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Abstract

This paper provides evidence on the use of stochastic discount fac-
tors in the evaluation of portfolio performance. First we discuss evalu-
ation in this setting, and relate it to traditional mean-variance analy-
sis. We then use Monte Carlo experiments to examine the small sam-
ple properties of various generalized method of moment estimators.
Overall, the test statistics are fairly well described by their asymp-
totic distributions, even though serious size distortions are found in
some cases. The simulations also show that a significant excess return,
or a long sample, is needed to reject neutral performance. Finally, we
offer an evaluation of Swedish-based mutual funds. The conditional
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evaluation indicates that funds may have had non-neutral performance
over the sample period as revealed by the predictability of the uncon-
ditional performance measure.

Keywords: GMM estimators, intersection and spanning tests,
mean-variance analysis, mutual funds, small sample properties.

JEL Classifications: G11, G12, G23.
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1 Introduction

Performance evaluation has recently received increased attention. Apart from
the obvious interest for investors to evaluate portfolio strategies, this can be
traced to at least two distinct developments in the asset pricing literature.

The first development is the use of efficient benchmark portfolios. Per-
formance evaluation is essentially a question of comparing the risk-adjusted
return on one portfolio with certain benchmarks. It is, however, well known
that the use of inefficient benchmarks can cause ambiguity in an evaluation.
The use of two inefficient benchmark portfolios could, for instance, reverse
the ranking of passive portfolios, and portfolios which have superior per-
formance using one benchmark may have inferior performance with another
benchmark.1 The second development is the use of conditional information
variables in tests of asset pricing theories. Traditional approaches to per-
formance measurement are unconditional, in the sense that average returns
are being used to estimate the expected performance. These measures do
not account for time-variation in expected returns and risk, which can mask
truly inferior or superior performance.2

(Bansal and Harvey 1996), (Chen and Knez 1996), and (Farnsworth, Fer-
son, Jackson, and Todd 1996) combine these developments, and implement
the performance measures in a conditional setting using efficient benchmarks.
The evaluations are done in the context of (Hansen and Richard 1987),
(Hansen and Jagannathan 1991), and (Snow 1991). Basically a stochas-
tic discount factor (SDF) which prices all benchmarks (and is in this sense
efficient) is constructed and then used in evaluations. The methodology is
related to the recent spanning tests in (De Santis 1995), and (Bekaert and
Urias 1996).

In this paper we provide further evidence on the use of stochastic dis-
count factors in an evaluation of portfolio performance. Our paper is close
in spirit to the work by (Chen and Knez 1996) which deal with the theoreti-
cal strengths and weaknesses in SDF performance measures. We extend the
interpretation of the performance measures, and relate them to the tradi-
tional mean-variance analysis. We focus on the implementational aspects of
the approach. Using simulations we examine the properties of the measures

1For further elaborations on this, see, for instance, (Roll 1978), and (Dybvig and Ross
1985).

2(Ferson and Schadt 1996) develops this reasoning, and extends the traditional mea-
sures of performance and market timing by using predetermined information variables.
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in small samples. We consider SDFs with and without positivity imposed.
We allow the benchmarks to be either fixed-weight strategies or dynamic
strategies formed via available public information. Moreover, we consider
unconditional as well as conditional evaluations.

In the case without positivity imposed on the SDF, there is an appealing
duality between the performance measure and the traditional mean-variance
analysis. In fact, the test of neutral performance can be interpreted as an
intersection test. That is, the evaluation boils down to a test of whether ad-
ditional assets (here mutual funds) expand the mean-variance frontier. The
intersection test becomes equivalent to an evaluation of a fund’s pricing error
with respect to an ex post efficient mean-variance portfolio (an ‘alpha’). Fol-
lowing (Chen and Knez 1996), we also consider evaluation measures where
positivity on the SDFs is imposed. The positivity of the SDF prevent situa-
tions where one can find arbitrage opportunities, but there is no enlargement
of the mean-variance frontier. Moreover, the SDFs are efficient by construc-
tion (as in (Hansen and Jagannathan 1991)), and require only the returns on
the benchmark assets. The analysis does not rely on a specific model, and
hence not on its accuracy.

Another strength of the approach is that estimation and testing can be
done with the generalized method of moment (GMM) of (Hansen 1982). This
means that specific distributional assumptions of the asset returns are not
required, and we do not need to work in a normal iid setting. We can handle
both conditional heteroskedasticity and serial correlation in pricing errors.
Moreover, it is straightforward to incorporate conditional information, and
the non-linearities (via positivity constraints on the SDFs) can be dealt with.

This framework is used in a comparison of actively managed mutual funds
with some benchmark portfolios. Do fund managers possess information that
provides superior returns or can simple portfolios price the returns of mutual
funds? Does the incorporation of conditional (public) information via scaled
returns matter? Given the interest of these questions, can our measures
really distinguish superior performance from neutral performance? How do
the empirical small sample distributions for the evaluation statistics look like
under the null and alternative hypotheses? These are some of the questions
we address.

We discuss the use and implementation of stochastic discount factors in
a portfolio evaluation in Section 2. We also relate the evaluation to the tra-
ditional mean-variance analysis. We especially highlight the importance of
getting the mean of the SDF right. Otherwise, the evaluation could be un-
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dertaken at an arbitrary (and misleading) point in the mean-variance space.
We also show how to select predetermined information variables in order to
undertake a correct conditional evaluation. In Section 3 we describe data on
Swedish benchmarks, instruments, and funds which we employ in the study.
Monte Carlo experiments are used in Section 4 to examine the small sample
properties of the GMM estimators. Both size and power properties are char-
acterized using various GMM approaches. Overall, the test statistics are well
described by their asymptotic distributions, even though serious size distor-
tions are found in conditional evaluations. The simulations also show that a
significant excess return, or a long sample, is needed to reject neutral perfor-
mance. In Section 5 we apply the method to Swedish data. We undertake an
unconditional as well as a conditional evaluation. The conditional evaluation
indicates that funds may have had non-neutral performance over the sample
period, as revealed by the predictability of the unconditional performance
measure. Finally, we conclude in Section 6.

2 Stochastic Discount Factors and Performance

Evaluation

We use the same basic approach to testing fund performance as (Chen and
Knez 1996). We first estimate a stochastic discount factor (SDF) which
‘prices’ some benchmark portfolios, and then use GMM to test if it also
prices the funds. The SDF is estimated from asset returns as in (Hansen and
Jagannathan 1991), and we compare the results from SDFs with and without
positivity imposed.

This section shows how to set up the GMM moment conditions to guaran-
tee that simple trading rules are assigned neutral performance, both uncon-
ditionally and conditionally. The simple trading rules we consider are either
fixed-weight portfolios or dynamic portfolios where the portfolio weights are
allowed to depend linearly on some publicly available information.

Without positivity of the SDF, the GMM-SDF test is equivalent to inves-
tigating if the mean-variance frontier is expanded by adding funds. In this
case, the main reason for using the GMM-SDF test is that it is easy to han-
dle non-normal and non-iid pricing errors. Furthermore, to our knowledge,
there is no alternative to the GMM-SDF test if we want to impose positivity
of the SDF, which may have some advantages as discussed by (Chen and
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Knez 1996). For instance, a fund may offer arbitrage opportunities without
expanding the mean-variance frontier, and this will (sampling errors apart)
be picked up by a positive SDF. Similarly, a positive SDF also guarantees
that a fund which does systematically better than another fund is assigned
a higher performance.

2.1 Performance Evaluation and Benchmark Portfo-

lios

Investors form portfolios of certain ‘benchmark’ assets. The one-period gross
return on such a portfolio is

Rt = w′

t−1R1t, with w′

t−11 = 1, (1)

where R1t is a vector of the one-period gross returns on benchmark assets, and
wt−1 the portfolio weights chosen in t − 1. We assume that the information
set and preferences lead investors to use simple trading rules where wt could
be any linear function of some publicly available information, xt,

wt = δ′xt, such that w′

t1 = 1. (2)

We will focus on two cases. First, with fixed-weight benchmark portfolios, xt

is just a constant. Second, with dynamic benchmark portfolios, xt is a vector
with a constant and augmented with some information variables which have
been proven to predict stock market data. There must be differences in
the information set and preferences in order to motivate the differences in
trading rules. In spite of this, we assume that the time series process of the
benchmark asset returns, R1t, is exogenous and the same for both cases.

Let zt−1 be a vector of instruments known at t − 1. The law of one price
implies the existence of an SDF, mt, such that

Eλ1t = 0, with (3)

λ1t = zt−1Rtmt − zt−1. (4)

In some cases we also impose the restriction that the SDF must be positive,
as suggested by (Hansen and Jagannathan 1991).3

3In a conditional asset pricing model, the absence of no arbitrage opportunities (non-
negative payoffs with negative prices) implies that there must be some SDF which is
positive almost surely.

5



Suppose we now allow investors to take an infinitesimal position in a
fund. The fund invests in the same benchmark assets as investors, but with
potentially more sophisticated trading rules, for instance, because of superior
information. We study if these trading rules add anything to the opportunity
set of investors. The flavor of the testing approach is to first find a SDF
which ‘prices’ the benchmark strategies, that is, satisfies (3)-(4). Then, we
see whether it also prices the fund. That is, if the following conditions are
satisfied

Eλ2t = 0, with (5)

λ2t = zt−1R2tmt − zt−1. (6)

Different choices of the instruments give tests of different aspects of the
fund performance. We focus on two cases. First, we get an unconditional
performance measure by letting zt be a constant. It is straightforward to
show that Eλ2t is then the average return of the fund minus what the SDF
implies for the risk free rate and the risk premium.4

Second, we get a conditional performance measure by using both a con-
stant (nests the first case) and some information variables in zt.

5 The el-
ement in Eλ2t, corresponding to the constant, is still a measure of average
performance, while the other elements capture the predictability of the fund
return. For simplicity, suppose the average performance is zero. It is then
straightforward to show that the remaining elements in Eλ2t are the covari-
ances between the predetermined variables and the period t performance of
the fund.6

4If zt−1 is a constant, then (3) can be written ERt − 1/Emt = −Cov(Rt, mt) /Emt+
Eλ1t/Emt. Since mt prices Rt, Eλ1t = 0, so any risk-free rate has the mean 1/Emt and
the risk premium is captured by the covariance term. (5) can be written on the same
form, which gives the result in the text.

5(Ferson and Schadt 1996) conduct a ‘conditional’ evaluation in a linear beta frame-
work, by allowing the betas to vary with predetermined information variables. This cor-
responds to our unconditional evaluation of dynamic strategies.

6Let λuc
1t

and λc
1t

be the elements in λ1t corresponding to the constant (uncondi-
tional evaluation) and an information variable zc

t−1
(conditional evaluation), respectively.

Clearly, λuc
1t

= Rtmt −1 and λc
1t

= λuc
1t

zc
t−1

, so Eλc
1t

= Cov(λuc
1t

, zc
t−1

) + Eλuc
1t

Ezc
t−1

. Since
mt prices Rt, both Eλuc

1t
and Eλc

1t
are zero, so average performance of Rt is zero and the

performance in t, λuc
1t

, is not correlated with zc
t−1

. (5) can be written on the same form,
which gives the result in the text.
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2.2 Construction of the SDFs and GMM Testing

We need to estimate SDFs which price the returns from the two different
classes of simple trading rules discussed above. This can be done by replacing
(4) by

λ1t = (zt−1 ⊗ xt−1 ⊗ R1t) mt − zt−1 ⊗ xt−1 ⊗ 1, (7)

and then finding an mt such that Eλ1t = 0. As shown in Appendix A, any
portfolio with weights which are linear in the information variables xt−1, and
summing to one in every period, will then be assigned a neutral performance.

We will later show that it is important to tie the mean of the SDF to
a reasonable value. This can be achieved by adding a moment condition
related to an asset whose return, Rft, is a suitable level for a hypothetical
risk free rate

Eλft = 0, with (8)

λft = mt − 1/Rft. (9)

We follow (Hansen and Jagannathan 1991) and (Chen and Knez 1996)
and construct the SDFs from the sample of {1, R1t, xt−1, zt−1}. Without
positivity, mt is a linear function of the cross product of the four vectors.
Positivity is imposed by cutting off the linear function at zero in an option-
like fashion. In principle, the testing approach could be to choose the vector
γ in

m∗

t =
[

1 (zt−1 ⊗ xt−1 ⊗ R1t)
′
]

γ, or (10)

m+
t = max

([

1 (zt−1 ⊗ xt−1 ⊗ R1t)
′
]

γ, 0
)

(11)

to make the sample average of λ1t in (7) and λft in (9) equal to a vector of
zeros.7 (This is possible since there are as many elements in γ as there are
equations.) The series of estimated m∗

t or m+
t could then be used to test if

(5) holds. Noteworthy is that if there are common variables in the zt−1 and
xt−1 series, only the unique cross-products in zt−1 ⊗ xt−1 have to be used in
(10) and (11) to price the benchmarks under the null hypothesis.

However, to take into account the sampling error in the estimated SDF, we
employ the following one-pass procedure instead. The vector γ is estimated

7(Bansal and Viswanathan 1993) consider SDFs which are non-linear in asset returns,
and (Glosten and Jagannathan 1994) discuss non-linearities for performance evaluation.
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by minimizing a quadratic loss function of the sample averages of not only
λ1t and λft, but also λ2t
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 . (12)

The weighting matrix W is positive definite, but need not be the inverse of
the covariance matrix of the moment conditions as is most often the case.
Each element in

∑T

t=1 λ2t/T is an overidentifying restriction, and we can test
if they are all satisfied by using the χ2 test in (Hansen 1982) (see Appendix
B for details). Without positivity, we have a linear model which can be
solved analytically, but positivity introduces a non-linearity which requires
a numerical optimization algorithm.

2.3 The Relation to Mean-Variance Analysis

(Hansen and Jagannathan 1991) show the relation between the mean-variance
frontiers for asset returns and for the SDF without positivity. We use this
framework to discuss how the GMM-SDF test without positivity relates to
traditional mean-variance tests. We focus on the unconditional case with
fixed-weight benchmark portfolios, xt = zt = 1, but the results can also be
applied to the managed portfolio returns, zt−1 ⊗ xt−1 ⊗ R1t and zt−1 ⊗ R2t.

(Huberman and Kandel 1987) construct a test of whether the mean-
variance frontier of R1t intersects the mean-variance frontier of R1t and R2t.
Suppose the fund return is

R2t = a + BR1t + εt, with Eεt = 0 and ER1tε
′

t = 0. (13)

(Huberman and Kandel 1987) show that intersection is equivalent to the
restriction

a = R0(1 − B1), (14)

where R0 is the zero beta rate associated with the portfolio at the intersection
point. The relation to the GMM-SDF test of Eλ2t = 0 is seen by using (13)
to substitute for R2t in (6). If the fund has neutral performance, then

a =
1 − Cov(m∗

t , BR1t)

Em∗

t

− BER1t. (15)
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It is straightforward to show that this is equivalent to (14) (see, for instance,
(Ferson 1995) and (Bekaert and Urias 1996)). The GMM-SDF test is thus
an intersection test.

It is then intuitively clear that the GMM-SDF measure of performance,
Eλ2t, must be a kind of Jensen’s alpha. To show that, combine the following
facts: (i) (5) implies a beta relation between ER2t and the SDF; (ii) the
SDF portfolio return, R∗

bt = m∗

t /Em∗2
t , is on the mean-variance frontier with

a risk free asset ((Chamberlain and Rothschild 1983)); and (iii) the tangency
portfolio, R∗

Tt, is perfectly correlated with the SDF portfolio. Together, these
facts imply

Eλ2t

Em∗

t

= ER2t −
1

Em∗

t

− Cov(R2t, R
∗

Tt)

Var(R∗

Tt)

(

ER∗

Tt −
1

Em∗

t

)

, (16)

which is a Jensen’s alpha computed against an efficient tangency portfolio.
Hence, the fact that m∗

t prices the benchmarks correctly, yields an evaluation
versus an efficient benchmark asset. The pitfall of evaluating against an
inefficient asset is thus avoided. Finally, recall that this duality result holds
only for the SDF without positivity.

We illustrate this in Figures 1.a-b, by plotting the mean-standard devia-
tion frontiers of our data (to be described later). In Figure 1.a, the frontier
for the benchmarks, R1t, is the thick solid hyperbola. Adding one hypothet-
ical fund with neutral performance gives the thick dashed hyperbola. These
two frontiers intersect at the tangency portfolio, R∗

T , (marked by a circle),
corresponding a risk free return, 1/Em∗

t , of about 10%. In Figure 1.b the fund
has been given a 5% excess return, so the two frontiers no longer intersect at
the tangency portfolio.

The moment condition (8) was included to tie the mean of the SDF to
a reasonable value. Figure 1.b illustrates why this is necessary. Suppose
we would incorrectly estimate 1/Em∗

t to 28% (marked by R0 on the vertical
axis). This would imply a tangency portfolio at R0

T (marked by a triangle).
Evaluated at this point, the fund with 5% excess return appears to have
neutral performance. (Chen and Knez 1996) use only stock market data to
estimate the SDF. In our data set, this leads to an implied risk free rate
which differs significantly between different sets of benchmark assets, and
the estimated rate is often unreasonable. This is the reason why we include
the moment condition (8) and use the return on a short-term bond portfolio
to capture the level of the risk free rate.8

8(Farnsworth, Ferson, Jackson, and Todd 1996) also discuss the importance of getting
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3 Data

In this section we describe the benchmarks, information variables, and funds
we use in the Monte Carlo simulations and the performance evaluation of
the funds. We employ a weekly Swedish data set covering the period from
January 1986 to December 1995.

Ideally in an evaluation, we would like to have access to all the assets
which comprise the different managers investment opportunity set. However,
practical problems (like the handling of large econometric systems) prevent
us from that. For this reason we consider various portfolios of assets as
benchmarks, and evaluate the performance of the funds relative to these
portfolios.

The first type of assets we include are truly passive buy-and-hold stock
portfolios. The raw data used for the construction of the portfolios includes
weekly observations of Swedish stocks listed on the official A-list at the Stock-
holm Stock Exchange (SSE), and are obtained from Findata. Stocks on the
A-list correspond to on average 97% of the total market value and 96% of the
total trading volume at the SSE over the sample period.9 We sort the firms
into five industry groups: manufacturing, wood and pulp, retail services and
constructing, bank and insurance, and miscellaneous. We also consider a
general portfolio based on all firms. The stocks are selected based on liquid-
ity (the value of trade) and size (market capitalization value). The portfolio
weights display initial market capitalization, and are rebalanced only once
a year (to reflect changes in the market capitalizations of the individual
stocks). We also employ a data set of five portfolios formed on the basis of
market capitalization (size). A detailed description of the construction of the
portfolios is given in (Dahlquist and Söderlind 1997).

The second type of asset we consider is a proxy for cash. We use the
return on a short-term bond portfolio as a proxy for cash. It is constructed
from a series of yields on a six-month Treasury bill.

To allow for dynamic trading strategies and to study conditional perfor-
mance, we use a set of predetermined economic variables, which are meant to
capture the state of the economy. There is considerable empirical evidence
that the term structure of interest rates contain information about future

the mean of the SDF right.
9Stocks are traded under different listings, and the official A-list has the most strin-

gent listing requirements on the records and stability of the company, as well as on the
distribution and the liquidity on the company’s stock.
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economic variables (including stock returns). Two variables are used to cap-
ture the shape of the yield curve. The first is a ‘level’ variable based on the
annualized yield of the six-month T-bill. It is stochastically detrended by
subtracting a lagged moving average (two months) in order to decrease the
persistence in the original yield. The second variable is the return on a bond
portfolio with a maturity between 3 to 5 years in excess of the return on the
bill portfolio. This is basically capturing changes related to the ‘slope’ of the
yield curve, and will be referred to as the bond excess return. Moreover, the
two variables are scaled so that their expected values are equal to one, and
with variances about the same magnitudes as the original portfolio returns.
The data series are obtained from Datastream. The lagged return on the
general stock portfolio is used as a third information variable.

Table 1 reports the distributional characteristics of the industry portfo-
lios, the bond portfolio, as well as the instrument variables (not scaled). The
average net returns of the stock portfolios are in the range from 14% to 21%
per year. The standard deviations of the stock portfolios are between 18%
and 30% per year. The low average return of the short-term bond portfolio
(about 10% per year) is associated with a low volatility of 1.3%.

Furthermore, the table shows the coefficients of skewness and excess kur-
tosis of the portfolio returns. If they are normally distributed, then they
should be equal to zero. There is no evidence of skewness – some are positive
and some are negative. However, there is strong evidence of excess kurtosis
indicating that the peakness is higher and the tails are thicker than a normal
distribution. This is economically and statistically significant as revealed by
the magnitudes of the coefficients and the p-values (not reported).10 A joint
hypothesis of normality (not reported) can clearly be rejected at the 5% level
for the portfolios.

The first-order serial correlations of the weekly returns are also reported
in Table 1. They all have correlation coefficients greater than 0.11. We
computed standard errors as in (Richardson and Smith 1994), allowing for
persistence in the variances, which reveal that they all have p-values about
5%.

Finally, the estimated moments for the two term structure variables are
reported. Notable is the high persistence in the level variable, and the con-
trasts in the two variables – indicating that they capture various aspects of

10The moments in the table are estimated within a GMM system, which gives us stan-
dard errors (and p-values) and different hypotheses can be tested.
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the yield curve. The general (buy-and-hold) stock portfolio shows similar
characteristics as the industry portfolios.

We have obtained data on mutual funds from Findata. They are avail-
able as net asset values per share adjusted for management fees, and are
collected on the same weekday as the benchmarks. Dividends are reinvested,
by purchases of shares, in the fund. The mutual funds have some load and
sale charges which are not included. We choose to study funds which invest
mainly in Swedish stocks. The benchmarks above should therefore corre-
spond to the investment styles of the funds. The data set includes only
funds which existed at the end of the sample period, and potential survivor-
ship biases are not dealt with. The funds have different inclusion dates, and
we mainly present results for the period July 1991 to December 1995 (235
observations). This gives us 24 funds in total. However, we also report the
results for a sub-sample of 6 funds, covering January 1987 to December 1995
(465 observations)

The funds show similar characteristics as the benchmarks (not reported).
The average returns and standard deviations are in the same ranges as the
stock portfolios. There is little evidence on skewness different from zero, but
significant excess kurtosis and serial correlation.

4 A Monte Carlo Experiment

4.1 Motivation

GMM is a very flexible approach which allows us to handle both non-iid and
non-normal pricing errors and positivity restrictions. In contrast, traditional
tests for mean-variance intersection/spanning (see, for instance, (Huberman
and Kandel 1987)) rely on iid normally distributed errors and linearity.

The asymptotic properties of GMM estimators and test statistics are well
known, but less is known about the finite sample properties of GMM-based
performance tests. (Bekaert and Urias 1996) provide some simulation ev-
idence for tests of unconditional mean-variance spanning. They find that
it may be important to account for serial correlation and that the prop-
erties of large systems are very unsatisfactory. However, their simulations
leave several important questions unanswered. First, how does a prespeci-
fied weighting matrix (motivated below) compare with the usual ‘efficient’
weighting matrix? Second, do the tests have the power to detect superior
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performance? Third, can we rely on overlapping data? These are some of
the questions we try to answer by performing a series of Monte Carlo sim-
ulations. Moreover, we extend their results to a conditional setting where
data is consistently generated to allow for time-variation in expected returns
via information variables. We also use the opportunity to compare the small
sample properties of intersection and spanning tests.

4.2 Setup

We estimate a time series process from data on the information variables and
the benchmarks described in Section 3. The estimated process is then used
in the simulations.

We want a parsimonious modelling, but still capture the time-variation in
the first and second moments. The information variables are therefore mod-
eled as a VAR(1) system with conditionally heteroskedastic errors following
a BEKK GARCH process (see (Engle and Kroner 1995)). The benchmark
returns are generated as linear functions of the information variables, and the
fund returns in accordance with Huberman and Kandel’s (1987) restriction
(13) under the assumption of mean-variance spanning, B1 = 1. The reason
for generating data under spanning is that it certainly implies intersection
(which we test for), and that we want to compare intersection and spanning
tests. A constant is added to the fund return when we simulate a fund with
excess return. More details are found in Appendix C.

For each experiment, we construct 3,000 Monte Carlo samples with 250
or 500 observations. A sample size of 250 (500) corresponds to approximately
5 (10) years of weekly data. From the simulations, we compute the empirical
(small sample) distribution of the test statistic of neutral performance, that
is, of the overidentifying restrictions that Eλ2t = 0.11

The number of simulations quickly gets very large. We therefore show
results from just a representative subset of the simulations, and make a few
remarks about the others.

11We have also looked at the sample averages of the performance mesure itself. We
find no evidence of biases and the distribution appears symmetric and similar to a normal
distribution.
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4.3 Choice of Weighting Matrix

In this section we study how the small sample properties of the GMM-SDF
test are affected by the choice of weighting matrix W in (12). We compare
four versions of ‘efficient’ weighting matrices (giving the smallest asymp-
totic variance matrix) with each other and with a prespecified, ‘inefficient,’
weighting matrix.

The first efficient weighting matrix is a two-step estimator. Start by set-
ting W to an identity matrix and estimate the model parameters, and use
these to estimate the covariance matrix of the sample averages of the moment
conditions. Then, use the inverse of the covariance matrix as the new weight-
ing matrix and estimate the model parameters again. The second efficient
weighting matrix continues from the two-step estimator by reestimating the
covariance matrix and the parameters until the loss function value converges
– an iterated estimator.

The covariance matrix of a sample average is a sum of the autocovariances
of the series. Estimators of this covariance matrix differ with respect to how
many autocovariances that are used and which coefficients they have in the
sum. In the first two efficient weighting matrices we assume a first-order
autocorrelation (since returns show no partial autocorrelations beyond the
first lag), and the coefficients follow Bartlett’s ‘tent shaped’ scheme as in
(Newey and West 1987). The third and fourth efficient weighting matrices
are similar to the second, except that they use the automatic selection of the
order of autocorrelation suggested by (Newey and West 1994) and (Andrews
1991), respectively.

(Cochrane 1997) argues that a prespecified weighting matrix may give
more robust results and that it facilitates comparison between estimations
(here funds). We therefore try the inverse of the second moment matrix
of (managed) returns suggested by (Hansen and Jagannathan 1997). This
matrix may be of particular interest, since the minimized GMM loss function
value can then be interpreted as the distance between the SDF estimated with
the overidentifying restrictions and the SDF which prices all assets (including
the fund).

We use three tests in the paper: unconditional performance with fixed-
weight benchmarks, unconditional performance with dynamic benchmarks,
and conditional performance with dynamic benchmarks. For the first two
tests, the different weighting matrices give virtually the same result. In
contrast, for the test of conditional performance with dynamic benchmarks,
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the choice of weighting matrix matters.
The test of conditional performance with dynamic benchmarks is a much

larger system of equations than the first two tests (the number of estimated
parameters are 6, 21, and 51, respectively). Simulations reveal that this
difference is important in small samples, but get less and less important as
the sample size increases. The number of observations per parameter, the
saturation ratio, seems to be a key feature of these, and several subsequent,
simulations.12 Here, it is 51, 20, and 9 for the three tests, respectively. A
value below 10 is often considered as an indicator of potential problems.

Figure 2.a shows the empirical probability of rejecting a true null hy-
pothesis of neutral performance (the ‘size’ of the test) as a function of the
level of the critical value from the asymptotic distribution (nominal size).
The closer the curves are to a 45 degree line, the closer are the small sample
distributions to the asymptotic (chi-square) distribution.

The prespecified weighting matrix is slightly better than the 2-step esti-
mators, which are all very similar. However, the iterated estimator (in this
case based on Bartlett’s scheme, but this is not important) has clearly a
smaller size distortion than the other estimators. It can be shown that the
differences between the weighting matrices are smaller when the sample is
longer.

Suppose we forget about the x% critical values from the asymptotic dis-
tribution, and instead take those values that give rejections in x% of the
simulations in Figure 2.a. We now apply these ‘empirical critical values’ on
simulated data where the fund has 5% excess return per year, to see how
often the false hypothesis of neutral performance is rejected (the ‘power’ of
the test). Figure 2.b show – once we use the empirical critical values – that
all estimators do equally well.

This simulation exercise suggests that it might be important to use small
sample (simulated) critical values. However, once that is done, all the estima-
tors considered here appear equally good. The prespecified weighting matrix
has some practical advantages, so this is our main choice for the subsequent
simulations and the evaluation of Swedish mutual funds. However, none of

12The saturation ratio (measured as the number of observations per parameter, including
the unique ones in the weighting matrix) discussed in (Gallant and Tauchen 1989) can be
seen as a guide to whether the dimension of the econometric system is too large. (Ferson
and Foerster 1994) improve the accuracy of GMM standard errors by adjusting for the
total number of parameters. The saturation ratios in our setting are shown in Appendix
D.
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the results depend on this choice.

4.4 Power Issues

In this section we investigate whether it is possible to reject the hypothesis
of neutral performance when it is false.

In Figure 3 we compare the three tests used in the paper on a sample of
250 weekly observations. Figure 3.a show that there are small overrejections
in the two unconditional tests. For instance, a 5% critical value from the
asymptotic distribution, which is χ2(1), generates rejections in 6% to 7% of
the simulations.13 The overrejection is more pronounced in the conditional
test: the 5% asymptotic critical value, from a χ2 (4) table, gives rejections in
13% of the simulations.

Figure 3.b show that the power of the two unconditional tests is not too
impressive, even if we allow the fund to have 5% excess return per year. The
power of the conditional test is even lower. The basic reason is that the fund
returns are very volatile, and the ‘managed fund’ returns, zt−1 ⊗ R2t, even
more so. To illustrate this effect, disregard the risk-adjustment and suppose
that a fund has 5% excess return in a sample of τ years. If the excess return
is serially uncorrelated and has a standard deviation of 10% per year, then it
takes more than 10 years of data to reject neutral performance using a 10%
critical value (solving 5/(10/

√
τ) = 1.64 gives τ ≈ 10. 8).

In Figure 4 we take a closer look at how the sample length and the excess
return affects the size and the power. In this case, we show results for the
unconditional test with dynamic benchmarks. Figure 4.a shows that the size
is not affected very much by increasing the sample length from 250 to 500
weekly observations. This is true also in the unconditional test of fixed-weight
benchmarks. In the conditional test, we notice that size distortions decrease
substantially for the 2-step estimators and the prespecified weighting matrix,
but not for the iterated estimator. The relative advantage of the iterated
estimator for the conditional test on a small sample, shown in Figure 2.a, is
therefore almost eliminated in the longer sample.

Figure 4.b shows that the power increases significantly when the excess
return goes from 3% to 5% per year or when the sample length is increased

13The Monte Carlo results have sampling errors since they are based on a finite num-
ber of simulations (i.e. 3,000). A 10% Kolmogorov-Smirnov confidence interval of the
distributions in the figures would be approximately ±0.02 around the point estimate.
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from 250 to 500. For instance, at the empirical 10% critical values, the power
increases from 20% to 40% when the excess return goes from 3% to 5%.
Similarly, increasing the sample length from 250 to 500 increases the power
at 5% excess return from 40% to 70%. As a comparison, consider once again
a t-test of an iid normal excess return. In this case, the power is expected to
increase at roughly the same speed as the mean excess return increases from
3% to 5%, but at a slower speed as the sample length increases.14 The other
tests give similar results, except that the return to increasing the sample
length is particularly large for the conditional test (where the saturation
ratio is initially low).

This simulation exercise shows that it may be important to use simu-
lated critical values, and that a considerable excess return or several years
of data (or both) is necessary in order to reject neutral performance. This is
especially true for the conditional test.

4.5 Overlapping Data

In this section we study the effect of the sampling frequency and the evalua-
tion horizon. In general, statistical methods benefit from more information,
but it could be the case that a high sampling frequency adds so much noise
that it only makes things worse.

We have access to weekly data, so we can choose to evaluate either non-
overlapping weekly returns or the more common monthly returns. If we
use monthly returns, then there is a choice between sampling once a month
(non-overlapping monthly returns) or once a week (overlapping monthly re-
turns). GMM makes it straightforward to handle the serial correlation that
is typically induced by overlapping data.

The results are illustrated in Figure 5. In this case, we show results for
the unconditional test with dynamic benchmarks on a sample of 248 weeks,
but the other tests give the same type of results.

Figure 5.a shows that non-overlapping weekly returns give fairly good
size properties (this is the same curve as in Figures 2 and 4, which both used
weekly returns). In contrast, monthly returns (sampled weekly or monthly)
gives large size distortions, with rejections in 10%-12% of the simulations at

14If x is distributed as N(µ, σ2), the probability that the t-statistics of the sample mean
exceeds 1.64 is P = 1−Φ(1.64−

√
Tµ/σ). Set {P, T, µ} = {0.2, 250, 0.03} and solve for σ.

With this value of σ, P is 0.38 at {T, µ} = {250, 0.05} and 0.63 at {T, µ} = {500, 0.05}.
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the 5% asymptotic critical values. The power properties in Figure 5.b indi-
cate that weekly data (either non-overlapping weekly returns or overlapping
monthly returns) deliver somewhat higher power than monthly data.

This simulation exercise suggest that we should use either of the two
weekly data series. It seems somewhat more straightforward to use non-
overlapping data, so our main choice for the evaluation of the Swedish funds
and the simulations (perhaps already noticed) is to use non-overlapping
weekly returns.

4.6 Intersection versus Spanning Tests

In this section we round off the simulation experiments by a simple com-
parison of the intersection test we use and the spanning test used in (De
Santis 1995) and (Bekaert and Urias 1996).

All portfolios on the mean-standard deviation frontier can be written as
combinations of two portfolios on the frontier, so intersection at two distinct
points is the same as spanning. This is the basis for the spanning test of
(Bekaert and Urias 1996), which tests for intersection at two prespecified
points (0% and 10%). We compare this with a test of intersection at one
prespecified point (10%), which is a slight modification of our performance
test (we no longer use (8) to tie down the intersection point.)

The results are illustrated in Figure 6. As before, we show results for
unconditional performance with dynamic benchmarks on a sample of 250
weeks, but we get the same type of results in the other cases. The size is
almost the same for the two tests, but the intersection test has somewhat
better power. The intersection and spanning tests have both saturation ratios
above 10 – enough to not show large size distortions. The power result could
be related to the higher saturation ratio in the intersection test (it has only
half as many moment conditions as the spanning test).

4.7 Positive SDF

The SDF without positivity gives a linear model with an analytical solu-
tion, while positivity introduces a non-linearity which requires a numerical
optimization algorithm.

In the unconditional tests, it was quite straightforward to solve the non-
linear minimization problem, and the small sample properties were very sim-
ilar to those for the SDF without positivity reported above. We interpret
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this as good news, since there are typically reasons to worry about the small
sample properties of non-linear estimation methods.

However, in the conditional test, the solution algorithms (we tried quite a
few) proved unreliable. In this case, there are 51 parameters to estimate from
55 moment conditions, which is a fairly large system of non-linear equations.
The gradient based methods often got stuck at local minima, and other meth-
ods were too slow in order to perform a meaningful Monte Carlo experiment.

This simulation exercise shows that the small sample properties of the
test with positivity of SDF are very similar to those of the SDF without
positivity – at least in the case of an unconditional test.

4.8 Conclusions from the Simulation Exercises

The main results on the small sample properties of the GMM-SDF test are
the following. First, asymptotic critical values should not be used, especially
not when the number of observations per estimated parameter, the satura-
tion ratio, is low. Second, it takes a considerable excess return and a long
sample to reject neutral performance. Third, a prespecified weighting ma-
trix does as well as the other weighting matrices – once empirical critical
values are used. Fourth, non-overlapping weekly returns give better size and
power than monthly returns. Fifth, the intersection test has better power
than the spanning test. Sixth and finally, imposing positivity on the SDF is
only feasible for the unconditional tests, but has no effect on the statistical
properties.

We have only reported a subset of the simulations. In other simula-
tions we have looked at the effect of using fewer/more benchmark assets,
a shorter/longer sample, weaker/stronger instruments, combinations of the
various experiments reported above, and different types of data generating
processes. Given the previous results, these additional simulations did not
reveal any news.

5 Evaluating Swedish Mutual Funds

We now evaluate the performance of a sample of Swedish mutual funds. The
returns are non-overlapping weekly returns, and a prespecified weighting ma-
trix (inverse of second moment matrix) is used – as suggested by the simu-
lation results. We study mainly the sample period July 1991 to December
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1995. This period is shorter than the total sample period, but includes more
funds. We also report results for the period January 1987 to December 1995.
First we evaluate the mutual funds using fixed-weight strategies. We then
extend the analysis by incorporating dynamic strategies, and undertaking a
conditional evaluation.

The stated goal of many funds is to provide investors with well diversified
portfolios comprised of Swedish stocks. Our buy-and-hold stock portfolios
are meant to describe the investment opportunity set, and should capture
passive investment strategies of the funds (some properties of these portfolios
are summarized in Table 1). The return on the short-term bond is used to
tie down the mean of the stochastic discount factor, which was shown to be
of importance.

We estimate the systems for all funds separately. For the unconditional
evaluations, we initially estimate the models without imposing positivity
on the SDF, and then we proceed to check whether the estimated SDF is
always positive. If not, then we reestimate with positivity imposed. In the
conditional evaluation with a large GMM system, however, we do not impose
positivity because we ran into numerical problems.

What kind of results should we expect? Superior performance may be
present if fund managers have information, which is not publicly available,
and the skill to use it. The mutual fund returns we have (changes in net
asset values) are adjusted for management fees which are not considered in
the construction of the passive buy-and-hold portfolios, or in the dynamic
strategies we allow for. Significant management costs would then affect the
measures downwards. However, load charges and sales costs faced by the in-
vestors in the mutual funds are not incorporated in the net asset values. This
would affect the measures upwards. In total, it is hard to see a systematic
bias (in either direction) of these transaction/rebalancing costs. However,
the data may suffer from survivorship biases. If it is the case that only the
funds which have performed well during the studied period are in the sample,
we can expect an upward bias in the performance measures.

We illustrate the results in figures. Consider first the unconditional eval-
uation, where the original benchmarks are assumed to reflect fixed-weight
strategies. Figure 7.a shows the frequency of the statistic of the test for neu-
tral performance (the overidentifying restriction). This is compared with the
empirical density function under the null (which corresponds asymptotically
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to the χ2(1)-distribution).15 Empirical critical values from the simulations
are also reported (the vertical dotted lines mark the 5% and 10% values).
About 17% of the funds are to the right of the 5% critical value. This
indicates that a somewhat larger portion than expected have non-neutral
performance.

In Figure 7.b the distribution of the performance measure, Eλ2t, which
utilizes a positive SDF, is reported. We see that most of the them are con-
centrated around zero but that some funds seem to have non-neutral perfor-
mance. The distribution is somewhat skewed to the right, as indicated by
the higher average (0.5%) compared to the median (0.1%) of the distribution.
Out of 24 funds, 5 have absolute deviations (inferior or superior performance)
which are greater than 5% (per year) from zero. Still, there is no general
tendency in the distribution.

The benchmark portfolios can be seen as fixed-weight portfolios. We find
that the average (risk-adjusted) performance is slightly positive. Can this
be explained by dynamic asset allocation based on publicly available infor-
mation? Alternatively, is the actual performance masked by variations in
expected returns and risk-premia? Above we discussed dynamic strategies as
a partial solution to this problem. We therefore consider dynamic strategies
using the lagged level of the yield curve, lagged excess return on the bond
portfolio, as well as the lagged return on the general stock portfolio as in-
struments. Put differently, we now analyze the unconditional performance
against 5 managed portfolios. The results are shown in Figures 8.a-b. We
can, however, see that the results are not very different. The distribution
of the moment conditions for the funds in Figure 8.b is somewhat flatter
with a mean and median of 0.4% and 0.1%, respectively. Again 5 funds have
an absolute overperformance which is greater than 5%. The test for overi-
dentifying restriction in Figure 8.a shows no distinct differences from the
asymptotic distribution, and the findings are the same as with fixed-weight
strategies. Notice that the use of the asymptotic critical values would cause
an overrejection of neutral performance (as was shown in Figure 4), whereas
the empirical critical values overcome this.

In Section 2.3 we argued that it is important to tie the mean of the SDF
to a reasonable value. Otherwise we may evaluate at a misleading tangency

15The empirical densities shown in this and subsequent figures are estimated with a
Gaussian kernel were the bandwidth parameter is chosen automatically (see (Silverman
1986)).
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point. We therefore investigate how sensitive the results are to deviations
from Emt = E(1/Rft). Adding ±1% (on an annual basis) to Emt changes the
distributions of the performance measures (both fixed-weight and dynamic
mt) fairly little. Adding (subtracting) 1% moves the distributions somewhat
to the left (right), yielding a somewhat more negative (positive) performance.
The deviations are not enough though to overturn the results.

Up to now we have analyzed unconditional (average) performance. It
is also of interest to test the conditional performance of the funds, again
using dynamic benchmark strategies. We condition the unconditional per-
formance measure on the state of the economy to study if the funds have
superior/inferior performance in some (predictable) states of the economy.
Notice, that the specification of the SDF has to be changed in order to price
these conditional strategies under the null (see Section 2.2). In Figure 9.a
the test statistics and the empirical distribution of the test statistics are de-
picted (it now correspond asymptotically to a χ2(4)-distributed variable).16

The non-neutral performance appears this time to be more significant for a
large portion of the funds. The null is rejected though we use the empirical
critical values which are significantly larger than the asymptotic ones. In Fig-
ure 9.b, we show the performance measure which correspond to the constant
in zt−1. Recall that the performance measures related to the non-constant
elements in zt−1 (the zc

t−1:s) can be written as

Eλc
2t = Cov(λuc

2t , z
c
t−1) + Eλuc

2t Ezc
t−1. (17)

Since Ezc
t−1 is set to one, the Eλc

2t measures the sum of the covariance of the
unconditional performance and the information variables, and the uncondi-
tional performance. In Figures 9.c-e, we show the covariances in (17), that
is, the Cov(λuc

2t , z
c
t−1):s. The average unconditional performance across the

funds (the average of the Eλuc
2t :s) is slightly higher than before (about 0.9%

per year). The unconditional performance measure seems to be positively
related to two of the information variables – the general market and the level
of the yield curve – as measured by the covariances. Hence, the tendency
for non-neutral performance is strengthened (they show a performance of
1.1%-1.2% on average with medians of about 1.4%). That is, when we have
experienced an increase in the stock market or a high level of interest rates
in general, the funds have performed better than on average. The opposite

16In the conditional evaluation, one fund is not examined due to numerical difficulties
in forming the test statistic.
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is the case for the bond excess return instrument. Overall, the stronger case
for non-neutral performance appears to stem from the fact that the uncon-
ditional performance can be predicted by the information variables.

To sum up, we present the means and medians of the performance mea-
sures for the three cases in Table 5. Decompositions of the performance
measures are also given. Using (6), the performance measures can be written
as

Eλ2t/Emt = [E (zt−1 ⊗ R2t) − 1/Emt]− [−Cov (zt−1 ⊗ R2t, mt) /Emt] , (18)

where we have used the fact that the instrument are normalized such that
Ezt−1 = 1. The first term within brackets can be interpreted as the managed
returns of the funds in excess over the implied risk-free rate. The second
term within brackets is then the ‘risk-premium.’ From the table we see that
the average excess return over a risk-free rate in the unconditional evaluation
is about 3.4%, and that the risk premium is about 2.9%, yielding a superior
performance of about 0.5% per year. Noteworthy is that in the conditional
evaluation, the excess returns (for the different information variables) are
about the same magnitude or higher, whereas the risk premia are smaller.

An assessment of the various stochastic discount factors used, reveal that
their means are similar (since they are tied to the bill portfolio, the only
differences come from the positivity imposed). On average, the SDFs imply
a risk-free rate of about 9% per year. It is evident that when strategies
based on the information variables are allowed, the standard deviations of
the SDFs increase significantly. The dynamic SDFs show a correlation about
56%, whereas their correlations to the fixed-weight SDF are fairly low (about
20%). This indicates that risk premia would be very different if the ‘correct’
specifications of the SDF are not being used.

For six of the funds we have data from 1987. Applying the above tests
on the funds over this longer sample period shows that for 5 of the 6 funds
the performance have been worse during the period 1987-95 compared to the
period 1991-95. This holds for both the unconditional and the conditional
setting. Two funds change from positive to negative performance as the
sample is extended backwards.

Finally, we assess the robustness of the results by undertaking the evalu-
ation using size portfolios instead of industry portfolios as benchmarks. This
changes the unconditional performance measures very little. The distribu-
tions are centered around zero for a fixed-weight SDF, the evaluation using
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a dynamic SDF indicate better performance, but the null of neutral perfor-
mance cannot be rejected.

6 Conclusions

In this paper we provide evidence on the use of stochastic discount factors
in the evaluation of portfolio performance. The paper is divided into three
major parts. In the first part we build on the papers by (Bansal and Harvey
1996), (Chen and Knez 1996), and (Farnsworth, Ferson, Jackson, and Todd
1996) and discuss performance evaluation using efficient (by construction)
benchmarks and allowing for dynamic strategies. We relate the performance
measures in (Chen and Knez 1996) to the traditional mean-variance analysis.
Especially, we make an explicit interpretation of them in terms of a specific
Jensen’s alpha measures computed against efficient benchmarks. Moreover,
we highlight the importance of getting the mean of the SDF right. Otherwise,
the evaluation could be undertaken at an arbitrary (and misleading) point in
the mean-variance space. Finally, we show how to select the instruments in
order to undertake a correct conditional evaluation, which allows for dynamic
strategies. If we fail to use the correct instruments in constructing the SDF,
then a fund with a neutral dynamic trading strategy can incorrectly show
either inferior or superior performance.

In the second part of the paper we examine the small sample properties
of GMM estimators in this setting by a series of Monte Carlo simulations.
The results provide no evidence against a prespecified weighting matrix. We
find evidence in favor of using weekly non-overlapping returns instead of
monthly returns. We also show that the size can sometimes be seriously
distorted such that empirical critical values should be used. However, when
we correct for the size, the power is about the same in the different settings.
Moreover, we highlight the case that an economically significant excess return
is needed in order to reject the null of neutral performance, unless the sample
is very long. The power properties are better in the unconditional setting
compared to the conditional setting and/or when the econometric systems
are large. Moreover, the intersection test appears to have higher power than
the spanning test.

In the third part, we apply the methodology to Swedish-based mutual
funds and offer an actual evaluation. An unconditional as well as a condi-
tional evaluation is undertaken. In the unconditional evaluation, using either
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fixed-weight or dynamic strategies (via returns scaled by available public in-
formation), we cannot find strong evidence of non-neutral performance. The
performance of the funds is on average positive, but it cannot be confirmed
statistically. However, when we evaluate conditionally, again allowing for
dynamic strategies, the results indicate a tendency towards non-neutral per-
formance. This captures the degree of predictability in the performance
measure.
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A Simple Benchmark Strategies and Perfor-

mance Measures

Let R1t be an n1 × 1 vector, xt an k × 1 vector, and zt an l × 1 vector. Take
expectations of (7)

Eλ1t = E (zt−1 ⊗ xt−1 ⊗ R1t) mt − Ezt−1 ⊗ xt−1 ⊗ 1n1 , (19)

which is set to zero by the choice of mt. (The case with a fixed-weight
benchmark portfolio is obtained by setting xt = 1.) This appendix shows
that any portfolio with weights which are linear in the information variables
xt−1, and summing to one in every period, will then be assigned a neutral
performance.

Combine (1) and (2) to get

Rt = x′

t−1δR1t, such that x′

t−1δ1n1 = 1, (20)

where δ is a k × n1 matrix.
For simplicity, suppose xt has only two elements: a constant and a random

variable, x′

t =
[

1 x̃t

]

. The portfolio weights are then

x′

tδ =
[

1 x̃t

]

[

δ11 · · · δ1n1

δ21 · · · δ2n1

]

. (21)

The portfolio weights must sum to one in every period, that is,

1 = x′

tδ1n1

=
[

1 x̃t

]

[

δ11 + · · · + δ1n1

δ21 + · · · + δ2n1

]

. (22)

The only way to guarantee that this holds in every period is to have the first
row in δ summing to one and the second row summing to zero. This means
that movements in the stochastic information variables are only allowed to
change the portfolio weights in a zero investment portfolio of R1t. More
formally, we have the requirement that

δ1n1 =

[

1
0

]

. (23)
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The l×1 vector of performance measures of the scalar benchmark portfolio
Rt in (20) is (one for each instrument in zt−1)

Eλt = E
(

zt−1x
′

t−1δR1t

)

mt − Ezt−1. (24)

Pick out the elements in Eλ1t from (19) and Eλt from (24) which correspond
to the jth element in zt−1, zt−1,j, and write them as

Eλ1t,j = E (zt−1,jxt−1 ⊗ R1t) mt − Ezt−1,jxt−1 ⊗ 1n1 , and (25)

Eλt,j = E
(

zt−1,jx
′

t−1δR1t

)

mt − Ezt−1,j. (26)

Let δi be the ith row of δ, so

x′

t−1δR1t = δ1R1t + x̃t−1δ2R1t. (27)

This allows us to rewrite (26) as

Eλt,j = δ1E (zt−1,jR1tmt) + δ2E (zt−1,jx̃t−1R1tmt) − Ezt−1,j. (28)

Since the first element in xt−1 is a constant, (25) shows that each of the
elements in the vector E(zt−1,jR1tmt) equals Ezt−1,j. From (23) we also know
that δ11 = 1. Combining these facts gives that δ1E(zt−1,jR1tmt) in (28)
equals Ezt−1,j.

Similarly, by (25), each of the elements in E(zt−1,jx̃t−1R1tmt) equals
E(zt−1,jx̃t−1). Since δ21 = 0, we get that δ2E(zt−1,jx̃t−1R1tmt) in (28) is
zero. Together, these results give Eλt,j = 0 in (28). To sum up, any portfolio
with weights which are linear in the information variables xt−1 and summing
to one in every period, has a neutral performance if Eλ1t = 0 in (19).

B GMM Estimation and Testing

In this section we briefly review the limiting distributions of the parameter
estimate and the test for overidentifying restrictions.

Let Λt be the stacked moment conditions in (12), and let Q denote the
Jacobian of the sample moment conditions, that is,

Q =
∂Λ̄

∂γ′
, (29)
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where Λ̄ = 1
T

∑T

t=1 Λt. The general (for an arbitrary weighting matrix) ex-

pression for the asymptotic covariance matrix of
√

T (γ̂ − γ) is equal to

V = (Q′WQ)−1Q′WSWQ(Q′WQ)−1, (30)

where

S = Cov(
√

T Λ̄) = lim
T→∞

T−1
∑

s=−(T−1)

Cov(Λt, Λt−s). (31)

It is common to set W = S−1, and (30) then simplifies to V = (Q′S−1Q)−1.
Regarding the overidentifying restrictions, (Hansen 1982) shows (Lemma 4)
that the asymptotic covariance matrix of the moment restrictions

√
T (Λ̄−Λ)

is
Ω = [I − Q(Q′WQ)−1Q′W ]S[I − WQ(Q′WQ)−1Q′] (32)

When W = S−1, this simplifies to Ω = S −Q(Q′S−1Q)−1Q′ which is numer-
ically equal to S (see (Cochrane 1997)). In either case, Ω has reduced rank
equal to the number of overidentifying restrictions, denoted q below. We can
therefore construct a χ2-distributed test statistic

T Λ̄′Ω+Λ̄ ∼ χ2 (q) , (33)

where + indicates a generalized inverse (see (Cochrane 1996)). It is tricky
to calculate Ω+ with reasonable accuracy. According to our experience, it is
very useful to impose the known rank of Ω in these calculations. This is done
in several steps. First, calculate the singular value decomposition such that
usv′ = Ω, reorder u, s, and v so that the singular values come in decreasing

order. Second, partition s =

[

s1 0
0 s2

]

, u =
[

u1 u2

]

, and v =
[

v1 v2

]

so that the first block contains the q largest singular values (the remaining
singular values should, in principle, be zero). Third, the generalized inverse
is calculated as Ω+ = v1s

−1
1 u

′

1.

C The Data Generating Processes

This appendix describes the data generating processes for the reference as-
sets and the portfolios under evaluation in the Monte Carlo simulations. We
want a parsimonious modeling for the reference assets, but still capturing
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time-variation in the first and second moments. We therefore use a first-
order vector autoregressive model (VAR) for the first moments. The dynam-
ics of the second moments is a simple version of the general BEKK model in
(Engle and Kroner 1995). The advantage of the BEKK model for conditional
covariances is that it guarantees positive definite conditional covariance ma-
trices under weak conditions. Moreover, compared to other models it uses
few parameters, but still allows for conditional correlations and it is able to
capture potential cross-volatility interactions as well. For tractability, the
model is here restricted to be of order (1,1). The specification below allows
us to simultaneously model conditional means, variances, covariances, and
correlations.

Let z̃t be an k − 1 vector of instruments. The dynamics for the ln z̃t is a
VAR(1) with BEKK errors

ln z̃t = µ + A ln z̃t−1 + ǫt, (34)

where µ is an k − 1 parameter vector, A is an (k − 1) × (k − 1) parameter
matrix, and where ǫt is a k − 1 vector of error terms which are assumed to
be conditionally multivariate normal distributed, but serially uncorrelated.
That is,

ǫt | Ωt−1 ∼ N(0, Ht), (35)

where Ωt−1 denotes the information set at time t− 1. Assuming that the dy-
namics of the conditional covariance matrix is covariance stationary with an
unconditional covariance matrix equal to H0, we estimate a diagonal BEKK
model that can be written as

Ht = H0 ⊙ (1n1
′

n − bb′ − cc′) + bb′ ⊙ ǫt−1ǫ
′

t−1 + cc′ ⊙ Ht−1, (36)

where ⊙ denotes the Hamadard product (element-by-element), and b and c
are parameter vectors.

The parameters are estimated in a two-step procedure. In the first step
we estimate the VAR system (using Least Squares) and the parameters in
H0. In the second step the BEKK parameters, b and c, are estimated by
Maximum Likelihood.

The dynamics of the benchmark portfolios are

ln R1t = C

[

1
ln z̃t−1

]

+ ηt, (37)
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where C is an n1 × k parameter matrix, and ηt a vector of iid normally
distributed error terms with covariance matrix Σ. C and Σ are estimated
using Least Squares.

The data generating process of the portfolios that are being evaluated
under the null hypothesis is

R2t = BR1t + ut, (38)

where B1 = 1 and ut is an vector of iid normally distributed errors with
covariance matrix Ψ. Ψ is taken from a Least Squares estimation of (38) of
a typical mutual funds, and B is also based on the estimate, but adjusted to
satisfy the condition B1 = 1 exactly. Note that (38) is actually the case of
spanning in (Huberman and Kandel 1987). The advantage of this approach
is that the funds are generated only by the benchmarks, and not at all by
the zero-beta asset, which is important for the conditional evaluation. In
the actual evaluation we still use the intersection test. Under the alternative
hypothesis of superior performance we add a constant yielding, for instance,
a 5% excess return on an annual basis.

D Saturation Ratios

In GMM estimation, the total number of observations divided by the number
of parameters to be estimated (including the number of unique parameters in
the weighting matrix) is sometimes referred to as the saturation ratio. The
total number of observations is equal to the number of moment conditions
times the length of the data. The saturation ratios for the three systems we
consider in this paper are given by

SR1 =
(n1 + n2 + 1) T

[

n1 + 1 + (n1+n2+1)(n1+n2+2)
2

] , (39)

SR2 =
(kn1 + n2 + 1) T

[

kn1 + 1 + (kn1+n2+1)(kn1+n2+2)
2

] , (40)

and

SR3 =

(

k(k+1)
2

n1 + kn2 + 1
)

T
[

k(k+1)
2

n1 + 1 +
( k(k+1)

2
n1+kn2+1)( k(k+1)

2
n1+kn2+2)

2

] , (41)
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where SR1 refer to the fixed-weight/unconditional case, SR2 to the dy-
namic/unconditional case, and SR3 to the dynamic/conditional case.
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Figure 1: The Relation to Mean-Standard Deviation Frontiers.

The figures show the relation between the SDF tests (without positivity imposed)

and mean-standard deviation frontiers. Figure a shows the mean-standard deviation

frontier of the benchmark assets R1t (solid hyperbola), and the frontier of the benchmarks

plus a fund, R2t, with neutral performance (dashed hyperbola). The frontiers intersect at

the tangency portfolio R∗

Tt
, marked by a circle. The return on the SDF, R∗

bt
, is marked

by a square. The implied risk free rate from the SDF is 1/Em∗

t
. Figure b shows the

frontiers when the fund has an excess return of 5%. The frontiers still intersect but now

at the inefficient part, marked by a triangle. This tangency portfolio, R0

Tt
, corresponds

to a risk free rate of R0.
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Table 1: Distributional Characteristics of Benchmarks and Information
Variables.

The table shows moments for the information variables and the weekly gross re-
turns of the benchmark portfolios. The benchmark portfolios are passive buy-and-hold
industry portfolios. The short-term bond return is a holding-return on a 6-month
Treasury yield. The information variables are the following. First, the annualized yield
on the 6-month Treasury detrended with a lagged two-month moving average. Second,
the return on a long-term bond (maturity between 3-5 years) in excess of the return on
the short-term bond. Third, the gross return on a passive buy-and-hold portfolio of the
general stock market. The mean and standard deviations of returns are expressed as net
returns and in percent per year. The kurtosis is in excess of the kurtosis for a normally
distributed variable (3).

Standard Excess Auto-
Mean Deviation Skewness Kurtosis correlation

Benchmarks
Manufacturing 17.43 23.25 -0.03 3.31 0.12
Wood and pulp 16.65 29.83 0.95 9.25 0.11
Retail and construction 13.64 29.29 0.97 6.91 0.14
Bank and insurance 15.39 27.60 0.35 4.13 0.15
Miscellaneous 20.57 18.07 -0.46 2.94 0.11
Short-term bond 10.04 1.29 -0.08 24.82 -0.10

Information variables
Yield curve level 0.02 0.15 1.65 8.90 0.87
Bond excess return 1.70 5.46 -0.26 9.02 -0.11
General stock index 16.74 20.40 -0.25 3.67 0.16

36



Figure 2: Empirical Size and Power: Choice of Weighting Matrix.

The figures show the size and power for five different weighting matrices (see be-

low). The results are for the test of unconditional performance with dynamic benchmarks,

on a sample of 250 weekly observations. Figure a shows the empirical size versus nominal

size, and Figure b shows the corresponding power, using empirical critical values from

Figure a, when the fund has 5% excess return. The first estimator is a two-step GMM.

It uses an identity matrix as weighting matrix in the first step, and the inverse of Newey

and West (1987) covariance estimator with one lag in the second step. The second is

similar to the first, but iterates until the change in loss function value is less than 1%

of the expected value under the null hypothesis (here, one). The third and fourth are

similar to the first, but use the covariance estimator with automatic lag order selection

suggested by Newey and West (1994) and Andrews (1991), respectively. The fifth is a

one-step estimator using the inverse of the second moments of the managed portfolios

and the fund return.
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Figure 3: Empirical Size and Power: Different Performance Tests.

The figures show the size and power of the three performance tests used in the

paper: unconditional performance with fixed-weight or dynamic benchmarks, and

conditional performance with dynamic benchmarks. Figure a shows the empirical size

versus nominal size. The sample has 250 weekly observations, and a prespecified weighting

matrix is used. Figure b shows the corresponding power, using empirical critical values

from Figure a, when the fund has 5% excess return.
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Figure 4: Empirical Size and Power: Sample Length and Excess Return.

The figures show the size and power for two different sample sizes and excess re-

turns. The results are for the test of unconditional performance with dynamic

benchmarks, using a prespecified weighting matrix. Figure a shows the empirical size

versus nominal size for samples of 250 and 500 weekly observations. Figure b shows the

corresponding power, using empirical critical values from Figure a, when the fund has 3%

or 5% excess return.
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Figure 5: Empirical Size and Power: Evaluation Horizon and Sampling
Frequency.

The figures show the size and power for three different types of data sampling

from a sample of 248 weeks: weekly returns, weekly sampled monthly returns, and

monthly sampled monthly returns. The results are for the test of unconditional

performance with dynamic benchmarks, using a prespecified weighting matrix. Figure

a shows the empirical size versus nominal size, and Figure b shows the corresponding

power, using empirical critical values from Figure a, when the fund has 5% excess return.

40



Figure 6: Empirical Size and Power: Intersection versus Spanning.

The figures show the size and power of intersection and spanning tests of uncondi-

tional performance with dynamic benchmarks. A prespecified weighting matrix is used on

a sample with 250 weekly observations. Figure a shows the empirical size versus nominal

size, and Figure b shows the corresponding power, using empirical critical values from

Figure a, when the fund has 5% excess return.
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Figure 7: Unconditional Performance using a Fixed-Weight SDF.

The figures show the result of an unconditional evaluation using a fixed-weight

benchmark. Figure a shows the frequency distribution of the test statistic of neutral

performance (one overidentifying restriction). The empirical density function (asymptot-

ically corresponding to a χ2(1)-distribution under the null hypothesis) is also depicted.

The vertical dotted lines mark the empirical critical values at the 5% and 10% significance

level. Figure b shows the distribution of performance measures, Eλ2t, which are based on

a positive SDF.
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Figure 8: Unconditional Performance using a Dynamic SDF.

The figures show the result of an unconditional evaluation using a dynamic bench-

mark. Figure a shows the frequency distribution of the test statistic of neutral

performance (one overidentifying restrictions). The empirical density function (asymp-

totically corresponding to a χ2(1)-distribution under the null hypothesis) is also depicted.

The vertical dotted lines mark the empirical critical values at the 5% and 10% significance

level. Figure b shows the distribution of performance measures, Eλ2t, which are based on

a positive SDF.
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Figure 9: Conditional Performance using a Dynamic SDF.

The figures show the result of a conditional evaluation using a dynamic benchmark.

Figure a shows the frequency distribution of the test statitic of neutral performance

(four overidentifying restrictions). The empirical density function together with the

asymptotically corresponding density under the null hypothesis (a χ2(4)-distribution))

are also depicted. The vertical dotted lines mark the empirical critical values at the 5%

and 10% significance level. Figure b shows the distribution of the performance measures

which correspond to the constant element in zt−1. Figures c-e show the distributions

of the covariances of the unconditional performance measures and the predetermined

instruments, Cov(λuc
2t

, zc
t−1

). That is, the covariances shown are assocciated with the

general market, the yield curve level, and the return on a long-term bond in excess of a

short-term bond.
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Table 2: A Summary of the Performance Evaluations.

The table summarizes the results of the three evaluations which are undertaken
on a sample of Swedish mutual funds. The first evaluation is unconditional and utilizes
a fixed-weight benchmark. The second evaluation is also unconditional, but allows
for dynamic strategies through predetermined information variables. The variables
(in addition to a constant) are the general market return, the level of the yield curve
(detrended) and the return on a long-term bond in excess of the return on the short-term
bond. The third evaluation is conditional on the state of the economy, captured by the
above information variables. Again, dynamic strategies are allowed. The conditional
evaluation yields a several-dimensional performance measure – one per information
variable. The first two rows in the table show the means and medians (in % per year)
across the funds. In the subsequent rows the average performance is decomposed into an
excess return and a risk premia as expressed in (5.2). All measures are in % per year.

Unconditional Unconditional Conditional
Fixed-weight Dynamic Dynamic

Const. Const. Const. General Yield Bond

Performance measures
Mean 0.48 0.42 0.90 1.12 1.18 0.73
Median 0.08 0.14 1.24 1.42 1.40 0.78

Decomposition
Excess return 3.43 3.16 3.43 3.97 3.72 4.15
Risk premium 2.95 2.74 2.53 2.85 2.54 3.42
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