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Abstract—Recent scaling up of POMDP solvers towards re-
alistic applications is largely due to point-based methods which
quickly provide approximate solutions for mid-sized problems.

New multi-core machines offer an opportunity to scale up to
larger domains. These machines support parallel execution and
can speed up existing algorithms considerably.

In this paper we evaluate several ways in which point-based
algorithms can be adapted to parallel computing. We overview
the challenges and opportunities and present experimental results
providing evidence to the usability of our suggestions.

I. INTRODUCTION

Partially Observable Markov Decision Processes (POMDPs)
provide a rich modeling framework for agents acting in
stochastic environments under partial observability. Such envi-
ronments require the agent to consider the uncertainty of action
outcomes, and to select actions to maximize the expected
utility. Models such as Markov Decision Processes (MDPs)
can optimize this decision process. However, in an MDP the
agent must know all the relevant details of the environment,
required to decide on the best action. In most real world
domain, such an assumption is not practical. For example, a
robot operating in any environment must rely on its sensors in
order to compute the current environment state. These sensors
can be noisy, and it is also unlikely that the sensors can observe
all the needed information.

Due to this partial information over the environment, in
many cases it is important to obtain additional information
before deciding on the best action. Indeed, POMDPs allow
the agent to optimally balance between information gathering
and actions that obtain rewards. There are many examples of
natural applications of POMDPs, such as decision support
agents in medical domains (Hauskrecht & Fraser, 1998),
spoken dialog management (Williams, 2008), and autonomous
robots (Smith, 2007).

Typically, agents that employ POMDPs use a policy that
maps either histories or beliefs to actions. An optimal policy is
a policy that maximizes some aspect of the stream of rewards.
A popular choice is the infinite sum of discounted rewards that
the agents receives when acting in the environment. Due to the
difficulty of computing an optimal policy, research has focused
on approximate methods for solving POMDPs.

Policy generation via the computation of a (near) optimal
value function is a standard approach for solving POMDPs.
Point-based methods currently provide the most effective
approximations of the optimal value function. In point-based
algorithms, a value function is computed over a finite set of

reachable belief points, hoping that the value function would
generalize well to the entire belief space. Such algorithms
have shown the ability to scale up to medium-sized domains,
supplying policies with good quality.

In the past few years it seems that the ability to speed up the
clock rates of processors is nearing its boundary. The processor
industry is now moving in a different direction in order to
enhance the performance of processors — placing multiple
processors (cores) on a single chip (Sutter & Larus, 2005).
Thus, new machines provide multi-threading programming
abilities to enhance the performance of applications. It is now
not uncommon to use machines with 8 or 16 cores, but in
the near future systems are expected to have dozens, if not
hundreds of cores. While multi-core algorithms rarely achieve
a linear speedup, it is still our hope that through using large
amounts of cores we can scale up to POMDP domains which
are currently beyond our reach. Indeed, the Machine Learning
community has already begun to realize the potential of multi-
core machines (Zanni et al., 2006; Chu et al., 2006).

In view of this promising technology we review point-
based methods, suggesting adaptation of existing methods to
multi-core architectures. We suggest modifications of existing
algorithms as well as combinations of several algorithms.
These modifications pose several challenges and difficulties
that must be dealt with.

The point-based update step that lies at the core of all point-
based algorithms offer some straight-forward parallelizing
opportunities. We begin our paper by reviewing these options
and evaluating the leverage that can be gained by such simple
modifications.

Sequential algorithms vary in the restrictions they enforce
over the ordering of atomic operations. When such restrictions
are minimal, the opportunity to parallelize the algorithm in-
creases. We overview a set of point-based algorithms explain-
ing which methods gain the most from the lack of restrictions.

Multi-core machines can also be used to execute several
instances of the same algorithm, sharing the same value
function. In this case, algorithms that make deterministic
decisions are unlikely to provide leverage, as all instances will
execute the exact same sequence of operations. We show how
to create stochastic versions of the deterministic point-based
methods, allowing them to benefit from the parallel execution.

Finally, instead of running several instances of the same
algorithms, it is possible to execute a number of different
methods together in parallel. Since different algorithms pos-
sess different qualities, the synergy of a parallel execution can



2

speed up the computation of the value function. However, in
this case it is possible that the value function growth would
become a burden, rather than an advantage. We hence suggest
a pruning mechanism that also benefits from the parallel
execution.

We provide some partial evaluation of the various modi-
fications suggested here. It is important to note that even if
current scaling up due to multi-threaded implementations is
limited because of the relatively small number of cores on
a single machine, our suggested enhancements will be much
more pronounced in the future, when machines will have
an order of magnitude more cores. For example, we cannot
currently execute a combination of all of our suggestions on
our 16 core machine. We are hence unable to demonstrate the
full capability of the methods we propose here. We therefore
consider the empirical evaluation provided here as no more
than an evidence that our ideas have the potential to provide
substantial speed up for point-based solvers.

Nevertheless, our empirical results show that there is some
gain by parallelizing the low level point-based backups. Par-
allelizing algorithms such as PBVI and PVI has shown a
better potential for scaling up. We also demonstrate how the
combination of various algorithms can help us to leverage the
advantages of the different approaches, resulting in a rapid
learning of good quality policies, superior to those learned by
any single algorithm.

Our techniques are not directly applicable for distributed
computing over networks of machines. In such cases, it is
important to reduce the communication overhead over the
slow network. It is currently unclear whether our suggested
modifications can benefit from the additional computational
power but the severe communication restrictions of such
networks.

II. BACKGROUND AND RELATED WORK

We begin with an overview of MDPs and POMDPs, the
belief space MDP, and how a solution to a POMDP is
computed. We then provide an short introduction to point-
based methods for solving POMDPs.

A. MDPs, POMDPs and the belief-space MDP

Markov Decision Processes (MDPs) are designed to model
autonomous agents, acting in a stochastic environment. Con-
sider for example a robot traveling through a maze. The robot
starts at some location and can either move forward, turn left,
or turn right. As the robot moves its location may change,
and thus, the environment, which includes the location of the
robot, changes. The robot must reach some goal state, such as
the exit door, or alternatively, collect rewards, such as items
that are scattered through the maze.

Formally, an MDP is a tuple 〈S,A, tr,R〉 where:
• S is the set of all possible world states. In the above

example, the environment state is the location and orien-
tation of the robot.

• A is a set of actions the agent can execute. Our robot can
only turn left, right, or move forward.

• tr(s, a, s′) defines the probability of transitioning from
state s to state s′ using action a. The transition function
models the stochastic nature of the environment, such as
the robot attempting to move forward but failing due to
engine malfunction or because the wheels where slipping.

• R(s, a) defines a reward the agent receives for executing
action a in state s. Action costs can be modeled as
negative rewards. In our example the robot receives a
reward for getting out of the maze or for collecting an
item. The robot may pay a cost each time it moves,
modeling the energy loss incurred by the move.

An MDP models an agent acting in an environment where it
can directly observe the state it is at.

Realistically, a robot does not know where it is located
within a maze. It has sensors that provide observations such as
nearby walls. These sensors are imperfect, meaning that they
sometimes detect a wall where none exist, and sometimes the
sensors fail to detect an existing wall. Now, in order to find its
way through the maze the robot must also gather information
about the environment state — its own location within the
maze.

A Partially Observable Markov Decision Process (POMDP)
is designed to model such agents that do not have direct access
to the current state, but rather observe it through noisy sensors.
A POMDP is a tuple 〈S, A, tr,R, Ω, O, b0〉 where:
• S, A, tr,R compose an MDP, known as the underlying

MDP. This MDP models the behavior of the environment.
• Ω is a set of available observations — the possible

output of the sensors. In the example above the set of
observations consists of all possible wall configurations.

• O(a, s, o) is the probability of observing o after executing
a and reaching state s, i.e. the sensor model, which
incorporates the sensor noise.

As the agent is unaware of its true world state, it must
maintain a belief over its current state — a vector b of
probabilities such that b(s) is the probability that the agent
is at state s. Such a vector is known as a belief state or belief
point. b0 defines the initial belief state — the belief of the
agent over the state space before it has executed or observed
anything.

Given a POMDP we can define the belief-space MDP — an
MDP over the belief states of the POMDP. The transition from
belief state b to belief state b′ using action a is deterministic
given an observation o and defines the τ transition function.
That is, we denote b′ = τ(b, a, o) where:

b′(s′) =
O(a, s′, o)

∑
s b(s)tr(s, a, s′)

pr(o|b, a)
(1)

pr(o|b, a) =
∑

s

b(s)
∑

s′
tr(s, a, s′)O(a, s′, o) (2)

Therefore, τ is computed in O(|S|2).

B. Value Functions for POMDPs

Agents that employ POMDPs typically use a policy — a
mapping from either histories or beliefs to actions. A POMDP
solver computes a policy that maximizes some aspect of



3

the reward stream, such as the sum of discounted reward
—

∑
t=0..∞ γtrt where rt is the reward at time t, and

0 < γ ≤ 1 is a discount factor, capturing the importance
of nearby rewards.

It is well known that the value function V for the belief-
space MDP can be represented arbitrarily closely using a finite
collection of |S|-dimensional vectors known as α vectors.
Thus, V is both piecewise linear and convex (Smallwood &
Sondik, 1973). A policy over the belief space is defined by
associating an action a to each vector α, so that α · b =∑

s α(s)b(s) represents the value of doing action a in belief
state b and following the policy afterwards. It is therefore
standard practice to compute a value function — a set V of
α vectors. The policy πV is immediately derivable using:

πV (b) = argmaxa:αa∈V αa · b (3)

We can compute the value function over the belief-space
MDP iteratively:

Vn+1(b) = max
a

[b · ra + γ
∑

o

pr(o|a, b)Vn(τ(b, a, o))] (4)

where ra(s) = R(s, a) is a vector representation of the reward
function. The computation of the next value function Vn+1(b)
out of the current Vn (Equation 4) is known as a backup step.
The backup step can be implemented efficiently (Pineau et al.,
2003; Spaan & Vlassis, 2005) by:

backup(b) = argmaxgb
a:a∈A b · gb

a (5)

gb
a = ra + γ

∑
o

argmaxgα
a,o:α∈V b · gα

a,o (6)

gα
a,o(s) =

∑

s′
O(a, s′, o)tr(s, a, s′)α(s′) (7)

Note that the gα
a,o computation (Equation 7) does not depend

on the belief state b and can therefore be cached for future
backups. All the algorithms we implemented use caching to
speed up backup operations. Without caching the gα

a,o results,
the backup process takes O(|S|2|V ||Ω||A|).

While it is possible to execute full backups for V over
the entire belief space, hence computing an optimal policy
(Cassandra et al., 1997), the operation is computationally hard.
Various approximation schemes attempt to decrease the com-
plexity of computation, potentially at the cost of optimality.

A value function can be defined using other representation,
such as a direct mapping between belief states and values.
Given such a representation we use the H operator, known as
the Bellman update, to compute a value function update:

QV (b, a) = b · ra + γ
∑

o pr(o|a, b)Vn(τ(b, a, o)) (8)
HV (b) = maxa QV (b, a) (9)

The computation time of the H operator is O(Tv|S|2|O||A|),
where Tv is the time it takes to compute the value of a specific
belief point using the value function V .

C. Point Based Value Iteration

Computing an optimal value function over the entire belief
space does not seem to be a feasible approach. A possible
approximation is to compute an optimal value function over

a finite subset B of the belief space (Lovejoy, 1991). Un-
fortunately, an optimal solution over B does not guarantee
optimality over belief points not in B. It is therefore possible
that for some reachable belief states (which are not included in
B) the resulting value function is sub-optimal. Such a schemes
are based on the (empirically verified) assumption, that the
computed value function will generalize well for other belief
states not included in B.

Point-based algorithms (Pineau et al., 2003; Spaan & Vlas-
sis, 2005; Smith & Simmons, 2005) choose a subset B of
the belief points that is reachable from the initial belief state
through different methods, and compute a value function only
over the belief points in B.

The Point Based Value Iteration (PBVI) algorithm (Pineau
et al., 2003), (Algorithm 1), begins with B = b0, and at each
iteration computes an optimal value function for the current
belief points set. After the value function has converged the
belief points set is expanded with all the most distant imme-
diate successors of the previous set. Following Pineau et al.
we used the L2 distance metric in our reported experiments1.

Given the ever expanding belief space it is clear that at the
limit, the belief set B∞ will cover the entire reachable belief
space. Thus, at the limit, PBVI will compute an optimal value
function over all reachable beliefs. However, at the limit, the
number of α-vectors can also be unbounded, making the point-
based backup intractable.

PBVI has a number of shortcomings, not allowing it to scale
up to larger domains. First, the belief expansion procedure
(Algorithm 3) requires the time consuming computation of
distances. Computing a distance between any two belief points
requires |S| operations. As we have |B| belief points, and each
belief point has |A||O| successors, computing the expanded
belief space requires |B|2|A||O||S| operations. To reduce this
computation cost, Pineau et al. also suggest to randomly select
a successor for each belief-action pair, reducing the computa-
tion to |B|2|A||S| at the cost of missing distant successors. The
value function update phase of PBVI (Algorithm 2) requires
a complete backup of all the belief points in the set B in an
arbitrary order. Such a backup sequence is time consuming
and as we argue later, not all backups are needed.

Algorithm 1 PBVI
1: B ← {b0}
2: while true do
3: Improve(V, B)
4: B ← Expand(B)

Spaan and Vlassis (2005) suggest to explore the world using
a random walk from the initial belief state b0. The points that
were observed during the random walk compose the set B
of belief points. The Perseus algorithm2 (Algorithm 4) then
iterates over these points in a random order. During each
iteration backups are executed over points whose value has
not yet improved in the current iteration.

1We also experimented with L1 and Linf and did not notice any improve-
ment over L2.

2We present here a single value function version of Perseus.
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Algorithm 2 Improve(V,B)
Input: V — a value function
Input: B — a set of belief points

1: repeat
2: for each b ∈ B do
3: α ← backup(b)
4: add(V, α)
5: until V has converged

Algorithm 3 Expand(B)
Input: B — a set of belief points

1: B′ ← B
2: for each b ∈ B do
3: Successors(b) ← {b′|∃a,∃o b′ = τ(b, a, o)}
4: B′ ← B′ ∪ argmaxb′∈Successors(b)dist(B, b′)
5: return B′

The belief points used by Perseus are very different from
the ones used by PBVI and in many cases most of them are
redundant. The random walk Perseus uses is however much
faster than the belief expansion of PBVI. The value function
update may only execute backups over a small subset of the
beliefs in B and yet ensures that the value for all points in B
improves after each iteration. However, the behavior of Perseus
is very stochastic. The random selections cause high variation
in performance and in more complicated problems may cause
the algorithm to converge very slowly. Nevertheless, the ideas
pointed out by Spaan and Vlassis — eliminating the need
for complete backups, and computing B rapidly — are an
important foundation to our work.

Algorithm 4 Perseus
Input: B — a set of belief points

1: repeat
2: B̃ ← B
3: while B̃ 6= φ do
4: Choose b ∈ B̃
5: α ← backup(b)
6: if α · b ≥ V (b) then
7: B̃ ← {b ∈ B̃ : α · b < V (b)}
8: add(V, α)
9: until V has converged

The Bellman error is the improvement that will be gained
from an update to belief state b:

e(b) = maxa[ra · b + γ
∑

o

pr(o|b, a)V (τ(b, a, o))]− V (b) (10)

In the context of MDPs, updating states by order of decreasing
Bellman error can speed up the convergence of value iteration.
The Prioritized Value Iteration (PVI - Shani et al. (2006)) is
an adaptation of this technique to POMDPs.

Like Perseus, PVI (Algorithm 5) receives as input a prede-
fined set of belief points B and computes an optimal value
function over these points. PVI always execute a backup over
the belief point with the maximal Bellman error. As opposed
to the MDP case, after each vector was added to the value

function, the Bellman error must be updated for all belief
points in B. While PVI computes a small number of backups
compared to other point based algorithms, the full update of
the Bellman error is time consuming and reduces the efficiency
of the algorithm considerably.

Algorithm 5 Prioritized Value Iteration
Input: B — a set of belief points

1: while V has not converged do
2: b∗ ← argmaxb∈B e(b)
3: α ← backup(b∗)
4: add(V, α)

Algorithm 6 Choose
Input: B — a set of belief points, k — sample size

1: B′ ← B
2: bmax ← nil
3: while B′ not empty do
4: for i = 0 to k do
5: Select b with uniform distribution from B′ and re-

move it
6: if e(b) > e(bmax) then
7: bmax ← b
8: if e(bmax) > 0 then
9: return bmax

10: return nil

Smith and Simmons (2004; 2005) present the Heuristic
Search Value Iteration (HSVI - Algorithm 7) that maintains
both an upper bound and lower bound over the value function.
HSVI traverses the belief space following the upper bound
heuristic, greedily selecting successor belief points where the
gap between the bounds is the largest, until some stopping
criteria has been reached. Afterwards HSVI executes backups
and H operator updates over the observed belief points on the
explored path in a reversed order.

HSVI is stopped when the gap between bounds over the
initial belief state b0 is reduced to less than ε thus providing
a guarantee over the quality of the value function. Even
though Simth and Simmons prove that the gap is closed in
a polynomial number of iterations, in most cases, closing this
gap is impractical, especially due to the slow improvement of
the upper bound. In practice HSVI computes good policies
when the gap is still quite large.

Executing backups in a reversed order is important because
the Bellman update uses the values of the successors to update
the value of the current belief. As such, the value of a
successor must be improved before the value of the current
belief can be improved. Indeed, when backups in HSVI are
done in order of detection the performance of HSVI is reduced
drastically.

HSVI differs considerably from other point-based algo-
rithms. First it collects new belief points after each iteration, as
opposed to Perseus that uses a fixed set of points and PBVI that
collects more points only if the current set was insufficient to
produce a good policy. Second, the points that HSVI collects
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depend on the computed value function. As such, while it
is possible to combine ideas from Perseus and PBVI, such
as collect B following PBVI expansion and update the value
function using the Perseus method, such combinations with
HSVI are non trivial.

While producing very good trajectories in belief space,
the computation of these trajectories is time consuming as
it requires the complete expansion of all the successors of
every belief state that is visited. Maintaining and updating the
upper bound is also time consuming and provides an additional
burden on HSVI.

Algorithm 7 HSVI
1: Initialize V

¯
and V̄

2: while V̄ (b0)− V
¯
(b0) > ε do

3: Explore(b0, V
¯
, V̄ )

Algorithm 8 Explore(b, V
¯
, V̄ )

Input: a belief state b, upper and lower bounds on the value
function V

¯
, V̄ .

1: if V̄ (b)− V
¯
(b) > εγ−t then

2: a∗ ← argmaxa QV̄ (b, a′) (see Equation 8)
3: o∗ ← argmaxo(V̄ (τ(b, a, o))− V

¯
(τ(b, a, o))

4: Explore(τ(b, a∗, o∗), V
¯
, V̄ )

5: add(V
¯
, backup(b, V

¯
))

6: V̄ ← HV (b)

Recently, Shani et al. Shani et al. (2007) suggested the
Forward Search Value Iteration (FSVI) algorithm. FSVI uses
ideas from HSVI, such as traversing the belief space following
a heuristic and executing backups in a reversed order. The
FSVI heuristic for traversing the belief space relies on an op-
timal Q function for the underlying MDP. This is a reasonable
assumption as solving the underlying MDP is always easier
than solving the POMDP. The algorithm simulates a traversal
in both the MDP state space and the POMDP belief space,
following always the best action for the MDP. As such, the
traversal is ensured to minimize the expected number of steps
to the goal.

FSVI traversals are very fast to compute, requiring only
|A| + |S| + |O| operations for the heuristic computation at
each step, compared to the O(|S|2) operations required just
for the belief update. The downside of following an MDP-
based heuristic is the inability to create traversals that visit
states that may provide important observations, unless these
states lie on some path from a start state to a goal, following
the MDP policy.

As FSVI trajectories do not depend on the value function it
computes, it is possible to break the process into first collecting
a set of belief points B, following a number of trajectories and
maintaining the successor-predecessor relationship between
belief states and after that computing a value function going
over the trajectories in B in reverse order.

While in practice such an implementation is not useful, re-
quiring additional memory for remembering the belief points,

Algorithm 9 FSVI
1: while Policy quality is insufficient do
2: B ← {b0}
3: b ← b0

4: Choose s from the b0 distribution
5: while s is not a goal state do
6: a∗ ← argmaxa Q(s, a)
7: Choose s′ from the tr(s, a∗, ·) distribution
8: Choose o from the O(a, s′, ·) distribution
9: b′ ← τ(b, a∗, o)

10: Add b′ to B
11: b ← b′

12: s ← s′

13: Execute backups on B in reversed order

this view of FSVI allows us to better compare FSVI to Perseus,
PBVI and the new algorithms suggested in this paper.

D. Pruning Dominated Vectors
As the complexity of the backup function relies on the

number of α-vectors in the value function, reducing the size
of V has an important effect on the computation time of the
algorithm. When computing the value of a belief state, we are
only concerned with the upper envelope of the hyper-planes.
As such, α-vectors that do not take part in this upper envelope
are redundant and can be removed from the value function
without reducing its accuracy.

The simplest method for pruning α-vectors is when they are
pointwise dominated. We say that α is pointwise dominated
by α′ if for each s, α(s) ≤ α′(s). Computing whether a new
α-vector is pointwise dominated by any vector in the value
function takes O(|V ||S|).

However, in many cases a vector may be dominated by a set
of vectors, but not by any single one of them. In this case, the
pointwise domination gives us no indication of the redundancy
of the vector. It is possible to find whether an α-vector belongs
to the upper envelope by finding a witness belief point for
that vector (Cassandra et al., 1997). Such a witness can be
computed using a linear program. However, pruning using
linear programming is extremely time consuming and becomes
the main bottleneck for computation (Smith & Simmons,
2005).

Some point-based methods offer a natural method for prun-
ing. PBVI optimizes a single vector for each belief state in
B. Therefore, PBVI implicitly limits the value function size
to |B|. The Perseus algorithm attempts to create even more
compact value functions, as it does not add new vectors for
points that were already improved within the current iterations.
In the single, incremental version of the algorithms we present,
these benefits no longer hold. For PVI, HSVI and FSVI, that
improve a single value function, it is likely that if the same
belief state is updated twice, the backup function would output
two different α-vectors. Therefore, for incrementally updated
value functions, the number of α-vectors in V does no longer
depend on the number of encountered belief states.

A possible approach to still prune vectors that are not
optimal for any belief point, is to keep track of vectors that
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were used within the update process. We can then stop the
algorithm after sufficient time has passed and remove all the
vectors that were not used (Smith, 2007). The pruning induced
by this approach depends strongly on the heuristic for selecting
the updated points. For example, it is likely that while the
heuristic updates one part of the belief space, other parts
remain untouched, and relevant vectors for these parts might
be pruned.

E. Multi-Core Machines and Distributed Algorithms
Multi-core machines combine a number of independent

processors (cores) in a single machine. Engineers may make
a distinction between cores that are embedded on the same
integrated circuit die, cores on different dies (sometimes called
multi-chip modules), and physically separate CPUs (known as
multi-CPU units). For our application, we are interested in
multiple cores that share access to the same memory. There-
fore, we ignore such distinctions. For example, the machine
used in most of our experiments has 2 quad-core units. Each
quad-core unit falls under the pure definition of multi-core
architecture, while joining two such units falls under the multi-
CPU case, but we will refer to such a system as an 8 core
machine.

While the cores conduct independent computations, they
typically access the same main memory, even though some
memory (e.g. cache) may belong to a single processor. Most
modern computers use at least 2 cores (dual-core) and in many
cases 4 cores (quad-core), but 16 and 32 core machine are
also available. Moreover, multi-core technology is predicted
to reach hundreds and perhaps even thousands cores in a few
years (Asanovic et al., 2006).

General distributed algorithms that are computed in parallel
on different machines should limit the amount of costly
communications. As data sent between machines must pass
through slow networks, the communication cost is in many
cases the bottleneck for scaling up such algorithms. Multi-
core machines, however, share the same memory. Therefore,
algorithms on multi-core machines can communicate without
a considerable overhead. It is important, though, that these
algorithms will reduce the amount of synchronization, where
one instance is waiting for a computation by another instance.
It is rarely the case that algorithms that were designed for
multi-core parallelism will apply directly to networks of
multiple machines.

A recent, yet popular, approach to distributed computing is
the map-reduce framework (Dean & Ghemawat, 2004). Map-
reduce was designed for executing algorithms where either
the input data cannot be stored on a single machine, or where
intermediate computations produce data that cannot fit into
a single machine. In such cases, the algorithm must first
partition the data such that operations can be conducted on
single partition independently. Each partition is mapped onto
a single machine, where the operation is executed. The results
of the computation are then either mapped again into different
partitions, or collected and reduced in order to fit into a single
machine. In our case, we are not concerned with the size of the
data and therefore the map-reduce framework is not applicable
for us.

A recent, yet popular, approach to distributed computing
is the map-reduce framework (Dean & Ghemawat, 2004). In
map-reduce, the algorithm first partitions the data such that
operations can be conducted on single partition independently.
Each partition is mapped onto a single machine (or single
core), where the operation is executed. The results of the
computation are then either mapped again into different parti-
tions, or collected and reduced, for example by computing the
max or the sum of the results. This approach may be directly
applicable to some of the techniques that we suggest below,
such as the backup step. However, map-reduce introduces
an additional cost in moving data between locations. This
relocation of data may be very costly, and we must ensure
that this cost does not outweighs the benefit of distributed
computing. For example, map-reduce is especially suitable to
problems that require the processing of huge datasets, where
the data required for the complete operation cannot fit on a
single machine. In these cases, we have no choice but to move
the data relevant for a single operation to one machine for a
computation to be executed.

Another promising technology is the multi-GPU (Graphics
Processing Units) machines. GPUs can execute a limited
set of operations very rapidly. While these computations are
targeted at producing high level graphics, other algorithms can
also leverage this computation resource. Indeed, many of the
parallel modifications that we suggest, and specifically, the
low-level computation of the backup components are suitable
for GPU implementation.

III. PARALLELIZING POINT-BASED ALGORITHMS

When suggesting parallel implementations there are a num-
ber of important issues that must be considered:

Algorithm semantics — a parallel execution may cause an
algorithm to behave differently than if it was executed over a
single thread. When the semantics change it is possible that
algorithm features, such as convergence guarantees, no longer
hold. It is therefore important to explicitly identify changes
that do not maintain the algorithm semantics.

Synchronized vs. A-Synchronized — in a synchronized
setting threads must synchronize their computation process
advancements. As such, in many cases some threads must wait
for the results of other threads. A-synchronized applications
allow each thread to advance on its own, thus avoiding wasted
wait time. However, this is usually achieved by somewhat
changing the semantics of the algorithm.

Synchronized access — even though threads may not be
synchronized, access to shared memory may still need to be
synchronized, in order to avoid the corruption of the data sets.
Synchronized access may be implemented by locks, yet this
may cause considerable slowdown.

Multi-thread overhead — when using multiple threads
there is an overhead in starting and stopping the threads.
This overhead can be reduced by using design patterns such
as a Thread Pool (e.g. (Gomaa & Menascé, 2000)). Still, in
many cases it is inefficient to split too short computations into
multiple threads and a careful balancing is required between
the number of threads and the length of the computation task
assigned to each thread.
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Reduction operators — a parallel execution of an operator
such as

∑
or max requires the computation of the components

of the operator and then combining (reducing) the components
into a single answer. There are several different techniques
for computing the reduction operator, such as using a binary
tree where each two components are reduced over a different
thread. In our evaluation, due to the relatively low cost of the
reductions, we used a single thread.

A. Synchronized Distributed Computations

1) Point-Based Backups: The best scenario in parallel
computation is when computations can be executed in parallel
without affecting the result of the process. The most simple
example of this scenario are operations such as Σ or max
where the various components can be computed independently,
and only afterwards the aggregated result is processed. The
aggregation operator requires that all values will be present
and therefore requires that all threads terminate. Thus, a
synchronization step is needed in all these operations in order
not to change the semantics of the algorithm.

The point-based backup (Equations 5 to 7) offers such
an opportunity. These equations contain both Σ and max
operations that can be parallelized. In the most extreme case
we could use |A||O||V ||S| threads to compute the vector
entries of all the gα

a,o components. However, as too short tasks
are not desirable, our less extreme approach uses |A| threads,
where each thread is computing a single gb

a component.
When HSVI computes the next belief state in the traversal,

and when PBVI expands the belief space, the computation of
all the successors of a belief state is required. In this case,
it is possible to apply parallel computing to compute each
successor belief state in a different thread.

2) PBVI: Moving to a higher level of concurrency, we
will now look at how PBVI can be parallelized. The two
main procedures of PBVI — expanding the belief subspace
B and improving the value function can both be executed in
parallel. It is possible to run the backup process over each
belief state independently of the other belief states. Here, the
arbitrary order of backup computations becomes highly useful.
We cannot guarantee the order of computations of the various
threads, but PBVI does not impose any order.

The belief expansion step of PBVI is extremely time con-
suming, due to the need to compute distances between many
pairs of points. It is possible to compute for each belief state
in B its most distant successor regardless of the successors
of other points. Also, belief expansion does not depend on
the value function. This gives us another opportunity for
parallelizing; We can compute the expansion of the belief
space at the same time as the value function update.

These changes require some synchronization steps in order
not to modify the semantics of PBVI. After each belief space
expansion we must run the value function update until con-
vergence. After splitting the belief point backups to different
threads, we need to wait for all threads to finish before starting
another value function update.

3) PVI: A second algorithm that offers an opportunity for
straight forward concurrency is PVI. In PVI much of the

computation difficulty comes from the need to update all the
Bellman errors after each new α-vector was added. Shani et al.
(2006) suggest to resolve this by updating the Bellman error
only over a sample of the points. However, by splitting the
error updates into several threads, an exact computation can
be done rapidly. Again, there is a need to wait until all threads
have terminated, find the point with the maximal error, and
execute a backup. Then, a new Bellman error update can be
started. Therefore, this version is once again synchronized.

B. Combining Point-Based Algorithms

Up until now we have discussed how specific point-based
algorithms can be enhanced by using a multi-core architecture.
We can also run several different algorithms over the same
domain in parallel. Assuming that different algorithms have
different strengths, the combined result of all algorithms might
be better than a single algorithm.

For example, Shani et al. (2007) explain how their FSVI
algorithm cannot tackle information gathering tasks. However,
in many interesting domains, FSVI rapidly computes high
quality policies. It is likely that by combining FSVI with
other algorithms, such as HSVI that are guaranteed to find
an optimal policy, will result in an algorithm that is both fast
and provably optimal.

We suggest that the algorithms will share the same value
function. This approach is superior to executing all algorithms
using different value functions and then joining the value
functions together, as good α vectors discovered by one
algorithm can be used by all others.

However, such an approach will modify the semantics of the
algorithms. For example, it is possible that while PVI updates
the Bellman error, new vectors will be inserted making the
Bellman error inaccurate again. As a result, PVI is no longer
guaranteed to always execute the best local backup.

1) Multiple Instances of an Algorithm: Another possibility
to consider is the execution of multiple instances of the same
algorithm at the same time. In this case, algorithms with a
stochastic component, such as Perseus (random backup order),
PVI (stochastic belief set selection) and FSVI (stochastic
trials) can benefit from executing multiple instances at the
same time. On the other hand, algorithms such as PBVI and
HSVI that make only deterministic selections will gain little
or no benefit.

It is possible, in the case of HSVI for example, that one
instance has updated the value functions, while a different
instance is computing the forward traversal. In this case, the
forward traversal might diverge due to the update. However,
such changes are not expected to be too beneficial.

In this case, making stochastic variations of deterministic
algorithms can have appealing properties. In the case of PBVI,
Pineau et al. already suggested to expand the current belief
set B by selecting only a single random action for each
belief b ∈ B, attempting to reduce the computation time
of the belief set expansion. When using multiple instances,
selecting random actions will cause different instances of
PBVI to operate using different belief sets, thus providing
better coverage of the belief space.



8

A similar adaptation for HSVI is less obvious. HSVI relies
on the current value function bounds to create the belief
space traversals. As such, choosing a different heuristic, such
as randomizing the action selection does not seem justified.
However, HSVI converges once all beliefs are finished. Usu-
ally, a single update to a node does not make it finished,
meaning that the gap between bounds at that point should still
be reduced. HSVI chooses to leave such nodes unfinished,
until a later trial would reach them again. We suggest to
randomly (e.g. when a uniform random number falls below
some exploration threshold) decide whether an unfinished
node should be left unfinished, or whether we should attempt
again to reduce the gap using another traversal. As such, our
algorithm stochastically branches in unfinished nodes, creating
different traversals in different instances.

The reason this approach is not attractive in non-parallel
settings, is that it is likely that the propagation of values to
the initial belief state would take longer. Thus, the anytime
performance of the algorithm is reduced. In a multiple al-
gorithm setting, we can run one regular HSVI instance that
always propagates values to the initial belief state, and allow
exploration only in the other instances, thus retaining the
anytime properties of the original algorithm.

C. Pruning Dominated Vectors
A problem that may rise when having multiple algorithms

adding α vectors to the value function is that the size of the
value function may grow too much. Pruning vectors is not
easy. While only the vectors that are part of the upper envelope
are important, discovering which vectors are dominated is
difficult.

We offer a simple approach to finding witnesses for α
vectors. It is possible to run simulations of executions of
the current value function over the environment. Through the
simulation we record for each α vector the number of times
it was used. After the simulation is over, we can prune out
vectors that were never used, since no belief state within the
simulation proved to be a witness for this α vector.

The simulations must execute a reasonable number of trials
before pruning out vectors, so that different possible traversals
through the belief space following the current policy will be
selected. Given a sufficient number of iterations the probability
that an important vector will be removed is low, but even if
such an event has occurred, the vector can be recomputed
again. Simulations also offer us another opportunity for paral-
lelizing, since trials are independent and can be carried out by
different threads. Thus, a large number of trials can be rapidly
done, enhancing the probability that all important vectors were
observed.

This approach is similar to the the usage-based pruning
suggested by Smith (2007). However, our pruning does not
depend on the value function computation heuristic, but on
the execution of the current policy. As different trials will
reach different parts of the environment, given the stochastic
properties of the domain, it is unlikely that an important vector
would never be used.

This method also ensures that we consider only reachable
witnesses, and might therefore prune out vectors for which

the linear program might have found an unreachable witness.
While normally running these simulations will cause a point-
based algorithm to slow down considerably, running this
procedure in a different thread can be beneficial.

After the simulations are done we need to filter out vectors
that were dominated from the value function. As the value
function is shared between different threads, we should make
this filtering carefully. We suggest the following method —
our value function has a read pointer and a write pointer.
Usually both point to the same vector set. New vectors are
always written using the write pointers and algorithms use the
read pointer to find optimal vectors. Once the simulations are
done, the pruning thread initializes the write pointer to a new
empty set. Now, the thread writes to this new set all vectors
that were observed during the simulations. If other algorithms
attempt to add new vectors, they also do so into this new set,
through the write pointer. Once all vectors have been added,
the read pointer is also changed to point to the new set. This
way we do not have to block algorithms that are trying to read
or write vectors during the filter process, but it is possible that
some requests will not get the best possible vectors.

IV. EMPIRICAL EVALUATIONS

We ran several sets of tests in order to provide evidences
to the various multi-threaded enhancements we suggest. To
implement our approach we used the Thread Pool design
pattern (see, e.g. (Gomaa & Menascé, 2000)), to reduce the
cost of creating threads. Each thread executes tasks taken from
a task queue. Threads can write more tasks to the queue and
wait for the tasks to finish. Most of our experiments (except
for the experiments in Section V-B2) were done on a dual
quad-core machine (8 processors) with 2.66GHz processors.
We use Java and the JVM is limited to 1.5GB of RAM.

A. Results

1) Point-Based Backups: We begin by evaluating the ad-
vantages of parallelizing the backup process itself. We assign
to each thread the computation of a single gb

a operation
(Equation 6), requiring |A| threads only at a time. We also
tried further splitting the tasks so that each gα

a,o (Equation 7) is
computed on a different thread. As expected, this has reduced
the performance.

We experimented over four domains — Hallway, Hallway2
(Littman et al., 1995), TagAvoid (Pineau et al., 2003) and
RockSample (Smith & Simmons, 2005). Over these four
domains we compare PBVI on a single thread and on multiple
threads. PBVI was executed for a fixed number of iterations
and we measure the average time (milliseconds) of backup
executions. We executed each experiment 5 times and report
the average result. Standard deviations were extremely small
— less than 0.01. Table I (left column) compares single (S)
and multi (M) thread backup execution time (milliseconds)
for the various domains. The number of backups that were
used changes between domains but is always more than 5000
during each execution.

As the semantics of the algorithm do not change, the exact
same value function is computed, and there is no need to
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compare the quality of the value functions. Also, PBVI was
used here because it executes a relatively large number of
backups, but the speedup of the backup process using threads
is applicable to any point-based algorithm.

Threads
Domain 1 2 4 8
Hallway 34 31 27 14
Hallway2 190 154 93 74
TagAvoid 33 38 32 20
RockSample5× 7 108 59 33 17

TABLE I
COMPARING MULTI THREAD EXECUTION TIME (MILLISECONDS) OF THE

BACKUP OPERATION.

PBVI PVI
Domain S M S M
Hallway 195 76 416 66
Hallway2 592 324 693 110
TagAvoid 447 83 135 26
RockSample5× 7 672 162 2069 307

TABLE II
COMPARING SINGLE (S) THREAD AND 8 THREADED (M) EXECUTION

TIME (SECONDS) OF PBVI AND PVI.

The results for TagAvoid are rather surprising — splitting
the backup process into tasks has helped very little. However
a closer look at the Tag Avoid domain can explain this. In
this domain the agent location is completely observable. Thus,
the number of successors of a belief state is very small. This
greatly reduces the computation time of the backup process
and therefore makes any further splitting of the operation
useless.

The results are most pronounced for the RockSample do-
main. This is both because this is the largest domain, and
hence, backups take relatively long to complete. Also, this
domain has the largest amount of actions, and therefore all
threads can be used simultaneously. In fact, in this domain it
appears that adding more threads beyond the 8 we used would
have resulted in increased performance.

2) PBVI: As we explained above, the PBVI algorithm can
be parallelized by splitting the belief states into threads both
when computing point-based backups and when expanding the
belief space. We ran this process over the same 4 domains, and
report average time over 5 executions. In order to separate
the contributions of the various modifications we suggest, we
evaluated the changes to the algorithms using the original,
single threaded point-based backup. Table II (middle column)
compares single (S) and multi (M) thread execution time
(seconds) for the various domains.

As expected, computing the value function update and the
belief set expansion over different points in parallel is useful.
However, even though we have used 8 threads, the speedup
is only about 50%. It is well known that multi-threaded
implementation rarely achieves a linear improvement. In our
case, the needed synchronization steps for collecting the results
from the threads after each value function update or belief set
expansion reduces the advantage of multi-threading.

Also, in the first few iterations the advantage of multiple
threads is less noticeable, due to the small number of op-
erations in each set. As the algorithm advances the effect
of having multiple threads becomes more pronounced, since
much more work can be done in each thread independently.

3) PVI: In PVI the computation of the Bellman error can be
divided into different threads for different belief points. Shani
et al. (2006) suggest to reduce this computation by sampling
a subset of the belief set B, but we report results here only
over a full update of the Bellman errors. Once we understand
the advantage of computing the error in different threads, we
can re-introduce sampling and allow PVI to use much larger
belief sets. PVI was executed over a belief set of 1000 points
for 150 iterations. Table II (right column) compares single (S)
and multi (M) thread execution time (seconds) for the various
domains.

The results here are more encouraging. PVI speedup is
much more noticeable than PBVI. This is mainly because
in PVI we are computing a value function over 1000 points,
while PBVI during most of the iterations had much less points.
Therefore, the number of points assigned to a thread is much
larger for PVI. This demonstrates again the need to properly
balance the amount of work a thread is executing, and not to
split the computation too much.

4) Vector Pruning: Next, we look at our pruning approach.
We ran the PBVI, PVI, HSVI and FSVI with and without prun-
ing, stopping the execution every 5 seconds, computing ADR
(average discounted reward) over 10, 000 trials and outputting
the number of vector in the current value function (|V |). The
pruning thread executed 500 trials, pruned unobserved vectors
and started over. Figures 1 and 2 present our results. We show
here the ADR and the |V | ratio with and without pruning. The
ratio is computed by taking the value without pruning and
dividing by the equivalent value with pruning. In the ADR
case a ratio below 1 means that pruning improves the quality
of the value function. In the V case a higher ratio means
that more vectors were pruned. Pruning might improve the
value function since pruning vectors results in faster backup
operations. Therefore, an algorithm manages to execute more
iterations in the given time frame and therefore creates a better
policy within the given time frame.

Over the Hallway domain, vector pruning reduces the value
function in most cases to half its original size. This means
that for about half of the vectors the pruning method could
not find a reachable witness belief point. When looking at the
ADR ratio in the Hallway domain we see that the resulting
policy quality is very similar. The method that displays the
largest deviation is HSVI which was slow to converge and
therefore its value function still fluctuated within the checked
time frame.

The results are even more encouraging over the Tag Avoid
domain. In this domain pruning not only considerably re-
duces the number of vectors, but also provides substantial
improvement in ADR. This is because when pruning was used,
backup operations become faster and therefore the algorithm
has executed more iterations within the time frame.
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Fig. 1. Vector pruning over the Hallway domain.
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Fig. 2. Vector pruning over the Tag Avoid domain.

B. Multiple Instances of an Algorithm

We continue to evaluate the execution of a number of
instances of the same algorithm on a number of domains.
Table III shows our results over a set of benchmarks. On each
benchmark we ran 1 to 6 instances of the algorithms FSVI,
PVI, PBVI, PBVIR (PBVI with random action expansion),
HSVI and HSVIR (HSVI with random exploration) on all
benchmarks. All executions also dedicated one thread to the
vector pruning technique we suggested. The algorithms were
stopped after each second and we compute the current ADR
over 1500 trials.

For each set of instances of the same algorithm we report
the average ADR and standard deviation during the execution.
The average ADR is appropriate here since it encapsulates

both the convergence speed and the quality and stability of
the ADR.

As expected, Table III clearly shows how HSVI and PBVI
gain nothing from multiple instances. A single HSVIR instance
usually performs worse than a single HSVI instance, since it
takes more time to propagate the values back to the initial
belief state. However, all stochastic algorithms (FSVI, HSVIR,
PVI, PBVIR) gain additional leverage from running multiple
instances. This gain is rapidly reduced when too many in-
stances are used. This is mainly due to the need for some
synchronization through the shared value function. Future
research should focus on reducing this needed synchronization,
thus allowing these algorithms to fully present their powers.

Hallway Hallway2 Tag RS5× 7
PVI
×1 0.486(0.02) 0.310(0.012) -7.0(0.6) 17.1(2.1)
×2 0.491(0.03) 0.317(0.013) -6.8(0.5) 18.2(1.2)
×3 0.505(0.006) 0.322(0.010) -6.7(0.4) 19.0(0.9)
FSVI
×1 0.504(0.01) 0.319(0.007) -8.5(1.4) 20.2(2.1)
×2 0.505(0.008) 0.320(0.006) -7.7(1.2) 20.5(2.8)
×3 0.511(0.008) 0.324(0.008) -7.7(0.6) 20.8(1.1)
HSVI
×1 0.458(0.04) 0.275(0.06) -8.8(2.6) 20.5(3.7)
×2 0.426(0.08) 0.251(0.08) -10.3(3.4) 19.3(3.6)
HSVIR
×1 0.467(0.06) 0.287(0.01) -8.5(2.9) 18.9(5.4)
×2 0.489(0.02) 0.291(0.01) -8.0(3.3) 19.8(5.2)
×3 0.498(0.02) 0.308(0.01) -7.8(1.7) 20.9(3.2)
PBVI
×1 0.499(0.02) 0.319(0.009) -7.6(0.7) 16.3(2.2)
×2 0.495(0.02) 0.313(0.01) -7.9(1.3) 15.6(1.5)
PBVIR
×1 0.495(0.02) 0.308(0.02) -7.3(1.2) 15.9(1.9)
×2 0.508(0.01) 0.313(0.01) -7.1(1.6) 16.4(0.4)
×3 0.512(0.006) 0.323(0.01) -7.0(0.8) 17.0(0.1)

TABLE III
EVALUATING MULTIPLE INSTANCES OF THE SAME ALGORITHMS. WE

REPORT AVERAGE ADR AND STANDARD DEVIATION OVER THE FIRST 25
SECONDS OF EXECUTION. WE REPORT RESULTS ONLY FOR 2-3

CONCURRENT INSTANCES ENTRIES, SINCE MORE INSTANCES DID NOT
ACHIEVE SIGNIFICANT IMPROVEMENT.

1) Combining Algorithms: Next, we tested the ability to
combine together several algorithms. Table IV shows the
results of combining various algorithms together. We ran
combinations of FSVI (F), PBVI (P), HSVI (H) and PVI (V)
on several benchmarks. We stopped the algorithms every 2
seconds and computed the ADR using 1000 trials using the
current policy. The executions was stopped after 40 seconds
for the first two domains and after 100 seconds for the Rock
Sample 7× 8 domain.

These experiments were executed on an 8 core machine.
Therefore, we did not apply other modifications, such as using
multiple threads to compute the Bellman error for PVI, or
using multiple threads to compute a backup. We used a single
thread version of each algorithm in the experiments below.
Therefore, given an unlimited amount of cores, we can expect
significant benefits.

Aside from the algorithms we also run a single thread
dedicated to pruning dominated algorithms. We ran some
experiments without the pruning thread but the combined
algorithms run out of memory after a short while.
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TagAvoid RockSample5× 7 RockSample7× 8
Algorithms Time to -6.5 Max ADR Time Time to 22 Max ADR Time Time to 19.0 Max ADR Time
PBVI (P) - -6.7 36 - 18.0 40 - 15.4 80
PVI (V) 22 -6.1 38 - 18.6 10 - 17.4 50
HSVI (H) 18 -6.3 40 16 24.2 32 20 19.8 100
FSVI (F) 22 -6.1 38 12 24.1 36 40 19.1 40
P;V 14 -5.9 40 18 23.3 40 90 19.5 90
P;H 16 -6.1 40 14 23.3 26 30 19.8 30
P;F 16 -6.1 38 8 22.5 32 100 19.1 100
V;H 12 -6.1 40 6 23.4 14 20 20.4 90
V;F 16 -6.0 40 4 22.7 8 60 20.5 60
H;F 20 -6.1 40 4 23.7 30 30 20.4 30
P;V;H 14 -6.1 40 20 23.8 28 70 20.5 100
P;V;F 18 -5.8 40 12 24.2 40 - 18.4 40
P;H;F 18 -6.0 40 20 23.4 26 30 19.8 100
V;H;F 8 -5.7 30 8 23.8 14 50 19.5 80
P;V;H;F 26 -6.0 40 10 22.9 22 40 20.8 80

TABLE IV
EVALUATING COMBINATIONS OF ALGORITHMS. FOR EACH DOMAIN AND ALGORITHM WE REPORT THE TIME (SECONDS) IT TOOK TO REACH A

PREDEFINED ADR, THE BEST ADR ACHIEVED BY THE METHOD, AND THE TIME IT TOOK TO REACH THE BEST ADR.

When multiple algorithms are executed together we expect
two benefits: the convergence should be faster and the policy
should be superior. To evaluate the convergence speed we
choose a fixed ADR (reported in previous papers) and report
the time it took to reach it. To evaluate the best policy, we are
also presenting the best ADR that was achieved and the time
needed to achieve it.

The results here are interesting. It is clear that in all domains
an algorithm can be improved by combining it with another
algorithm. However, not every combination of algorithms is
superior. This is partially because the more algorithms you
execute in parallel the more interaction and synchronization
effort is needed.

To further understand the behavior of multiple algorithms
executed together, we collected various statistics from the
execution of FSVI, HSVI, PBVI, and PVI together on the
RockSample 7×8 domain3. In this experiment we stopped the
execution every 10 seconds, computed the ADR and collected
vector usage statistics; For each α-vector that was generated
we remember the algorithm that generated it. Thus, we are able
to gain understanding of the contribution of various algorithms
to the value function computation.

First, we counted the number of vectors that were used in
policy execution (Figure 3(a)). While vectors generated by
FSVI dominate the policy, all algorithms contribute vectors
to the policy. To check whether all algorithms generated
important vectors, we tried executing policies that exclude
vectors generated by a single algorithm, and the ADR was
reduced considerably. Also, while FSVI dominates the value
function and policy, when only vectors computed by FSVI
were executed, ADR dropped by about 25%.

It is also interesting to consider the number of times that
vectors from an algorithm were used during policy evaluation
(Figure 3(b)), emphasizing ‘important’ vectors that are more
heavily used. Indeed, vectors generated by PBVI are used more
often than vectors from other algorithms. To understand this,
we computed when were vectors used during trials of policy
execution. For each vector, we computed the average step in

3We did not use the pruning thread here.

the trial where vectors were used (Figure 3(c)). Vectors from
PBVI are mainly used in the beginning (initial steps) of a
trial. This is because when a trial begins, the agent always
starts with the same behavior. In the case of RockSample, the
agent always begins by moving within range of the closest
rock and sensing whether it is “interesting”. Therefore, the
same vectors are used in all trials. In the latter steps of trials,
the needed behavior is more diverse, given the rock states.
Thus, each trial begins by selecting the same α-vectors, but
afterwards, different vectors are used in different trials.

PVI vectors are used closer to the end of trials. This is
because PVI executes backups on vectors with a high Bellman
error. Such vectors initially lie near the rewards of the domain,
and thus, closer to the end of trials. We can view PBVI as
doing a breadth first search from the initial belief state, and
PVI as doing a breadth first search backwards from the goal
states. FSVI and HSVI, which are both trial based, are depth
first search algorithms. Each algorithm contributes differently
— PVI provides good values for beliefs near the end of
trials, FSVI and HSVI help to propagate these values down
to beliefs that are close to the initial belief state, and PBVI
computes good values for these initial beliefs. In general FSVI
vectors are used later in the trial than HSVI vectors. This
is because FSVI executes goal oriented trials, while HSVI
usually generates less direct trials that explore more beliefs,
producing more vectors that are important in earlier stages.

Another interesting aspect is the influence of the algorithms
on the evolution of the value function (Figure 3(d) and
Figure 3(e)). We can measure this by looking at vectors that
were selected in the point-based backup process (Equation 6).
While in the beginning, vectors generated by FSVI dominate
the selected vectors, later on vectors generated by PBVI
become the dominating factor. This can be seen as an evidence
that the belief expansion policy of PBVI indeed collects
many important beliefs. Vectors generated by FSVI gradually
become less influential, because FSVI executes focused trials,
backing up only vectors that are found on the path. However,
the backup process requires that we select one α-vector for
each successor of the current belief. Thus, it is also important
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(a) Number of vectors used in the policy
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(b) Number of times vectors where used in policy execution
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(d) Number of vectors used by backup operations
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(e) Number of times vectors were used in backups

Fig. 3. Analyzing the combination of FSVI, HSVI, PBVI, and PVI over
the RockSample 7× 8 domain. In all the above graphs, the x axis is time in
seconds ×10.

to backup these successors, in order to have good vectors for
them. Here, the heuristic of PBVI, that is not value oriented,
helps it again to collect important beliefs for value function
computations.

2) Large Domains: Finally, we run experiments on 3
large domains — Network Management, Rock Sample, and
Logistics. These models are naturally formalized as factored
POMDPs (Shani et al., 2008) and allow us to scale up to
large problems. We follow the model definitions of Shani
et al., but used a flat definition, in order to scale up the
computational effort, rather than the memory requirements.
We run the experiments over machine with 16 2.8GHz AMD
Opteron CPUs.

For all domains we ran HSVI, FSVI, PVI, and PBVI
together, allowing all algorithm to use the parallel computation
of backups. Also, PVI and PBVI were allowed 4 threads each
for a parallel implementation. Table V shows the properties
of the domain, the maximal ADR that was achieved within
2500 seconds, and the time until this ADR was achieved. In
comparison, we tried to solve the problems using our fastest
algorithm, FSVI, and a single thread. Even after 5 hours, FSVI
was unable to find a policy with comparable performance to
the one computed using the combination of all algorithms in
less than 45 minutes.

Domain |S| |O| |A| ADR Time (secs)
Network 12 212 2 25 56.191 1700

Rock Sample 8× 8× 14 220 2 19 53.27 1900
Logistics 4× 2× 5 219 7 18 21.65 2800

TABLE V
EXECUTING ALGORITHMS IN PARALLEL ON A 16 CORE MACHINE.

V. DISCUSSION AND RELATED WORK

The machine learning community has previously acknowl-
edged the possible scaling up using multi-core architecture.
This was mostly explored in the context of Support Vector
Machines (e.g. (Zanni et al., 2006)). The parallel PBVI and
PVI algorithms are variations of this approach, but the rest
of the modifications that we suggest do not fall under this
framework.

In view of this, we propose several enhancements to point-
based methods, that exploit the structure point-based methods.
Our pruning method is such an example, and the combinations
of different algorithms is another enhancement that doesn’t fit
the map-reduce framework.

Our algorithm combination allows us to exploit the advan-
tages of various algorithms. For example, we are now able
to combine the rapid improvements that FSVI offers with
the convergence guarantees of HSVI. It is also likely that
in different domains different algorithms have an advantage.
In such cases, a combination of algorithms will allow us to
always use the best algorithm for the domain. When combining
algorithms the number of α vector is likely to increase more
rapidly, using our pruning technique is important.

When designing multi thread algorithms, it is important to
reduce the amount of synchronization. Each point of thread
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synchronization reduces the performance of the algorithm
considerably (Sutter & Larus, 2005). The modifications we
suggest that preserve the algorithm semantics need synchro-
nization only in that all threads must finish an operation before
a new operation is launched. However, the threads do not
synchronize any operations while running.

Most of the modifications we suggest require a shared
value function. Many of the operations over the value function
read vectors, thus not requiring any synchronization. However,
changes to the value function are also needed, such as adding a
new vector or pruning dominated vectors. Our implementation
minimizes the use of locks when changes are required. We
use a type of transactional operation (Sutter & Larus, 2005)
where changes are done over a copy of the value function,
that then replaces the original. At the worst, an algorithm
might use vectors that were already found to be dominated,
but are nevertheless valid candidates. This will slow down
an algorithm, as such vectors can be ignored, but will not
compromise the validity of the value function.

The changes we suggest here are also applicable only to
multi-core machines where threads share their memory. A
different type of parallel computing is the cluster framework,
where several machines are combined in a single cluster. Clus-
ters offer thousands of processors to use, but add an additional
overhead in communication between the machines. In that
context our modifications are likely to be less useful, and
future research should identify how point-based solvers can
still benefit from multiple cores while minimizing communi-
cations. Our algorithms require a shared value function and the
communication cost of sending α-vectors between machines
reduces the effectiveness of our modifications considerably.

In this paper we focus on exploiting the properties of
point-based algorithms for parallel execution. An orthogonal
approach is to use the properties of the domain. For example,
some domains can be decomposed into a set of loosely
coupled small POMDPs arranged in an hierarchy (Charlin
et al., 2007). Then, we can solve all the sub-POMDPs in
parallel and combine the resulting policies afterwards. Still,
when computing policies for the sub-POMDPs, we can still
leverage improvements at the algorithmic level to speed up
execution.

Boosting (Schapire, 1999) is another relevant method from
the Machine Learning literature, where several instances of
the same algorithm are executed, and the combined solution
is better than the results of each separated algorithm. Boosting
usually executes the algorithms in a sequential order, where
each algorithm focuses on the data where the previous algo-
rithms did not do as well. Indeed, it is difficult to consider
running a set of algorithms (instances of the same algorithm
or different algorithms) in parallel, as we do, to be a boosting
method. Nevertheless, we can borrow ideas from boosting by
directing different instances of the algorithms towards different
areas of the belief space. For example, we can manipulate
the heuristic of HSVI or FSVI to direct the belief space
traversals towards different areas, thus reducing the number
of overlapping backups for the same belief state. Additional
research is required in order to identify good strategies for
traversal heuristics, and to evaluate the advantage from using

such an approach.

VI. CONCLUSIONS

This paper evaluates various opportunities for point-based
value iteration algorithms for solving POMDPs, in view of
the expected increase in the number of processors on a single
computer. We have explained how the basic operations of a
point-based algorithm, such as the point-based backup can be
implemented using threads. We also explained how algorithms
such as PBVI and PVI can be enhanced in a multi thread
system without changing the algorithm semantics.

We show how to combine different algorithms together
producing a hybrid algorithm that converges faster. The con-
current execution also allows us to use a new vector pruning
technique, that prunes vectors that do not have a reachable
belief witness, and are therefore never used in practice.

We provide experiments over several benchmarks as a proof
of concept to our various modifications, and discuss some
potential extensions of our research.

In the future, we intend to test our approaches on ma-
chines with more cores, such as the AMD FireStorm. On
such machines, where all the parallel modifications can be
evaluated together, we expect that the scaling up will be
much more pronounced. We also intend to try our methods
on machines with multiple GPUs, which are now becoming
widely available. It is likely that not all of our suggestions
will be applicable to GPUs, that support a smaller set of
instructions, but this requires further investigation. We will first
try to use GPUs for the low-level backup parallelizing, which
contains arithmetic operations that are especially suitable for
GPUs.

After fully understanding the usability of our approaches
to multi-core machines with shared memory, the next step
would be to design algorithms that can be executed in dis-
tributed environments, using techniques such as map-reduce,
or cloud computing, to scale up POMDP solvers. While more
challenging, distributed environments can offer many more
computational power, at the cost of moving data through a
network. This tradeoff should be studied and we intend to
design algorithms that will optimize for this tradeoff.

REFERENCES

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J.,
Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L.,
Shalf, J., Williams, S. W., & Yelick, K. A. (2006). The
landscape of parallel computing research: A view from
berkeley (Technical Report UCB/EECS-2006-183). EECS
Department, University of California, Berkeley.

Cassandra, A. R., Littman, M. L., & Zhang, N. (1997). Incre-
mental pruning: A simple, fast, exact method for partially
observable markov decision processes. UAI’97 (pp. 54–61).

Charlin, L., Poupart, P., & Shioda, R. (2007). Automated
hierarchy discovery for planning in partially observable
environments. Advances in Neural Information Processing
Systems NIPS 19 (pp. 225–232).

Chu, C., Kim, S. K., Lin, Y., Yu, Y., Bradski, G. R., Ng, A. Y.,
& Olukotun, K. (2006). Map-reduce for machine learning
on multicore. NIPS (pp. 281–288).



14

Dean, J., & Ghemawat, S. (2004). Mapreduce: Simplified data
processing on large clusters. OSDI’04: Sixth Symposium on
Operating System Design and Implementation.
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