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1 Introduction

Increasing financial fragility in emerging markets and the extensive use of derivative products in developed

countries can be characterized as two distinct features of financial world over the last decade. Consequently,

effective use of risk measurement tools has been suggested as a main panacea for mitigating growing financial

risks. Uniform risk measurement methodology called Value-at-Risk (VaR) has received a great attention from

both regulatory and academic fronts.1 During a short span of time, numerous papers have studied various

aspects of VaR methodology. The recent research in this field has progressed so rapidly that comparing the

relative predictive performance of different VaR models has not yet been matched. This comparison will

provide valuable information since precise risk forecasts are vital for risk practitioners and regulators.

Consider a financial return series {rt}Tt=1, generated by the probability law Pr (rt ≤ r|Ft−1) ≡ Ft(r)

conditional on the information set Ft−1 (σ-field) at time t− 1. Suppose {rt} follows the stochastic process

rt = µt + εt = µt + σtzt, (1)

where µt = E(rt|Ft−1), σ2t = E(ε2t |Ft−1), and {zt} ≡ {εt/σt} has the conditional distribution function

Gt(z) ≡ Pr (zt ≤ z|Ft−1). The VaR with a given tail probability α ∈ (0, 1), denoted by qt(α), is defined as

the conditional quantile

Ft(qt(α)) = α, (2)

which can be estimated by inverting the distribution function:

qt (α) = F
−1
t (α) = µt + σtG

−1
t (α). (3)

Hence a VaR model involves the specification of Ft(·), or µt, σ2t , Gt(·). For a given model for the conditional

mean µt, this paper considers different approaches to modeling the conditional variance σ
2
t and conditional

distribution Ft(·) or Gt(·). See Table 1, where the various models are classified as “unfiltered” if a VaR

model involves the specification of Ft(·), or “filtered” if a VaR model involves the specification of µt, σ
2
t ,

Gt(·). The filtered VaR models are computed using the standardized return series zt = (rt − µt)/σt with σ2t

estimated by a GARCH(1,1) model.

If the dependence structure of {rt} can be fully described by the first two conditional moments, that

is, Ft(·) belongs to a location-scale family, {zt} may be independently and identically distributed (IID) so

that Gt (·) = G (·) , for which a parametric distribution may be used: e.g., the normal distribution, the

Student-t distribution, the generalized error distribution (Nelson, 1991), the exponential generalized beta

distribution (Wang et al., 2001), the stable Paretian distribution (Mittnik et al., 2002), and the mixture

1Other measures of risk have also been proposed in the literature. See Granger (2002) for an excellent discussion.
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of normal distributions (Venkataraman, 1997). We can also estimate the distribution nonparametrically:

e.g., the semi-parametric model of Engle and González-Rivera (1991), the historically simulated density,

and the nonparametric density. When {zt} is not IID, its time-varying conditional distribution Gt (·) may

be modeled parametrically (e.g., Hansen, 1994; Harvey and Siddique, 1999, 2000), nonparametrically (e.g.,

Gallant et al., 1991; Hall et al., 1999; Cai 2002), or via a time-varying mixture of some distributions.

The popularity of the parametric models mainly stems from their intuitive appealing and simplicity.

However, most conventional parametric specifications and some nonparametric distributions have failed

in capturing some rare events that took place in emerging financial markets over the last decade. This

inadequacy has led researchers to model directly the tail behavior of a distribution parametrically rather

than the whole distribution. To fill this gap, recent studies on risk modeling have found an interesting

avenue in this direction leading the extreme value theory (EVT) distributions to become popular. The most

commonly used EVT distributions in the literature include the generalized extreme value (GEV) distribution

of von Mises (1936) and Jenkinson (1955), the generalized Pareto (GP) distribution of Balkema and de Haan

(1974) and Pickands (1975), and the Hill (1975) estimator. While EVT developed under the IID assumption

on the series in question, the theory has been extended to serially dependent observations provided that the

dependence is weak. See Berman (1964) and Leadbetter et al. (1983). Hence EVT distributions could be

directly applicable to the return series which has long as well as short memory. Recently, a serious research

has been conducted in this field. See Longin (1996), Danielsson and de Vries (1997), Pownall and Koedijk

(1999), and Neftçi (2000). Certain problems with the EVT methodology have also been documented in

Diebold et al. (2000).

Another question is how to model σ2t . The conditional variance σ
2
t can be estimated with various volatility

models. We can estimate it nonparametrically (e.g., Bühlman and McNeil, 2001), parametrically (e.g., Engle,

1982; Bollerslev, 1986; Taylor, 1986). See Poon and Granger (2003) for an excellent survey and references

therein. In light of the fact that VaR is essentially a quantile of some distribution, we do not include various

volatility models in this paper and we focus instead on the distribution Gt (·) or Ft (·) . González-Rivera et

al. (2004) and Hansen and Lunde (2004) found that in terms of out-of-sample predictive ability some simple

volatility models perform often as well as more complex models while their relative performance varies with

users’ evaluation criteria. Therefore, we consider only a simple GARCH(1,1) model for σ2t .

The essential problem is that we usually do not know the true data generating process (DGP). While the

conventional VaR models (assuming normality or its extensions) have been criticized for their inadequacy

during the recent Asian financial turmoil, models based on the EVT distributions are claimed to perform

better during the crisis period. On the other hand, the nonparametric model of Hall et al. (1999) and Cai

(2002) requires very weak assumptions and has a generic advantage compared with the EVT or parametric
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distributions to capture higher order dependency beyond that specified in some particular parametric models

or the simplest IID assumption and hence avoid potential misspecifications. However, this generality does not

necessarily guarantee the superior predictive performance of the nonparametric model, especially in small

samples.

The aim of our paper is to compare various VaR models in the following dimensions: (i) Whether to filter

or not?2 (ii) Model the distribution Gt (·) or Ft (·) parametrically or nonparametrically? (iii) Model the

whole distribution or the tails only? (iv) Whether to model quantiles directly or to estimate the quantiles via

the inverse of Ft(·) or Gt(·) as in (3)? A direct way to estimate the conditional quantile is the CaViaR model

of Engle and Manganelli (2004), where an autoregressive quantile model is used to estimate the conditional

quantile of unfiltered data.

We apply these different approaches to VaR modeling to the stock markets of five Asian economies

(Indonesia, Korea, Malaysia, Taiwan, and Thailand), that suffered the 1997-1998 financial crisis. Thus our

exercise can be regarded as a “stress testing” under different market scenarios. See Table 2. Various VaR

models are compared in terms of the predictive likelihood function for quantile forecast using the reality

check tests of White (2000) and Hansen (2001), and also in terms of the tail interval forecast (empirical tail

coverage probability), for the one-step-ahead VaR predictions at α = 0.01 and 0.05.

Our results indicate some empirical regularities of risk forecasts. The Riskmetrics model behaves reason-

ably well in tranquil periods, while some EVT models do better in the crisis period. Filtering often appears

to be useful for some models (particularly the EVT models), though it could hurt for some other models. The

CaViaR models have shown some success in predicting the VaR risk measure for various periods, generally

comparable to the VaR models that invert a distribution function. Overall, the forecasting performance of

the VaR models considered varies for different tails, over the three different periods, and for the five different

economies.

The organization of this paper is as follows. In Section 2 we discuss various VaR models. In Section 3

forecast evaluation criteria and the predictive ability tests are discussed. Section 4 presents the empirical

results and Section 5 concludes.

2 VaR Models

As defined in equations (1)-(3), the computation of qt(α) amounts to computing the quantile of the dis-

tribution of {zt} or {rt}. Given the specifications of µt and σ2t , it can be seen from (3) that VaR models

2Following Hull and White (1998) and Barone-Adesi et al. (2002), a VaR model in this paper is said to be “filtered” if it
is applied to zt = (rt − µt)/σt, the standardized demeaned return series using a time-varying volatility model. A VaR model
is said to be “unfiltered” if it is applied to rt or if the volatility is assumed to be a constant (σ2t = σ2). One exception of this
terminology is for the Monte Carlo distribution (see Section 2.3).
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will be determined by the choice of Gt(·) or Ft(·). We consider five types of distributions: namely, normal

distribution, the historically simulated distribution (HS), the Monte Carlo simulated distribution (MC),

the nonparametrically estimated distribution (NP), and the EVT-based distributions. We also consider the

CaViaR model of Engle and Manganelli (2004) that is to estimate the VaR from a quantile regression rather

than from inverting Gt(·) or Ft(·).

The various models described in this section are summarized in Table 1. We use an asterisk * to denote a

filtered model. For example, NP* denotes that VaR is estimated by applying the nonparametric distribution

to the filtered series {zt}.

Table 1 Here

Throughout, for the purpose of comparison, we include the Riskmetrics model of J.P. Morgan (1995) as

a benchmark model

q̂t (α) = µ̂t + σ̂tΦ
−1 (α) , (4)

where Φ (·) is the standard normal distribution function so that Φ−1 (0.01) = −2.326 and Φ−1 (0.05) =

−1.645, and σ̂t is given recursively by the exponentially weighted moving average (EWMA)

σ̂2t = 0.94σ̂
2
t−1 + 0.06 (rt−1 − µ̂t)

2
, (5)

with µ̂t =
1
t−1

Pt−1
j=1 rj .

3

2.1 Normal Distribution

We consider the standard normal distribution Φ (·) for Gt(·) so that qt (α) = µt+σtΦ−1(α) with σ2t estimated

by GARCH(1,1) model σ2t = a0 + a1r
2
t−1 + a2σ

2
t−1 with µt = 0. This model is denoted as Normal* in Table

1. Normal* and Riskmetrics differ in σ2t and µt, with the same Φ (·) for Gt(·).

2.2 Historical Distribution (HS)

An approach to VaR modeling is to estimate the quantile nonparametrically. A conventional way is to use

the historically simulated distribution (HS). The idea behind historical simulation is to assume that the

distribution of returns {rt} will remain the same in the past and in the future and hence the empirical

distribution of historical returns will be used in forecasting VaR. See Jorion (2000, p. 221) for more details.

The key assumption of HS is that the series under consideration is IID. For more turmoil periods, it can

turn out to be a very bad measure of risk since risk can change significantly. Therefore, a more appropriate

3We use µ̂t =
1
t−1

Pt−1
j=1 rj for Riskemetrics model and for MC models in Section 2.3 following the convention for these two

models. For the other models in this paper, we set µt = 0.
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path to pursue is to put different weights on historical observations of {rt}. The ideas of volatility updating

(Hull and White, 1998) and filtering (Barone-Adesi et al., 2002) are in this direction to use the filtered series

{zt} instead of {rt}. The filtered HS model will be denoted as HS* when σ2t is estimated from a GARCH(1,1)

model. See Table 1.

2.3 Monte Carlo Distribution (MC)

The underlying stochastic process that governs the dynamics of asset prices may be calibrated for the asset’s

future values. A popular, simple stochastic process is the geometric Brownian motion given by

dSt/St = µtdt+ σtdWt, (6)

where St is the asset price at time t, Wt is a standard Wiener process, and µt and σt are the drift

and the volatility parameters, respectively. The solution to this stochastic differential equation is St =

S0 exp
¡
[µt − 1

2σ
2
t ]t+ σtWt

¢
. See Broadie and Glasserman (1998). Thus, simulating St amounts to simulat-

ing Wt. Since we are predicting one-step-ahead VaR, it can be written as

St = St−1 exp

µ
[µt −

1

2
σ2t ] + σtzt

¶
,

where zt is simulated from a standard normal distribution. We do it N times, from which the empirical α-th

quantile of rt ≡ log (St/St−1) is estimated. In Section 3, we set N = 1000.

When σ2t is estimated from the unconditional variance 1
t−2

Pt−1
j=1(rj − µ̂j)2 with µ̂t = 1

t−1
Pt−1

j=1 rj , the

VaR model will be denoted as MC. When σ2t is estimated by the conditional variance model of GARCH(1,1)

it will be denoted as MC*. See Table 1.

2.4 Nonparametrically Estimated Distribution (NP)

We also use a nonparametrically estimated conditional distribution following Hall et al. (1999) and Cai

(2002). If Y and X are stationary, the conditional distribution function of Y given X = xt can be estimated

through the “weighted” Nadaraya-Watson estimator

F (y|xt) =

nP
i=1
piKh(xi − xt)1(Yi ≤ y)
nP
i=1
piKh(xi − xt)

(7)

where Kh(·) is a kernel function with bandwidth parameter h, 1(·) is an indicator function, and the weights

pi ≡ pi (xt) are obtained from a constrained maximization problem

max
Xn

i=1
log pi,
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subject to

Xn

i=1
pigi = 0,

Xn

i=1
pi = 1, and pi ≥ 0,

where gi ≡ (xi − xt)Kh (xi − xt) .4 The weights pi in (7) can be regarded as the local empirical likelihoods.

See Owen (2001). The solution to the above constrained maximization problem is pi = n
−1(1+λgi)

−1 where

the Lagrangian multiplier λ is chosen to maximize Ln(λ) = (nh)
−1Pn

i=1 log(1 + λgi).

The quantile function can then be found as

q̂t (α) = inf{y ∈ R|F̂ (y|xt) ≥ α}, (8)

where F̂ (y|xt) is estimated using the optimal bandwidth h selected by the standard cross validation based

on the quantile estimation loss function of Koenker and Bassett (1978). See equation (29) in Section 3. We

report the results in Section 4 using the Gaussian kernel Kh(u) = (2π)−1/2 exp(− (u/h)2 /2) while other

kernels give similar results.

The NP distribution in (7) is the “conditional” distribution. Of course, when we have an IID series, the

conditional distribution should be the same as the unconditional distribution; otherwise, the NP method

may capture some unknown higher order dependent structure of a non-IID series. Therefore, we employ

the NP method to both unfiltered and filtered data, and we denote them as NP and NP*, respectively, as

summarized in Table 1. In Section 4, we set (yt xt) = (rt rt−1) for NP, and (yt xt) = (zt zt−1) for NP*.
5

2.5 Extreme Value Distributions

All the previous methods estimate the quantiles using information from the whole distribution. Alternatively,

since the quantiles at 1% or 5% are some “extreme” values for a distribution, we can focus on modeling the

tails directly. That comes to the extreme value theory (EVT). Embrehcts et al. (1997) provided a treatise

on various aspects of EVT; Longin (1996, 2000) used the generalized extreme value (GEV) distribution

to estimate the tail index; McNeil and Frey (2000) and Neftçi (2000) used the generalized Pareto (GP)

distribution. In the following discussion, we assume that the series in question, {yt}nt=1 , is IID. Nevertheless,

as mentioned before, we can apply the EVT models to weakly dependent series (unfiltered data) too.

4The first constraint
Pn
i=1 pi(xi−xt)Kh (xi − xt) = 0 is the so called “discrete moment condition”, which is not satisfied by

the Nadaraya-Watson estimator. This equation makes an extra term in the asymptotic bias of the Nadaraya-Watson estimator
in comparison to the local linear estimator. This is why this constraint is imposed. See Fan and Gijbels (1996, p. 63) and Cai
(2002, p. 172). We thank Zongwu Cai for pointing this out to us.

5This choice is not in favor of the NP* method because {zt} is likely to exhibit the near-IID property. Nevertheless we choose
xt = zt−1 and consider only univariate case in this paper. We expect the NP and NP* models would perform better when xt is
chosen from some relevant variables that explains the returns. For example, Fama and French (1993) and Lakonishok, Shleifer,
and Vishny (1994) identify factors like firm size, book to market ratio, and earnings-growth extrapolation for the variable xt.
We do not consider these factors in the present study.
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2.5.1 Generalized Extreme Value (GEV) Distribution

For a series {yt} , consider the ordered series {y(t)} in increasing order y(t) ≤ y(t+1) for all t. The sample

minimum is y(1) over n sample period. If {yt} is IID with the CDF FY (y), then the CDF of the minimum,

denoted by GY (y), is given by

GY (y) = Pr(y(1) ≤ y) = 1− Pr(y(1) > y) = 1−
nY
t=1

Pr(yt > y)

= 1−
nY
t=1

[1− Pr(yt ≤ y)] = 1− [1− FY (y)]n. (9)

SinceGY (y) degenerates as n→∞, we seek a limit lawHX(x) with which a normalization xn = (y(1)−βn)/δn

does not degenerate as n → ∞ for some suitable normalizing constants βn and δn > 0. The limiting

distribution of xn is the generalized extreme value (GEV) distribution of von Mises (1936) and Jenkinson

(1955) of the form

HX(x) = 1− exp(−(1 + τx)
1
τ ) (10)

for 1 + τx > 0. The corresponding limiting density function of {xn} as n→∞, obtained by differentiating

HX(x), is given by

hX(x) = (1 + τx)
1
τ−1 exp(−(1 + τx)

1
τ ), (11)

so that the approximate density of y(1) for given n, by change of variables, is

hY (xn) =
1

δn
(1 + τxn)

1
τ−1 exp(−(1 + τxn)

1
τ ). (12)

Hence the three parameters θn = (τ βn δn)
0 may be estimated by maximum likelihood. To implement

it, Longin (1996, 2000) partitioned the sample into g non-overlapping subsamples each with m observations.

In other words, if n = gm, the ith subsample of the series is {y(i−1)m+j}mj=1 for i = 1, . . . , g. If n < gm, we

drop some observations in the first subsample so that it has fewer than m observations. The collection of

subperiod minima is then {ym,i} where ym,i = min1≤j≤m{y(i−1)m+j}, i = 1, . . . , g. The likelihood function

of {ym,i} is
gY
i=1

hY (xm) =

gY
i=1

hY

Ã
ym,i − βim

δim

!
. (13)

Assuming θim = θm for all subperiods, i = 1, . . . , g, we can estimate θm from a numerical optimization of

the (log) likelihood.

Next, consider the probability that the subperiod minimum ym,i is less than y
∗
m under the limit law (10).

Denoting x∗m =
y∗m−βm

δm
, we have

HX(x
∗
m) = HX

µ
y∗m − βm

δm

¶
= Pr

µ
ym,i − βm

δm
≤ y

∗
m − βm
δm

¶
= Pr(ym,i ≤ y∗m), (14)
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which is therefore equal to

GY (y
∗
m) = 1− [1− FY (y∗m)]m = 1− (1− α)m, (15)

where the second equality holds if y∗m = q (α) . Hence, equating (14) and (15), we get

HX(x
∗
m) = 1− exp

³
−(1 + τx∗m)

1
τ

´
= 1− (1− α)m, (16)

which yields

q (α) = βm −
δm
τ
{1− [− ln(1− α)m]τ} . (17)

In Section 4, we use m = 10. We employ the GEV distribution to both unfiltered (yt = rt) and filtered data

(yt = zt).

2.5.2 Generalized Pareto (GP) Distribution

An alternative EVT approach is based on exceedances over threshold (Smith, 1989; Davison and Smith,

1990). According to this approach, we fix some low threshold u and look at all exceedances e over u. To

be consistent with the other part of this paper, we discuss here the exceedance distribution for the left tail.

The distribution of excess values is given by

Pr (Y > u− e|Y < u) = F (u)− F (u− e)
F (u)

, e > 0. (18)

Balkema and de Haan (1974) and Pickands (1975) showed that the asymptotic form of Pr (Y > u− e|Y < u)

is

H(e) = 1−
³
1− τe

δ

´1/τ
, (19)

where δ > 0 and 1− τe/δ > 0. This is known as the generalized Pareto (GP) distribution with density

h(e) =
1

δ

³
1− τe

δ

´1/τ−1
.

For {yt}nt=1 , we can estimate (τ , δ)0 by maximizing
Qm
i=1 h(ei), where {ei}mi=1 is the sample of exceedances

over the threshold u. Denote the MLE of (τ , δ)0 by (τ̂ , δ̂)0. Then from (18) and (19),

F (u− e)
F (u)

=
³
1− τe

δ

´1/τ
which gives, if we estimate F (u) by m/n,

F̂ (u− e) = m

n

µ
1− τ̂e

δ̂

¶1/τ̂
,

8



or equivalently for y < u,

F̂ (y) =
m

n

µ
1− τ̂ (u− y)

δ̂

¶1/τ̂
. (20)

Immediately, the α-th quantile can be estimated by setting F̂ (y) = α and hence

q̂(α) = u− δ̂

τ̂

µ
1−

³nα
m

´τ̂¶
. (21)

An important issue in implementing the GP approach is how to choose the threshold u. For example, if we

are interested in the 5% quantile, then the chosen u must be larger (enough) than q (0.05). We follow Neftçi

(2000) to use the empirical 10% quantile. One possible extension is that we may estimate the threshold

value u to decide which extremes are really extremes, see Gonzalo and Olmo (2004).

2.5.3 Hill Estimator

Denote the ordered series as {y(t)}nt=1 in increasing order. Suppose y(m) < 0 and y(m+1) > 0 so that m is

the number of negative observations in the sample. The GEV distribution (10) with τ < 0 is known as the

Fréchet distribution with the CDF F (y) = exp(−|y| 1τ ), y < 0. As shown in Embrechts et al. (1997, p. 325),

it reduces to

F (y) = 1− C|y| 1τ , |y| ≥ u ≥ 0 (22)

where C = u−1/τ is a slowly varying function with u being the known threshold. A popular estimator of τ

is due to Hill (1975) who showed that its maximum likelihood estimator is

τ̂ = −1
k

kX
t=1

¡
ln |y(m−k−t)|− ln |y(m−k)|

¢
(23)

where k ≡ k(m)→∞ and k(m)/m→ 0. It is known that τ̂
p→ τ as m→∞ (Mason, 1982). We can choose

the sample fraction k using a bootstrap method of Danielsson et al. (2001). Once τ is estimated, the VaR

estimate can be found from

q̂(α) =
hm
k
(1− α)

iτ̂
y(k+1). (24)

See Embrechts et al. (1997, p. 347).

2.6 Conditional Autoregressive VaR (CaViaR)

Engle and Manganelli (2004) suggested that VaR can be estimated by modeling the quantiles directly rather

than inverting a distribution. The idea is similar to the GARCH modeling and VaR is modeled autoregres-

sively

qt (α) = a0 + a1qt−1 (α) + h(xt|θ), (25)

9



where xt ∈ Ft−1, θ is a parameter vector, and h(·) is a function to explain the VaR model. This model is

called the CaViaR (conditional autoregressive Value-at-Risk) model. In our study two specifications of the

CaViaR model are chosen:

Symmetric CaViaR (CaViaRS)

qt (α) = a0 + a1qt−1 (α) + a2|rt−1|, (26)

Asymmetric CaViaR (CaViaRA)

qt (α) = a0 + a1qt−1 (α) + a2|rt−1|+ a3|rt−1| · 1(rt−1 < 0). (27)

The estimation can be made via quantile regression. Due to the nondifferentiable absolute function the

estimation can be achieved by a genetic algorithm. See Price and Storn (1997). Following Engle and

Manganelli (2004), we apply the CaViaR model directly to the return series {rt} (not to {zt}).

3 Comparing VaR models

We compare VaR models through their performance in terms of out-of-sample one-step-ahead predictive

ability. Suppose we have a sample of total T observations and we split it into an in-sample part of size R and

an out-of-sample part of size P so that T = P +R. We use a rolling window scheme. That is, the (t−R)th

prediction is based on observations t−R through t−1, t = R+1, · · · , T. Let a benchmark model be indexed

by k = 0 and the l competing models by k = 1, . . . , l. Let qk,t (α,βk) be the VaR forecast using Model k

(k = 0, . . . , l), for which a loss function L(qk,t (α; ,βk)) will be defined. Then the loss differential between

Model 0 (benchmark) and Model k is

f̂k,t ≡ f
³
q̂0,t (α) , q̂k,t (α) ; β̂t−1

´
= L

³
q̂0,t(α; β̂0,t−1)

´
− L

³
q̂k,t(α; β̂k,t−1)

´
, k = 1, . . . , l,

where β̂t−1 collects the estimated parameters using the information up to time t−1 from both models. When

the pseudo-true parameter vector β† (the probability limit of the estimator β̂t−1) and the corresponding

pseudo-true quantiles are used, we may define analogously f†k,t. Stacking f̂k,t and f
†
k,t for k = 1, . . . , l gives

l× 1 vector f̂t and f†t . Testing for the unconditional predictive ability hypothesis can be conducted in terms

of E(f†t ) (or E
¡
f†
¢
assuming stationarity) as in West (1996), while the conditional predictive ability testing

in terms of E(f†t |Ft−1) as in Giacomini and White (2003).

3.1 Evaluation Criteria

We evaluate and compare various VaR forecast models in terms of the predictive quantile loss and the

empirical coverage probability.
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We use the “check” function of Koenker and Bassett (1978). As we conduct an out-of-sample analysis to

compare predictive ability of the various VaR models, the check function may be regarded as a “predictive”

quasi-likelihood, as discussed in Bertail et al. (2004) and Komunjer (2004). In what follows, the index k

may be suppressed to simplify notation. Hence, the expected loss of qt(α) for a given α is:

Q(α) = E[α− 1 (yt < qt(α))][yt − qt(α)]. (28)

The loss Q(α) can provide a measure of the lack-of-fit of a quantile model. The expected check function

Q(α) can be evaluated from the out-of-sample VaR forecasts

Q̂P (α) = P
−1

TX
t=R+1

[α− 1 (yt < q̂t(α))][yt − q̂t(α)], (29)

where q̂t(α) = F̂
−1
t (α) = µ̂t+ σ̂tĜ

−1
t (α) with F̂−1t (·), µ̂t, σ̂t, Ĝ−1t (·) estimated using the information Ft−1. A

model that gives the VaR forecast q̂t(α) with the minimum value of Q̂P (α) is the preferred model.

If F (yt) is continuous in a neighborhood of qt(α), qt(α) minimizes Q(α) and makes a condition for the

correct conditional coverage probability

α = E[1(yt < qt(α))|Ft−1], (30)

i.e., {α−1 (yt < qt(α))} is a martingale difference sequence (MDS).6 Given the nominal conditional coverage

probability α = E[1(yt < qt(α))|Ft−1], the empirical conditional coverage probability constructed for the

VaR forecasts {q̂t(α)}Tt=R+1 can be computed from

α̂P =
1

P

TX
t=R+1

1 (yt < q̂t(α)) . (31)

A model that gives the VaR forecast q̂t(α) with α̂P closest to its nominal value α is the preferred model.

3.2 Reality Check

When several models using the same data are compared in terms of predictive ability, it is crucial to take into

account the dependence among the models. Failing to do so will result in the data-snooping problem which

occurs when a model is searched extensively until a match with the given data is found. Conducting inference

without taking specification search into account can be extremely misleading (see Lo and MacKinlay, 1999,

Ch. 8). White (2000) developed a noble test of superior unconditional predictive ability among multiple

models accounting for specification search, built on Diebold and Mariano (1995) and West (1996).

Our interest is to compare all the models with a benchmark. An appropriate null hypothesis is that all

the models are no better than a benchmark, i.e., H0 : max1≤k≤lE(f
†
k) ≤ 0. This is a multiple hypothesis,

6See e.g., Giacomini and Komunjer (2002). The MDS property has been used in forming a conditional moment test for the
quantile models. See, e.g., Zheng (1998), Engle and Manganelli (2004), and Bierens and Ginther (2001).
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the intersection of the one-sided individual hypotheses E(f†k) ≤ 0, k = 1, . . . , l. The alternative is that H0 is

false, that is, the best model is superior to the benchmark. If the null hypothesis is rejected, there must be

at least one model for which E(f†k) is positive. Suppose that
√
P (̄f −E(f†)) d→ N(0,Ω) as P (T )→∞ when

T →∞, for Ω positive semi-definite. White’s (2000) test statistic for H0 is formed as V̄ ≡ max1≤k≤l
√
P f̄k,

where f̄k = P−1/2
PT
t=R+1 f̂k,t. However, as the null limiting distribution of V̄ is unknown, White (2000,

Theorem 2.3) showed that the distribution of
√
P (̄f∗ − f̄) converges to that of

√
P (̄f − E(f†)), where f̄∗ is

obtained from the stationary bootstrap of Politis and Romano (1994). By the continuous mapping theorem

this result extends to the maximal element of the vector
√
P (̄f∗ − f̄) so that the empirical distribution of

V̄ ∗ = max
1≤k≤l

√
P (f̄∗k − f̄k), (32)

may be used to compute the p-value of V̄ (White, 2000, Corollary 2.4). This p-value is called the “Reality

Check p-value”.

We note that White’s reality check is conservative when a poor model is included in the set of l competing

models. The inclusion of f̄k in (32) guarantees that the statistic satisfies the null hypothesis E(f̄
∗
k − f̄k) = 0

for all k. This setting makes the null hypothesis the least favorable to the alternative and consequently, it

renders a very conservative test. When a poor model is introduced, the reality check p-value for Model k

becomes very large and, depending on the variance of f̄k, it may remain large even after the inclusion of

better models. Hansen (2001) considered the following modification to (32)

V̄ ∗ = max
1≤k≤l

√
P (f̄∗k − g(f̄k)), (33)

where different g(·) functions will produce different bootstrap distributions that are compatible with the null

hypothesis. Hansen (2001) recommended setting g(·) as a function of the variance of f̄k, i.e.

g(f̄k) =

½
0 if f̄k ≤ −Ak
f̄k if f̄k > −Ak

(34)

where Ak =
1
4P
−1/4

p
var(P 1/2f̄k) with the variance estimated from the bootstrap samples. In our empirical

section, we report two reality check p-values: with g(f̄k) = f̄k as in (32) (denoted as White) and with g(f̄k)

determined from (34) (denoted as Hansen). When E(f†k) = 0 for all 1 ≤ k ≤ l, then the reality check p-value

of White (2000) will provide an asymptotically correct size. However, when some models are dominated by

the benchmark model, i.e., E(f†k) < 0 for some 1 ≤ k ≤ l, then the reality check p-value of White (2000) will

make a conservative test. So, when bad models are included in the set of the competing models, White’s

test tends to behave conservatively. Hansen’s (2001) modification is basically to remove those (very) bad

models in the comparison. Hansen (2001) contains two modifications. One is what we employ here. The

other is to take maximum over the standardized statistics. There might be additional gains in power from

the standardization as noted in Hansen (2001, 2003).
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Remarks: White’s Theorem 2.3 is obtained under the assumption of differentiability of the loss function

(as in West 1996, Assumption 1). Also, White’s Theorem 2.3 is obtained under the assumption that either

(a) the same loss function is used for estimation and prediction, or (b) (P/R) log logR → 0 as T → ∞ so

that the effect of parameter estimation vanishes asymptotically (as in West 1996, Theorem 4.1(a)). Thus

White’s Theorem 2.3 does not immediately apply to the non-smooth functions and the presence of estimated

parameters. Nevertheless, it is noted in White (2000, p. 1113) that the results analogous to Theorem 2.3

can be established under similar conditions used in deriving the asymptotic normality of the least absolute

deviations estimator. When no parameter estimation is involved, White’s (2000) procedure is applicable to

nondifferentiable f. We expect that the approach of Randles (1982) and McCracken (2000, Assumption 4)

may be useful here, where the condition E(∂f†/∂β) = 0 is modified to ∂(Ef †)/∂β = 0 to exploit the fact

that the expected loss function may be differentiable even when the loss function is not. We conjecture that

when parameter estimation is involved, White’s (2000) procedure continues to hold either when ∂(Ef†)/∂β

= 0 or when P grows at a suitably slower rate than R. Since we are using different criteria for in-sample

estimation and forecast evaluation, there is no reason to expect that ∂(Ef†)/∂β = 0. Hence it is important

to have very large R compared to P . In our empirical section, we thus have R = 2086, 2476, or 2869, which

are much larger than P = 261.

4 Empirical Results

From Datastream, we retrieve the Indonesia Jakarta Stock Exchange Composite Price Index, Korea Stock

Exchange Composite Price Index, Malaysia Kuala Lumpur Stock Exchange Composite, Taiwan Weight

Index, and Thailand S.E.T. Price Index. The return series is given by the log difference of price indices, then

multiplied by 100. To investigate the performance of VaR models under different circumstances, we use three

out-of-sample evaluation periods, which we denote as the before-crisis period, crisis period, and after-crisis

period, respectively. Thus our exercise can be regarded as a “stress testing” under different scenarios. The

three periods are summarized in Table 2.

Table 2 Here

For all the three periods the estimation sample (in-sample) starts from January 1, 1988. For each period,

we split the whole sample into an in-sample period and an out-of-sample period for one year (P = 261).

The first period ends at December 31, 1996 with total T (= R+P ) = 2347 observations; the second period,

which covers the 1997-1998 Asian financial crisis, ends at June 30, 1998 with total T = 2737 observations;

the third period, after the crisis, ends at December 31, 1999 with total T = 3130 observations.
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4.1 Tail Coverage Probability

In Tables 3A, 3B, and 3C, we present the empirical coverage probability α̂P (the relative frequency of the

violations) for Periods 1, 2, and 3, respectively.7 We investigate the three periods in order to compare the

potential changes in the risk forecast precision across the three different periods.

Table 3 Here

As shown in Table 3A, for the pre-crisis period (Period 1) with α = 0.05, the conventional Riskmetrics

model has a satisfactory forecast. For most countries the predicted coverage probabilities are very close to

the nominal coverage. Both the symmetric and asymmetric CaViaR models do well. Unfiltered EVT models

behave rather poorly for this tail probability level α = 0.05. Most of the EVT models performs rather poorly.

The result marginally improves when filtering is applied but it is still far from being satisfactory. The same

finding is also applicable for HS and NP even though these nonparametric models have better forecasting

performance than that of the EVT-based models. As in the case of EVT models, filtering also improves the

prediction quality of the HS, MC, and NP models. Both symmetric and asymmetric CaViaR models are

quite satisfactory.

During the pre-crisis period with α = 0.01, the risk forecasts of Riskmetrics are fine but there are

many other alternative models which do better. For instance, filtered nonparametric (both HS* and NP*),

filtered Monte Carlo (MC*), and filtered GP (GP*) models provide good empirical coverage probabilities.

Unfiltered methods on the other hand mostly overstate the VaR forecasts (i.e., understate the coverage

probability). Both CaViaR models are quite satisfactory. Overall, no model appears to be particularly

superior to Riskmetrics, which works reasonably well for both α = 0.05 and 0.01 in Period 1.

In Table 3B, we observe different findings for the crisis period (Period 2). Most models fail to generate

correct coverage probabilities. Unlike the findings obtained in Period 1, most models understate the VaR

forecasts (i.e., overstate the coverage probability). The Riskmetrics, MC, HS, and other conventional models

here produce rather poor coverage for α = 0.05. In this quantile level and period, a consistent risk forecasting

across the five countries is not a trivial task. Among all the models, filtered Hill is relatively better one but

not satisfactory. CaViaR’s coverage performance here is also less satisfactory.

For α = 0.01, some EVT-based methods, filtered GP (GP*) and filtered Hill (HILL*), perform better than

the other filtered VaR methods and Riskmetrics. Filtered NP (NP*) method produces very poor coverage,

much worse than unfiltered NP. HS* is relatively fine too. During Period 2 and for α = 0.01, Taiwan appears

to produce the best risk forecast precision among the five countries, perhaps because Taiwan suffered least

7When 1 (yt < q̂t(α)) = 1, it will be said that a violation occurs.
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from the crisis. The CaViaR models show an improved coverage performance for α = 0.01 compared to their

performance for α = 0.05 (although not satisfactory either).

Table 3C shows that the post-crisis period (Period 3) is somewhat similar to the pre-crisis period (Period

1). For α = 0.05 filtering helps HS and NP. HS* and NP* produce better forecasting accuracy than the

filtered EVT-based models. Both CaViaR specifications do well as in the case of the pre-crisis period. For

the α = 0.01 probability level, as in the case of Period 1, many models produce good coverage probability.

Overall, filtering is often useful, sometimes marginally, but sometimes it can make worse. The Riskmetrics

model is not much worse than the best of the other competing models in all three periods including Period

2. Most of the models fail for Period 2, while HILL* works well for Period 2, particularly for α = 0.01. The

CaViaR models work well in Periods 1 and 3.

4.2 Quantile Loss

In Tables 4A, 4B, and 4C, for each of Periods 1, 2, and 3, we present the out-of-sample average quantile loss

values Q̂P (0.05) and Q̂P (0.01) as defined in (29). The reality check p-values of White (2000) and Hansen

(2001) are also reported, with the Riskmetrics model as our benchmark model since it is the most widely

used model for practitioners. The null hypothesis is that none of the 15 competing models can beat the

Riskmetrics model. A significant (small) reality check p-value is in favor of the alternative hypothesis that

there is a model that beats the Riskmetrics benchmark in terms of the out-of-sample average loss values

Q̂P (α). The best model in Q̂P (α) is indicated in bold font in the tables for each country and for each α.

Riskmetrics is selected several times as the best model (3 times out of 10 in Period 1, once out of 10 in Period

2, and twice out of 10 in Period 3), while there are models with lower loss values. However, the reality check

p-values are generally quite large and insignificant, indicating that Riskmetrics is not dominated by any

other models for all three periods. (Only one exception is for Period 3, Thailand, α = 0.01, for which case

MC is the best and significantly better than Riskmetrics.)

Table 4 Here

In Table 4A, CaViaRS , GP, GP*, and NP* generate (marginally but not significantly) better quantile loss

than Riskmetrics, while many models (particularly GEV and GEV*) are much worse. None of the models

can produce a significantly better risk forecast than Riskmetrics. Even though there are some models which

produce smaller quantile loss values than Riskmetrics, this has not been observed uniformly across countries.

Filtering generally helps for Taiwan and Thailand, while it can hurt (e.g., for Malaysia).

The result for Period 2 is reported in Table 4B. In the crisis period, more EVT models are selected as

the best models. For α = 0.05, the best models for all five countries are the EVT models — GP, GEV, HILL,
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or HILL*. For α = 0.01, the best models are Riskmetrics, MC*, GEV, HILL*, or CaViaRA. However,

none of these models are significantly better than the benchmark Riskmetrics model. During this period,

filtering works for HS*, MC*, GP*, and HILL* in term of the quantile loss. As an unfiltered model assumes

the unconditional variance, it may be unlikely that an unfiltered model can be better than the filtered one.

However, this could happen. For example, NP* is worse than NP in terms of both the empirical tail coverage

α̂P and the predictive quantile loss Q̂P (α), during the crisis period, for both α = 0.05, 0.01, for all the five

countries. For NP*, this may be due to the issue mentioned earlier in footnote 5.

The post-crisis period result is presented in Table 4C, where the best models are often selected from MC,

MC*, NP, or NP*. There are some forecasting improvements in terms of Q̂P (α) and more so with α = 0.01.

For Thailand with α = 0.01, MC makes a significantly better VaR forecasting than the benchmark. For the

other cases, Riskmetrics is not statistically dominated by any other models.

Figures 1-3 Here

Figures 1-3 plot the out-of-sample loss values with α = 0.05

[α− 1 (yt < q̂t(α))][yt − q̂t(α)] =
½
0.95 · |yt − q̂t(α)| if yt < q̂t(α)
0.05 · |yt − q̂t(α)| if q̂t(α) < yt

for each time of t = R+1, . . . , T. This is the summand of the out-of-sample average loss Q̂P (α) in equation

(29). For the sake of space, we present only the figures for Korea with α = 0.05, while all other figures for

the five economies with α = 0.05, 0.01 are available upon request and deliver largely the same features. Note

that the larger weight 0.95 is given to the loss when a violation occurs and thus once there is a violation the

loss value increases at that time (generating a spike in plots).

Reading Figure 1 for Period 1, we note that when two models have the same number of violations and

thus the same value for α̂P , one model which produces a larger Q̂P (α) loss value is a worse one. For

instance, for Period 1 for Korea with α = 0.05, both GP and GP* produce the same number of violations

with α̂P = 0.0766, while GP is better than GP* because they have Q̂P (α) = 0.1149 and 0.1203 respectively.

This can be observed from Figure 1 where both GP and GP* have the spikes at the same points of time but

spikes for GP* are higher. When two models have the same quantile loss Q̂P (α), a model which produces

α̂P closer to α is a better one. For instance, both Riskmetrics and HS produce the same quantile loss

Q̂P (0.05) = 0.1152. But HS is better than Riskmetrics because HS has α̂P = 0.0460 and Riskmetrics has

α̂P = 0.0651. On the other hand, some models can be bad (or good) in terms of both α̂P and Q̂P (α). For

example, GEV, GEV*, and HIll have shown no spikes in the plots, i.e., none or few violations (and thus

produce bad empirical coverage probability) but they also have the largest quantile loss values. They are

less adequate models in both criteria of α̂P and Q̂P (α).
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Similar interpretations of the plots can be drawn for the crisis period (Figure 2) and the post-crisis period

(Figure 3). It should be noted that the vertical scales of the graphs are different for Figures 1-3. If we look

at the plots for HS, MC, NP, NP*, and GP in the crisis-period there are a large number of violations (which

make α̂P too large) and many large spikes in the loss (which make the average loss Q̂P (α) quite large). The

worst model in Period 2 is NP*, which has produced a very volatile loss plot indicating a poor predictive

performance, which can easily be verified by Table 3B (α̂P = 0.2989) and Table 4B (Q̂P (0.05) = 0.7765).

The best model in Period 2 is filtered Hill (HILL*) that produces both very good coverage probability

(α̂P = 0.0498) and the smallest average quantile loss value (Q̂P (0.05) = 0.3326). In Period 3, while the plots

for HS, MC, NP, NP*, and GP remain very volatile, Riskmetrics becomes a good model again (as was the

case for Period 1) with a reasonable empirical coverage probability α̂P = 0.0613 as shown in Table 3C and

with the smallest loss Q̂P (0.05) as shown in Table 4C. A final note on the figures for most of the comparable

models is that, the dates in which the violations took place are similar. In other words, most models capture

the violations at the same time when they occur.

5 Conclusions

In this paper we have studied a comparative risk forecast experiment for five emerging markets. Our

findings are summarized as follows: (i) Based on α̂P (the coverage probability or the number of violations),

the Riskmetrics model behaves reasonably well before and after the crisis, while some EVT models do better

in the crisis period. Filtering appears to be useful for some models (particularly the EVT models), though it

may hurt for other models. Forecasting performance of different models varies with α = 0.05 and 0.01. (ii)

The results based on Q̂P (α) (the predictive quantile loss) are largely compatible with those based on α̂P .

While the Riskmetrics and other conventional models work reasonably well before and after the crisis, the

EVT models work better in the crisis period. However, we can not reject that the Riskmetrics model can

not be beaten even during the crisis period. The CaViaR models have shown some success in predicting the

VaR risk measure across various periods.

Our experiment demonstrates that risk forecasting during the crisis period is more difficult and yields

poorer results than during tranquil periods and most VaR models generally behave similarly before and after

the crisis, but differently in the crisis period. Hence, it may be promising to consider the regime-switching

VaR models as in Guidolin and Timmermann (2003) and Li and Lin (2004).
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Engle, R. F. and G. González-Rivera. 1991. Semiparametric ARCH models. Journal of Business and

Economic Statistics 9: 345-360.

18



Engle, R. F. and S. Manganelli. 2004. CaViaR: Conditional autoregressive Value at Risk by regression

quantiles. Journal of Business and Economic Statistics 22(4): 367-381.

Fama, E. and K. R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of

Financial Economics 33: 3-56.

Fan, J. and I. Gijbels. 1996. Local Polynomial modeling and Its Applications. Chapman and Hall, London.

Gallant, A. R., D. A. Hsieh, and G. E. Tauchen. 1991. On fitting a recalcitrant series: the Pound/Dollar

exchange rate, 1974-1983. In Nonparametric and Semiparametric Methods in Econometrics and Statis-

tics: Proceedings of the Fifth International Symposium in Economic Theory and Econometrics, W. A.

Barnett (ed.); UK: Cambridge University Press.

Giacomini, R. and I. Komunjer. 2002. Evaluation and combinations of conditional quantile forecasts.

Working paper, UCSD and Caltech.

Giacomini, R. and H. White. 2003. Tests of conditional predictive ability. Working paper, Department of

Economics, University of California, San Diego.
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TABLE 1. VaR Models and Mnemonics

Whether filtered or not
Which distribution Unfiltered Filtered
Normal Distribution Normal*
Historical Distribution HS HS*
Monte Carlo Distribution MC MC*
NP Distribution NP NP*
EVT Distributions GP GP*

GEV GEV*
HILL HILL*

No Distribution CaViaRS
CaViaRA

Notes:

(1) This table defines mnemonics for the models used in this paper.

(2) The filtered VaR models (using z) are computed using the standardized returns zt = rt/σt where σ
2
t is

estimated by a GARCH(1,1) model. The filtered models are denoted with *.

(3) The acronyms stand for the following methods: HS = historical simulation; MC = Monte Carlo; NP =

nonparametrically estimated distribution of Hall et al. (1999) and Cai (2002); GP = generalized Pareto dis-

tribution; GEV = generalized extreme value distribution; Hill = the method based on Hill (1975); CaViaRS
= symmetric CaViaR model of Engle and Manganelli (2004); and CaViaRA = asymmetric CaViaR model

of Engle and Manganelli (2004).

(4) CaViaR models do not need a distribution as they are not based on inversion of the distribution to

estimate quantiles. We do not consider the filtered version of CaViaR models for zt because {zt} is nearly
IID and its quantiles may not exhibit any dependence.

(5) In addition to the above models, we also include the popular Riskmetrics model in Tables 3-4 as a

benchmark. The Riskmetrics model is similar to Normal* as it uses the normal distribution, but different

from Normal* as its σ2t is updated by EWMA instead of σ
2
t being estimated by GARCH(1,1) as we do for

Normal*.



TABLE 2. Three Out-of-Sample Evaluation Periods

Period 1 Period 2 Period 3
(Before Crisis) (During Crisis) (After Crisis)

Out-of-sample Period 1/1/1996 ∼ 12/31/1996 7/1/1997 ∼ 6/30/1998 1/1/1999 ∼ 12/31/1999
P = 261 P = 261 P = 261

In-sample Period 1/1/1988 ∼ 12/31/1995 1/1/1988 ∼ 6/30/1997 1/1/1988 ∼ 12/31/1998
R = 2086 R = 2476 R = 2869



Table 3A: Empirical Coverage Probability, Period 1 
 

  Indonesia Korea Malaysia Taiwan Thailand 

Riskmetrics 0.0460 0.0651 0.0421 0.0307 0.0728 
Normal* 0.0383 0.0575 0.0192 0.0192 0.0498 
HS 0.0383 0.0460 0.0153 0.0115 0.0383 
HS* 0.0498 0.0766 0.0268 0.0192 0.0536 
MC 0.0077 0.0192 0.0153 0.0115 0.0192 
MC* 0.0383 0.0307 0.0192 0.0192 0.0421 
NP 0.0383 0.0498 0.0153 0.0115 0.0613 
NP* 0.0498 0.0766 0.0268 0.0230 0.0536 
GP 0.0920 0.0766 0.0268 0.0192 0.0805 
GP* 0.0805 0.0766 0.0345 0.0192 0.0690 
GEV 0.0000 0.0000 0.0000 0.0000 0.0038 
GEV* 0.0077 0.0077 0.0038 0.0077 0.0077 
HILL 0.0383 0.0115 0.0153 0.0038 0.0077 
HILL* 0.0421 0.0230 0.0153 0.0153 0.0153 
CaViaRS 0.0536 0.0421 0.0307 0.0192 0.0498 

5% 

CaViaRA 0.0766 0.0421 0.0307 0.0192 0.0498 

Riskmetrics 0.0268 0.0115 0.0230 0.0153 0.0153 
Normal* 0.0230 0.0115 0.0153 0.0153 0.0153 
HS 0.0077 0.0000 0.0000 0.0038 0.0077 
HS* 0.0230 0.0077 0.0115 0.0115 0.0115 
MC 0.0038 0.0038 0.0153 0.0038 0.0077 
MC* 0.0230 0.0115 0.0153 0.0153 0.0153 
NP 0.0077 0.0000 0.0000 0.0038 0.0077 
NP* 0.0230 0.0077 0.0115 0.0115 0.0115 
GP 0.0077 0.0038 0.0038 0.0038 0.0077 
GP* 0.0230 0.0115 0.0115 0.0115 0.0115 
GEV 0.0000 0.0000 0.0000 0.0000 0.0000 
GEV* 0.0000 0.0000 0.0000 0.0038 0.0000 
HILL 0.0000 0.0000 0.0000 0.0000 0.0000 
HILL* 0.0077 0.0077 0.0038 0.0077 0.0077 
CaViaRS 0.0077 0.0077 0.0115 0.0115 0.0077 

1% 

CaViaRA 0.0192 0.0077 0.0115 0.0115 0.0115 

 
Note: The number in each cell refers to the frequency at which the actual return falls short of the VaR 
forecast in the out-of-sample period (1/1/1996-12/31/1996). 



Table 3B: Empirical Coverage Probability, Period 2 
 

  Indonesia Korea Malaysia Taiwan Thailand 

Riskmetrics 0.0920 0.1111 0.0805 0.0843 0.0690 
Normal* 0.0766 0.1073 0.0958 0.0651 0.0881 
HS 0.2337 0.2644 0.2682 0.0192 0.1686 
HS* 0.1149 0.1111 0.1379 0.0613 0.0881 
MC 0.1379 0.2222 0.2490 0.0192 0.1494 
MC* 0.0766 0.1034 0.0958 0.0613 0.0766 
NP 0.2337 0.2644 0.2682 0.0192 0.1686 
NP* 0.2759 0.2989 0.3142 0.1456 0.2989 
GP 0.2950 0.2720 0.3142 0.0421 0.2261 
GP* 0.1609 0.1226 0.1533 0.0690 0.0958 
GEV 0.0421 0.0805 0.0345 0.0000 0.0077 
GEV* 0.0077 0.0153 0.0153 0.0077 0.0038 
HILL 0.1648 0.1571 0.1686 0.0038 0.0230 
HILL* 0.1034 0.0498 0.0651 0.0192 0.0383 
CaViaRS 0.1418 0.0920 0.1303 0.0613 0.0996 

5% 

CaViaRA 0.1992 0.0843 0.1264 0.0613 0.1034 

Riskmetrics 0.0421 0.0268 0.0230 0.0230 0.0115 
Normal* 0.0383 0.0421 0.0460 0.0192 0.0307 
HS 0.0843 0.1034 0.0843 0.0038 0.0192 
HS* 0.0383 0.0307 0.0153 0.0115 0.0077 
MC 0.0805 0.1456 0.1303 0.0115 0.0498 
MC* 0.0421 0.0383 0.0498 0.0192 0.0192 
NP 0.0843 0.1034 0.0881 0.0038 0.0192 
NP* 0.1648 0.2261 0.1686 0.0421 0.1571 
GP 0.1073 0.1379 0.1149 0.0077 0.0307 
GP* 0.0307 0.0307 0.0192 0.0115 0.0077 
GEV 0.0077 0.0153 0.0038 0.0000 0.0038 
GEV* 0.0077 0.0038 0.0000 0.0000 0.0000 
HILL 0.0421 0.0805 0.0345 0.0000 0.0077 
HILL* 0.0077 0.0153 0.0153 0.0077 0.0038 
CaViaRS 0.0690 0.0383 0.0230 0.0192 0.0077 

1% 

CaViaRA 0.0575 0.0307 0.0153 0.0192 0.0115 

 
Note: The number in each cell refers to the frequency at which the actual return falls short of the VaR 
forecast in the out-of-sample period (7/1/1997~6/30/1998). 



Table 3C: Empirical Coverage Probability, Period 3 
 

  Indonesia Korea Malaysia Taiwan Thailand 

Riskmetrics 0.0268 0.0613 0.0421 0.0498 0.0230 
Normal* 0.0268 0.0690 0.0460 0.0421 0.0268 
HS 0.1073 0.1303 0.0460 0.0230 0.0498 
HS* 0.0421 0.0766 0.0575 0.0421 0.0268 
MC 0.0383 0.1111 0.0345 0.0230 0.0460 
MC* 0.0268 0.0575 0.0421 0.0421 0.0230 
NP 0.1111 0.1303 0.0460 0.0307 0.0958 
NP* 0.0421 0.0766 0.0575 0.0421 0.0383 
GP 0.1609 0.1648 0.1111 0.0421 0.0958 
GP* 0.0843 0.0805 0.0728 0.0460 0.0421 
GEV 0.0000 0.0077 0.0038 0.0000 0.0000 
GEV* 0.0077 0.0038 0.0038 0.0038 0.0000 
HILL 0.0575 0.0230 0.0345 0.0038 0.0077 
HILL* 0.0345 0.0192 0.0268 0.0153 0.0077 
CaViaRS 0.0728 0.0421 0.0575 0.0460 0.0307 

5% 

CaViaRA 0.0843 0.0536 0.0651 0.0460 0.0307 

Riskmetrics 0.0038 0.0038 0.0115 0.0153 0.0000 
Normal* 0.0115 0.0115 0.0192 0.0230 0.0000 
HS 0.0077 0.0153 0.0115 0.0038 0.0000 
HS* 0.0115 0.0038 0.0115 0.0077 0.0000 
MC 0.0115 0.0230 0.0153 0.0038 0.0077 
MC* 0.0115 0.0115 0.0192 0.0192 0.0000 
NP 0.0077 0.0192 0.0115 0.0038 0.0000 
NP* 0.0115 0.0038 0.0115 0.0038 0.0000 
GP 0.0268 0.0230 0.0192 0.0038 0.0077 
GP* 0.0077 0.0115 0.0115 0.0115 0.0000 
GEV 0.0000 0.0000 0.0000 0.0000 0.0000 
GEV* 0.0000 0.0000 0.0000 0.0000 0.0000 
HILL 0.0000 0.0077 0.0038 0.0000 0.0000 
HILL* 0.0077 0.0038 0.0038 0.0038 0.0000 
CaViaRS 0.0115 0.0000 0.0115 0.0115 0.0000 

1% 

CaViaRA 0.0153 0.0038 0.0077 0.0153 0.0000 

 
Note: The number in each cell refers to the frequency at which the actual return falls short of the VaR 
forecast in the out-of-sample period  (1/1/1999~12/31/1999). 



Table 4A: Predictive Quantile Loss, Period 1 
 

  Indonesia Korea Malaysia Taiwan Thailand 

Riskmetrics 0.1268 0.1152 0.0998 0.1540 0.1459 
Normal* 0.1295 0.1181 0.1065 0.1663 0.1440 
HS 0.1189 0.1152 0.1093 0.2231 0.1486 
HS* 0.1253 0.1204 0.1011 0.1684 0.1437 
MC 0.1585 0.1220 0.1194 0.2198 0.1575 
MC* 0.1305 0.1189 0.1075 0.1705 0.1446 
NP 0.1188 0.1165 0.1091 0.1969 0.1407 
NP* 0.1253 0.1205 0.1009 0.1629 0.1404 
GP 0.1246 0.1149 0.0993 0.1861 0.1490 
GP* 0.1269 0.1203 0.0987 0.1637 0.1442 
GEV 0.2311 0.1988 0.2218 0.3770 0.2921 
GEV* 0.1805 0.1692 0.1681 0.2497 0.2160 
HILL 0.1231 0.1356 0.1201 0.3159 0.2270 
HILL* 0.1265 0.1271 0.1228 0.2002 0.1660 
CaViaRS 0.1160 0.1222 0.1049 0.1626 0.1416 

5% 

CaViaRA 0.1519 0.1227 0.1050 0.1626 0.1420 

 White 0.362 0.891 0.597 1.000 0.703 
 Hansen 0.194 0.601 0.426 0.595 0.582 

Riskmetrics 0.0417 0.0311 0.0374 0.0580 0.0494 
Normal* 0.0377 0.0329 0.0348 0.0597 0.0491 
HS 0.0392 0.0332 0.0329 0.0683 0.0573 
HS* 0.0399 0.0332 0.0332 0.0588 0.0470 
MC 0.0422 0.0315 0.0317 0.0615 0.0535 
MC* 0.0378 0.0330 0.0347 0.0592 0.0486 
NP 0.0391 0.0331 0.0328 0.0682 0.0465 
NP* 0.0399 0.0332 0.0332 0.0588 0.0471 
GP 0.0389 0.0314 0.0313 0.0645 0.0543 
GP* 0.0380 0.0331 0.0333 0.0590 0.0470 
GEV 0.0915 0.0583 0.0748 0.0892 0.1020 
GEV* 0.0605 0.0464 0.0525 0.0696 0.0636 
HILL 0.0451 0.0399 0.0427 0.0718 0.0627 
HILL* 0.0377 0.0344 0.0332 0.0598 0.0484 
CaViaRS 0.0300 0.0339 0.0329 0.0583 0.0437 

1% 

CaViaRA 0.0552 0.0337 0.0319 0.0599 0.0440 

 White 0.095 0.888 0.226 0.892 0.433 
 Hansen 0.090 0.863 0.222 0.837 0.363 

 
Note: The number in each cell refers to the out-of-sample (1/1/1996-12/31/1996) average quantile loss; 
“White” refers to the bootstrap reality check p-value of White (2000); “Hansen” refers to the bootstrap 
reality check p-value of Hansen (2001). We use 1000 bootstrap samples and the stationary boostrap 
smoothing parameter q = 0.25. Riskmetrics is the benchmark in the reality check. The best model for each 
country with the smallest out-of-sample average quantile loss is in bold font. 



Table 4B: Predictive Quantile Loss, Period 2 
 

  Indonesia Korea Malaysia Taiwan Thailand 

Riskmetrics 0.3885 0.3461 0.3123 0.2071 0.2689 
Normal* 0.3713 0.3499 0.3166 0.1996 0.2745 
HS 0.5743 0.6358 0.4979 0.2165 0.3072 
HS* 0.3959 0.3589 0.3303 0.1992 0.2750 
MC 0.4191 0.5712 0.4491 0.2087 0.2846 
MC* 0.3732 0.3475 0.3186 0.1988 0.2711 
NP 0.5746 0.6361 0.4984 0.2164 0.3074 
NP* 0.6395 0.7765 0.5954 0.2346 0.4708 
GP 0.6664 0.6897 0.5997 0.1928 0.3750 
GP* 0.4291 0.3666 0.3474 0.2007 0.2788 
GEV 0.3556 0.3568 0.3034 0.3549 0.3033 
GEV* 0.4868 0.3861 0.4027 0.2672 0.3950 
HILL 0.4680 0.4700 0.3743 0.3038 0.2559 
HILL* 0.3799 0.3326 0.3128 0.2196 0.2889 
CaViaRS 0.4644 0.3480 0.3242 0.1982 0.2746 

5% 

CaViaRA 0.5438 0.3422 0.3217 0.1979 0.2815 

 White 0.599 0.749 0.862 0.498 0.786 
 Hansen 0.267 0.510 0.662 0.268 0.581 

Riskmetrics 0.1284 0.0935 0.0926 0.0577 0.0721 
Normal* 0.1352 0.1118 0.1072 0.0620 0.0717 
HS 0.2245 0.2432 0.1656 0.0655 0.0773 
HS* 0.1322 0.1042 0.0982 0.0577 0.0724 
MC 0.2030 0.3164 0.2182 0.0611 0.1021 
MC* 0.1373 0.1112 0.1087 0.0606 0.0704 
NP 0.2258 0.2443 0.1664 0.0655 0.0775 
NP* 0.3795 0.4937 0.2602 0.0834 0.1911 
GP 0.2702 0.3046 0.1924 0.0621 0.0855 
GP* 0.1290 0.1052 0.0973 0.0580 0.0720 
GEV 0.1115 0.1040 0.0916 0.0858 0.0943 
GEV* 0.1679 0.1046 0.1227 0.0691 0.1131 
HILL 0.1502 0.1724 0.1209 0.0692 0.0755 
HILL* 0.1284 0.0982 0.0916 0.0576 0.0821 
CaViaRS 0.1913 0.1058 0.0937 0.0596 0.0744 

1% 

CaViaRA 0.1669 0.0958 0.0858 0.0578 0.0748 

 White 0.739 0.996 0.886 0.935 0.900 
 Hansen 0.514 0.913 0.606 0.878 0.844 

 
Note: The number in each cell refers to the out-of-sample (7/1/1997-6/30/1998) average quantile loss; 
“White” refers to the bootstrap reality check p-value of White (2000); “Hansen” refers to the bootstrap 
reality check p-value of Hansen (2001). We use 1000 bootstrap samples and the stationary boostrap 
smoothing parameter q = 0.25. Riskmetrics is the benchmark in the reality check. The best model for each 
country with the smallest out-of-sample average quantile loss is in bold font. 



Table 4C: Predictive Quantile Loss, Period 3 
 

  Indonesia Korea Malaysia Taiwan Thailand 

Riskmetrics 0.2079 0.2602 0.1956 0.1952 0.1916 
Normal* 0.2200 0.2674 0.1919 0.1953 0.1949 
HS 0.2353 0.3142 0.1918 0.2058 0.1939 
HS* 0.2088 0.2707 0.1917 0.1965 0.1934 
MC 0.2122 0.2807 0.1994 0.2057 0.1943 
MC* 0.2251 0.2659 0.1928 0.1974 0.2008 
NP 0.2340 0.3145 0.1918 0.1792 0.1990 
NP* 0.2085 0.2708 0.1917 0.1846 0.1832 
GP 0.2831 0.3601 0.2089 0.1870 0.2041 
GP* 0.2116 0.2723 0.1942 0.1944 0.1897 
GEV 0.3311 0.3187 0.3101 0.3531 0.3107 
GEV* 0.3644 0.3484 0.2800 0.2784 0.3371 
HILL 0.2103 0.2634 0.2033 0.3056 0.2348 
HILL* 0.2166 0.2791 0.2026 0.2259 0.2249 
CaViaRS 0.2448 0.2648 0.1856 0.1918 0.1857 

5% 

CaViaRA 0.2741 0.2668 0.1893 0.1912 0.1871 

 White 0.991 0.994 0.677 0.284 0.614 
 Hansen 0.840 0.895 0.553 0.191 0.454 

Riskmetrics 0.0588 0.0708 0.0554 0.0577 0.0560 
Normal* 0.0641 0.0666 0.0558 0.0569 0.0501 
HS 0.0540 0.0705 0.0548 0.0651 0.0531 
HS* 0.0650 0.0673 0.0540 0.0541 0.0566 
MC 0.0532 0.0786 0.0559 0.0574 0.0480 
MC* 0.0645 0.0664 0.0550 0.0558 0.0519 
NP 0.0540 0.0808 0.0550 0.0651 0.0527 
NP* 0.0649 0.0673 0.0542 0.0531 0.0531 
GP 0.0572 0.0787 0.0578 0.0596 0.0489 
GP* 0.0659 0.0667 0.0535 0.0542 0.0570 
GEV 0.1237 0.0909 0.1004 0.0862 0.0926 
GEV* 0.1197 0.0900 0.0830 0.0714 0.0941 
HILL 0.0635 0.0691 0.0616 0.0697 0.0650 
HILL* 0.0716 0.0720 0.0548 0.0576 0.0664 
CaViaRS 0.0807 0.0694 0.0532 0.0539 0.0625 

1% 

CaViaRA 0.0901 0.0691 0.0526 0.0539 0.0601 

 White 0.568 0.654 0.720 0.314 0.000 
 Hansen 0.287 0.573 0.704 0.283 0.000 

 
Note: The number in each cell refers to the out-of-sample (1/1/1999-12/31/1999) average quantile loss; 
“White” refers to the bootstrap reality check p-value of White (2000); “Hansen” refers to the bootstrap 
reality check p-value of Hansen (2001). We use 1000 bootstrap samples and the stationary boostrap 
smoothing parameter q = 0.25. Riskmetrics is the benchmark in the reality check. The best model for each 
country with the smallest out-of-sample average quantile loss is in bold font. 








