1.2539 0.9919

MAPE 149.81 172.92 111.34 181.36 105.48 114.42 126.9 111.8

Const. �0:2075
(0:128)

0:0140
(0:032)

�0:3169
(0:110)

�0:2730
(0:115)

�0:2383
(0:122)

0:0086
(0:032)

Yt�1 �0:1492
(0:108)

�0:0165
(0:032)

x1;t 0:2139
(0:101)

0:0954
(0:033)

0:2189
(0:093)

0:0890
(0:032)

0:0828
(0:032)

x1;t�1 �0:1244
(0:103)

�0:0489
(0:033)

x2;t 0:1881
(0:125)

0:0672
(0:032)

0:3687
(0:103)

0:3316
(0:108)

x2;t�1 0:2666
(0:123)

�0:0018
(0:032)

0:2563
(0:105)

x3;t 0:2532
(0:136)

0:0935
(0:032)

0:0974
(0:032)

x3;t�1 0:1653
(0:141)

�0:0681
(0:032)

x4;t 0:6704
(0:124)

0:1738
(0:030)

0:7328
(0:114)

0:1703
(0:030)

0:6959
(0:117)

0:1675
(0:030)

0:7172
(0:126)

0:1687
(0:030)

x4;t�1 0:4667
(0:150)

�0:0137
(0:030)

0:3181
(0:115)

0:2679
(0:117)

x5;t 0:7223
(0:104)

0:2947
(0:030)

0:6393
(0:093)

0:2970
(0:030)

0:6881
(0:098)

0:2864
(0:030)

0:6889
(0:105)

0:2834
(0:030)

x5;t�1 �0:0046
(0:124)

�0:0244
(0:032)

x6;t �0:1798
(0:115)

0:0131
(0:033)

x6;t�1 �0:0681
(0:111)

0:0369
(0:033)

x7;t 0:0532
(0:142)

�0:0228
(0:032)

x7;t�1 �0:0799
(0:139)

�0:0899
(0:033)

�0:0905
(0:032)

x8;t �0:0080
(0:115)

�0:0265
(0:031)

x8;t�1 0:0557
(0:116)

�0:0313
(0:031)

x9;t 0:1389
(0:123)

0:0169
(0:032)

x9;t�1 0:0896
(0:126)

0:0293
(0:032)

x10;t 0:1830
(0:123)

0:0275
(0:031)

x10;t�1 �0:1021
(0:128)

0:0312
(0:032)

Table 20: RETINA and PcGets: linear models for Krolzig and Hendry (2001).

42



PcGets
(Liberal)

PcGets
(Conservative)

RETINA
(Level 1 regressors)

Sample 100 1000 100 1000 100 1000

Parameters 8 4 3 3 2 2

Adj. R2 0.6009 0.1154 0.4763 0.1076 0.2626 0.0744

AIC 0.1031 -0.0045 0.3277 0.0033 0.6602 0.0388

b� 1.0133 0.9958 1.1608 1.0002 1.3774 1.0186

RMSE 1.1126 1.0173 1.1973 1.0104 1.3601 1.0400

MAPE 117.89 179.25 111.47 165.15 99.46 168.33

Const. �0:1154
(0:139)

0:0140
(0:032)

x1;t 0:0828
(0:032)

x2;t 0:4008
(0:100)

x2;t�1 0:3575
(0:104)

x3;t 0:4102
(0:127)

x4;t 0:7832
(0:108)

0:1695
(0:030)

0:7152
(0:121)

0:1675
(0:030)

x4;t�1 0:2915
(0:108)

x5;t 0:6410
(0:090)

0:2799
(0:030)

0:7560
(0:102)

0:2864
(0:030)

0:7228
(0:120)

0:2768
(0:031)

x7;t�1 �0:0904
(0:032)

(x1)
2
t�1 �0:1450

(0:044)�
1

x3x5

�
t

0:0088
(0:004)�

x2
x3

�
t�1

0:0227
(0:007)

(x2x5)t�1 �0:0889
(0:030)

Table 21: RETINA and PcGets: Non-linear models for Krolzig and Hendry (2001).
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PcGets
(Lib)

PcGets
(Cons)

RETINA

Sample 100 1000 100 1000 100 1000

Linear Models

Total variables retained 7 5 5 3 3 3

Relevant variables retained 4 4 3 3 2 2

Irrelevant variables retained 3 1 2 0 1 1

Non-Linear Models

Total variables retained 8 4 3 3 2 2

Relevant variables retained 3 2 3 3 1 1

Irrelevant variables retained 5 2 0 0 1 1

Table 22: RETINA and PcGets: Summary of results for DGP based on Krolzig and

Hendry (2001).
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