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Abstract

We propose a prediction model for the cumulative incidence functions of competing risks, based 

on a logit link. Because of a concern about censoring potentially depending on time-varying 

covariates in our motivating HIV application, we describe an approach for estimating the 

parameters in the prediction models using inverse probability of censoring weighting under a 

missingness at random assumption. We then illustrate the application of this methodology to 

identify predictors of the competing outcomes of virologic failure (VF), an efficacy outcome, and 

treatment limiting adverse event (TLAE), a safety outcome, among HIV-infected patients first 

starting antiretroviral treatment.
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1. Introduction

Competing risks occur when there is only one event time for each patient, but the event can 

be of several (competing) types. For example, for HIV-infected patients followed while 

receiving a specific treatment, time might be the time from initiation of that treatment to 

regimen failure, and the competing event types that reflect regimen failure might be 

virologic failure (VF), an efficacy outcome, or a treatment limiting adverse event (TLAE), a 

safety outcome mandating treatment discontinuation. These two event types are competing 

in that a TLAE leads to discontinuation of treatment and hence prevents observation of VF 

on that treatment, and vice versa. Because of the time-dependent nature of competing risks 

data, these data are often subject to censoring due to loss-to-follow-up, and to administrative 

censoring such as that arising at the end of a study. The analysis of competing risks data has 

been studied extensively (see e.g. [1] or [2]) for the situation in which censoring is 

noninformative (as is likely with administrative censoring), but not for the case where 

censoring may depend on time-varying covariates, which may arise when censoring is due to 
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loss-to-follow-up. In this article, we consider the specific problem of evaluating predictors of 

the cumulative incidence of each competing event type at a given time when censoring may 

depend on time-dependent covariates.

Our motivating application concerns the analysis of data from a randomized clinical trial that 

evaluated the effects of different initial antiretroviral treatments for HIV-infected patients. 

Our aim is to evaluate what pre-treatment patient characteristics might predict each of the 

competing efficacy (VF) and safety (TLAE) outcomes, and whether the differences between 

randomized treatments for each of the competing outcomes might vary according to these 

characteristics. In doing so, we also allow for a third type of competing clinically significant 

event which we call “treatment limiting other event” (TLOE). This third event type includes 

other events which mandate discontinuation of the initial treatment such as a patient's need 

for a concomitant medication which might adversely interact with the initial antiretroviral 

treatment. However, some participants in the clinical trial discontinued their initial treatment 

for other reasons which, from a clinical perspective, do not mandate discontinuation, notably 

loss-to-follow-up from the trial. We are therefore interested in evaluating patient 

characteristics that predict the cumulative incidence of each of VF and TLAE in the 

counterfactual scenario “had no-one discontinued treatment for reasons other than VF, 

TLAE or TLOE”. To predict what might happen under this counterfactual scenario, one 

would want to censor a patient's follow-up when he or she deviated from this scenario, i.e. 

he or she discontinued the randomized treatment for reasons other than VF, TLAE or TLOE. 

Such censoring might be informative because it may depend on factors that are prognostic 

for the outcomes of interest.

This article takes informative censoring into account using inverse probability of censoring 

weighting (IPCW), see e.g. [3]. In order to apply IPCW, we assume that the unobserved 

outcomes due to censoring are missing at random (MAR), i.e. all factors that are prognostic 

for both censoring and the (counterfactual) outcome of interest are available for analysis. 

These factors include both baseline and time-dependent patient information. With IPCW 

under MAR, when a patient's follow-up is censored, his or her weight is distributed among 

“similar” patients, with “similar” based on a patient's covariate and treatment history 

measured before censoring (see e.g. [4]). In the absence of predictors of censoring, the 

Kaplan Meier estimator can be used to calculate the IPCW weights; then, IPCW reduces to 

Efron's redistribute-to-the-right algorithm [5], used to calculate the Kaplan Meier estimator 

[6].

IPCW for time-to-event outcomes under MAR has been studied by, e.g., [7]. We extend 

these ideas to the competing risk setting, assuming discrete-time censoring and event time 

processes. The focus on discrete time is motivated by our application, in which the event 

times are often determined by measurements made at pre-specified visit times, such as the 

HIV RNA measurements used to define VF and the safety laboratory tests that often define 

TLAE. If the intervals are small, it is also a good approximation of a continuous-time 

setting. The current paper therefore focuses on the use of IPCW in a discrete-time setting, 

evaluating pre-treatment predictors of the cumulative incidence function for each of several 

competing risks.
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In this article we focus on evaluating predictors of the cumulative incidence function at one 

time point. In our application, this time point was at 3 years after treatment initiation, chosen 

because the trial followed many patients for this duration. The benefit of focusing on one 

time point is that we only need to specify a link function for the cumulative probabilities of 

the different types of events at one time point. This approach allows for effects of baseline 

predictors that are time-dependent, without explicitly modeling how these effects depend on 

time. This is in contrast to [8] and [9], who specify how the effect of baseline predictors 

varies over time. They then do extensive model checking to verify which effects depend on 

time. In particular, [9] assume that the effect of baseline covariates is constant over time on 

the (possibly transformed) absolute risk scale, whereas [8] assume censoring does not 

depend on time-varying covariates which predict the outcome of interest. The advantage of 

the methods used by [8] and [9] is that the conclusions obtained from these analyses are 

stronger, in the sense that they estimate the effects at each time point in one overall analysis; 

the advantage of our method is the weaker assumptions. If interest lies in how effects depend 

on time, a cause-specific hazards approach ([10]) could also be used. Other differences 

between our approach and [8] and [9] lie in the different choice of link function and in the 

fact that we allow for time-dependent predictors of both censoring and outcome.

Section 2 introduces the setting and notation. Section 3 describes IPCW for the prediction of 

competing risks outcomes under censoring that is MAR. Section 4 applies this method to the 

data from an HIV clinical trial to estimate how pre-treatment covariates predict efficacy and 

safety of the initial treatment regimens. A discussion concludes this paper in Section 5.

2. Setting and notation

For ease of reading, we define notation in the context of the above motivating HIV 

application, but the concepts are easily adapted to other competing risks settings. Similarly, 

we also suppress a subscript which labels individual patients in this article. Define T as the 

time until VF, TLAE or TLOE, whichever comes first. Let J indicate the type of event, with 

J = 1, J = 2 and J = 3 indicating VF, TLAE and TLOE, respectively. Let X be a vector of 

baseline (pre-treatment) covariates. We are interested in the counterfactual scenario in which 

no-one discontinues initial treatment for reasons other than VF, TLAE and TLOE.

We consider a discrete-time setting defined by k = 1,…, K time periods, with times 0 = τ1 < 

τ2 < … < τK+1 = τ, such that τk and τk+1 are the beginning and end of the kth period. We 

assume that visits for measuring covariates and outcomes such as VF are scheduled at each 

of the τk. Let Lk be the covariates at τk in the counterfactual scenario, with L̄k their history. 

We define several indicator variables, taking the values 1 or 0 according to whether or not 

something occurred, as follows. Let LTFUk be an indicator of whether the person was lost to 

follow-up or discontinued treatment for reasons other than VF, TLAE or TLOE at or before 

the beginning of period k, so at or before τk. Let ADMINk be an indicator of whether the 

person was administratively censored at or before the beginning of period k, so at or before 

τk. Finally, let Ck be an indicator of whether loss to follow-up or administrative censoring 

occurred at or before τk. Then, if Ck = 0, Lk and the outcome of period k, (1T≤τk+1, 

J1T≤τk+1), with 1B being the indicator of whether event B happened, are observed. The full 

data, under the counterfactual scenario, is (L̄K, T, J), which is observed until censoring. The 
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full data and the censoring information, in the order in which it could potentially be 

observed, is

After experiencing an event while on initial treatment, a patient can no longer be censored. 

The reason is that all the relevant data for such a patient has been observed. Thus, we only 

consider discontinuation of treatment for LTFU/ADMIN before the first event.

3. Evaluating predictors of competing risks outcomes under Missing At 

Random using Inverse Probability of Censoring Weights

The quantities of interest are the probability (cumulative incidence) of VF and the 

probability of TLAE between treatment initiation (baseline) and time τ since treatment 

initiation, had no-one discontinued their initial treatment for reasons other than VF, TLAE or 

TLOE. To predict these probabilities based on a vector of baseline characteristics, X ∈ ℝm, 

we estimate the cumulative incidence functions P(T < τ, J = j|X) for j = 1, 2, 3 using a logit 

link in a generalized linear model, similar to logistic regression:

(1)

with β0, j ∈ ℝ and . This is a type-specific logistic regression model. The method 

is easily generalizable to other link functions.

If (X, T, J) was observed for each patient, one could simply do maximum likelihood 

estimation. The maximum likelihood estimating equations based on the full data are

(2)

where Pn denotes the empirical average over all patients. It is easy to see that these 

estimating equations are unbiased, by taking expectations and conditioning on X. In the 

absence of censoring, one could fit model (1) by solving the estimating equations (2) using 

any standard logistic regression software for each type of event separately. If censoring does 

not depend on patient characteristics, one could use Efron's redistribute-to-the right 

algorithm [5] to weight the observations and then fit a weighted logistic regression model.

When censoring depends on time-dependent patient characteristics, model (1) can be fitted 

using IPCW. IPCW has been described in, e.g., [3] for binary outcomes, and for multiple 

censoring mechanisms in, e.g., [11] and [12]. We review this for the current setting. In the 

following, write Yk = 1{T≤τk}, with Ȳk its history until τk. Write

Lok and Hughes Page 4

Stat Med. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

where we chose the notation Q to refer to the estimating equation. As is usual in the causal 

inference literature, we assume Consistency:

Assumption 3.1

(Consistency). For every k = 1,…, K, if Ck = 0 then ȲK+1, Yk+1J and L̄k are equal to their 

observed counterparts.

This states that as long as the patients follow the counterfactual scenario, their observed 

outcomes are the same as their outcomes under the counterfactual scenario. Unbiased 

estimating equations can then be generated based on the observed data by noting that

(4)

Equation (4) can be proven by conditioning on LK̄, ȲK+1, YK+1J:

which is zero at the truth. In order for this to work, one needs Positivity (e.g., [3] or [13]):

Assumption 3.2

(Positivity). P (CK = 0|LK̄,Ȳ K+1, YK+1J) > 0 for all possible values of (LK̄,ȲK+1,YK+1J).

This assumption states that no matter what a patient's full data are, there is a positive 

probability of observing the full data on this patient. Without this assumption, one may be 

dividing by zero in equation (4). In the context of using IPCW, if a patient is censored, then 

his or her weight is re-distributed to similar patients who are uncensored; but for this to 

work, there have to be similar patients who are still uncensored.

The probability in equation (4) can be re-written as

(5)

Now consider Missing At Random, see, e.g., [3] for the current situation:
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Assumption 3.3

(Missing At Random (MAR)). For every k = 2,…,K,

and

Here, ┴ indicates conditional independence [14].

Assumption 3.3 says that loss to follow-up and administrative censoring can depend on the 

data collected so far, but not further on the prognosis of the patients under the counterfactual 

scenario. Under MAR, the IPCW probability in (4) and (5) can be re-written since censoring 

only depends on past observed values:

(6)

Under Consistency Assumption 3.1, all quantities in this expression can be replaced by their 

observed counterparts. Note that if Ȳk indicates that an event (VF, TLAE or TLOE) took 

place in (τk–1, τk], a patient can no longer be censored, and the product effectively runs until 

k – 1.

In many cases, analysts assume that administrative censoring, or equivalently date of 

randomization in the study, is independent of . In that case, no 

covariates are needed in the model for administrative censoring, because

(7)

independent of (Lk̄–1, Ȳk). One may however want to include some covariates in the 

prediction model for ADMIN to increase precision [15].
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In our application, it is possible that simplification (7) does not necessarily hold. For 

example, it is possible that patients with characteristics which suggest that they might be 

harder to follow, may be under-represented in the patient population enrolling early, if 

clinical sites target enrollment first on patients who might be easier to follow. In that case, it 

may still be reasonable to assume that administrative censoring, or, equivalently, date of 

randomization in the study, depends on some selection of baseline covariates but not further 

on the prognosis of patients under the scenario of interest, or on their LTFU pattern. We 

could formalize this assumption as

(8)

where V is a subset of the baseline covariates thought to predict date of enrollment. Under 

equation (8), since V is part of L0,

where ∼ indicates that the left hand side has the same distribution as the right hand side, so 

that the following simplification holds in equation (6):

(9)

Thus, only covariates that potentially predict randomization date need to be included in the 

model for administrative censoring.

For confidence intervals and p-values, we employed a non-parametric bootstrap using 

Efron's percentile method (e.g., [16] page 327). All analyses were carried out using SAS 

version 9.2.

4. Application to predictors of VF and TLAE in HIV-infected patients

Study A5095 conducted by the AIDS Clinical Trials Group (ACTG) was a blinded 

randomized clinical trial comparing three combination drug regimens in previously 

untreated HIV-infected patients [17, 18]. One arm was discontinued early because of 

inferiority after review by a data and safety monitoring board [17]. We focus on the two 

remaining arms: zidovudine/lamivudine plus efavirenz (3-drug regimen) and zidovudine/

lamivudine/abacavir plus efavirenz (4-drug regimen). A total of 765 patients were 

randomized to these regimens. We excluded seven patients who never initiated randomized 

treatment and were not followed. This resulted in 382 patients who received the 4-drug 

regimen and 376 patients who received the 3-drug regimen. In this study, the time of VF was 

defined as the time of the first of two successive HIV–1 RNA values of 200 or more copies 

per milliliter of plasma at least 16 weeks after randomization. TLAEs and TLOEs were 

assessed by the site investigators [17]. TLOEs included required discontinuation of study 

treatment because of the need for medications which could not be taken with study 

treatment, clinical events, pregnancy, or death.
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We focused on the first 144 weeks of treatment, as relatively few patients were followed 

much longer at the time of study closure. By this time, 144 patients had experienced VF, 57 

TLAE and 23 TLOE; 89 had been lost to follow-up on randomized treatment, and 138 were 

administratively censored prior to completing 144 weeks of treatment (because the study 

closed to follow-up).

We investigated how the probabilities of VF and TLAE during the first 144 weeks of 

treatment depend on pre-treatment (baseline) patient characteristics and the treatment to 

which a patient was randomized, in the situation in which the initial randomized treatment is 

taken as long as feasible; that is, until a VF, TLAE or TLOE occurs. Thus, interest lies in the 

counterfactual scenario in which no-one discontinues treatment for reasons other than a VF, 

TLAE or TLOE.

Univariate and multivariate models were evaluated. A specific focus of the analysis 

concerned interactions between patient characteristics and randomized treatment, because 

this would facilitate understanding as to whether there are patient groups for whom the risk 

(higher probability of TLAE) to benefit (lower probability of VF) profile might favor one 

treatment more than another. The method described in Section 3 was applied to allow for the 

possibility of informative censoring due to discontinuation of randomized treatment for 

reasons other than VF, TLAE or TLOE. Visits in ACTG A5095 were planned at weeks 2, 4, 

then every 4 weeks through to week 24, and every 8 weeks after week 24. For simplicity of 

the analysis, because the study's design incorporated evaluations at least every 8 weeks, we 

considered 8-week periods throughout follow-up, including the first 24 weeks. Thus, we 

only considered the values of time-dependent variables at the beginning of each of the 18 8-

week periods that covered the 144 weeks of follow-up, so at weeks 0, 8, 16, 24, …, 136. 

Intermittent missing values were imputed using last observation carried forward.

To estimate the IPCW weights, we applied pooled (over the periods) logistic regression. A 

simple conditioning argument shows that pooled logistic regression leads to consistent 

estimates of the censoring probabilities if the logistic model is correctly specified. We based 

the model for LTFU on a literature review of variables that might predict LTFU in other 

studies of HIV-infected patients, see [19, 20, 21, 22, 23, 24, 25]. The variables included in 

the IPCW models for LTFU were randomized treatment, age (indicator for ≤ 30 years old), 

sex, injection drug use (ever versus never), race/ethnicity (black non-Hispanic, Hispanic, 

white non-Hispanic/other), baseline log10 viral load, and a time-dependent indicator of CD4 

count ≤ 200. In addition, to allow the odds of LFTU to vary over time periods, we included 

indicator variables for“period 3”, “period 4”, “period 5-8”, “period 9-13”, and “period 

14-18”, with period 2 representing the reference group for these variables (in period 1, only 

one patient had no visit after baseline and thus was LTFU, and we modeled that separately 

without including covariates). The grouping of periods in these variables was chosen to 

reflect the frequency of losses to follow-up over time. As the study was designed to follow 

all patients for a minimum of about two years, there was no administrative censoring in the 

first 14 periods, so we set the administrative censoring probabilities to 0 for periods 1-14. In 

period 15, there was only one case of administrative censoring, so we included no covariates 

in the administrative censoring model for period 15. We then used a pooled logistic 

regression model for ADMIN in periods 16 to 18, including the same predictor variables as 
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used in the model for LTFU except that indicator variables were included for “period 17” 

and “period 18”, with period 16 being the reference period. Table 1 summarizes the results 

of the two pooled logistic regression models for remaining in follow-up, with end of follow-

up due either to LTFU or to administrative censoring. Injection drug users were less likely to 

remain in follow-up (OR = 0.41, p = 0.002), and so were patients of Hispanic ethnicity 

versus white non-Hispanic/other race and ethnicity (OR = 0.60, p = 0.07). Hispanic patients 

were also less likely to remain in follow-up during periods 16 to 18, indicating that they 

tended to be administratively censored earlier. Using these models, the weights ranged from 

1.0 to 2.9, and the sum of the weights was 759. Note that from the IPCW theory described in 

Section 3, the expected value of the sum of the weights divided by the baseline sample size 

equals one, and so the sum of the weights should be about the same as the sample size at 

time zero. In using the bootstrap method to obtain confidence intervals, we truncated the 

weights at 10 as suggested by [26], thus assuming that no patient characteristics lead to a 

probability of censoring that is greater than 9 out of 10. The need for such truncation was, 

however, rare: in the 5000 bootstrap samples, only three samples had a patient for whom the 

weight was truncated.

We investigated the following baseline covariates as predictors of VF and TLAE: 

randomized treatment, CD4 count (square root-transformed), viral load (log10-transformed), 

age (30 years or younger versus not, and as a continuous covariate), sex, injection drug use 

(ever versus never), and race (black non-Hispanic versus Hispanic versus white non-

Hispanic/other). Table 2 describes the results of the univariate analyses for both VF and 

TLAE during the first 144 weeks of treatment. In addition, Table 2 shows results for the 

composite outcome of VF or TLAE or TLOE; this composite outcome is akin to a “regimen 

failure” type of outcome often analyzed in HIV studies. For randomized treatment, although 

not statistically significant, the odds ratios reflect what might be anticipated: lower odds of 

VF but higher odds of TLAE for the 4-drug versus 3-drug regimen (a pattern of effects 

which is lost when analyzing the composite outcome). Significant predictors of increased 

odds of VF at the 0.05 level were injection drug use and black non-Hispanic race/ethnicity; 

higher baseline viral load was marginally significant (p=0.10). For TLAE, no variables were 

significant at the 0.05 level though older age was marginally significantly associated with an 

increased odds of TLAE (p=0.06). Of note, injection drug use was significantly associated 

both with censoring due to LTFU and with VF, so indicative of potentially informative 

censoring and hence the potential need for use of methods such as those proposed in this 

paper (there may still be such a need even if the associations are not statistically significant). 

Note that results for the composite outcome VF/TLAE/TLOE tend to reflect averages of the 

associations found for VF and TLAE whereas the competing risks analysis provides more 

useful information about characteristics that might separately predict efficacy and safety 

outcomes.

We also fitted models including one baseline covariate, treatment, and a treatment-covariate 

interaction term, for each covariate that was significant at the 0.20 level in the univariate 

analysis for VF, TLAE, or the composite outcome. In this analysis of univariate interactions 

with treatment, we only found a significant interaction of treatment with injection drug use 

when considering the composite outcome (VF/TLAE/TLOE) (p = 0.04), and a marginally 

Lok and Hughes Page 9

Stat Med. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant interaction of treatment with injection drug use when considering VF (p = 0.07). 

All other interactions were non-significant at the 0.20 level.

Table 3 describes the multivariate analysis, including randomized treatment, all covariates 

which had a univariate p-value less than 0.20 for either the VF or TLAE event types or the 

composite outcome VF/TLAE/TLOE, and interaction terms with treatment if they were 

significant at the 0.20 level in the corresponding univariate analysis. The p-values and 

confidence intervals for injection drug use and the interaction of this covariate with 

treatment for TLAE may not be reliable, because the histograms of the bootstrap estimates 

for these parameters did not appear to be approximately normal; this is probably due to the 

fact that only 5 of the 82 patients who reported ever being an injection drug user experienced 

a TLAE. In the multivariate model for VF, the interaction of injection drug use and 

randomized treatment suggests that among patients who never injected drugs, adding a 

fourth drug to the antiviral regimen has little impact on the odds of VF (OR = 0.94, p = 

0.78), whereas among those who reported ever injecting drugs, adding a fourth drug to the 

ART regimen significantly decreases the odds of VF (OR = 0.29, p = 0.03) (and the odds of 

the composite outcome, OR = 0.29, p = 0.03). As with any subgroup analysis, such analyses 

need to be interpreted cautiously and ideally replicated, but if real it might suggest a 

subpopulation in which the 4-drug regimen might have greater virologic benefit. 

Considering the other main effects in the models, analysis of the competing events rather 

than a composite outcome might help identify predictors which are important for specific 

outcomes, and might be relevant for patient management. For example, from Table 3, it 

appears that older patients might be at increased odds of TLAE but not of VF during the first 

144 weeks of treatment, and black non-Hispanic patients and patients with higher pre-

treatment viral load might have an increased odds of VF but not TLAE.

We conducted a number of sensitivity analyses to explore issues that are pertinent to the use 

of inverse probability of censoring methods. Our main approach was to develop a model for 

the censoring due to LTFU based on the form of associations described in other studies in 

the literature as use of model selection methods may affect coverage of confidence intervals. 

There is a balance in terms of bias versus variance tradeoff in evaluating the associations of 

interest between using more flexible versus more parsimonious functional forms for 

continuous variables in the censoring models ([15]). For the effect of time in the model for 

censoring due to loss to follow-up, we allowed such flexibility by including multiple 

indicator variables for groups of time periods. However, a simpler model involving fewer 

parameters for the time effect (allowing for an initial increased odds of LTFU and then a 

linear trend in log odds over time), there was very little change in either the parameter 

estimates or confidence intervals from those shown in Table 3. There was also very little 

change when we replaced the continuous log viral load variable by indicator variables for 

tertiles of viral load.

Another sensitivity analysis was motivated by the fact that including variables in the 

censoring model which predict censoring but not the outcome might decrease precision, 

whereas including variables that predict the outcome but not the censoring might increase 

precision [15]. We therefore re-fitted the univariate models (for those variables that had a p-

value < 0.30 in the initial univariate analysis) and multivariate models for the competing 
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risks of interest using different nuisance parameter models for LFTU and ADMIN 

censoring. Specifically, we added into the censoring models, those variables that predicted 

VF or TLAE at the modest level of p < 0.30 in the original analysis. The results were very 

similar to those presented in Tables 2 and 3, so in this application there did not appear to be 

any notable change in precision in estimated associations.

5. Discussion

We fitted the probability of two types of competing events, VF and TLAE, and the 

composite outcome VF/TLAE/TLOE, using a logit link. These models could all be well-

specified if the probability of TLOEs complements TLAEs and the VFs within the 

probability of events, resulting in a logit link for all three models. However, these models are 

probably not all correctly specified. If they are not correctly specified, the resulting estimates 

provide the best possible summary measure based on the logit link, minimizing the expected 

logistic loss function. For example, for the probability of an event, the model can be 

interpreted as the best possible prediction of the form P (event before time τ|X = x) = 1/(1 + 

e–(β0+β1x)) based on the expected logistic loss. In the case of no censoring and correct model 

specification, minimizing the expected logistic loss leads to the maximum likelihood 

estimate. For the competing risks, our models also estimate the best possible prediction of 

this form based on the logistic loss function.

We conclude that IPCW can be adapted to the competing risk setting when censoring 

depends on time-dependent patient characteristics, to identify predictors of the different 

types of events.

6. Software

The programs, available upon request to jlok@hsph.harvard.edu, can handle different 

predictors of administrative censoring, loss to follow-up, and the outcomes (VF and 

TLAEs). The number of periods concerned can also be varied. The data are available upon 

request as well.
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