Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2002

Evaluating Probabilistic Queries over Imprecise Data

Reynold Cheng
Dmitri V. Kalashnikov

Sunil Prabhakar
Purdue University, sunil@cs.purdue.edu

Report Number:
02-026

Cheng, Reynold; Kalashnikov, Dmitri V.; and Prabhakar, Sunil, "Evaluating Probabilistic Queries over
Imprecise Data" (2002). Department of Computer Science Technical Reports. Paper 1544,
https://docs.lib.purdue.edu/cstech/1544

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

W #0002k

Evaluating Probabilistic Queries over Imprecise Data *

Reynold Cheng Dmitri V. Kalashnikov ~ Sunil Prabhakar
Department of Computer Science, Purdue University
Email: {ckcheng,dvk,sunil}@cs.purdue.edu

ABSTRACT

Many applications employ sensors lor monitoring cntities
such as temperature and wind speed. A centralized database
tracks these entitics to enable query pracessing. Due Lo con-
tinucus changes in these values and limited resources {e.g.,
network bandwidth and battery power), it is often inleasi-
ble to store the exact values at all times, A similar situation
cxisls for moving object environments that track the con-
stantly changing locations of objects. In this environment,
it is possible for database queries to produce incorrect or
invalid results based upon old date. However, if the degree
of error {or uncertainty) between the actual value and the
datnbase value is contralled, we can place more confidence
in the answers to queries. More generally, query answers
can be augmented with probabilistic estimates of the valid-
ity of the answers. In this chapter we study probabilistic
query evaluation based upon uncertain data. A classifica-
tion of queries is mode based upon the nature of the result
set. For each closs, we develop algorithms for computing
probabilistic answers. We address the important issue of
measuring the quality of the answers to these queries, and
provide algorithms for efficiently pulling date from relevant
§ENSOrS or moving objects in order to improve the quality of
the executing queries. Extensive experiments are performed
to examine the effectiveness of several data update policies.

1. INTRODUCTION

In many opplications, sensors are used to continuously
track or monitor the status of an environment. Readings
from the sensars are sent back to the application, and deci-
sions are made based on these readings. For example, tem-
perature sensors installed in a building are used by a central
air-conditioning system to decide whether the temperature
of any room needs to be adjusted or to detect other prob-
lems. Sensors distributed in the environment ean be used to

* Portions of this work were supported by an Intel Ph.D.
fellowship, NSF CAREER gront IIS-0985019, NSF grant
0010044-CCR

Permission (o make digital or hard copies of all or part of this work for
personal or classroom use is granted without fec provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full cilation on the first page. To copy olherwise, lo
republish, 16 post on scrvers or to redistribute (o lists, requires prier specific
penmission and/or a fec.

SIGMOD 2003, June 9-12, San Diego, CA,

Copyright 2003 ACM 1-58113-634-X/03/06 ...§5.00.

detect if hazardous materials are present and how they are
spreading. In a moving object datnbase, objects are con-
stantly monitored and a central database may collect their
updated locations.
The framework for many of these applications includes
a database or server to which the readings obtained by the
sensors or the locations of the moving objects are sent. Users
query this database in order to find information of interest.
Due to several factors such ns limiled petwork bandwidth
to the server and limited battery power of the mobile de-
vice, it is often inleasible for the database to contain the
exoct status of nn entity being monitored at every moment
in time. An inherent property of these applications is that
readings from sensors are sent to the central server periodi-
cally. In particular, at any given point in time, the recorded
sensor reading is likely to be different from the actual value.
The correct value of a sensor's reading is known only when
a0 update is received. Under these conditions, the data in
the database is only an estimote of the actual state of the
environment at most points in time.
wm Recorded value (3 Bound for current valie

3 Possible currens valie

1,]
\ Y 8 Y Yo

X, X, :"l“\ X D
= h LJ
h 4 y x y X y
(a) ®) (©)

Figure 1: Example of sensor data and uncertainty.

This inherent uncertainty of data affects the aceuracy of
answers to queries. Figure 1(a) illustrates a query that de-
termines the sensor {either = or y) that reports the lower
temperature rending. Based upon the data available in the
database (zo and 1), the query returns “s” as the result.
In reality, the temperature readings could have changed to
values) and ¥, in which case “4” is the correct answer.
This example demonstrates that the database does not al-
ways truly capture the state of the external world, and the
value of the sensor readings can change without being rec-

ognized by the database. Sistla et. al. [14] identify this type
ol dala as a dynamic olirtbule, whose value changes over
time even if it is not explicitly updated in the database. Tn
this example, because the exact values of the data items are
not known to the database bebween successive updates, the
database incorrectly assumes that the recorded value is the
aclual value and produces incorrect results.

Given the uncertainty of the data, providing meaningful
answers seems to be a [utile exercise. However, one can ar-
gue that in many applications, Lhe values of abjectls caunot
change drastically in a shori period of time; instead, the de-
gree and for rate of change aof an object may be constrained.
For example, the temperalure recorded by a sensor may not
change by more than a degree in 5 minules. Such informa-
tion can help solve the problem. Consider the above example
again. Suppose we can provide a guarantee that at the time
the query is evalunted, the actual valucs monitored by x and
v could be no more than sorme deviations, dr and d, from
7o and ya, tespectively, as shown in Figure 1{b}. With this
information, we can state with confidence that = yields the
minimum value.

In general, the uncertainty of the objects may not allow us
to identify a single object that has the minimum value. For
example, in Figure 1{c), both z and y have the possibility of
recording the minimun value since the reading ol x may not
be lower than that of 3. A similar situation exists for other
types of queries such as those that request a numerical value
(e.g. “What is the lowest temperature reading?"). For these
queries too, providing a single value may be infeasible due to
the uncertainty in each object’s value. Instead of providing
a definite answer, the database can associate dilferent levels
of confidence with each answer (e.g. as a probability) based
upon the uncertainty of the queried objects.

The notion of probabilistic answers to queries over uncer-
tain data bas not been well studied. Wollson et. al brielly
touched upon this idea [16] for the case of range queries in
the context of a moving object database. The ohjects are as-
sumed to move in straight lines with a known average speed.
The answers to the queries consist of objects’ identities and
the probability that each object is located in the specified
range. In this chapter we extend the nation of probabilis-
tic queries to cover o much broader class of queries. The
class of queries considered includes aggregate queries that
compute answers over o4 number of objects. We also dis-
cuss the importance of the nature ol answer requested by a
query {identity of abject versus the value). For example, we
show that there is a significant difference between the fol-
lowing two querics: “Which object has the minimum tem-
perature?” versus “What is the minimum temperature?”.
Furthermore, we relax the mode) of uncertainty so that any
reasonable model can be used by the application. Qur tech-
niques are applicable to the common models of uncertainty
that heve been proposed elsewhere.

The probabilities in the answer allow the user to place
appropriate confidence in the answer as opposed to having
an incorrect answer or no answer at all. Depending upon
the application, one may choose to report only the object
with the highest probability as having the minimum value,
or only those objects whose probability exceeds a mintmum
probability threshold. Our proposed work will be able to
work with any of these models.

Answering aggregate queries (such as minimum or aver-
age) is much more challenging than range queries, especially

in the presence of uncertainly. The answer to a probabilistic
range query consists of a set of objects alopg with o non-zero
probability that the object lies in the query range. Each ob-
ject’s probability is determined by the uncertainty of the
object's value and the query range. However, for aggregate
queries, the interplay between multiple objects is critical.
The resulting probabilities are greatly influenced by the un-
certainty of attribute values of other objects. For example,
in Figure 1(c) the probability that £ has the minimum value
is aflected by the relative value and bounds lor 3.

A probabilistic answer also reflects a certain level of un-
certainly that results [rom the uncertainty of the querjes ob-
jeet values. If the uncertainty of all (or some) of the objects
was reduced (or eliminated completely}, the uncertointy of
the result improves. For example, without any knowledge
about the value of an object, one could arguably state that
it falls within a query range with 30% probability. On the
other hand, if Lhe value is known perfectly, one can state
with 100% confidence that the object either Falls within or
outside the query range. Thus the quality of the result is
measured by degree of ambiguity in the answer. We there-
fore need metrics to evaluate the quality of a probabilistic
answer. We propose metrics for evaluating the quality ol
the probabilistic answers in this chapter. As we shall see,
it turns out that different metrics are suitable for different
classes of queries.

It is possible that the quality of 8 query result moy not be
acceptable lor certain applications — a more definite result
may be desirable. Since the poor quality is directly related
to the uncertainty in the object values, one possibility for
improving the results is to delay the query until the quality
improves. However this is an unreasonable solation due to
the increased query response time. Instead, the database
could request npdates from ell objects (e.g sensors) — this
solution incurs 2 heavy load on the resources. In this chap-
ler, we propose to request updates only from objects that are
being queried, and furthermore those that are likely to im-
prove the quality of the query result. We present a number
of heuristics and an experimental evaluation. These policies
attempt to optimize the use of the constrained resource (e.g-
netwark bandwidth to the server) to improve average query
quality.

It should be noted that the imprecision in the query an-
swers is inherent in this problem (due to uncertainty i the
actual values of the dynamic attribute), in contrast to the
problem of providing approximate answers [or improved per-
formance wherein accuracy is traded for efficiency.

To sum up, the contributions introduced in this chapter
are:

» A broad classification of probabilistic queries over un-
certain data, based upon a flexible model of uncer-
tainty;

e Techniques for evaluating probabilistic queries, includ-
ing optimizations;

¢ Metrics for quantifying the quality of answers to prob-
abilistic queries;

s Policies for improving the quality ol answers to prob-
abilistic queries under resource constraints.

The rest of this chapter is organized as follows. In Sec-
tion 2 we describe a general model of uncertainty, and the

concept ol probabilistic queries. Sections 3 and 4 discuss
the algorithms for evaluating different kinds of probabilistic
queries. Section 5 discusses quality metrics that are appro-
priate to these queries. Section 6 proposes update policies
that improve the query answer quality. We present an ex-
perimental evaluation of the effectiveness of these update
policies in Section 7. Section § discusses related work and
Section 9 concludes the chapter.

2. PROBABILISTIC QUERIES

In this section, we describe the model of uncertainty con-
sidered in this chapter. This is a generic mode, as it can ac-
commodate a large number of application paradigms. Based

on this model, we iniroduce a number of probabilistic queries,

2.1 Uncertainty Model

One popular madel lor uncertainty for a dynamic attribute
is that at any point in time, the actual value is within a cer-
tain bound, 4 of its last reported value. If the actual value
changes further than d, then the sensor reports its new value
to the databasc and possibly changes d. For example, [16)
describes a moving-object model where the location of an
object is a dynamic attribute, and an object reports its lo-
cation to the server il its deviation from the last reported
location exceeds a threshald. Another model assimes that
the attribute value changes with known speed, but the speed
may change each time the value is reported. Other models
include those that hove no uncertainty. For example, in [4],
the exact speed and direction of movement of each object are
known. This model requires updetes at the server whenever
an object's speed or direction change.

For the purpose of our discussion, the exact model of un-
certainty is unimportant. All that is required is that at the
time of query execution the mange of possible values of the
attribute of interest are known. We are interested in queries
over some dynamic aktribute, a, of a set of database objects,
T. Also, we assume that o is a real-valued sttribute, al-
though our models and algorithms can be extended to other
domains easily. We denote the ith object of 7° by T and
the value of attribute a of Tt by Ti.a (where i =1,..., |T)-
Throughout this chapter, we treat T}.a at any time instant
t as a continuous random variable. Sometimes instead of
writing Ti.a(t) meaning the value of the attribute at time
instant ¢t we write just T;.a for short. The uncertainty of
T:.a(t) can be choracterized by the following two definitions
{we use pdfto abbreviate the term “probability density func-
tion”):

Definition I: An uncertainty interval of T;.a(t), denoted
by Ui(t), is an interval [l;(£), ui(t)] such that &(t) and w;(t)
are real-valued funetions ol ¢, Li{t) < ui(t), and that the con-
ditions u:(t) > Li(t) and Tr.a(t) € [1i(t), ui(t)] always hold.

Definition 2: An uncertainty pdf of Ti.a(t), denoted
by fi(z,), is a pdf of Ti.a{t) such that fi(z,t) = 0 for
vz ¢ Ui{L).

Notice that since fi(z,t) is a pdf, it has the property that
L‘:(‘:(]l) fi(z,)dxz = 1. The above definition specifies the un-
certainty of Ti.a(t) in terms of a closed interval and the
probability distribution of Ty.2(f). Motice that this defini-
tion does not specify how the uncertainty interval evolves

over time, and what the pdl f;(z,t) is inside the uncertainly
interval. The only requirement for fi(z, £) is that its value is
0 outside the uncertainty interval. Usually, the scope of un-
certainty is determined by the last recorded value, the time
elapsed since its last update, and some application-specilic
assumptions. For example, one may decide that U;(1) con-
tains all the values within a distance of {{ — Lupdate) % v from
its last reported value, where Lypdace is the time that the last
update was obtained, and v is the maximum rate ol change
of the value. One may also specily that T;.a(t) is uniformly
distributed inside the interval, i.e., fi(z,t) = 1/[u (£} — Lt}
for ¥z € Ui(l), assuming that ui{f) > [i(£). It should be
noted that the uniform distribution represents the worst-
casc uncertainty over a given interval.

2.2 C(lassification of Probabilistic Queries

We now present a classification of probabilistic queries
and examples of common representative queries for each
class. We identily two importent dimensions for classifying
database queries. First, querics can be classified according
to the neturc of the answers. An entily-based query returns
a set of objects (e.g., sensors) that satisly the condition of
the query. A value-based query returns a single value, ex-
amples of which include querying the value of a particular
sensor, and computing the average volue of a subset of sen-
sor readings. The sccond property for classilying queries is
whether aggregation is involved. We use the term aggrega-
tion loosely to refer to queries where interplay between aob-
Jjects determines the result. In the following definitions, we
use the lollowing naming convention: the first letter is either
E (for entity-based queries) or V {for value-based queries).

1. Value-based Non-Aggregate Class

This is the simplest type of query in our discussions. It re-
turns an attribute value of an object as the only answer, and
involves no aggregate operators. One example of a proba-
bilistic query for this ¢lass is the VSingle(k

Definition 3: Probabilistic Single Value Query
(VSingleQ) When querying Tk.a(t), a VSingleQ returns
bounds { and u ol an uncertainty region of Ty.a(t) and its
pd{ f k (zv t)'

An example of VSingleQ is “What is the wind speed recorded
by sensor sz27" Observe how this definition expresses the an-
swer In terms of a bounded probabilistic value, instead of a

single value. Also notice that L‘.‘(.l():) iz, t)dz = 1.

2. Entity-based Non-Aggregate Class

This type of query returns a set of objects, each of which
satisfies the condition(s) of the query, independent of other
objects. A typical example of this class ig the ERQ, defined
below.

Definition §: Probabilistic Range Query (ERQ) Given
at time instant ¢ a closed interval [{,u], where Lu € R
and { £ u, an ERQ returns set /2 of all tuples (T}, p:),
where p; is the non-zero probability that Ti.a(t) € [f, 4],
ie. B = {(Ti,pi) : pi =P(Ti.a(t) € I,2]) and p; > 0}

An ERG returns a set of objects, augmented with probo-
bilities, that satisly the query interval.

3. Entity-based Aggregate Class

The third class of query returns o set ol abjects which
satisly an aggregate condition. We present the definitions
of three typical queries for this class. The first two return
objects with the minimum or maximum value of T;.a:

Definition 5: Probabilistic Minimum (Maximum} Query

(EMinQ (EMaxQ)) An EMinQ (EMaxQ) returns set
ol all tuples {1}, pi}, where p; is the non-zero prabability
that Ti.e is the minimum (maximum) value of & among all
objects in T'.

A one-dimensional nearest neighbor query, which retums
object(s) baving a minimum absolute diflerence of Ti.a and
a given value g, is also defined:

Definilion 6: Probabilistic Nearest Neighbor Query
(ENNQ) Given a value ¢ € R, an ENNQ returns set R of
all tuples (T}, pi), where p; is the non-zero probability that
|Ti.a — g| is the minimum among all objects in 7.

Note that [or el the queries we defined in this class the
condition 3. . 5 pi = 1 holds.

4. Value-based Aggregate Class
The final class involves aggregate operators that return a
single value. Exarnple queties for this class include:

Definilion 7: Probabilistic Average {(Sum) Query (VAvgQ

{VSumQ))} A VAvgQ {(VSumQ) returns bounds ! and u of
an uncertainty interval and pdf fx(z) of r.v. X representing
the average (sum) of the values of a for all objects in T

Definition 8: Probabilistic Minimum (Maximum} Value
Query (VMinQ {VMaxQ)}) A VMinQ (VMoxQ) returns
bounds ! and u of an uncertainty interval and pdl fx(x)
of r.v. X representing the minimum {maximum) value of a
among all objects in T

All these aggregate queries relurn answers in the lorm ol &
pdf fx{z) and a closed interval [I, 2], such that [fx{z)dz =
1.

Table 2.2 suminarizes the basic properties of the prob-
abilistic queries discussed ebove. For illustrating the dif-
ference between probabilistic and non-probabilistic queries,
the last row of the table lists the forms of answers expected
if probabtlity information is not augmented to the result of
the queries e.r, the non-probabilistic version of EMax(is
a query that returns object(s) with maximum values based
only on the recorded volues of Ti.c. It can be seen that
the probabilistic queries provide more inlormation on the
answers than their non-probobilistic counterparts.

Example. We illustrate the properties of the probabilis-
tic queries with a simple example. In Figure 2, readings of
four sensors s), 52,53 and s4, each with a different uncer-
tainly interval, are being queried at time {. Assume that
readings of these sensors s){t}, s2{t), sa(f), and sa{t) are
uniformly distributed on their uncertainty intervals [{;,],
[f2, uz], [ta, 122} and [ls, u4]. A VSingleQ applied on g4 at time
¢ gives us the result: Iy, us, fi, {2} = 1/{ua — &4). When an
ERQ (represented by the interval {, u]} is invoked at time ¢
to find out how likely each reading is inside [I, u], we see that
the reading of s, is always inside the interval. [t therefore

[] Reconled Yalue

I-—-.I Bound far

Curfrot Value

Figure 2: Illustrating the probabilistic queries

has a probability of 1 [or satisfying the ERQ. The reading
ol 34 is always outside the rectangle, thus it has a probabil-
ity of 0 of being located inside [!, u}. Since Uz(t) and Uz(t)
partially overlap [,], s2 and s3 have some chance of satis-
fying the query. In this example, the resull of the ERQ is:
{(51, 1}! (521 0'7)! (531 0'4)} .

In the same figure, an EMinQ is issued at time {. We ob-
serve that s; has a high probability of having the minimum
value, because a large portion of the U, {t) hos a smaller
value than the others. The reading ol s; has a high chance
of being located in this portion because s;{t) has the uniform
distributicn. The reading of g4 does not have any chance of
yielding the minimum value, since none of the values inside
Uy(8) is sinaller than others. The result of the EMinQ lar
this example is: {(s1,0.7), (s2,0.2), {s3,0.1}}. On the other
hand, an EMaxQ will return {(ss,1)} as the only result,
since every value in U/y(2} is larger than any readings from
the other sensors, and we are essured that g4 yields the max-
imum value. An ENNQ with a query value g is also shown,
where the results are: {{s1,0.2), (s2,0.5), (s3,0.3}}-

When a value-based aggregate query is applied to the sce-
nario in Figure 2, a bounded pdf p(z) is returned. If a
VSum() is issued, the result is & distribution in [{, +Iz 41 +
4,11 + uz + 3 + uy); each z in this interval is the sum of
the readings [rom the four sensors. The result of & VAveQ
is a pdfin [(f + 12 + I3 + 14) /4, (21 + u2 + ua + us)/4]. The
results of VMinQ and VMax(} are probability distributions
in [{1,u1] and [fs,24] respectively, since only the values in
these ranges have a non-zero probability value of satisfying
the queries.

3. EVALUATING ENTITY- QUERIES

In this section we examine how the probebilistic entity-
based queries introduced in the last section can be answered.
‘We start with the diseussion of an ER(}, followed by o more
complex algorithin for answering an ENNQ. We also show
how the algorithm for answering an ENNQ con be easily
changed for EMinQ and EMax().

3.1 Evaluation of ERQ

Recall that ERQ returns a set of tuples (T}, pi) where p; is
the non-zero probability that T;.a is within a given interval
[[,2]. Let R be the set of tuples returned by the ERQ.
The algorithm for evaluating the ERQ) at time instant ¢ is
described in Figure 3.

In this algorithm, coch abject in T is checked once. To
evaluate p; for T;, we first compute the overlapping interval

Table 1: Classification of Probabilistic Queries.

Query Class Entity-bnscd Value-based
Aggregate ENNQ, EMinQ, EMaxQ VAvgQ, V5umQ, VMIinQ, VMG
Non-Aggr. ERQ VSingleQQ
Answer (Proba- || {{(Ti,pi}: <1< [T|Ap > 0) | Lu, fxlz)
bilistic)
Answer (Neon- || (Ti: 151 <[IT} TEXR
Prob.)
1. <8 TSa—+4— 60 r.'r.n:[o
2. forie—=1ltoff|de | | e Fa T 4
(a) D — Ui(t) N [t 4] T2a—4 25 ul [”—’ b
(b} if (D # 0) then The—1— 20 Thay T2a] i
i pi — [filz, Ddx 9 —1— I0 g 2 in?
. if pi 3 0 then R «— RU {{T},p:)} 0 ind {nd
Ta__4. -
3. return Rt Tia—— T}s T.'.n:[T-A.n:[:
fa) W Y Lo
Figure 3: ERQ Algorithm.
IUZ H Uz 4
Ui i Ul :
D of the two intervals: U;(t) and [I,u] (Step 2a). If D is the 1 ! S 1 J, :f
empty set, we are assured that Tj.e does not lie in [, u], and gl inZ — g Al ‘a2 . —
by the definition of ERQ, T is pot included in the result. rd: nd) ad i omé g
Otherwise, we calculate the probability that T;.a is inside UjT U‘{i' fr ujT w'r Ef
[}, u] by integrating fi(z,1) over D, and put the result into S| J !
R il pi # 0 (Step 2b). The set of tuples (7}, pi), stored in R,
are returned in Step 3. () td)

3.2 Evaluation of ENNQ

Processing an ENNQ) involves evaluating the probability
of the attribute ¢ of each object T; being the closest to
(nearest-meighbor of) a value g. In general, this query can
be applied to multiple attributes, such as coordinates. In
particelar, it could be a nearest-neighbor query for moving
objects. Unlike the case of ERQ}, we can no longer determine
the probability for a object independent of the other objects.
Recall that an ENNQ returns a set of tuples {T;, pi} where p;
denotes the non-zero probability that 7; has the minimum
value of {Ti.a —g|. Let S be the set of objects to be consid-
ered by the ENNQ, and let R be the sat of tuples returned
by the query. The algorithm presented here consists of 4
phases: projection, pruning, bounding and evaluafiorn. The
first three phases filter out objects in T whose values of &
have no chonce of being the closest to g. The final phase,
evalualion, is the core of our solution: for every object T;
that remains after the first three phases, the probability that
T;.a is nearest to g is computed.

1. Projection Phase.

In this phase, the uncertainty interval of each T:.a is com-
puted based on the uncertainty model used by the appli-
cation. Figure 4(a) shows the last recorded values of T;.a
in § at time tg, and the uncertainty intervals are shown in
Figure 4(b).

2. Pruning Phase.

Consider two uncertainty intervals Uf;{f) and Uz(t}. If
the smallest distance between U1 (1) and g is larger than the
largest distance between U;(I) and ¢, we can immediotely
conclude that T} is not an answer to the ENNQ: even il

Figure 4: Phases of the ENNQ algorithm.

the actual value of T:.a is as far 0s possible rom q, T}.a
still has nao chance to be closer to g than T.a. Based on

1. fori e 1 to |S]| do
(B) if qeE U.'(t) then N; — q
(b) else
ic iF g — Lt} < g — uit)] then N; «— L(8)
ii. else Ny — u;(t}
(c) if lg — Li(t)] < lg — ui(t)] them Fy — u;(2)
(d) else F; — L(t)
2, f — minl._;ig_g”.ﬂ - q|; m +— |S|
3 fori—1tomdo
if (J]Ni —¢[> f) then § — 8§~ [T}}
4. return §

Figure 5: Algorithm for the Pruning Phase of ENNGQ.

this observation, we con eliminate objects from T by the
algorithm shown in Figure 5. In this algorithm, N; and F;
record the closest and farthest possible values of T;.a to g,
respectively. Steps 1{a) to {d) assign proper values to N;
and . If ¢ is inside the interval U;(#), then N; is taken
as the point g itself. Otherwise, N; is either &i(2) or u:(t),
depending on which value is closer to q. F} is assigned in

a similar manner. After this phase, S contains the (possi-
bly fewer) objects which must be considered by g. This is
the minimal set of objects which must be considered by the
query since any of themn can bhave a value ol Tj.a closest to
g- Tigure 4({b) illustrates how this phase removes Ts, which
is irrelevant to the ENNQ, from §.

3. Bounding Phase.

For each object in 8, there is no need to examine all por-
tions in its uncertainty interval. We only need to look ot the
regions that are located no farther than f from ¢. We do
this conceptually by drawing a bounding interval B of length
2f, centered al q. Any portion of the uncertainty interval
outside B can be ignored. Figure 4(c) shows a bounding
interval with length 2f, and (d) illustrate the result of this
phase.

The phases we have just described attempt to reduce the
number of objects to be evaluated, and derive an upper
bound on the range of values to be considered.

4, Evaluation Phase.

Based on S and the bounding interval B, our aim is to
calculate, for each object in S, the probability that il is the
nearcst neighbor of g. In the prening phase, we have already
lound N, the point in Ui(t) nearest to . Let us call [N —g]
the rear_distance ol T;, or n;. Let as definc new r.v. X such

1. R~0
2. Sort the elements in § in ascending order of n;, and
rename the sorted elements in § as 11, T%,..., Ti5

3. myspe — S
4. fori — 1 to |S| do
(a) pi — 0
(b} for j — i to {S] do
Lpe f.-:“l filz)- Hi—:l!\k;&:‘(l — I (z))dz
i pi—pitp
(e) R+ RU{(T3,pi)}
5. return B

Figure 8: Algorithm for the Evaluation Phase of ENNQ.

that X; = |Ti.a{t) — g|- Also, let Fi(z) be the X;'s cdf, ie,
Fi(z) = P{|Ti.a(t) — g| < z}, and fi(z) be its pdf. Figure 6
presents the algorithm for this phase.

Note that il Ti.a(t) has no uncertainty i.e., Ui(t) is exactly
cqual to Ti.at), the evaluation phase algorithm needs to
be modified. Qur technical report [2] discusses how this
algorithm can be chanpged to adapt to such situntions. In
the rest of this section, we will explain how the evaluation
phese works, assuming non-zero uncertainty.

Evaluation of Fi(z)} and f;{z) To understand how the
evaluction phase works, it is crucial to know how to obtain

Fi(z). Asintroduced before, Fi(x) is Lhe cdi of X;, and thus

Fi(x) e P(|Ti.a(t) — g} < z). We illustrate the evoluation

of Fi(z) in Figure 7.

Recall that fi{z) is the pdfl of X; and fi{z,t) is the pdl of
Ti.a(f). If Fi(z} is a differentiable, fi{z) is the derivative of
F(=z)-

Evaluation of p;. We can now explain how p;, the proba-
bility that Ti.a is closest to g, is computed. In terms of Xi's

. if £ < n; return 0

. ifz > |g— Fi|, return 1
D U)Ng -z, + 2)
- return [, fi(z, 1) dz

B Gl b? o

Figure 7: Computation of Fi{z).

the question is formulated as how pi, the probability that
X, has _the minimum value among all X;'s, is computed.

Let fi{z)dz for indefinitely small dz be the probability
thal (1} Xie [2:, T4 dII and (2) Xi= min15k5|s|}{;.. Then
Equation 1 outlines the structure of our solution:

!
pi= [hla)ds M

The fi(z)dz is equal to probability P(X; € {z, z+dz|) times
the probability that X; is the minimum among the ot X/s.
The former probability is equal to fi{z}dz since fi{z) is
Xi's pdf. The latter probability is equal to the probability
that cach X; in § except lor X; lhave values greater than

X, which equals to [T}, ., .. P(Xi > z), which also can
be written os HLSZIM,__#i (1 - Fk{z)). Thus the formula for
pi can be written as:

15|

f
Pi= /'.“fi(z) -]___[#(1 - Fk(ﬂ?)) dx (2)

k=1ak

Observe that cach 1 — Fi{z)} term registers the probability
that Tj..e is farther from g than T;.a.
Efficient Computation of p; The computation time
for pi can be improved. Note that Fi.(z) has a value of 0 if
T < 1. This means if z < ny then 1— Fi(2) is always I, and
Tk hos no eflect on the computation of p;. Instead of always
considering || — 1 objects in the] term of Equation 2
throughout [ri, f], we may actually consider fewer objects
in some ranges, resulting in a hetter computation speed.
This can be achieved by first sarting the abjects according
to their near_distance from q. Next, the integration interval
[ri, f] is broken down into a number of intervals, with end
points defined by the near_distance of the objects. The prob-
ability of an object having a value of a closest to g is then
evaluated for each interval in a way similar to Equation 2, ex-
cept that we only consider T}.z with non-zero Fi(z). Then
pi is equal to the sum of the probability values for all these
intervals. The final formula for p; becomes:

Bl g

J
pi= Zf 5@ I (1 —Fk(a:)) & (3
= 2

nj k=Lak

Here we let n 54, be f for notational convenience. In-
stead of considering |S| — 1 objects in the [] term, Equa-
tion 3 only handles 7 —1 objects in intervat [r7, ny+1]. This
optimization is shown in Figure 6.

Example Let us use our previous example to illustrate
how the evaluation phase works. Alter 4 abjects Th,..., T4
were captured (Figure 4(d)), Figure 8 shows the result after
these objects have been sorted in ascending order of their
near_distance, with the z-axis being the absolute difference

U

i

o X
0 n n n, n ne=f

Figure 8: Illustrating the evaluation phasc.

of Ti.a from ¢, and ns equals f. The probability p; of each
Ti.a being the nearest neighbor of ¢ is equal to the integral
of fi{z) over the interval [ny, ns).

Let us see how we evaluate uncertainty intervals wlhen
computing p2. Equation 3 tells us that pz is evaluated by
integrating over [n2, ns). Since objects are sorted according
to ni, we do not need to consider all 5 of them through-
out [n2,ms). Instead, we split [ra, n5) into 3 sub-intervals,
namely [nz,ma), [r3,n4| and [ng, ns), and consider possibly
fewer uncerlainty intervals in each sub-interval. For exam-
ple, in [nz,na)], only U, and Uz need to be considered.

3.3 Evaluation of EMinQ and EMaxQ

We can treat EMinQ and EMax(Q) as special cases of ENNQ,

In fact, answering an EMinQ is equivalent to answering an
ENNQ with g equals the minimum lower bound of all ¥;(T")
in T. We can therefore modify the ENNQ algorithm to
solve an EMinQ) as follows: alter the projection phase, we
evaluate the minimum value of I;{£) among all uncertainty
intervals. Then we set g to that value. We then obtain the
results to the EMinQ} alter we execute the rest of the ENNQ
algorithm. Solving an EMaxQ is symmetric to solving an
EMinQ) in which we set g to the maximum of u;(t) after the
projection phase of ENNQ.

4. EVALUATING VALUE- QUERIES

In this section, we discuss how to answer the probabilistic
value-based queries defined in Section 2.2.

4.1 Evaluation of VSingleQ

Evaluating a VSingleQ is simple, since by the definition
ol VSingleQ, only one object, Tk, needs to be considered.
Suppose VSingleQ is executed at time {. Then the answer
returned is the uncertninty information of Ty.e at time &,
ie., (i), ug(t) and its pdf fi(z, £).

4.2 Evaluation of YSumQ and VAvgQ

Let us first consider the case where we want to find the
sum of two uncertainty intervals {{;{£), u1(t)] &nd [lz(t}, u2{¢}]
for objects T3 and Th. Notice that the values in the an-
swer that have non-zero probability values lie in the range
[L1(8) + La(t), w1 (£) + uz(E)]. For any = inside this interval,
Jx(z) (the pdl of random variable X = T1.¢ + Ta.a} is:

min{u;{¢t},z—~Ia(t)}
fx(@) = [e -v.tdy ()

maz{l (£).x—uz(t]}

The lower {upper) bound of the integration interval are eval-
uated according to the possible minimum {maximum) value
of T.a.

We can generalize this result for summing the uncertainty
intervals of |T'] objects by picking two intervals, summing
them up using the above formula, and using the resulting
interval to add to another interval. The process is repcated
until we finish adding all the intervals. The resulting interval
should have the following lorm:

1T IT|

DL, > w(e)]
i=1 i=1

VAvgQ is essentially the same as ¥VSumQ except lor a divi-
sion by the number of objects over whiclh the aggregation is
applied.

4.3 Evalnation of VMinQ and YMaxQ

To answer a VMinQ, we need to find the bounds of uncer-

tninly region [, u|, and pdf fx (z) ofr.v. X = miny ¢i<ry Ti-alt).

Like for EMin(} the lower bound ! can be set as min ;<5 Li(t)
and upper bound % as miny<;<)s) ui(t), becanse X cannot
take values outside [{, 4] The steps of the algorithm are sim-
ilar to first three phases of ENNQ (projection, pruning,
bounding) when g is set Lo be equal to {. Each 75 such that
Li(t) > u is removed from set § of the relevant tuples. Then
all tuples in S are sorted in ascending order of {;. For no-
tational convenience we intraduce an additional parameter
!is14+1 and set it equal to u.

Te compute fx(z) notice that probability P(X € [z, = +
dz]) for some small dz can be computed us sum of prob-
abilities for each Ti.a(t)} to be inside [z, + dz] times the
probability that the other Ti.a(t)’s are in {z + dz, +o0). As
we tend dz to zero we have:

15] 15|
Jx(z)= Z(f,-(:z:, t}- H (I—Fk(z, t))) y ¥z € [, u) (5)
=

i=1 k=1ak:

Since il = € [Y,1;41) and & > 7, then Fi(x,!) = 0, there
fore terms (1 — Fi(z,t}) are equal to 1 lor such z’s end &'s
and need not be considered by the formula. The simplified
formula is thus:

1] 3
Sx{z) = Z(fi(-'b" 0-T1 (I_Fk(zvt))) yVE € [l 125 <18)
4

i=1 k=1Ak
(6}
Also notice that if z € [{5,4;41] and k > 7, then fi{z,) = 0.

Thus formuln for fx(z) can be written as:

fx(z) = Z(f.-(z. ty- T (I—kaz.t))), Yz € [l 1], 1 €5 < (8]
7

=l k=1ak

{7

VMax() is handled in an analogous fashion.

5. QUALITY OF PROBABILISTIC RESULTS

In this section, we discuss several metrics for meosuring
the quality of the results returned by probabilistic queries.
It is interesting to see thot different metrics are suitable for
difierent query classes.

5.1 Entity-Based Non-Aggregate Queries

For queries that belong to the entity-based non-aggregate
query class, it suffices to define the quality metric for each

(T:,p:) individually, independent of other tuples in the re-
sult. This is because whether an object satisfes the query
or not is independent of the presence of other objects. We
illustrate this point by explaining how the metric of ERQ is
delined.

For an ERQ with query range [{, 1], the result is the best
if we are sure either 7.e is completely inside or outside [¢, u].
Uncertainty arises when we are less than 100% sure whether
the value of T}.a is inside [, u]. We arc confident that T;.a
is inside [{,u] if a large part ol U;(t) overlaps [l,4] i.e., pi
is large. Likewise, we are also confident that Ti.a is outside
[{,u] if only & very small portion of U:(t) overlaps [I,4] i.e.,
pi is small. 'Fhe worst case happens when p; is 0.5, where
we cannot tell if T;.q satisfies the range query or not. Hence
a reasonable metric for the quality of p; is:

Ipi —0.5]

0.5 (8)

In Equation 8, we measure the diflerence between p; ond

0.5. Its highest value, which equals 1, is oblained when p;

equals 0 or 1, and its lowest value, which equals 0, occurs

when p; equals 0.5. Hence the value of Equation 8 varies

between 0 to 1, and a large value represents good quality.
Let us now define the score of an ERQ'

Score of an ERQ = IR| Z [p — 0 sl {9)
i€R

where R is the set of tuples (Ti.a, pi) returned by an ERQ.
Essentially, Equation 9 evaluates the average over all tuples
in R,

Notice that in defining the metric of ERQ, Equation 8 is
defined for each T;, disrcgarding other objects. In general,
to define quality metrics for the entity-based non-aggregate
query class, we can define the quality of each object individ-
ually. The overall score can then be obtained by averaging
the quality value for each object.

5.2 Entity-Based Aggregate Queries

Contrary to an entity-based non-aggregate query, we ob-
serve that for an entity-based aggrepate query, whether an
object appears in the result depends on the existence of
other objects. For example, consider the following two sets

of answers to an EMinQ: {(7\.e,0.6), (72.e, 0.4}} and {(T).a,0.6),

(T2.2,0.3), (Ta.2,0.1)}. How can we tell which answer is bet-
ter? We identily two important components of quality for
this class: entropy and interval width.

Entropy. Let r.v, X take values from set {z, .
respective probabilities p(z1), . -
1. The entropy of X is a measure H(X):

.y Tn} with

H(X)= Zp(z.)logz (10)

= plzi)
If 7,'s are treated as messages and p(zi)'s as their probabil-
ity to appear, then the entropy H{X) measures the average
number of bits required to encode X, or the amount of in-
formation carried in X [13). If H(X) equals 0, there exists
some i such that p(z;) = 1, and we are certain that z; is the
message, and there is no uncertainty associated with X. On
the other hand, H(X) attains the maximum value when all
the messages are equally likely, in which cese H(X) equals
log, n.
Recall that the result to the querics we defined in this class
is returned in a set R consisting of tuples (Tt,pi). Let r.v.

.,plza) such that Y plzi) =

Y take valuc Z with probability p: if and only il (75, pi) € R.
The property that 37 pi = 1 holds. Then H(Y) measures
the uncertainty of the answer to these querics; the lower the
value of H(Y}, the more certain is the answer.

Bounding Interval. Uncertainty of an answer also de-
pends on another important lactor: the bounding interval B.
Recall that before evaluating one of these aggregate queries,
we need to find B that dictates all possible values we have to
comsider. Then we consider all the portions of uncertainty
intervals that lie within B. Nole that the decision of which
objectl satisfies the query is only made within this interval.
Also notice Lhat the width of B is determined by the width
of the uncertainly intervals associated with objects; a large
width of B is the result of large uncertainty intervals. There-
fore, il B is small, it indicates that the uncerlainty inLervals
of objects that participate in the final resull ol Lhe query are
also small. In the extreme case, when the uncertainty inter-
vals ol participant objects have zero width, then the width
of B is zero too. The width of B therelore gives us a good
indicator ol how uncertain a query answer is.

[N V—— [——— e .&.JI. -
PR, Sy Ey PR

ui| 12 2
{a) by fc) (d)

Figure 9: Illustrating how the entropy and the width of
B affect the quality of answers for entity-based aggregate
queries. The four Agures show the uncertainty intervals
{1 (to) and Ua(tp)) inside B after the bounding phase.
Within the same bounding interval, (b) has a lower en-
tropy than {a), and {d) has a lower entropy than (c)-
However, both (c) and (d) have less uncertainty than {(a)
and (b} because of amaller bounding intervals.

An exemple at this point will meke our discussions clear.
Figure 9 shows four different scenarios of two uncertainty in-
tervals, Uy (to) and Ua(ta), after the bounding phase for an
EMinQ. We can see that in (a), U (to) is the same as U, (t0).
If we assume a uniform distribution for both uncertainty in-
tervals, both T and T3 will have equal probebility of having
the minimum value of a. In {b}, it is obvious that T has
o much greater chance than Ty to hove the minimum value
of a. Using Equation 10, we can observe that the answer
in (b} enjoys a lower degree of uncertainty than (o). In {c)
and {d), all the uncertainty intervals are halved of those in
(a} and {D)} respectively. Hence (d) still has a lower entropy
value than (c}). However, since the uncertainty intervals in
(¢) and {d) are reduced, their answers should be more cer-
tain than those of {a} and {b). Notice that the widths of B
for (¢} and (d) are all less than (a} and {b).

The qualily of entity-based aggregate queries is thus de-
cided by two factors: (1) entropy H(Y} of the result set,
and (2) width of B. Their seores are delined as follows:

Score of an Entily, Aggr Query = —H(¥) - width of B
{11}
Notice that the query answer gets a high score if either
H{Y) is low, or the width of B is low. In particular, if
either H(Y') or the width of B is zero, then H(Y) = 0is the
maximurn score.

5.3 Value-Based Queries

Recall that the results returned by value-based queries are
all in the form an uncertainty interval [{, u), and pdf f(z). To
measure the quality of such queries, we can use the concept
ol enlropy of a continuous disiribution, defined as [ollows:

2(X)=- /: - f(z)log, f(z)d=z 1)

where H(X) is the entropy of continious random variable
X with pdf f(z) defined in the interval {I,4] [13]- Similar
to the notion of entropy, & {X) measures the uncertainty
associated with the value of X. Morcover, X attains the
maximum value, logz{u —1{} when X is uniformly distributed
in [i,u]). Entropy ¥ (X) can be negative, e.g. lor unilorm
rv. X ~U[0, %]

We use the notion of entropy of a continuous distribution
to measure the quality of value-based queries. Specifically,
we apply Equation 12 to f(z) as a2 measure of how much
uncertainty is inkerent to the answer of 2 value-based query.
The lower the entropy value, the more certain is the answer,
and hence the better quality is the answer. We now deline
the score of a probabilistic value-based query:

Score of a Value-Based Query = —H(X) (13)

The quality of a value-based query can thus be measured
by the uncertainty associated with its result: the lower the
uncertainty, the higher score can be obtained os indicated
by Equation 13.

Please notice that though not presented here many more
different metrics from those discussed in these research are
possible; e.g. one might choose the standard deviation os a
metric for the quality of VMin(Q) ete.

6. IMPROVING ANSWER QUALITY

In this section, we discuss several update policies that
can be used to improve the quality of probabitistic queries,
defined in the last section. We assume that the sensors co-
operate with the central server i.e., a sensor can respond to
update requests from the sensor by sending the newest value
to the server, as in the system model described in [10].

Suppose after the execution of a probabilistic query, some
slack time is available for the query. The server can improve
the quality of the answers to that query by requesting up-
dates from sensors, so that the uncertainty intervals of some
sensor data are reduced, potentially resulting in an improve-
ment of the answer quality. Ideally, a system can demand
updates from all sensors involved in the query; however, this
is not practical in a limited-bandwidth environment. The is-
sue is, therefore, to improve the quality with as few updates
as possible. Depending on the types of queries, we propose
a number of update policies.

Improving the Quality of ERQ The policy for choosing
objects to update for an ERQ) is very simple: choose the

object with the minkmurn value computed in Formula 8, with
an attempt to improve the score of ERQ.

Improving the Quality of Other Queries Several up-
date policies are proposed for queries otber than ERQ:

1. GIb_RR. This policy updates the database in a round-
robin fashion using the available bandwidth t.e., it up-
dates the data items one by one, making sure that each
itern gets a fair chance of being refreshed.

2. Loc RR. This policy is similar to GIb_RR, except
thal the round-robin policy is applied only to the data
items that are related to the query, e.g., the set of ob-
Jjects with uncertainty intervals overlapping the bound-
ing interval of an EMinQ.

3. MinMin. An object with its lower bound of the
uncertainty interval equal to the lower bound of B is
chosen for update. This attemnpts to reduce the width
of B and improve the score.

4. MaxUnc. This heuristic simply chooses the uncer-
tainty inlerval with the maximum width to update,
with an attempt to reduce the overlapping of the un-
certainty intervals.

5. MinExpEntropy. Another heuristic is to check, lor
each Ti.a that overlaps B, the ellect to the entropy il
we choose to update the value of T}.2. Suppose once
Ti.a is updated, its uncertainly interval will shrink to
a single value. The new uncertainty is then a point in
the uncertainty interval before the update. For each
value in the uncertainty interval before the update, we
evaluate the entropy, assuming that U;(t) shrinks to
that value after the update. The mean of these entropy
values is then computed. The object that yields the
minirmum expected entropy is updated.

7. EXPERIMENTAL RESULTS

In this section, we experimentally study the relative be-
haviors of the various update policies described above, with
respect to improving the quality of the query results. We
will discuss the simulation model [ollowed by the results.

7.1 Simulation Model

The evaluation is conducted using o discrete event simula-
tion representing a server with a fixed network bandwidth (B
messages per second) and 1000 sensors. Each update from
a sensor updates the value and the uncertainty interval for
the sensor stored at the server. The uncertainty model used
in the experiments is as follows: An update from sensor
T: at time t.pdarc Specifies the eurrent value of the sensor,
Ti.@srv, and the rote, T.7,ry at which the uncertainty re-
gion (centered ot Tj.asre) grows. Thus at ony time iostant,
¢, following the update, the uncertainty interval {I%(t)) of
Senser Ti is given by T‘i.asru :I:Ti.'r'.ru k4 (t _T'i-tupdutc)- The
distribution of values within this interval is assumed to be
unilorm.

The actual values of the sensors are modeled os random
walks within the normalized domain os in [10]. The maxi-
mum rate of change ol individual sensors are uniformly dis-
tributed between 0 and Rmaz- At any time instant, the
value of o sensor lies within its current uncertainty interval
specificd by the last update sent to the server. An update

[rom the sensor is necessitated when a sensor is close to the
edge of its current uncertainty region. Additionally, in order
to avoid excessively large levels of uncertainty, an update is
sent if either the total size ol the uncertainty region or the
time since the last update exceed threshold values.

The representative experiments preseated considered ci-
ther EMin(} or VMinQ queries only. In each experiment
the cueries arrive at the server [ollowing a Poisson distri-
bution with arrival rate A;. Each query Is executed over
a subset of the sensors. The subsets are selected randomly
following the 80-20 hot-cold distribution (20% ol Lhe sensors
are selected 80% of the time). The cardinality of cach set
was fixed at N,,p= 100, The maximum number ol coticur-
rent queries was limited to Ng=10. Each query is allowed
to request at most Nm,, updates frotn sensors in order to
improve the quality of its result.

In order to study dillerent aspecis of the palicies, query
termination can be specified eilher as (i} a fixed time inter-
val {Taceive) alter which the query is completed even if its
requested updates hiave not arrived {due to network conges-
tion) or (it} when o target quality {G) is achieved. Depend-
ing upon the policy, we study either the average achieved
quality (score}, the averapge size of the uncertainty region,
or the average response time needed to achieve the desired
quality. All measurements were made alter a suitable warm
up period had elapsed. For [airmess of comparison, in each
experiment, the arrival of queries as well as the changes to
the sensor values was identical.

Table 7.1 summarizes the major paraneters and their de-
fault values. The simulation paramelers were chosen such
that average cardinality of the result sets achieved by the
best update policies was between 3 and 10.

Table 2: Simulation parameters and their default
values

[Param | Default | Meaning
D [0,1] [Domain of attribute &
Rmax 0.1 Maximum Tate of change of a (sec™!)
Ny 10 Maximum # of concurrent queries
Ag 20 Query arrival rate (query /sec)
Naub 100 Cardinality of query subset
Toetive 5 Query active time (sec)
B 350 Network bandwidth (msg/sec)
Nmag 5 Moximum # of updates per query
Neone 1 The # of concurrent updates per query
7.2 Resulis

Due to limited space, we only show the most important
experimental results. Interested readers are referred to our
technical report [2] for more detailed discussions of our ex-
periments. All figures in this section show averages.
Bandwidth. Figure 10 shows scores for EMinQ achieved
by various update policies for different values of bandwidth.
The quality metric in this case is negated entropy times the
size of the uncertainty region of the result set. Figure 11
is analogous to Figure 10 but shows scores for VMinG in-
stead of EMinQ). The score for VMinQ queries is negated
continuous entropy.

In Figures 10 and 11, the scores inerease as bandwidth

£ G&b_RR
-=-Loc_RA
e 2 —0— MirdMin -
g - MaxUnc

. ~&- MinExpEntr

Figure 10: EMinQ score as function of B

increases for all policics, approaching the perlect score of
zero for EMinQ. This is explained by the lact that with
higher bandwidth the updates requested by the queries are
received faster. Thus for higher bandwidth the uncertainty
regions [or freshly updated sensors tend to be smaller than
those using lower bandwidth. Smaller uncertainty regions
translate into smaller uncertainty ol the result set, and con-
sequently higher score. The reduction in uncertainty regions
with increasing bandwidth can be abserved [rom Figure 12.
All schemes that favor updates for sensors being queried
significantly outperform the the only scheme that ignores
this information: Glb_RR. The best performance is achieved
by the Mindin policy, which updates a sensor with the lower
bound of the uncertainly region I;(t) equal to the minimum
lower bound among all sensors considered by the query. The
MinExpEntropy policy showed worse results’ than the Min-
Min and MaxUnc policies in Figures 10 and 12 and worse
results than those of the MinMin policy for VMinQ) queries,
Figure 11. When comparing the MinMin and MaxUne poli-
cies, the better score of the MinMin policy is explained by
the fact that the sensor picked for an update by the Min-
Min policy tends to have large uncertainty too — in fact, the
uncertainty interval is at least as large as the width of the
bounding interval. In addilion the value of its attribute a
tends to have higher probability of being minimum.
Response Time. Figure 13 shows response time as a
function of available bandwidth for EMinQ. Unlike the other
experiments, in this experiment a query execution is stopped
as soon as the goal score G (-0.06) is reached. Once ogain
the MinMin strategy showed the best results, reaching the
goal score faster than the other policies. The difference in
response time is especially noticenble for smaller values of
bandwidth, where it is almost twice as good as the other
strategies. Predictably, the response time decreases when
more bandwidth becomes available.
Arrival Rate. Figures 14 ond 15 show the scores achieved
by EMinQ and VMin{) queries for various update policies as
a [unction of query arrival rate A, As A, increases from 5 to
25, more queries request updates asnd reduce the uncertainty
regions. As a result, the uncertainty decreases, which leads
to better scores (Figure 16). When), reaches 25 the entire
network bandwidth is utilized. As A, continue to increase

'The experiment with bandwidth of 200 did not complete
in time for the submission. The final version of the paper
will contain all results.

Figure 12: Uncertainty as function of B

queries are able to send fewer requests for updates and re-
ceive fewer updates in time, leading to poor result quality
and larger uncertainty.

‘We can observe from Figures 14, 15, and 16 that the rel-
ative performance of the various policies remains the same
over a wide range of arrival rates (A, € [5,45]).

The experiments show that all policies that favor query-
based updates nchieve much higher levels of quality. For the
queries considered, the MinMin policy gives the best per-
formance. Evaluation of the policies for all types of queries
is beyond the scope of this thesis. We plan to address this
issue as part of future work.

8. RELATED WORK

Many studies have focussed on providing approximate an-
swers to database queries. These technigues approximate
query results based only upon a subset of data. In {15,
Vrbsky et. al studied how to provide approximate answers
to set-valued queries {where a query answer contains a set
of objects) and single-valued queries {(where a query answer
contains a single value). An exact answer £ can be approx-
imated by two sets: a certain sef C which is the subset of
E, and a possible se! P such that C U P is a superset of
E. Unlike our assumptions, their model assumes there is no
uncertainty in the attribute velues, Other techniques use
precomputation [11], sampling [5] and synopses [1] to pro-
duce statisticol results. While these efforts investigate ap-

Arrivel e {quaryfmc)

Figure 14: EMinQ score as function of A,

proximate onswers based upon a subset of the {exact} values
of the datn, our work addresses probabilistic answers based
upon all the (imprecise) values of the data.

The problem of balancing the tradeoff between precision
and performance for querying replicated data was studied
by Olston et. al. [9, 8, 10). In their model, the cache in the
server cannot keep track of the exact values of sensor sources
due to limited network bandwidth. Instead of storing the
actual value for each data item in the server’s cache, they
propose to store an interval for each item within which the
current value must be located. A query is then answered by
using these intervals, together with the actual values fetched
from the sources. In [9}, the problem of minimizing the
update cost within an error bound specified by aggregate
queries is studied. In [8], algorithms for tuning the intervals
of the data items stored in the cache for best performance are
proposed. In [10], the problem of minimizing the divergence
between the server and the sources given a limited amount
of bandwidth is discussed.

Khanna et. al [7] extend Olston's work by proposing an
online algorithm that identifies a set of elernents with mini-
mum update cost s0 that a query can be answered within an
error bound. Three models of precision are discussed: abso-
lute, relative end rank. In the absolute (relative) precision
model, an answer a is called a-precise if the actual value »
deviates from a by not more than an additive (multiplica-
tive} factor of a. The rank precision model is used to deal

-8-Gb_RR
-~ Loc_RR
- MirMin

== Mozl

o

£

10

B
oD

=4
5 w9 15 20 = a0 R a5
n

Arrvenl mula [quarpteocy

Figure 15: VMin(Q) score as function of A

15

r -&-Ghb_AA
Fo7s]
-]
d
-
(113
3
a5
L-
] =]
H 0 15 = = » 2% a0 g

Asrivad ruls {quinyinoc)

Figure 16: Uncertainty as function of A,

with selection problems which identifies an element of rank
v an answer a Js called a-precise il the rank of a lies in the
interval [r —a, 7+ af.

In all the works thet we have discussed, the use of proba-
bility distribution of values inside the uncertainty interval as
a tool for quantifying uncertainty has not been considered.
Discussions of queries on uncertainty data were often limited
to the scope of aggregate functions. In contrast, our work
adopts the potion of probability and provides a paradigm
for answering general queries involving uncertainty. We also
define the quality of probabilistic query results which, to the
best of our knowledge, has not been addressed.

With the exception of [16], we are unaware of any work
that discusses the evaluation of a query answer in probabilis-
tic form. The study in [16] is limited to range queries for
objects moving in straight lines in the context of a moving-
object environment. We extend their ideas significantly by
providing probabilistic guarantees to general queries for a
generic model of uncertainty. Other related work include
(12, 3, 6]-

9. CONCLUSIONS

In this chapter we studied the problem of augmenting
probability information to queries over uncertain data. We
propose a flexible model of uncertainty, which is defined by
(1) an lower and upper bound, and {2) a pdf of the values
inside the bounds. We then explain, from the viewpoint of

a probabilistic query, we can classify queries in two dimen-
sions, based on whether they are aggregate/non-aggregate
queries, and whether they are entity-based/value-based. Al-
gorithms for cormputing typical queries in cach query class
are demonstrated. We present novel metrics for measuring
quality of answers to these queries, and also discuss several
update heuristics for improving the quality of results. The
benefit of query-based updates was also shown experimen-
tally.

10. REFERENCES

(1) 8. Acharya, P. B. Gibbens, V. Poosala, and
S. Ramaswamy. Join synopses for approximate query
answering. In STGMOD (999,

[2] R. Cheng, D. V. Kalashnikov, and §. Prabhakar.
Tvaluating probabilistic queries over imprecise data.
Technical Report TR 02-026, Department of
Computer Science, Purdue University, West Lafayetle,
IN 47907, Nov. 2002.

[3] R. Cheng, S. Prabhakar, and D. Kalashnikov.
Querying iinprecise data in moving object
environments. In ICDE'G3, Proc. of IEEE Int'l Conf.
or PDala Engineering, Mar 5-8 2003.

[4] D.Pfoser and C.5.Jensen. Querying the trajectories of
on-line mobile objects. In MobiDE 20!, pages 66-73.

[5) P. B. Gibbons and Y. Matias. New sampling-based

summary statistics for improving approximate query

answers. In SIGMOD [998.

D. Kalashnikov, 5. Prabhakar, S. Hambrusch, and

W. Arel. Efficient evaluation of continuous range

queries on moving objects. In DEXA 02, Proc. of Int’t

Conf. on Dalabase and Ezpert Syslems Applicalions,

Sep 26 2002.

[7] S. Khanna and W. Tan. On computing functions with
uncertainty. In PODS 2001,

(8] C. Clston, B. T. Loo, and J. Widom. Adaptive
precision setting for cached approximate values. In
ACM SIGMOD, 2001.

[9] C. Olston and J. Widom. Offering a
precision-performaonce tradeofl for aggregation queries
over replicated date. In VLDB, 2000.

(10] C. Olston and J. Widom. Best-efforl cache
synchronization with source cooperation. In ACM
SIGMOD, pages 73-84, 2002.

[11] V. Poosala and V. Ganti. Fast approximate query
answering using precomputed statistics. In Proc of the
15th ICDE, page 252, 1999.

[12] S. Prabhaker, Y. Xia, D. Kalashnikov, W. Aref, and
5. Hambrusch. Query indexing and velocity
constrained indexing: Scalable techniques for
continuous gueries on moving objects. IEEE
Transactions en Computers, 51(10):1124-1140, Qct.
2002.

[13] C. E. Shannon. The Mathematical Theory of
Communication. University of Illinois Press, 1949.

{14) P. A_ Sistla, O. Wollson, S. Chamberlain, and S. Dao.
Querying the uncertoin position of moving objects. In
Temporal Dalaboses: Research ard Praclice, number
1399. 1998,

(5] S. V. Vrbsky end J. W. 8. Liu. Producing
approximote answers to set- and single-valued queries.
The Journal of Sysiems and Software, 27(3), 1994.

6

[16] O. Wolfson, P. A. Sistla, 5. Chamberlain, and
Y. Yesha. Updating and querying databnses that track
mobile units. Distributed and Parallel Databases,
7(3):257-387, 1999.

	Evaluating Probabilistic Queries over Imprecise Data
	Report Number:
	

	tmp.1307986960.pdf.452vq

