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Abstract

Drug repurposing technologies are growing in number and maturing. However, comparison to each other and to
reality is hindered due to lack of consensus with respect to performance evaluation. Such comparability is necessary
to determine scientific merit and to ensure that only meaningful predictions from repurposing technologies carry
through to further validation and eventual patient use. Here, we review and compare performance evaluation
measures for these technologies using version 2 of our shotgun repurposing Computational Analysis of Novel Drug
Opportunities (CANDO) platform to illustrate their benefits, drawbacks, and limitations. Understanding and using
different performance evaluation metrics ensures robust cross platform comparability, enabling us to continuously
strive towards optimal repurposing by decreasing time and cost of drug discovery and development.

1 Introduction

Drug repurposing technologies allow us to predict new uses for previously approved drugs [1]. While the drug
discovery process normally takes years of work and costs billions of dollars, drug repurposing can lower barriers to
entry of a drug to the market [2,3]. The ultimate goal of repurposing research is to decrease time and cost of drug
discovery and development by accurately predicting clinical utility and using the predictions to improve health and
quality of life. Successful instances of drug repurposing have been based on anecdotal evidence, in vitro and in

vivo screening, and discovery of serendipitous positive effects in clinical trials or analysis of patient health records
post-market [4]. Drug repurposing technologies aim to make this process systematic and skip intermediate steps
(Figure 1).

Specific goals of drug repurposing differ based on their eventual utility. For a pharmaceutical company,
a specific goal may be to find a single blockbuster drug which changes the default treatment of a condition
shared by millions, for example, hypertension [5]. A basic science drug repurposing approach at an academic
institution may focus more on public benefit and less on monetary outcomes, for instance, to find a treatment
for an orphan or rare disease [6]. Less defined end goals (high risk) enable researchers to systematically disrupt
the entire drug discovery and development process (high reward). Drug repurposing technologies such as our
Computational Analysis of Novel Drug Opportunities (CANDO) platform [7–17] may be used to systematically
predict the relative efficacy of every drug in its comprehensive library to treat every disease/indication, minimizing
risks and amplifying rewards. In conjunction with mechanistic basic science analyses, these platforms may be used
to better understand the science of drug behavior and thereby model reality with greater fidelity.

Distinctions between non-computational and computational drug repurposing technologies are blurring. Ex-
periments designated as computational may rely on data collected in a bench environment such as protein-ligand
binding energy measurement and gene expression studies [18]. Bench experiments may have used computational
tools, such as homology modeling or molecular docking software [19], and computational studies are often exter-
nally validated or supplemented by in vitro and in vivo laboratory experiments [20]. This review and associated
analyses focus largely on performance evaluation of computational technologies; however the metrics discussed
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herein are applicable broadly to drug repurposing, i.e., any technology that generates novel therapeutic repurposing
candidates by benchmarking drug-indication association predictions.

Most previous reviews of drug repurposing technologies have focused on methods development [3,21–35], with
only a few providing cursory analysis of evaluation of those methods [29,35,36]. Brown and Patel have previously
reported a review of “validation” strategies for computational drug repurposing [37], broadly categorizing various
evaluation metrics into “(1) validation with a single example or case study of a single disease area, (2) sensitivity-
based validation only and (3) both sensitivity- and specificity-based validation” [37]. Shahreza et al., in reviewing
network-based approaches to drug repurposing, mention various evaluation criteria used in different studies and
provide mathematical aspects of the relationship between some of them [30].

Here we augment and enhance their foundational reporting by describing, reviewing, and analysing metrics
for evaluating performance of drug repurposing technologies. We highlight uses of metrics borrowed from the
realms of virtual screening/target prediction and information retrieval, and report results of their integration into
CANDO. Through the use of better evaluation metrics, we aim to make drug repurposing science more rigorous
and comparable. This study will help enable proper evaluation of drug repurposing technologies, and ultimately
guide the field to bring about real changes in the armamentarium of medicine to alleviate disease burden.

1.1 Computational Analysis of Novel Drug Opportunities (CANDO)

We developed and deployed the CANDO platform to model the relationships between every disease/indication and
every human use drug/compound [7–17]. Built upon the premise of polypharmacology and multitargeting, at the
core of CANDO is the ability to infer similarity of compound/drug behavior. Canonically, we use molecular docking
protocols to evaluate the interaction between large libraries of drugs/compounds and protein structures. We then
construct a compound-proteome interaction signature to characterize and quantify their behavior. Based on the
similarity of these interaction signatures, we rank every drug/compound relative to every other. We hypothesize
that drugs/compounds with similar interaction signatures may be repurposed for the same indication(s).

Since the development and application of CANDO version 1 [7–10], we have continued to enhance our
platform by analyzing the effect of protein subsets on drug behavior, implementing heterogeneous measures
of drug/compound similarity, using multiple molecular docking software packages to evaluate interactions, and
refining non-similarity based approaches for drug repurposing in situations where there there is no approved drug
for a disease/indication [11–17,38].

1.2 Version 2 (v2)

Version 2 of the CANDO platform (v2) described here, implementing updated drug/compound and protein struc-
ture libraries, indication lists, drug-indication mappings, interaction scoring protocols, benchmarking and evalua-
tion metrics, along with data fusion of multiple pipelines mixing and matching between these choices, is used as a
template for the rigorous evaluation of the performance of drug repurposing technologies. The core tenets remain
the same as in CANDO v1; however, the updated data and evaluation metrics enable us to better determine the
correctness of those predictions with greater cross-platform comparability, as well as agreement with preclinical
and clinical validation experiments.

1.2.1 Curation of drug/compound and protein structure libraries

The v2 compound library contains 2,162 US FDA approved drugs extracted from DrugBank 5.0 [39]. We have
also created a larger library of 8,752 compounds from DrugBank containing both approved drugs and experi-
mental/investigational compounds. The updated protein library contains a nonredundant set of 14,606 solved
structures compiled from the Protein Data Bank (PDB) [40]. Supplementing the approved drugs with compounds
that are in the final stages of the drug development process helps to expand the repurposing capabilities of the
platform. The updated protein structure library comprises of individual chains from numerous proteomes with an
equitable distribution of folds and binding sites, allowing for greater coverage due to homology while reducing
bias.
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Figure 1: The relationship of drug repurposing technologies to traditional approaches. Traditional drug
discovery and development is time consuming and costly, moving from preclinical research (basic computational
methods, intensive in vitro and/or in vivo screening) to testing in clinical trials and eventual drug approval.
The ideal scenario is a clinician/physician utilizing results of drug repurposing technologies (such as CANDO)
directly, prescribing medications with high confidence to treat numerous indications, thereby saving time, cost, and
improving patient outcomes. In this future guided by using the best evaluation metrics, repurposing technologies
have high comparability and fidelity to reality.

1.2.2 Interaction scoring

The default pipeline in CANDO v2 uses an enhanced version of our previous bioinformatic docking protocol
for interaction scoring [8]. We altered the previous protocol by using extended connectivity fingerprints from
RDKit [41] instead of FP2 fingerprints from OpenBabel [42] as our cheminformatic approach for drug/compound
molecular fingerprinting. The other major modification is using COACH to predict protein structure binding
sites [43]. COACH leverages the results from multiple binding site prediction software suites, including COFACTOR
which we previously used exclusively. The use of the updated fingerprints and COACH results in higher fidelity to
reality for the resulting interaction scores from the bioanalytics-based docking protocol, as evaluated by comparing
to observed compound-protein interaction binding constants obtained from PDBBind [12].
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1.2.3 Drug/compound characterization, benchmarking, evaluation metrics, and performance

The default pipeline in CANDO v2 generates drug-proteome interaction signatures by calculating scores between
all 2,162 drugs and all 14,606 proteins using the bioanalytics-based docking protocol. Every drug is characterized
by a unique vector of interaction scores. We measure the pairwise similarity/distance between the interaction
signatures from each of the 2,162 drugs to every other. We evaluated a variety of similarity measures between
a pair of interaction signatures and found success using the root mean squared deviation (RMSD), which is the
default measure, and the cosine distance [44]. We then sort drugs relative to one another according to their
similarity, i.e., those with the greatest similarity to each other are ranked highest.

Each drug is associated with one or more approved indications, comprising our standard to which we compare
our rankings (also known as a “gold standard” or “ground truth”). These associations, or drug-indication mapping,
is derived from curating the Comparative Toxicogenomics Database (CTD) [45], which uses medical subject
headings (MeSH) to label indications [46]. This yields 18,709 associations for the 2,162 drugs covering a total
of 2,178 indications. The default benchmarking protocol implements an in-house leave one out procedure to
accurately identify related compounds approved for the same indication [8, 15]. For every indication associated
with a drug, we calculate the ranks of other drugs associated with that same indication, and whether any positive
hit occurs within certain cutoffs, such as top10, top25, etc. representing the top 10 and 25 most similar drugs.
For each indication, we calculate the percent of associated drugs which achieve a hit in that cutoff. We next
calculate the mean of all per-indication accuracies to give an overall evaluation of the platform, referred to as the
average indication accuracy (AIA) [8, 15].

For drug repurposing, our small molecule library is limited to the 2,162 approved drugs but CANDO is capable
of analysing compounds that are not yet approved in a similar fashion. Similar drugs/compounds not associated
with the same indication are hypothesized to be novel repurposed therapies to be validated via external preclinical
and clinical studies.

Consider our results for the indication melanoma (MeSH ID: D008545), which is associated with a curated
list of 58 drugs from the CTD. CANDO predicts 23 of those 58 drugs to have another associated with melanoma
within their respective top 10 most similar proteomic interaction signatures. Therefore, the top10 indication
accuracy for melanoma is 23/58 × 100 = 39.6%. We repeat this process for every one of the 2,178 indications
to generate the AIA.

For version 1 (v1) of CANDO, we achieved a top10 AIA of 11.8%, compared to a reported random control
of 0.2% [8]. Using improved bio- and cheminformatic tools and armed with a better understanding of random
controls, theoretically modeled using a hypergeometric distribution and empirically measured using uniformly
random drug-drug similarity data, version 1.5 of CANDO achieved a average indication accuracy of 12.8% at the
top 10 cutoff against a random control of 2.2% [12].

The average indication accuracy is not used by others in the field of drug repurposing technologies. Thus,
while we use it as a metric for internal comparison (i.e., between individual CANDO pipelines and versions), the
cross-platform applicability is low. We thus researched other methods of assessing performance which are now
implemented in and applied to CANDO.

1.3 Classification, ranking, metrics, and integration into CANDO

Experiments using drug repurposing technologies may return results as a classification or ranking. In classification,
compounds are associated with indications in a binary fashion based on some criteria, whereas in a learning to
rank experiment, entities are ranked relative to one another in order of some score. Best pairings, designated
by a specific rank/classification cutoff/threshold are reported as putative therapeutics. A ranking result can be
thought of as classification by using the cutoff as a threshold for the ranks, and declaring items on one side of
the threshold as positive samples, and those on the other side as negative samples. The inverse of modeling
classification as a ranking problem is true as well. If a specific cutoff is used for calculation of performance, it
must be reported, and reporting values at all possible ranking and classification cutoffs/thresholds will allow for
greater comparability.

An inherent limitation of drug repurposing technologies and nearly all metrics we use to report on their goodness
is the forced dichotomization of results, where those drug-indication associations ranked/classified better than the
cutoff/threshold are labeled “positive” and those worse are “negative”, with no nuance or allowance for real-world
considerations such as first- and second-line therapies. This lowers the fidelity of all drug repurposing models to
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reality. Figure 2 illustrates these issues in a mock example of predicted therapies to treat type 2 diabetes by a
drug repurposing technology.

Figure 2: Mock example of novel treatment prediction for type 2 diabetes by a drug repurposing technol-
ogy. We illustrate an arbitrary methodology which ranks 10 drugs to treat type 2 diabetes, with rank one (number
above boxes) being the most likely efficacious and rank ten being the least likely. These ranks are based on mock

scores given below the name of each drug. Classification of compounds with a score ≥ 0.5 are the same as those
ranked in positions one through five, i.e. the results of a classification and ranking schemes are interchangeable.
Drugs which have known treatment associations with type 2 diabetes are marked with a blue check or cross, and
those with unknown associations are marked correspondingly in orange. Those drugs classified/ranked better than
the cutoff are the positive results, whereas those worse are the negative results. As there are three drugs with
a known association to type 2 diabetes (blue check) and two with no known association (orange check) ranked
better than or equal to rank five, there are three true positives and two false positives. Analogously, there are
four true negatives (blue cross) and one false negative (orange cross). If this were not a mock example, the false
positive results would be the repurposing candidates for the given indication. We also note the notion of “true
negative” can be misleading, as the vast majority of such associations are of undetermined classification, having
never been rigorously scientifically studied. This lack of negative data in comparison standards is a limitation in
the evaluation of drug repurposing technologies. This is a mock example of a single ranking among hundreds
or thousands in a comprehensive drug repurposing platform. Metrics utilizing a single ranking are averaged over
many rankings to produce values which describe the correctness of a drug repurposing technology.

Drug repurposing technologies use a multitude of different metrics to evaluate performance of the resulting
ranking or classification. These are based on delineation of results into true positives, false negatives, true neg-
atives, and false positives relative to some standard. Notable commonly used metrics include sensitivity (true
positive rate, recall), specificity (true negative rate), false discovery rate, false positive rate precision (positive pre-
dictive value), area under the receiver operating characteristic curve (ROC and AUROC), precision, precision-recall
curves, and area under precision-recall curves, F1-score, and Matthews correlation coefficient (MCC, Supplemen-
tary Material).

Results of a drug repurposing experiment composed of a ranking of drug candidates are similar to those
results obtained in virtual screening and target prediction experiments, but the standard of comparison is different:
known drug characteristics or drug-target associations (binding interactions) as opposed to known drug-indication
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associations. Drug repurposing as a field is not one-to-one with drug target prediction [37], but a drug target
prediction experiment can be part of a repurposing experiment. Despite this demarcation, metrics used in virtual
screening/target prediction highlighting the “early recognition problem” may be quite useful to evaluate drug
repurposing [47,48]. In both instances the goal is to prioritize ranking “active” candidates (known drug-target or
drug-indication associations) at the top. Metrics that consider the early recognition problem properly include the
enrichment factor (EF, Supplementary Material), robust initial enhancement (RIE, Supplementary Material) [49],
and the Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC) [47].

In addition to being similar to virtual screening, the results of drug repurposing technologies are highly anal-
ogous to information retrieval. Information retrieval tools such as web search engines may be evaluated in their
ability to accurately return a website link that is desired and subsequently visited by the user based on some query
string. In a drug repurposing experiment, this is akin to generating a list of active candidate drugs which may be
a treatment for a given indication. Therefore, the goals of information retrieval and drug repurposing are similar,
and correspondingly performance metrics that have been explored for information retrieval have value in drug
repurposing evaluation. These include the mean reciprocal rank (MRR), precision-at-K (P@K), average precision
(AP) and mean average precision (MAP, Supplementary Material), and [normalized] discounted cumulative gain
([N]DCG) [50].

We describe the utility and use of the above mentioned metrics in several computational drug repurposing
experiments. We report complete results of using every metric at all cutoffs for both versions 1.5 and v2 of CANDO

in the Supplementary Material and at our website, and highlight specific results of interest in the following text

and figures. In general, most metrics have use for internal intra-platform comparisons but limited use for external
inter-platform comparisons. Based on our analyses, we conclude that the metrics with the most utility relative to
their cost are BEDROC and NDCG. Additionally, we have integrated many of these measures into the CANDO
platform to facilitate internal and external comparability. Evaluation of CANDO using these newly integrated
metrics has reaffirmed its utility for drug repurposing, while providing a foundational review of the advantages
and limitations of each metric in the context of the libraries and standards used.

2 Measures of correctness/success

2.1 Mean Reciprocal Rank

Reciprocal rank is the inverse of the position of the first correctly retrieved active in a ranking scheme, or the
best scoring active in a classification. The correctness/success is determined by matching the retrieved active to
a known drug-indication association according to some standard. Mean Reciprocal Rank (MRR) is the average of
the inverse rank of each first retrieved active, i.e., the first true positive [51]. While easy to calculate, this metric
only uses the ranking of the first retrieved active. According to MRR, a drug repurposing experiment that ranks
a single active correctly out of several performs just as well as another that ranks several correctly. An overall
measure of correctness is difficult to discern from reporting of a single value; however, a possible way to evaluate
distributions of performance across several experiments is provided in [51].

MRR =
1

m

m∑

i=1

1

ranki

where m is the total number of measurements made, and ranki the rank of the first active.

MRR is the least similar to the other metrics reviewed. It does have utility ranking putative drug candidates
for an indication for which there is a single known association, i.e., there is only one active to compare against for
evaluation of correctness/success, such as with some neglected and emerging indications. Our previous metric for
evaluating performance in CANDO, AIA, is similar to MRR, in that for each drug-indication pair, we are primarily
concerned with whether there is an active within a certain cutoff.
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2.2 True Positive, True Negative, False Positive, False Negative

Given a classification or ranking of candidate drugs for repurposing, the positive samples retrieved are those deemed
to be associated with the desired indication or correctly ranked within the specified cutoff. Negative samples are
those classified as having no association with the desired indication or ranked outside the cutoff. Within these,
there are true positive (TP), false positive (FP), true negative (TN), and false negative (FN) samples. True
positive samples are correctly classified or ranked associations that are present in the standard, whereas false
positives are incorrectly classified as positive or ranked within the cutoff, with the corresponding association not
in the standard. False negatives are known associations found in the standard but classified incorrectly or ranked
outside the cutoff, whereas true negatives are not present in the standard and correctly classified as such or ranked
outside the cutoff.

2.3 Sensitivity and specificity

Sensitivity is the proportion of true positives that are correctly identified; specificity is the proportion of true
negatives that are correctly identified:

sensitivity = recall = true positive rate (TPR) = recall = TP/(TP + FN)

specificity = selectivity = true negative rate (TNR) = TN/(TN + FP)

Lim et al. [52] used sensitivity to report drug-target prediction correctness using their REMAP platform.
The authors did not directly quantify their drug repurposing predictions, but found corroborating examples of
novel treatments in the literature. Donner et al. use recall as a metric for reporting and visualization of ranking
perturbagens (chemical substances which change gene expression) [53], and Xuan et al. graphically show the recall
at top cutoffs of rankings of drug-indication associations generated via their methods [54]. Wu and colleagues use
sensitivity as one of their metrics of choice to evaluate the ability of their repurposing platform (MD-Miner) to
identify active drugs among top ranked candidates for repurposing [55]. The reporting of sensitivity and specificity
is usually not the focus in these studies. Instead, they are described and displayed as part of another metric,
often the receiver operator characteristic curves and area under such curves discussed below. Figure 3 illustrates
application of this metric to CANDO.

2.4 False Discovery Rate and False Positive Rate

More true positives are classified and ranked correctly when quantifying and subsequently limiting the number
of false positives. In drug repurposing, the false discovery rate (FDR) is typically used as a cutoff for further
development of specific results and not as a standalone metric. Through consideration of drugs, inflammatory
bowel disease (IBD) genes, and biological pathways, Grenier and Hu generated candidate treatments for IBD,
using the FDR as a way to guide classification of putative therapeutics [56]. Sirota et al. use FDR to measure
significance of drug-indication scores compared to random in their experiments comparing gene expression levels
as drug signatures [18]. Hingorani et al. claim drug discovery projects fail because of their excessive FDR [57];
in addition, they calculate the probability of repurposing success based on several assumptions. A utility of
drug repurposing technologies is to reduce the FDR, but current methods may easily inflate the number of false
discoveries by generating excessive numbers of predictions [58]. Lim et al. use a confidence weight to quantify
uncertainties in predictions to reduce false positives [59]. In a similar way to the FDR, the false positive rate
(FPR) is generally used as an integral part of another metric.

FDR = FP/(FP + TP)
FPR = FP/(FP + TN)
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Figure 3: Evaluating CANDO performance using Sensitivity. The sensitivity values (vertical axis) of all
drug-indication associations in CANDO v2 (blue) and a random control (red) are shown according to the rank
(horizontal axis). Broadly, more drug-indication pairs score better at all ranks using the v2 pipeline relative to
random, visually observed as more blue in the upper left half and purple in the lower right half above. The
darkness of a point is directly proportional to how many lines pass through that point. This is the display of
the results using a single metric for a single pipeline within a single platform compared to the same pipeline with
random input data, highlighting difficulties in illustrating data of this type and size. More metrics, more pipelines,
more platforms, and more data (including controls), will greatly increase illustration complexity.

2.5 Receiver Operating Characteristic Curve and Area Under the ROC Curve

Receiver operating characteristic (ROC) curves are graphs where each point is the representation of a binary
classification performance measured using the true and false positive rates. The points along an ROC curve
are discrete, but often shown as continuous lines that are obtained by varying the cutoff for classification or
rank value and calculating the corresponding TPR and FPR. One of the more popular methods for assessing
and reporting performance of drug repurposing technologies is the area under the ROC curve (AUC, AUROC).
A singular value, the AUROC is calculated using the trapezoid rule, or directly using the rank of the actives
(drug-indication associations present in the standard) along with the ratio of actives and ratio of inactives (to be
determined associations, or not present in the standard) in the entire drug library [47]. We have implemented the
second approach in CANDO (Figure 4). A higher value is taken to be indicative of better performance, with a
perfect classification obtaining an AUROC of 1.0, and 0.5 indicating random ranking/classification.

AUROC = 1−〈x〉
Ri

− Ra

2Ri

where Ra is the ratio of actives, Ri the ratio of inactives, and

〈x〉 =
1

nN

n∑

i=1

ri

where ri is the rank of the i th active, and N is the total number of drugs.

The drug repurposing project PREDICT uses AUROC as a main method of reporting goodness [60]. Moridi
et al., report their own AUROC compared to that of PREDICT [61]. Nguyen et al. create a computational
drug repurposing framework based on control system theory (DeCoST) to make novel treatment predictions for
cancer [62]. Notably, Nguyen et al. include negative associations in their studies, such as drugs withdrawn
from treatment or terminated clinical trials, which enhances the fidelity of their computational experiments to
reality [62]. Due to different libraries and standards used, drug repurposing studies are not ideally analyzed through
the use of the AUROC. As stated previously, the AUROC is highly dependent on the ratio of actives to inactives
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in a library; the DeCoST framework did overcome this dependency issue in part by creating a new, more balanced,
library derived from drugs used by another group [63]. Emre Guney used AUROC as a metric, pointing out how
data in a drug repurposing experiment may bias scientists toward conclusions that are not justified, and how single
values of AUROC may not hold up to further cross-validation [64].

While AUROC may have low comparability between platforms, Lee et al. nonetheless compared results of
their drug repurposing experiments across a diverse breadth of indication types, and showed better performance
than those of others for the same indication types [65]. The mean AUROC of CANDO v2, calculated on a per
indication basis, which itself is a corresponding average of grouped drug-indication pairs when there is more than
one drug, is 0.520, with a median of 0.525 (interquartile range: 0.481 - 0.561).

The biggest shortcomings of the ROC/AUROC is the lack of early recognition and inability to handle imbal-
anced data. As illustrated with respect to virtual screening [47], the metric fails to enable comparison of drug
repurposing for ranking actives at the top of an ordered list, which is the desired goal.
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Figure 4: Evaluating CANDO performance using ROC and AUROC. The left panel shows the mean ROC
curve across all drug-indication pairs for CANDO v2 (blue) and a single sample random control (orange). As
with all ROC curves, the horizontal axis is 1 - specificity and the vertical axis is sensitivity. The empirical random
matches what is mathematically expected by random (a straight line along the diagonal), i.e., both reflecting drug-
indication associations obtained by chance based on a uniform distribution. The right panel shows a histogram
of AUROC scores for all drug-indication pairs predicted by v2 (blue) compared to those from 100 random runs
(orange). The mean AUROC of all drug-indication pairs from v2 is 0.543, compared to a empirically derived
random mean of 0.5 (again, matching theoretical expectation). The right shift of the v2 AUROC indicates an
overall better performance relative to random controls. Both ROC and AUROC are useful for internal validation,
but overall have limited utility in assessing different drug repurposing experiments or technologies, in part due to
imbalances in known drug-indication associations and not emphasizing early recognition.

2.6 Precision and Precision-Recall, and Area Under the Precision-Recall Curve

Precision measures the relevance of a set of predictions:

precision = TP/(TP + FP)

Yu et al. use established disease-gene-drug relationships to infer new drug-tissue-specific-disease relationships,
and report precision as a standalone metric (as a score relative to the top percent of drug-indication pairs) [66].
Precision is often reported alongside recall, and one of the most commonly used metrics used to evaluate drug
repurposing technologies is area under the precision-recall (PR) curve (AUPRC). Saito and Rehmsmeier provide
strong evidence on the superiority of precision-recall compared to ROC when evaluating imbalanced data [67].
Imbalanced data is commonplace in drug-indication association standards used by repurposing technologies; i.e.,
the drugs in the standard are spread divergently across the indications, and vice versa.
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PR curves may show a distinctive jagged edge pattern or appear finely interpolated, retaining maximum
precision up to a particular recall [50]. Xuan et al. use both ROC and PR to compare their drug-indication
association predictions to those made by others [54]. Peng et al. also use ROC and PR curves to demonstrate
the internal validation of their network-based inferences about drug Anatomic Therapeutic Classification (ATC)
codes [68]. McCusker use precision to evaluate their computational drug repurposing predictions to treat melanoma
as “the percentage of returned candidates that have been validated experimentally or have been in a clinical trial
versus all candidates returned” [69]. This metric is indeed precision, albeit based on a different type of standard,
as they apply it to evaluate capturing literature instead of known associations.

Iwata et al. use AUPRC to assess internal performance of reconstructing known drug-indication associations
made using supervised network inference, and compare their results to those obtained by others [70]. Khalid and
Sezerman report AUPRC along with AUC and mean percentile rank to demonstrate the ability of their platform,
which combines protein-protein interaction, pathway, protein binding site structural and disease similarity data, to
capture known drug-indication associations [71]. With respect to cross-platform comparability, the authors applied
their algorithm to evaluate performance using gold standard data available online for three other platforms and
found that they obtain better AUC values using their methods but with data from other platforms [71].

2.7 Accuracy and F1-score

The term “accuracy” causes confusion since it is used to refer to performance generally in a colloquial sense, and
also to a mathematically defined value in the context of binary classification. In a drug repurposing evaluation
context, accuracy is the fraction of true positives and true negatives correctly classified:

accuracy = (TP + TN)/(TP + FP + TN + FN)

Accuracy is extremely influenced by the number of actives and inactives in a set and its utility is therefore
limited. Accordingly, it is best used with balanced data, which is rare in drug repurposing technology standards.
CANDO v2 obtains an average accuracy over all drug-indication pairs of 0.94. This high value is appealing at
first, but is useless as it is identical to the mean average accuracy over all pairs for data collected over 100
random sample runs. This is due to our standard being greatly skewed in (correctly) representing the known
drug-indication associations.

The F1-score (F-score, F-measure), widely used in machine learning applications, is the harmonic mean of
precision and recall:

F1-score = 2
1

precision
+ 1

recal l

= 2 × precision × recall/(precision + recall)

By focusing on small value outliers and mitigating the impact of large ones, the F1-score provides an intuitive
measure of correctness when using uneven class sizes, unlike accuracy. Just as precision and recall are calculated
at a certain cutoff, the ranks at which the measurement is made, or the score used for classification, should be
reported along with the F1-score. Using CANDO v2, we obtain a mean F1-score calculated over all drug-indication
pairs at the top 100 cutoff of 0.033, compared to the mean of 100 random samples at the same cutoff of 0.023.

Zhang et al. use AUC, precision, recall, and F1-score in evaluating their SLAMS algorithm [72]. Their
calculation of recall is not directly related to the other measures [72], an indication of how different groups
measure performance variably. Aliper et al. report results of their deep learning platform for drug repurposing
based on transcriptomic data using accuracy and F1-score [73]. Specifically, the authors not only report averages,
but also performance of their platform across three, five, and twelve specific therapeutic use categories according
to the MeSH classification, and putative explanations for differences. McCusker et al. also use F1-score in
evaluating performance of their probabilistic knowledge graph platform [69].

2.8 Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic

The Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic (BEDROC) metric merges early
recognition with the area under the ROC curve [47]. More formally, the BEDROC metric evaluates the probability
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that an active ranked by the evaluated method will be found before any other that is derived from a hypothetical
exponential probability distribution function with parameter α, where αRa ≪ 1 and α 6= 0. In this context,
Ra is the ratio of actives in the standard and 1/α is “understood as the fraction of the list where the weight is
important” [47]. The authors state that BEDROC should be understood as assessing “virtual screening usefulness”
as opposed to “improvement over random” (which is what the ROC does). In the context of drug repurposing,
this may be interpreted as probability that a drug predicted to treat an indication is ranked better than a drug
that is not.

BEDROC = RIE−RIEmin

RIEmax−RIEmin

RIE =

1
n

n∑

i=1

e−αxi

1
N
( 1−e−α

e
α

N −1
)

RIE is itself another metric known as robust initial enhancement. RIEmin is the calculated RIE when all actives
are at the bottom of a ranked list, RIEmax when they are all ranked better than any inactives, xi is the relative
rank of the i th active, i.e., xi =

ri
N
, where ri is the rank of the active, N is the total number of drugs/compounds,

n is the number of actives, and 1
α
is “the fraction of the list where the weight is important” [47].

Several computational studies to repurpose drugs have used BEDROC as a metric, albeit not to evaluate drug
repurposing performance. Specifically, Govindaraj et al. use BEDROC to assess the ability of their algorithm to
detect protein pockets binding similar ligands [74]. Alberca et al. use BEDROC to assess virtual screening of
protein-ligand interactions [75]. Ajay Jain reports on limitations of BEDROC and other metrics that assess early
enrichment from a virtual screening perspective, stating that they are biased to report elevated values based on
the total number of positives and negatives [76]. An example of explicit use of BEDROC in drug repurposing is
from Arany et al [77], who use it (along with AUROC) to evaluate effectiveness of their methods to produce drug
rankings with respect to correct Anatomical Therapeutic Chemical (ATC) codes [77].

Comparing BEDROC scores across different α values is not advised [47]. For a given drug repurposing
technology, users may seek to predict novel drugs across a multitude of indications with highly variable numbers
of associated drugs. If an indication has 200 associated drugs, then α should be low to maintain the ≪ 1
condition. However, such an α may inappropriately lead to highly variable BEDROC scores for indications with
a low number of drugs, as small changes in absolute ranking of these drugs correspond to a large change in the
relative ranking. These requirements of α possibly lower cross-platform comparability; regardless, BEDROC is
best applied to evaluate repurposing technologies using similar quality and size data (i.e., similar numbers and
quality of drugs, indications, and corresponding associations).

Figure 5 illustrates the results of integrating BEDROC into CANDO. Most uses of BEDROC are based on single
α value across all known drug-indication associations for all calculations to maintain comparability. As platforms
become larger and more diverse, finding a balance to handle indications with varying number of associated drugs
will be necessary, without being singularly biased to a few well-studied indications. Regardless, BEDROC has
several major improvements over AUROC, and the former should be preferred when reporting results of drug
repurposing technologies.

2.9 Discounted Cumulative Gain and Normalized Discounted Cumulative Gain

The discounted cumulative gain (DCG) is constructed with assumptions that top ranked results are more likely
to be of interest, and that particularly relevant results are more useful [78]. While data in the form of ranking are
readily measured by the DCG, classification schema should be converted to a ranking underpinning the decision
boundary to be appropriately measured by DCG. The Ideal DCG (IDCG) is the DCG calculated for a ranking
where all known actives are ranked the very best in the prediction list. The Normalized DCG (NDCG), with a
value between 0-1, is obtained by dividing the DCG by the IDCG. The NDCG enables comparison and contrasting
of performance evaluation with different numbers of relevant results with meaningful interpretation, i.e., we can
use a single value to determine goodness of a drug-indication ranking/classification with greater confidence than
most other metrics even when there are different numbers of associations.
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Figure 5: Evaluating CANDO performance using BEDROC. The left panel illustrates the count of CANDO v2
BEDROC scores using α = 20 for all compound-indication pairs in CANDO, compared to 100 samples obtained
using shuffled CANDO data (orange). Using α = 20, the most commonly used value in the literature, the mean v2
BEDROC score is 0.104, compared to an average of 0.06 over 100 random samples, indicating that v2 outperforms
this random control at retrieving known drug-indication associations on average. Generally, BEDROC scores for
predicted drug-indication associations from v2 are considerably better than random, indicating their greater real
world utility. The right panel shows the mean v2 BEDROC scores (blue) compared to a single random sample
(orange) using α = 5, 10, ..., 100. The random sample was constructed via shuffling of v2 data to obtain drug-drug
similarities expected by chance, as usual. At higher values of α, certain drug-indication pairs may violate the
conditions necessary for BEDROC to remain useful.

DCG =

p∑

i=1

2reli − 1

log2(i + 1)

IDCG =

|RELp|∑

i=1

2reli − 1

log2(i + 1)

NDCG = DCG/IDCG

i is the rank of the active in question, up to rank p.
reli signifies the relevance of the predicted drug to the indication.

The value of p is a specific position (ranking) at which the NDCG is calculated. Therefore results are reported
as NDCGp. Wang et al. suggest selecting p as a function of the size of the libraries used [79]. The distribution
and measures of central tendency of NDCG at a cutoff or multiple cutoffs can be reported, i.e., a NDCG value
can be calculated for every possible ranking. One of the most appealing features of DCG is the ability to assign
relative importance, captured in the reli value. For a certain indication, there may exist more or less effective
therapies, which can be reflected in the drug-indication association standard. Applied to precision medicine, such
a relevance could hypothetically be determined on a per patient basis. This is a complex variable with a range of
possible values, but is often used in a binary fashion. The NDCG is the best measure of correctness if a standard
has known relative importance assignments.

Ye et al. use NDCG as the metric of choice for analyzing repurposing opportunities based on drug side
effects [80]. Specifically, the authors report the top 10 ATC therapeutic categories with NDCG5 [80]. Specifically,
the authors report the therapeutic categories of drugs (as classified by ATC codes) which achieved an NDCG5 of
more than 0.7 during benchmarking. While the metric enables comparability, predicting a general categorization
of a drug-indication association is easier than a very specific therapeutic prediction. In addition to using NDCG,
Ye et al. report on putative therapeutic predictions that overlap with previous similar work [81]. Saberian et
al. use NDCG to assess performance of their drug repurposing method for three indications, breast cancer,
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idiopathic pulmonary fibrosis (IPF), and rheumatoid arthritis (RA), with the score based on the rank of the left-
out drug in each round of sampling [82]. Their work includes a sample calculation of NDCG in the corresponding
Supplementary Material, compared to results based on 1,000 random rankings of drugs, though the mean NDCG
of these rankings is not reported [82].

Figure 6 illustrates the mean NDCG at all cutoffs for CANDO v2. We obtain a mean NDCG10 of 0.060,
compared to an average of 100 random data sets of 0.0197, and a theoretical average of 0.0199. Comparing
these values along with the results shown in Figure 6 indicates that using CANDO to predict drug-indication
associations has utility. The elevated cross-platform comparability of NDCG due to the use of logarithmic scoring
and normalization makes it among the most useful metrics reviewed to measure success when used in drug
repurposing technologies (Figure 7).
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Figure 6: Evaluating CANDO performance using NDCG. The NDCG scores of CANDO v2 compared to those
from a single random control at all ranks/cutoffs is shown on the left and at the top 20% of ranks (432) on
the right. The overall mean of v2 is the dark blue line, with per indication means in light blue. The mean of a
single random sample is in red, and the per indication means of the same sample is in orange. By chance, some
predictions will be worse than random, as is evident whenever an orange line is higher than a light blue line but
on average, v2 performs better than random at all ranks. These comparisons indicate the utility of CANDO at
predicting drug-indication associations using the most rigorous performance evaluation metric considered in this
study.

2.10 Custom methods of performance evaluation

We have used our AIA metric in CANDO extensively [7–17] (section “Drug/compound characterization, bench-
marking, evaluation metrics, and performance”). Similarly, Peyvandipour et al. used a custom evaluation metric
in their systematic drug repurposing study [83]. The goal of this review and study is to more readily compare our
results with others, an outcome toward which we are continuously striving, presently by integrating more widely
used metrics into our system, and advocating for others to do the same. We initially developed AIA in response
to our validation partners seeking a singular successful hit for an indication they were studying; similarly, other
researchers may desire to use their own evaluation methods for their own reasons. Nonetheless, we recommend
researchers also report results using one or more of the metrics described herein.

2.11 Evaluating drug repurposing in the context of precision medicine

A specific medication may be more or less efficacious for a particular person with a specific disease at a given
time. Drug repurposing technologies can be tailored to arbitrary individual contexts and so precision/personalized
medicine are growing areas of interest [32,59,84–86]. Our group is currently exploring opportunities in the realm
of precision cancer therapeutics using both CANDO and our molecular docking protocol CANDOCK [16]. We
have previously published studies to predict HIV drug regimens based on the viral mutations circulating within a
patient [87–89], understanding polymorphisms in the malarial parasite P. falciparum [?,?,?], explaining warfarin
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Figure 7: A subjective illustration of the relationship between cost and utility of performance evaluation
metrics for drug repurposing. Further right on the horizontal cost axis equates to technologies requiring increas-
ing computational power with decreasing intuition. The vertical utility axis is a gauge of enabling cross-platform
comparability and, ideally, fidelity to reality through likelihood of success in prospective external validations for
multiple drugs per indication. Metrics discussed in the Supplementary Material are in grey. We encourage scien-
tists to use metrics such as NDCG and BEDROC, given their high utility and low incremental cost, in addition
to avoiding overtraining using a single metric. This study makes the argument for the same general trend to be
borne out through prospective clinical validation experiments of drug repurposing technologies.

resistance [?], among many others. All these studies would have benefited tremendously from the application of
evaluation metrics described in this study.

In the case of rare disease, including rare genetic diseases and rare cancers [32, 90–92], computational drug
repurposing experiments may offer the best chance at discovering efficacious treatments [3]. The field has
promising initial results [84, 85, 93], but notions of correctness remains limited to mechanistic understanding and
preclinical corroboration [32]. The use of particular metrics and quantifiable comparison between experiments
is unknown, as it has not been done, but the metrics reviewed herein may have the same utility as when used
broadly. Due to the low number of individuals with rare diseases, clinical trials are difficult to conduct, and only
the most scientifically rigorous preclinical predictions with greatest confidence from drug repurposing technologies
should be considered for further downstream research and use [90].

3 Cross platform comparability and fidelity to reality

3.1 Different standards, imbalanced data, suboptimal design

CANDO was designed to be a shotgun repurposing technology, i.e., to generate putative drug candidates for
any/every indication. Lack of consensus with respect of performance evaluation makes it difficult to assess if this
is true of any drug repurposing technology. A key component of drug repurposing technologies is the use of some
standard drug-indication association library to which results are compared. A “perfect” evaluation metric cannot
correct for data that does not reflect reality, is imbalanced, is over represented by “me too” drugs/compounds,
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or generated as a result of poor cross validation or over training.
There are a limited number of high quality data sources available for curating drug repurposing standards,

and the ones that do exist fluctuate significantly. As an example, consider the drug ofloxacin, which is commonly
classified as a fluoroquinolone antibiotic. Different standards associate it between one to seventy indications
[39, 45, 94–96], which subsequently influences the odds of making a correct prediction by chance. Ultimately,
different standards make it difficult to compare technologies and platforms.

Moving forward, differences in drug-indication association standards may be overcome through increasing
consistency of drug classes across standards [97], or through integration of ontological understanding into all
aspects of drug repurposing [98], using ontologies specifically designed for this purpose [99]. Knowing the ground
truth is a prerequisite for measuring performance [100], and the use of scientifically rigorous ontologies will ensure
robust modeling of reality.

It is natural there are different numbers of drugs associated with each indication within a particular single
standard used in a large platform such as CANDO due to biological, economic, and even political reasons. The
result is a large discrepancy in the number of drugs approved for or associated with a particular indication. For
example, in the CANDO v2 drug-indication association standard, there are 218, 216, and 207 drugs associated with
pain (MeSH ID: D010146), hypertension (MeSH ID: D006973), and seizures (MeSH ID: D012640), respectively,
versus 8 for dermatomyositis (MeSH ID: D003882). While the performance of a system such as CANDO averaged
over many indications is quite robust, performance on a smaller basis is more variable. Baker et al. identify
hyperprolific drugs which have been studied in the context of many indications, and indications for which many
drugs have been investigated as a treatment [101]. In an attempt to partly overcome variation in results and
performance due to chance, Zhang et al. eliminated indications with less than ten associated drugs and drugs
with less than ten associated indications from their platform [102]. Unfortunately, this action seems to contradict
their attempt to meaningfully compare to the PREDICT project using the AUROC, as the distribution of drug-
indication associations in PREDICT was greatly enriched in an opposite manner for drugs with less than ten
indication associations, and indications with less than ten drug associations [60].

In describing the evolution of CANDO we use measures of performance evaluation applied globally, as we have
done here. We also apply these measures to specific individual indications, particularly with respect to prospective
validation of the platform or its components [7,8,10,17,89,103–105]. Regarding any classifier technologies, David
Hang states, “[A] potential user is not really interested in some ‘average performance’ over distinct types of data,
but really wants to know what will be good for his or her problem, and different people have different problems,
with data arising from different domains. A given method may be very poor on most kinds of data, but very good
for certain problems” [106]. In particular, it is easy to use different input data or comparison standards to obtain
numerically better results. Since a great average performance overall does not guarantee similar performance for
specific drugs/indications, and vice versa, drug repurposing technologies must undergo a thorough vetting across
multiple libraries, standards, and experiments (indications to which the technology is applied) to be considered
robust.

3.2 Inherent limitation of claims and metrics

Metrics for evaluating success of drug repurposing typically rely on the assumption that all associations not part of
a standard are negatives. This goes against the entire premise of drug repurposing, which is to expand the list of
known drug-indication associations, and any prediction made that is not present in a standard could subsequently
be proved correct.

A perfect score for a drug repurposing experiment based on some evaluation metric does not necessarily mean
that perfect drug repurposing success was achieved. Numerical evaluation is limited by the choice of cutoff. If the
results are an ideal ranking or classification of drugs that are known to be a treatment for an indication against
those that are not, then all of the metrics discussed here will yield their best possible result. The actionable
information, however, is in those drug-indication associations which are truly novel and even unexpected. For
example, in a drug repurposing experiment for breast cancer, the top ten putative therapeutics reported are known
drugs to treat this indication, and the first novel prediction is at rank eleven [107]. If any of metrics described
here was used for evaluation with a rank/cutoff of top ten, then this experiment would achieve a perfect score
without discovering a novel drug to repurpose.

A purported benefit of high-throughput approaches are the vast size and quick speed enabling us to explore and
make discoveries more quickly than ever before. Because of this, specific elements of data/standards used in drug
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repurposing experiments and qualitative results (predictions) may sometimes be clinically wrong or nonsensical.
This includes incorrect notions of indications [108] and proposition of treatments known to exacerbate disease
[109,110]. A small number of mistakes or inconsistencies in a large drug repurposing technology do not necessarily
invalidate it, but necessitate the need for manual expert inspection and curation.

As artificial intelligence (AI) and machine learning become more prevalent for drug repurposing [73], biased data
and overtraining may return results that are falsely interpreted as being significant or high confidence. Mindset,
culture, and willingness to apply computational drug repurposing models and use their results, considered relevant
for the success of AI in drug discovery and development [111], will partly depend on the confidence in the methods
and output, as evidenced by how we evaluate performance. Orthogonal metrics which capture different aspects of
the goodness of an experiment could be used in concert to overcome bias and potential voodoo science pitfalls.
In the future, prospective blinded assessment of computational drug repurposing, such as those used in protein
structure prediction and molecular docking [112,113], may be another solution to alleviate the problem of bias.

Complex yet quick drug repurposing technologies can render results beyond the cognitive ability of a person
to be familiar with all of its components and the amount of resulting data. The use of rigorous performance
evaluation metrics enable a culture where scientific rigor and correctness is valued more than the novelty in
making claims of putative repurposed therapeutics. Even so, it would be prudent for basic science researchers to
work with clinicians to ensure that their results make sense in order to guide correct predictions into clinical use
and improve human health.

3.3 Validation

In the context of drug repurposing technologies, “validation” may refer to: internal validation through testing of
models on unknown or hidden data; performance as evaluated by the types of metrics discussed here; or to some
external independent corroboration. The latter form of validation may refer to anything from selective reporting
of similar results in the literature to results from prospective preclinical and/or clinical studies.

A popular strategy for drug repurposing is to report corroboration of predictions made using computational
methods with previously reported independent research in the literature, in a case-based or large-scale analysis
[18, 52, 114–116]. We have used this strategy [10, 11, 17], including highlighting literature that contradicts our
findings [14]. It is relatively easy with this approach to find examples which support preformed conclusions, and
report only those, representing potentially serious instances of confirmation bias. Selective literature corroboration
is neither systematic nor hypothesis-driven.

Similar to literature analysis is using data on clinical trials completed or in progress [66, 72, 82, 117, 118].
Through analysis of electronic health records, preventative associations between drugs and indications, i.e., form
of drug repurposing, have been discovered in an ad hoc manner [119,120].

There are several examples of preclincal (in vitro, in vivo) validation done following a computational drug
repurposing experiment [18, 20, 59]. In the future, some of these technologies may approach or even rival the
current best method for elucidating the usefulness of a drug, which for now remains double blind, placebo
controlled, randomized trials with clinically relevant primary endpoints (prolonged life or improved quality of life),
and representative samples of subjects, to evaluate both efficacy and safety [121].

The goal of achieving successful drug repurposing, from technology to clinic (Figure 1)), is still mostly aspira-
tional at this stage. However, progress is being made. The most successful discoveries made using drug repurposing
technologies are ad hoc singular events which current metrics are not well suited to evaluate [122, 123]. While
emotionally unsatisfying, we can search for and use metrics which enable us to compare our technologies directly
to each other, for the sake of rigorous science, intellectual merit, and broader impact.

3.4 Response to pandemics and novel disease

The potential for drug repurposing technologies to help respond to epidemics and pandemics rapidly, side stepping
lengthy, costly preclinical and clinical studies, is enormous. Recent examples include the Ebola virus disease West
African outbreak of 2014, the emergence of the Zika virus, and the COVID-19 global pandemic caused by the
novel coronavirus SARS-CoV-2. In all instances, there were no drugs approved to treat these indications, but drug
repurposing technologies were used to generate putative therapeutics quickly [10,17,124–129]. In these examples,
it is challenging to use the metrics we have described to evaluate the predictions as there are no previously
approved treatments. However, if a platform or methodology has reported measurements of success, especially
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in related indications to prevent, treat, or cure viral infections, then relying on those performance values as a
quantified surrogate may have utility.

The COVID-19 pandemic also illustrates a potential downside of quickly available drug repurposing predictions.
Drugs that have been predicted to be efficacious in treating an indication may have serious side effect profiles, or
unknown side effects when used in different quantities to treat novel indications. Studies of rigorous evaluation
of drug repurposing platforms expressed in clear and precise language will help scientists, healthcare workers,
institutional and government officials, and the public make informed judgements with respect to future steps on
how to use the generated drug candidates for a given indication.

4 Conclusion

Drug repurposing will help advance and evolve therapeutic discovery in the 21st century, bringing new medicines
to patients in need. Advancing the field depends on whether we can rigorously evaluate the validity and meaning
of our computational repurposing experiments with confidence, a critical component of platform development.
We have shown how integration of disparate metrics into the CANDO platform supports this claim. The metrics
currently used for gauging correctness of drug repurposing technologies vary in terms of enabling cross-platform
comparability, as well as eventual clinical use of predicted therapeutics. The development and use of improved
evaluation metrics will enhance cross-technology comparability and enable more accurate modeling of reality to
deliver on the potential of drug repurposing.
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